summaryrefslogtreecommitdiff
path: root/Build/source/utils/asymptote/simpson.cc
blob: 85c8c08160e4997dbe2cdaecf16ec5059ec2f396 (plain)
1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
61
62
63
64
65
66
67
68
69
70
71
72
73
74
75
76
77
78
79
80
81
82
83
84
85
86
87
88
89
90
91
92
93
94
95
96
97
98
99
100
101
102
103
104
105
106
107
108
109
110
111
112
113
114
115
116
117
118
119
120
121
122
123
124
125
126
127
128
129
130
131
132
133
134
135
136
137
138
139
140
141
142
143
144
145
146
147
148
149
150
151
152
153
154
155
156
157
158
159
160
161
162
163
164
165
166
167
168
169
170
171
172
173
174
175
176
177
178
179
180
181
182
183
184
185
186
187
188
189
190
191
192
193
194
195
196
197
198
199
200
201
202
203
204
205
206
207
208
209
210
211
212
213
214
215
216
217
218
219
220
221
#include <cmath>
#include <cassert>
#include <cfloat>

// Compute a numerical approximation to an integral via adaptive Simpson's Rule
// This routine ignores underflow.

const int nest=DBL_MANT_DIG;

typedef struct {
  bool left;                    // left interval?
  double psum, f1t, f2t, f3t, dat, estr;
} TABLE;

bool                            // Returns true iff successful.
simpson(double& integral,       // Approximate value of the integral.
        double (*f)(double),    // Pointer to function to be integrated.
        double a, double b,     // Lower, upper limits of integration.
        double acc,             // Desired relative accuracy of integral.
                                // Try to make |error| <= acc*abs(integral).
        double dxmax)           // Maximum limit on the width of a subinterval
// For periodic functions, dxmax should be
// set to the period or smaller to prevent
// premature convergence of Simpson's rule. 
{
  double diff,area,estl,estr,alpha,da,dx,wt,est,fv[5];
  TABLE table[nest],*p,*pstop;
  static const double sixth=1.0/6.0;
        
  bool success=true;
  p=table;
  pstop=table+nest-1;
  p->left=true;
  p->psum=0.0;
  alpha=a;
  da=b-a;
  fv[0]=(*f)(alpha);
  fv[2]=(*f)(alpha+0.5*da);
  fv[4]=(*f)(alpha+da);
  wt=sixth*da;
  est=wt*(fv[0]+4.0*fv[2]+fv[4]);
  area=est;

  // Have estimate est of integral on (alpha, alpha+da).
  // Bisect and compute estimates on left and right half intervals.
  // integral is the best value for the integral.

  for(;;) {
    dx=0.5*da;
    double arg=alpha+0.5*dx;
    fv[1]=(*f)(arg);
    fv[3]=(*f)(arg+dx);
    wt=sixth*dx;
    estl=wt*(fv[0]+4.0*fv[1]+fv[2]);
    estr=wt*(fv[2]+4.0*fv[3]+fv[4]);
    integral=estl+estr;
    diff=est-integral;
    area -= diff;

    if(p >= pstop) success=false;
    if(!success || (fabs(diff) <= acc*fabs(area) && da <= dxmax)) {
      // Accept approximate integral.
      // If it was a right interval, add results to finish at this level.
      // If it was a left interval, process right interval.

      for(;;) {
        if(p->left == false) { // process right-half interval
          alpha += da;
          p->left=true;
          p->psum=integral;
          fv[0]=p->f1t;
          fv[2]=p->f2t;
          fv[4]=p->f3t;
          da=p->dat;
          est=p->estr;
          break;
        }
        integral += p->psum;
        if(--p <= table) return success;
      }

    } else {
      // Raise level and store information for processing right-half interval.
      ++p;
      da=dx;
      est=estl;
      p->left=false;
      p->f1t=fv[2];
      p->f2t=fv[3];
      p->f3t=fv[4];
      p->dat=dx;
      p->estr=estr;
      fv[4]=fv[2];
      fv[2]=fv[1];
    }
  }
}

