1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
61
62
63
64
65
66
67
68
69
70
71
72
73
74
75
76
77
78
79
80
81
82
83
84
85
86
87
88
89
90
91
92
93
94
95
96
97
98
99
100
101
102
103
104
105
106
107
108
109
110
111
112
113
114
115
116
117
118
119
120
121
122
123
124
125
126
127
128
129
130
131
132
133
134
135
136
137
138
139
140
141
142
143
144
145
146
147
148
149
150
151
152
153
154
155
156
157
158
159
160
161
162
163
164
165
166
167
168
169
170
171
172
173
174
175
176
177
178
179
180
181
182
183
184
185
186
187
188
189
190
191
192
193
194
195
196
197
198
199
200
201
202
203
204
205
206
207
208
209
210
211
212
213
214
215
216
217
218
219
220
221
222
223
224
225
226
227
228
229
230
231
232
233
234
235
236
237
238
239
240
241
242
243
244
245
246
247
248
249
250
251
252
253
254
255
256
257
258
259
260
261
262
263
264
265
266
267
268
269
270
271
272
273
274
275
276
277
278
279
280
281
282
283
284
285
286
287
288
289
290
291
292
293
294
295
296
297
298
299
300
301
302
303
304
305
306
307
308
309
310
311
312
313
314
315
316
317
318
319
320
321
322
323
324
325
326
327
328
329
330
331
332
333
334
335
336
337
338
339
340
341
342
343
344
345
346
347
348
349
350
351
352
353
354
355
356
357
358
359
360
361
362
363
364
365
366
367
368
369
370
371
372
373
374
375
376
377
378
379
380
381
382
383
384
385
386
387
388
389
390
391
392
393
394
395
396
397
398
399
400
401
402
403
404
405
406
407
408
409
410
411
412
413
414
415
416
417
418
419
420
421
422
423
424
425
426
427
428
429
430
431
432
433
434
435
436
437
438
439
440
441
442
443
444
445
446
447
448
449
450
451
452
453
454
455
456
457
458
459
460
461
462
463
464
465
466
467
468
469
470
471
472
473
474
475
476
477
478
479
480
481
482
483
484
485
486
487
488
489
490
491
492
493
494
495
496
497
498
499
500
501
502
503
504
505
506
507
508
509
510
511
512
513
514
515
516
517
518
519
520
521
522
523
524
525
526
527
528
529
530
531
532
533
534
535
536
537
538
539
540
541
542
543
544
545
546
547
548
549
550
551
552
553
554
555
556
557
558
559
560
561
562
563
564
565
566
567
568
569
570
571
572
573
574
575
576
577
578
579
580
581
582
583
584
585
586
587
588
589
590
591
592
593
594
595
596
597
598
599
600
601
602
603
604
605
606
607
608
609
610
611
612
613
614
615
616
617
618
619
620
621
622
623
624
625
626
627
628
629
630
631
632
633
634
635
636
637
638
639
640
641
642
643
644
645
646
647
648
649
650
651
652
653
654
655
656
657
658
659
660
661
662
663
664
665
666
667
668
669
670
671
672
673
674
675
676
677
678
679
680
681
682
683
684
685
686
687
688
689
690
691
692
693
694
695
696
697
698
699
700
701
702
703
704
705
706
707
708
709
710
711
712
713
714
715
716
717
718
719
720
721
722
723
724
725
726
727
728
729
730
731
732
733
734
735
736
737
738
739
740
741
742
743
744
745
746
747
748
749
750
751
752
753
754
755
756
757
758
759
760
761
762
763
764
765
766
767
768
769
770
771
772
773
774
775
776
777
778
779
780
781
782
783
784
785
|
/***** Autogenerated from runmath.in; changes will be overwritten *****/
#line 1 "runtimebase.in"
/*****
* runtimebase.in
* Andy Hammerlindl 2009/07/28
*
* Common declarations needed for all code-generating .in files.
*
*****/
#line 1 "runmath.in"
/*****
* runmath.in
*
* Runtime functions for math operations.
