1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
|
import graph;
import palette;
texpreamble("\usepackage[amssymb,thinqspace,thinspace]{SIunits}");
size(800,200);
real c=3e8;
real nm=1e-9;
real freq(real lambda) {return c/(lambda*nm);}
real lambda(real f) {return c/(f*nm);}
real fmin=10;
real fmax=1e23;
scale(Log(true),Linear(true));
xlimits(fmin,fmax);
ylimits(0,1);
real uv=freq(400);
real ir=freq(700);
bounds visible=bounds(Scale(uv).x,Scale(ir).x);
palette(visible,uv,ir+(0,2),Bottom,Rainbow(),invisible);
xaxis(Label("\hertz",1),Bottom,RightTicks,above=true);
real log10Left(real x) {return -log10(x);}
real pow10Left(real x) {return pow10(-x);}
scaleT LogLeft=scaleT(log10Left,pow10Left,logarithmic=true);
picture q=secondaryX(new void(picture p) {
scale(p,LogLeft,Linear);
xlimits(p,lambda(fmax),lambda(fmin));
ylimits(p,0,1);
xaxis(p,Label("\nano\metre",1),Top,LeftTicks(DefaultLogFormat,n=10));
});
add(q,above=true);
margin margin=PenMargin(0,0);
draw("radio",Scale((10,1))--Scale((5e12,1)),N,Arrow);
draw("infrared",Scale((1e12,1.5))--Scale(shift(0,1.5)*ir),Arrows,margin);
draw("UV",Scale(shift(0,1.5)*uv)--Scale((1e17,1.5)),Arrows,margin);
draw("x-rays",Scale((1e16,1))--Scale((1e21,1)),N,Arrows);
draw("$\gamma$-rays",Scale((fmax,1.5))--Scale((2e18,1.5)),Arrow);
|