// Use adaptive Simpson integration to determine the upper limit of
// integration required to make the definite integral of a continuous
// non-negative function close to a user specified sum.
// This routine ignores underflow.

bool                            // Returns true iff successful.
unsimpson(double integral,      // Given value for the integral.
          double (*f)(double),  // Pointer to function to be integrated.
          double a, double& b,  // Lower, upper limits of integration (a <= b).
                                // The value of b provided on entry is used
                                // as an initial guess; somewhat faster if the
                                // given value is an underestimation.
          double acc,           // Desired relative accuracy of b.
                                // Try to make |integral-area| <= acc*integral.
          double& area,         // Computed integral of f(x) on [a,b].
          double dxmax,         // Maximum limit on the width of a subinterval
                                // For periodic functions, dxmax should be
                                // set to the period or smaller to prevent
                                // premature convergence of Simpson's rule. 
          double dxmin=0)       // Lower limit on sampling width.
{
  double diff,estl,estr,alpha,da,dx,wt,est,fv[5];
  double sum,parea,pdiff,b2;
  TABLE table[nest],*p,*pstop;
  static const double sixth=1.0/6.0;
        
  p=table;
  pstop=table+nest-1;
  p->psum=0.0;
  alpha=a;
  parea=0.0;
  pdiff=0.0;
  
  for(;;) {
    p->left=true;
    da=b-alpha;
    fv[0]=(*f)(alpha);
    fv[2]=(*f)(alpha+0.5*da);
    fv[4]=(*f)(alpha+da);
    wt=sixth*da;
    est=wt*(fv[0]+4.0*fv[2]+fv[4]);
    area=est;

    // Have estimate est of integral on (alpha, alpha+da).
    // Bisect and compute estimates on left and right half intervals.
    // Sum is better value for integral.

    bool cont=true;
    while(cont) {
      dx=0.5*da;
      double arg=alpha+0.5*dx;
      fv[1]=(*f)(arg);
      fv[3]=(*f)(arg+dx);
      wt=sixth*dx;
      estl=wt*(fv[0]+4.0*fv[1]+fv[2]);
      estr=wt*(fv[2]+4.0*fv[3]+fv[4]);
      sum=estl+estr;
      diff=est-sum;

      assert(sum >= 0.0);
      area=parea+sum;
      b2=alpha+da;
      if(fabs(fabs(integral-area)-fabs(pdiff))+fabs(diff) <= fv[4]*acc*(b2-a)){
        b=b2;
        return true;
      }
      if(fabs(integral-area) > fabs(pdiff+diff)) {
        if(integral <= area) {
          p=table;
          p->left=true;
          p->psum=parea;
        } else {
          if((fabs(diff) <= fv[4]*acc*da || dx <= dxmin) && da <= dxmax) {
            // Accept approximate integral sum.
            // If it was a right interval, add results to finish at this level.
            // If it was a left interval, process right interval.
      
            pdiff += diff;
            for(;;) {
              if(p->left == false) { // process right-half interval
                parea += sum;
                alpha += da;
                p->left=true;
                p->psum=sum;
                fv[0]=p->f1t;
                fv[2]=p->f2t;
                fv[4]=p->f3t;
                da=p->dat;
                est=p->estr;
                break;
              }
              sum += p->psum;
              parea -= p->psum;
              if(--p <= table) {
                p=table;
                p->psum=parea=sum;
                alpha += da;
                b += b-a;
                cont=false;
                break;
              }
            }
            continue;
          }
        }
      }
      if(p >= pstop) return false;
// Raise level and store information for processing right-half interval.
      ++p;
      da=dx;
      est=estl;
      p->psum=0.0;
      p->left=false;
      p->f1t=fv[2];
      p->f2t=fv[3];
      p->f3t=fv[4];
      p->dat=dx;
      p->estr=estr;
      fv[4]=fv[2];
      fv[2]=fv[1];
    }
  }
}