*
*****/
#line 1 "runtimebase.in"
#include "stack.h"
#include "types.h"
#include "builtin.h"
#include "entry.h"
#include "errormsg.h"
#include "array.h"
#include "triple.h"
#include "callable.h"
#include "opsymbols.h"
using vm::stack;
using vm::error;
using vm::array;
using vm::read;
using vm::callable;
using types::formal;
using types::function;
using camp::triple;
#define PRIMITIVE(name,Name,asyName) using types::prim##Name;
#include <primitives.h>
#undef PRIMITIVE
typedef double real;
void unused(void *);
namespace run {
array *copyArray(array *a);
array *copyArray2(array *a);
array *copyArray3(array *a);
double *copyTripleArray2Components(array *a, size_t &N,
GCPlacement placement=NoGC);
triple *copyTripleArray2C(array *a, size_t &N,
GCPlacement placement=NoGC);
}
function *realRealFunction();
#define CURRENTPEN processData().currentpen
#line 12 "runmath.in"
#include <inttypes.h>
#include "mathop.h"
#include "path.h"
#ifdef __CYGWIN__
extern "C" double yn(int, double);
extern "C" double jn(int, double);
extern "C" int __signgam;
#define signgam __signgam
#endif
using namespace camp;
typedef array realarray;
typedef array pairarray;
using types::realArray;
using types::pairArray;
using run::integeroverflow;
using vm::frame;
const char *invalidargument="invalid argument";
extern uint32_t CLZ(uint32_t a);
inline unsigned intbits() {
static unsigned count=0;
if(count > 0) return count;
while((1ULL << count) < Int_MAX)
++count;
++count;
return count;
}
static const unsigned char BitReverseTable8[256]=
{
#define R2(n) n, n+2*64, n+1*64, n+3*64
#define R4(n) R2(n),R2(n+2*16),R2(n+1*16),R2(n+3*16)
#define R6(n) R4(n),R4(n+2*4 ),R4(n+1*4 ),R4(n+3*4 )
R6(0),R6(2),R6(1),R6(3)
};
#undef R2
#undef R4
#undef R6
unsigned long long bitreverse8(unsigned long long a)
{
return
(unsigned long long) BitReverseTable8[a];
}
unsigned long long bitreverse16(unsigned long long a)
{
return
((unsigned long long) BitReverseTable8[a & 0xff] << 8) |
((unsigned long long) BitReverseTable8[(a >> 8)]);
}
unsigned long long bitreverse24(unsigned long long a)
{
return
((unsigned long long) BitReverseTable8[a & 0xff] << 16) |
((unsigned long long) BitReverseTable8[(a >> 8) & 0xff] << 8) |
((unsigned long long) BitReverseTable8[(a >> 16)]);
}
unsigned long long bitreverse32(unsigned long long a)
{
return
((unsigned long long) BitReverseTable8[a & 0xff] << 24) |
((unsigned long long) BitReverseTable8[(a >> 8) & 0xff] << 16) |
((unsigned long long) BitReverseTable8[(a >> 16) & 0xff] << 8) |
((unsigned long long) BitReverseTable8[(a >> 24)]);
}
unsigned long long bitreverse40(unsigned long long a)
{
return
((unsigned long long) BitReverseTable8[a & 0xff] << 32) |
((unsigned long long) BitReverseTable8[(a >> 8) & 0xff] << 24) |
((unsigned long long) BitReverseTable8[(a >> 16) & 0xff] << 16) |
((unsigned long long) BitReverseTable8[(a >> 24) & 0xff] << 8) |
((unsigned long long) BitReverseTable8[(a >> 32)]);
}
unsigned long long bitreverse48(unsigned long long a)
