1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
61
62
63
64
65
66
67
68
69
70
71
72
73
74
75
76
77
78
79
80
81
82
83
84
85
86
87
88
89
90
91
92
93
94
95
96
97
98
99
100
101
102
103
104
105
106
107
108
109
110
111
112
113
114
115
116
117
118
119
120
121
122
123
124
125
126
127
128
129
130
131
132
133
134
135
136
137
138
139
140
141
142
143
144
145
146
147
148
149
150
151
152
153
154
155
156
157
158
|
/*****
* env.h
* Andy Hammerlindl 2002/6/20
*
* Keeps track of the namespaces of variables and types when traversing
* the abstract syntax.
*****/
#include "env.h"
#include "record.h"
#include "genv.h"
#include "builtin.h"
using namespace types;
namespace absyntax {
void clearCachedCalls();
}
namespace trans {
// Instances of this class are passed to types::ty objects so that they can call
// back to env when checking casting of subtypes.
class envCaster : public caster {
protoenv &e;
symbol *name;
public:
envCaster(protoenv &e, symbol *name)
: e(e), name(name) {}
access *operator() (ty *target, ty *source) {
return e.lookupCast(target, source, name);
}
bool castable(ty *target, ty *source) {
return e.castable(target, source, name);
}
};
access *protoenv::baseLookupCast(ty *target, ty *source, symbol *name) {
static identAccess id;
assert(target->kind != ty_overloaded &&
source->kind != ty_overloaded);
// If errors already exist, don't report more. This may, however, cause
// problems with resoving the signature of an overloaded function. The
// abstract syntax should check if any of the parameters had an error before
// finding the signature.
if (target->kind == ty_error || source->kind == ty_error)
return &id;
else if (equivalent(target,source))
return &id;
else {
varEntry *v=lookupVarByType(name,new function(target,source));
return v ? v->getLocation() : 0;
}
}
access *protoenv::lookupCast(ty *target, ty *source, symbol *name) {
access *a=baseLookupCast(target, source, name);
if (a)
return a;
envCaster ec(*this, name);
return source->castTo(target, ec);
}
bool protoenv::castable(ty *target, ty *source, symbol *name) {
struct castTester : public tester {
protoenv &e;
symbol *name;
castTester(protoenv &e, symbol *name)
: e(e), name(name) {}
bool base(ty *t, ty *s) {
access *a=e.baseLookupCast(t, s, name);
if (a)
return true;
envCaster ec(e, name);
return s->castable(t, ec);
}
};
castTester ct(*this, name);
return ct.test(target,source);
}
ty *protoenv::castTarget(ty *target, ty *source, symbol *name) {
struct resolver : public collector {
protoenv &e;
symbol *name;
resolver(protoenv &e, symbol *name)
: e(e), name(name) {}
types::ty *base(types::ty *target, types::ty *source) {
return e.castable(target, source, name) ? target : 0;
}
};
resolver r(*this, name);
return r.collect(target, source);
}
ty *protoenv::castSource(ty *target, ty *source, symbol *name) {
struct resolver : public collector {
protoenv &e;
symbol *name;
resolver(protoenv &e, symbol *name)
: e(e), name(name) {}
types::ty *base(types::ty *target, types::ty *source) {
return e.castable(target, source, name) ? source : 0;
}
};
resolver r(*this, name);
return r.collect(target, source);
}
void protoenv::addArrayOps(array *a)
{
trans::addArrayOps(ve, a);
}
void protoenv::addRecordOps(record *r)
{
trans::addRecordOps(ve, r);
}
void protoenv::addFunctionOps(function *f)
{
trans::addFunctionOps(ve, f);
}
env::env(genv &ge)
: protoenv(venv::file_env_tag()), ge(ge)
{
// NOTE: May want to make this initial environment into a "builtin" module,
// and then import the builtin module.
base_tenv(te);
base_venv(ve);
}
env::~env()
{
}
record *env::getModule(symbol *id, string filename)
{
return ge.getModule(id, filename);
}
}
|