{
return
((unsigned long long) BitReverseTable8[a & 0xff] << 40) |
((unsigned long long) BitReverseTable8[(a >> 8) & 0xff] << 32) |
((unsigned long long) BitReverseTable8[(a >> 16) & 0xff] << 24) |
((unsigned long long) BitReverseTable8[(a >> 24) & 0xff] << 16) |
((unsigned long long) BitReverseTable8[(a >> 32) & 0xff] << 8) |
((unsigned long long) BitReverseTable8[(a >> 40)]);
}
unsigned long long bitreverse56(unsigned long long a)
{
return
((unsigned long long) BitReverseTable8[a & 0xff] << 48) |
((unsigned long long) BitReverseTable8[(a >> 8) & 0xff] << 40) |
((unsigned long long) BitReverseTable8[(a >> 16) & 0xff] << 32) |
((unsigned long long) BitReverseTable8[(a >> 24) & 0xff] << 24) |
((unsigned long long) BitReverseTable8[(a >> 32) & 0xff] << 16) |
((unsigned long long) BitReverseTable8[(a >> 40) & 0xff] << 8) |
((unsigned long long) BitReverseTable8[(a >> 48)]);
}
unsigned long long bitreverse64(unsigned long long a)
{
return
((unsigned long long) BitReverseTable8[a & 0xff] << 56) |
((unsigned long long) BitReverseTable8[(a >> 8) & 0xff] << 48) |
((unsigned long long) BitReverseTable8[(a >> 16) & 0xff] << 40) |
((unsigned long long) BitReverseTable8[(a >> 24) & 0xff] << 32) |
((unsigned long long) BitReverseTable8[(a >> 32) & 0xff] << 24) |
((unsigned long long) BitReverseTable8[(a >> 40) & 0xff] << 16) |
((unsigned long long) BitReverseTable8[(a >> 48) & 0xff] << 8) |
((unsigned long long) BitReverseTable8[(a >> 56)]);
}
// From Warren, Jr., Henry S. (2013) [2002]. Hacker's Delight (2 ed.).
// Addison Wesley - Pearson Education, Inc. pp. 81-96.
Int popcount(Int a)
{
const uint64_t m1 = 0x5555555555555555; //binary: 0101...
const uint64_t m2 = 0x3333333333333333; //binary: 00110011..
const uint64_t m4 = 0x0f0f0f0f0f0f0f0f; //binary: 4 zeros, 4 ones ...
const uint64_t h01 = 0x0101010101010101; //the sum of 256 to the power of 0,1,2,3...
// This algorithm uses 12 arithmetic operations, one of which is a multiply.
a -= (a >> 1) & m1; //put count of each 2 bits into those 2 bits
a=(a & m2)+((a >> 2) & m2); //put count of each 4 bits into those 4 bits
a=(a+(a >> 4)) & m4; //put count of each 8 bits into those 8 bits
return (a * h01) >> 56; //returns left 8 bits of a+(a << 8)+(a << 16)+(a << 24)+...
}
// Return the factorial of a non-negative integer using a lookup table.
Int factorial(Int n)
{
static Int *table;
static Int size=0;
if(size == 0) {
Int f=1;
size=2;
while(f <= Int_MAX/size)
f *= (size++);
table=new Int[size];
table[0]=f=1;
for(Int i=1; i < size; ++i) {
f *= i;
table[i]=f;
}
}
if(n >= size) integeroverflow(0);
return table[n];
}
static inline Int Round(double x)
{
return Int(x+((x >= 0) ? 0.5 : -0.5));
}
inline Int sgn(double x)
{
return (x > 0.0 ? 1 : (x < 0.0 ? -1 : 0));
}
static bool initializeRandom=true;
void Srand(Int seed)
{
initializeRandom=false;
const int n=256;
static char state[n];
initstate(intcast(seed),state,n);
}
// Autogenerated routines:
#ifndef NOSYM
#include "runmath.symbols.h"
#endif
namespace run {
#line 195 "runmath.in"
// real ^(real x, Int y);
void gen_runmath0(stack *Stack)
{
Int y=vm::pop<Int>(Stack);
real x=vm::pop<real>(Stack);
#line 196 "runmath.in"
{Stack->push<real>(pow(x,y)); return;}
}
#line 200 "runmath.in"
// pair ^(pair z, Int y);
void gen_runmath1(stack *Stack)
{
Int y=vm::pop<Int>(Stack);
pair z=vm::pop<pair>(Stack);
#line 201 "runmath.in"
{Stack->push<pair>(pow(z,y)); return;}
}
#line 205 "runmath.in"
// Int quotient(Int x, Int y);
void gen_runmath2(stack *Stack)
{
Int y=vm::pop<Int>(Stack);
Int x=vm::pop<Int>(Stack);
#line 206 "runmath.in"
{Stack->push<Int>(quotient<Int>()(x,y)); return;}
}
#line 210 "runmath.in"
// Int abs(Int x);
void gen_runmath3(stack *Stack)
{
Int x=vm::pop<Int>(Stack);
#line 211 "runmath.in"
{Stack->push<Int>(Abs(x)); return;}
}
#line 215 "runmath.in"
// Int sgn(real x);
void gen_runmath4(stack *Stack)
{
real x=vm::pop<real>(Stack);
#line 216 "runmath.in"
{Stack->push<Int>(sgn(x)); return;}
}
#line 220 "runmath.in"
// Int rand();
void gen_runmath5(stack *Stack)
{
#line 221 "runmath.in"
if(initializeRandom)
Srand(1);
{Stack->push<Int>(random()); return;}
}
#line 227 "runmath.in"
// void srand(Int seed);
void gen_runmath6(stack *Stack)
{
Int seed=vm::pop<Int>(Stack);
#line 228 "runmath.in"
Srand(seed);
}
// a random number uniformly distributed in the interval [0,1]
#line 233 "runmath.in"
// real unitrand();
void gen_runmath7(stack *Stack)
{
#line 234 "runmath.in"
{Stack->push<real>(((real) random())/RANDOM_MAX); return;}
}
#line 238 "runmath.in"
// Int ceil(real x);
void gen_runmath8(stack *Stack)
{
real x=vm::pop<real>(Stack);
#line 239 "runmath.in"
{Stack->push<Int>(Intcast(ceil(x))); return;}
}
#line 243 "runmath.in"
// Int floor(real x);
void gen_runmath9(stack *Stack)
{
real x=vm::pop<real>(Stack);
#line 244 "runmath.in"
{Stack->push<Int>(Intcast(floor(x))); return;}
}
#line 248 "runmath.in"
// Int round(real x);
void gen_runmath10(stack *Stack)
{
real x=vm::pop<real>(Stack);
#line 249 "runmath.in"
if(validInt(x)) {Stack->push<Int>(Round(x)); return;}
integeroverflow(0);
}
#line 254 "runmath.in"
// Int Ceil(real x);
void gen_runmath11(stack *Stack)
{
real x=vm::pop<real>(Stack);
#line 255 "runmath.in"
{Stack->push<Int>(Ceil(x)); return;}
}
#line 259 "runmath.in"
// Int Floor(real x);
void gen_runmath12(stack *Stack)
{
real x=vm::pop<real>(Stack);
#line 260 "runmath.in"
{Stack->push<Int>(Floor(x)); return;}
}
#line 264 "runmath.in"
// Int Round(real x);
void gen_runmath13(stack *Stack)
{
real x=vm::pop<real>(Stack);
#line 265 "runmath.in"
{Stack->push<Int>(Round(Intcap(x))); return;}
}
#line 269 "runmath.in"
// real fmod(real x, real y);
void gen_runmath14(stack *Stack)
{
real y=vm::pop<real>(Stack);
real x=vm::pop<real>(Stack);
#line 270 "runmath.in"
if (y == 0.0) dividebyzero();
{Stack->push<real>(fmod(x,y)); return;}
}
#line 275 "runmath.in"
// real atan2(real y, real x);
void gen_runmath15(stack *Stack)
{
real x=vm::pop<real>(Stack);
real y=vm::pop<real>(Stack);
#line 276 "runmath.in"
{Stack->push<real>(atan2(y,x)); return;}
}
#line 280 "runmath.in"
// real hypot(real x, real y);
void gen_runmath16(stack *Stack)
{
real y=vm::pop<real>(Stack);
real x=vm::pop<real>(Stack);
#line 281 "runmath.in"
{Stack->push<real>(hypot(x,y)); return;}
}
#line 285 "runmath.in"
// real remainder(real x, real y);
void gen_runmath17(stack *Stack)
{
real y=vm::pop<real>(Stack);
real x=vm::pop<real>(Stack);
#line 286 "runmath.in"
{Stack->push<real>(remainder(x,y)); return;}
}
#line 290 "runmath.in"
// real Jn(Int n, real x);
void gen_runmath18(stack *Stack)
{
real x=vm::pop<real>(Stack);
Int n=vm::pop<Int>(Stack);
#line 291 "runmath.in"
{Stack->push<real>(jn(n,x)); return;}
}
#line 295 "runmath.in"
// real Yn(Int n, real x);
void gen_runmath19(stack *Stack)
{
real x=vm::pop<real>(Stack);
Int n=vm::pop<Int>(Stack);
#line 296 "runmath.in"
{Stack->push<real>(yn(n,x)); return;}
}
#line 300 "runmath.in"
// real erf(real x);
void gen_runmath20(stack *Stack)
{
real x=vm::pop<real>(Stack);
#line 301 "runmath.in"
{Stack->push<real>(erf(x)); return;}
}
#line 305 "runmath.in"
// real erfc(real x);
void gen_runmath21(stack *Stack)
{
real x=vm::pop<real>(Stack);
#line 306 "runmath.in"
{Stack->push<real>(erfc(x)); return;}
}
#line 310 "runmath.in"
// Int factorial(Int n);
void gen_runmath22(stack *Stack)
{
Int n=vm::pop<Int>(Stack);
#line 311 "runmath.in"
if(n < 0) error(invalidargument);
{Stack->push<Int>(factorial(n)); return;}
}
#line 315 "runmath.in"
// Int choose(Int n, Int k);
void gen_runmath23(stack *Stack)
{
Int k=vm::pop<Int>(Stack);
Int n=vm::pop<Int>(Stack);
#line 316 "runmath.in"
if(n < 0 || k < 0 || k > n) error(invalidargument);
Int f=1;
Int r=n-k;
for(Int i=n; i > r; --i) {
if(f > Int_MAX/i) integeroverflow(0);
f=(f*i)/(n-i+1);
}
{Stack->push<Int>(f); return;}
}
#line 326 "runmath.in"
// real gamma(real x);
void gen_runmath24(stack *Stack)
{
real x=vm::pop<real>(Stack);
#line 327 "runmath.in"
#ifdef HAVE_TGAMMA
{Stack->push<real>(tgamma(x)); return;}
#else
real lg = lgamma(x);
{Stack->push<real>(signgam*exp(lg)); return;}
#endif
}
#line 336 "runmath.in"
// realarray* quadraticroots(real a, real b, real c);
void gen_runmath25(stack *Stack)
{
real c=vm::pop<real>(Stack);
real b=vm::pop<real>(Stack);
real a=vm::pop<real>(Stack);
#line 337 "runmath.in"
quadraticroots q(a,b,c);
array *roots=new array(q.roots);
if(q.roots >= 1) (*roots)[0]=q.t1;
if(q.roots == 2) (*roots)[1]=q.t2;
{Stack->push<realarray*>(roots); return;}
}
#line 345 "runmath.in"
// pairarray* quadraticroots(explicit pair a, explicit pair b, explicit pair c);
void gen_runmath26(stack *Stack)
{
pair c=vm::pop<pair>(Stack);
pair b=vm::pop<pair>(Stack);
pair a=vm::pop<pair>(Stack);
#line 346 "runmath.in"
Quadraticroots q(a,b,c);
array *roots=new array(q.roots);
if(q.roots >= 1) (*roots)[0]=q.z1;
if(q.roots == 2) (*roots)[1]=q.z2;
{Stack->push<pairarray*>(roots); return;}
}
#line 354 "runmath.in"
// realarray* cubicroots(real a, real b, real c, real d);
void gen_runmath27(stack *Stack)
{
real d=vm::pop<real>(Stack);
real c=vm::pop<real>(Stack);
real b=vm::pop<real>(Stack);
real a=vm::pop<real>(Stack);
#line 355 "runmath.in"
cubicroots q(a,b,c,d);
array *roots=new array(q.roots);
if(q.roots >= 1) (*roots)[0]=q.t1;
if(q.roots >= 2) (*roots)[1]=q.t2;
if(q.roots == 3) (*roots)[2]=q.t3;
{Stack->push<realarray*>(roots); return;}
}
// Logical operations
#line 366 "runmath.in"
// bool !(bool b);
void gen_runmath28(stack *Stack)
{
bool b=vm::pop<bool>(Stack);
#line 367 "runmath.in"
{Stack->push<bool>(!b); return;}
}
#line 372 "runmath.in"
void boolMemEq(stack *Stack)
{
frame * b=vm::pop<frame *>(Stack);
frame * a=vm::pop<frame *>(Stack);
#line 373 "runmath.in"
{Stack->push<bool>(a == b); return;}
}
#line 377 "runmath.in"
void boolMemNeq(stack *Stack)
{
frame * b=vm::pop<frame *>(Stack);
frame * a=vm::pop<frame *>(Stack);
#line 378 "runmath.in"
{Stack->push<bool>(a != b); return;}
}
#line 382 "runmath.in"
void boolFuncEq(stack *Stack)
{
callable * b=vm::pop<callable *>(Stack);
callable * a=vm::pop<callable *>(Stack);
#line 383 "runmath.in"
{Stack->push<bool>(a->compare(b)); return;}
}
#line 387 "runmath.in"
void boolFuncNeq(stack *Stack)
{
callable * b=vm::pop<callable *>(Stack);
callable * a=vm::pop<callable *>(Stack);
#line 388 "runmath.in"
{Stack->push<bool>(!(a->compare(b))); return;}
}
// Bit operations
#line 394 "runmath.in"
// Int AND(Int a, Int b);
void gen_runmath33(stack *Stack)
{
Int b=vm::pop<Int>(Stack);
Int a=vm::pop<Int>(Stack);
#line 395 "runmath.in"
{Stack->push<Int>(a & b); return;}
}
#line 400 "runmath.in"
// Int OR(Int a, Int b);
void gen_runmath34(stack *Stack)
{
Int b=vm::pop<Int>(Stack);
Int a=vm::pop<Int>(Stack);
#line 401 "runmath.in"
{Stack->push<Int>(a | b); return;}
}
#line 405 "runmath.in"
// Int XOR(Int a, Int b);
void gen_runmath35(stack *Stack)
{
Int b=vm::pop<Int>(Stack);
Int a=vm::pop<Int>(Stack);
#line 406 "runmath.in"
{Stack->push<Int>(a ^ b); return;}
}
#line 410 "runmath.in"
// Int NOT(Int a);
void gen_runmath36(stack *Stack)
{
Int a=vm::pop<Int>(Stack);
#line 411 "runmath.in"
{Stack->push<Int>(~a); return;}
}
#line 415 "runmath.in"
// Int CLZ(Int a);
void gen_runmath37(stack *Stack)
{
Int a=vm::pop<Int>(Stack);
#line 416 "runmath.in"
if((unsigned long long) a > 0xFFFFFFFF)
{Stack->push<Int>(CLZ((uint32_t) ((unsigned long long) a >> 32))); return;}
else {
int bits=intbits();
if(a != 0) {Stack->push<Int>(bits-32+CLZ((uint32_t) a)); return;}
{Stack->push<Int>(bits); return;}
}
}
#line 426 "runmath.in"
// Int popcount(Int a);
void gen_runmath38(stack *Stack)
{
Int a=vm::pop<Int>(Stack);
#line 427 "runmath.in"
{Stack->push<Int>(popcount(a)); return;}
}
#line 431 "runmath.in"
// Int CTZ(Int a);
void gen_runmath39(stack *Stack)
{
Int a=vm::pop<Int>(Stack);
#line 432 "runmath.in"
{Stack->push<Int>(popcount((a&-a)-1)); return;}
}
// bitreverse a within a word of length bits.
#line 437 "runmath.in"
// Int bitreverse(Int a, Int bits);
void gen_runmath40(stack *Stack)
{
Int bits=vm::pop<Int>(Stack);
Int a=vm::pop<Int>(Stack);
#line 438 "runmath.in"
typedef unsigned long long Bitreverse(unsigned long long a);
static Bitreverse *B[]={bitreverse8,bitreverse16,bitreverse24,bitreverse32,
bitreverse40,bitreverse48,bitreverse56,bitreverse64};
int maxbits=intbits()-1; // Drop sign bit
#if Int_MAX2 >= 0x7fffffffffffffffLL
--maxbits; // Drop extra bit for reserved values
#endif
if(bits <= 0 || bits > maxbits || a < 0 ||
(unsigned long long) a >= (1ULL << bits))
{Stack->push<Int>(-1); return;}
unsigned int bytes=(bits+7)/8;
{Stack->push<Int>(B[bytes-1]((unsigned long long) a) >> (8*bytes-bits)); return;}
}
} // namespace run
namespace trans {
void gen_runmath_venv(venv &ve)
{
#line 195 "runmath.in"
addFunc(ve, run::gen_runmath0, primReal(), SYM_CARET, formal(primReal(), SYM(x), false, false), formal(primInt(), SYM(y), false, false));
#line 200 "runmath.in"
addFunc(ve, run::gen_runmath1, primPair(), SYM_CARET, formal(primPair(), SYM(z), false, false), formal(primInt(), SYM(y), false, false));
#line 205 "runmath.in"
addFunc(ve, run::gen_runmath2, primInt(), SYM(quotient), formal(primInt(), SYM(x), false, false), formal(primInt(), SYM(y), false, false));
#line 210 "runmath.in"
addFunc(ve, run::gen_runmath3, primInt(), SYM(abs), formal(primInt(), SYM(x), false, false));
#line 215 "runmath.in"
addFunc(ve, run::gen_runmath4, primInt(), SYM(sgn), formal(primReal(), SYM(x), false, false));
#line 220 "runmath.in"
addFunc(ve, run::gen_runmath5, primInt(), SYM(rand));
#line 227 "runmath.in"
addFunc(ve, run::gen_runmath6, primVoid(), SYM(srand), formal(primInt(), SYM(seed), false, false));
#line 232 "runmath.in"
addFunc(ve, run::gen_runmath7, primReal(), SYM(unitrand));
#line 238 "runmath.in"
addFunc(ve, run::gen_runmath8, primInt(), SYM(ceil), formal(primReal(), SYM(x), false, false));
#line 243 "runmath.in"
addFunc(ve, run::gen_runmath9, primInt(), SYM(floor), formal(primReal(), SYM(x), false, false));
#line 248 "runmath.in"
addFunc(ve, run::gen_runmath10, primInt(), SYM(round), formal(primReal(), SYM(x), false, false));
#line 254 "runmath.in"
addFunc(ve, run::gen_runmath11, primInt(), SYM(Ceil), formal(primReal(), SYM(x), false, false));
#line 259 "runmath.in"
addFunc(ve, run::gen_runmath12, primInt(), SYM(Floor), formal(primReal(), SYM(x), false, false));
#line 264 "runmath.in"
addFunc(ve, run::gen_runmath13, primInt(), SYM(Round), formal(primReal(), SYM(x), false, false));
#line 269 "runmath.in"
addFunc(ve, run::gen_runmath14, primReal(), SYM(fmod), formal(primReal(), SYM(x), false, false), formal(primReal(), SYM(y), false, false));
#line 275 "runmath.in"
addFunc(ve, run::gen_runmath15, primReal(), SYM(atan2), formal(primReal(), SYM(y), false, false), formal(primReal(), SYM(x), false, false));
#line 280 "runmath.in"
addFunc(ve, run::gen_runmath16, primReal(), SYM(hypot), formal(primReal(), SYM(x), false, false), formal(primReal(), SYM(y), false, false));
#line 285 "runmath.in"
addFunc(ve, run::gen_runmath17, primReal(), SYM(remainder), formal(primReal(), SYM(x), false, false), formal(primReal(), SYM(y), false, false));
#line 290 "runmath.in"
addFunc(ve, run::gen_runmath18, primReal(), SYM(Jn), formal(primInt(), SYM(n), false, false), formal(primReal(), SYM(x), false, false));
#line 295 "runmath.in"
addFunc(ve, run::gen_runmath19, primReal(), SYM(Yn), formal(primInt(), SYM(n), false, false), formal(primReal(), SYM(x), false, false));
#line 300 "runmath.in"
addFunc(ve, run::gen_runmath20, primReal(), SYM(erf), formal(primReal(), SYM(x), false, false));
#line 305 "runmath.in"
addFunc(ve, run::gen_runmath21, primReal(), SYM(erfc), formal(primReal(), SYM(x), false, false));
#line 310 "runmath.in"
addFunc(ve, run::gen_runmath22, primInt(), SYM(factorial), formal(primInt(), SYM(n), false, false));
#line 315 "runmath.in"
addFunc(ve, run::gen_runmath23, primInt(), SYM(choose), formal(primInt(), SYM(n), false, false), formal(primInt(), SYM(k), false, false));
#line 326 "runmath.in"
addFunc(ve, run::gen_runmath24, primReal(), SYM(gamma), formal(primReal(), SYM(x), false, false));
#line 336 "runmath.in"
addFunc(ve, run::gen_runmath25, realArray(), SYM(quadraticroots), formal(primReal(), SYM(a), false, false), formal(primReal(), SYM(b), false, false), formal(primReal(), SYM(c), false, false));
#line 345 "runmath.in"
addFunc(ve, run::gen_runmath26, pairArray(), SYM(quadraticroots), formal(primPair(), SYM(a), false, true), formal(primPair(), SYM(b), false, true), formal(primPair(), SYM(c), false, true));
#line 354 "runmath.in"
addFunc(ve, run::gen_runmath27, realArray(), SYM(cubicroots), formal(primReal(), SYM(a), false, false), formal(primReal(), SYM(b), false, false), formal(primReal(), SYM(c), false, false), formal(primReal(), SYM(d), false, false));
#line 364 "runmath.in"
addFunc(ve, run::gen_runmath28, primBoolean(), SYM_LOGNOT, formal(primBoolean(), SYM(b), false, false));
#line 372 "runmath.in"
REGISTER_BLTIN(run::boolMemEq,"boolMemEq");
#line 377 "runmath.in"
REGISTER_BLTIN(run::boolMemNeq,"boolMemNeq");
#line 382 "runmath.in"
REGISTER_BLTIN(run::boolFuncEq,"boolFuncEq");
#line 387 "runmath.in"
REGISTER_BLTIN(run::boolFuncNeq,"boolFuncNeq");
#line 392 "runmath.in"
addFunc(ve, run::gen_runmath33, primInt(), SYM(AND), formal(primInt(), SYM(a), false, false), formal(primInt(), SYM(b), false, false));
#line 400 "runmath.in"
addFunc(ve, run::gen_runmath34, primInt(), SYM(OR), formal(primInt(), SYM(a), false, false), formal(primInt(), SYM(b), false, false));
#line 405 "runmath.in"
addFunc(ve, run::gen_runmath35, primInt(), SYM(XOR), formal(primInt(), SYM(a), false, false), formal(primInt(), SYM(b), false, false));
#line 410 "runmath.in"
addFunc(ve, run::gen_runmath36, primInt(), SYM(NOT), formal(primInt(), SYM(a), false, false));
#line 415 "runmath.in"
addFunc(ve, run::gen_runmath37, primInt(), SYM(CLZ), formal(primInt(), SYM(a), false, false));
#line 426 "runmath.in"
addFunc(ve, run::gen_runmath38, primInt(), SYM(popcount), formal(primInt(), SYM(a), false, false));
#line 431 "runmath.in"
addFunc(ve, run::gen_runmath39, primInt(), SYM(CTZ), formal(primInt(), SYM(a), false, false));
#line 436 "runmath.in"
addFunc(ve, run::gen_runmath40, primInt(), SYM(bitreverse), formal(primInt(), SYM(a), false, false), formal(primInt(), SYM(bits), false, false));
}
} // namespace trans
|