1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
61
62
63
64
65
66
67
68
69
70
71
72
73
74
75
76
77
78
79
80
81
82
83
84
85
86
87
88
89
90
91
92
93
94
95
96
97
98
99
100
101
102
103
104
105
106
107
108
109
110
111
112
113
114
115
116
117
118
119
120
121
122
123
124
125
126
127
128
129
130
131
132
133
134
135
136
137
138
139
140
141
142
143
144
145
146
147
148
149
150
151
152
153
154
155
156
157
158
159
160
161
162
163
164
165
166
167
168
169
170
171
172
173
174
175
176
177
178
179
180
181
182
183
184
185
186
187
188
189
190
191
192
193
194
195
196
197
198
199
200
201
202
203
204
205
206
207
208
209
210
211
212
213
214
215
216
217
218
219
220
221
222
223
224
225
226
227
228
229
230
231
232
233
234
235
236
237
238
239
240
241
242
243
244
245
246
247
248
249
250
251
252
253
254
255
256
257
258
259
260
261
262
263
264
265
266
267
268
269
270
271
272
273
274
275
276
277
278
279
280
281
282
283
284
285
286
287
288
289
290
291
292
293
294
295
296
297
|
/*****
* bezierpatch.h
* Authors: John C. Bowman and Jesse Frohlich
*
* Render Bezier patches and triangles.
*****/
#ifndef BEZIERPATCH_H
#define BEZIERPATCH_H
#include "drawelement.h"
namespace camp {
#ifdef HAVE_GL
extern const double Fuzz4;
class vertexData {
public:
GLfloat position[3];
GLfloat normal[3];
GLint material;
vertexData() {};
vertexData(const triple& v, const triple& n) {
position[0]=v.getx();
position[1]=v.gety();
position[2]=v.getz();
normal[0]=n.getx();
normal[1]=n.gety();
normal[2]=n.getz();
material=drawElement::materialIndex;
}
};
class VertexData {
public:
GLfloat position[3];
GLfloat normal[3];
GLuint color;
GLint material;
VertexData() {};
VertexData(const triple& v, const triple& n) {
position[0]=v.getx();
position[1]=v.gety();
position[2]=v.getz();
normal[0]=n.getx();
normal[1]=n.gety();
normal[2]=n.getz();
color=0;
material=drawElement::materialIndex;
}
VertexData(const triple& v, const triple& n, GLfloat *c) {
position[0]=v.getx();
position[1]=v.gety();
position[2]=v.getz();
normal[0]=n.getx();
normal[1]=n.gety();
normal[2]=n.getz();
color=glm::packUnorm4x8(glm::vec4(c[0],c[1],c[2],c[3]));
material=-(int) drawElement::materialIndex-1; // request explicit color
}
};
struct BezierPatch
{
static std::vector<vertexData> vertexbuffer;
static std::vector<VertexData> Vertexbuffer;
static std::vector<VertexData> tVertexbuffer; // for transparent surfaces
static std::vector<GLuint> indices;
static std::vector<GLuint> Indices;
static std::vector<GLuint> tIndices;
static GLuint nvertices;
static GLuint Nvertices;
static GLuint Ntvertices;
static GLuint vertsBufferIndex;
static GLuint VertsBufferIndex;
static GLuint tVertsBufferIndex;
static GLuint elemBufferIndex;
static GLuint ElemBufferIndex;
static GLuint tElemBufferIndex;
std::vector<GLuint> *pindices;
triple u,v,w;
double epsilon;
double Epsilon;
double res2;
double Res2; // Reduced resolution for Bezier triangles flatness test.
triple Min,Max;
typedef GLuint vertexFunction(const triple &v, const triple& n);
typedef GLuint VertexFunction(const triple &v, const triple& n, GLfloat *c);
vertexFunction *pvertex;
VertexFunction *pVertex;
BezierPatch() {}
void init(double res, const triple& Min, const triple& Max,
bool transparent, GLfloat *colors=NULL);
// Store the vertex v and its normal vector n in the buffer.
static GLuint vertex(const triple &v, const triple& n) {
vertexbuffer.push_back(vertexData(v,n));
return nvertices++;
}
// Store the vertex v and its normal vector n and colour c in the buffer.
static GLuint Vertex(const triple& v, const triple& n, GLfloat *c) {
Vertexbuffer.push_back(VertexData(v,n,c));
return Nvertices++;
}
static GLuint tvertex(const triple &v, const triple& n) {
tVertexbuffer.push_back(VertexData(v,n));
return Ntvertices++;
}
static GLuint tVertex(const triple& v, const triple& n, GLfloat *c) {
tVertexbuffer.push_back(VertexData(v,n,c));
return Ntvertices++;
}
triple normal(triple left3, triple left2, triple left1, triple middle,
triple right1, triple right2, triple right3) {
triple rp=right1-middle;
triple lp=left1-middle;
triple n=triple(rp.gety()*lp.getz()-rp.getz()*lp.gety(),
rp.getz()*lp.getx()-rp.getx()*lp.getz(),
rp.getx()*lp.gety()-rp.gety()*lp.getx());
if(abs2(n) > epsilon)
return unit(n);
triple lpp=bezierPP(middle,left1,left2);
triple rpp=bezierPP(middle,right1,right2);
n=cross(rpp,lp)+cross(rp,lpp);
if(abs2(n) > epsilon)
return unit(n);
triple lppp=bezierPPP(middle,left1,left2,left3);
triple rppp=bezierPPP(middle,right1,right2,right3);
return unit(9.0*cross(rpp,lpp)+
3.0*(cross(rp,lppp)+cross(rppp,lp)+
cross(rppp,lpp)+cross(rpp,lppp))+
cross(rppp,lppp));
}
triple derivative(triple p0, triple p1, triple p2, triple p3) {
triple lp=p1-p0;
if(abs2(lp) > epsilon)
return lp;
triple lpp=bezierPP(p0,p1,p2);
if(abs2(lpp) > epsilon)
return lpp;
return bezierPPP(p0,p1,p2,p3);
}
virtual double Distance(const triple *p) {
triple p0=p[0];
triple p3=p[3];
triple p12=p[12];
triple p15=p[15];
// Check the flatness of the quad.
double d=Distance2(p15,p0,normal(p3,p[2],p[1],p0,p[4],p[8],p12));
// Determine how straight the edges are.
d=max(d,Straightness(p0,p[1],p[2],p3));
d=max(d,Straightness(p0,p[4],p[8],p12));
d=max(d,Straightness(p3,p[7],p[11],p15));
d=max(d,Straightness(p12,p[13],p[14],p15));
// Determine how straight the interior control curves are.
d=max(d,Straightness(p[4],p[5],p[6],p[7]));
d=max(d,Straightness(p[8],p[9],p[10],p[11]));
d=max(d,Straightness(p[1],p[5],p[9],p[13]));
return max(d,Straightness(p[2],p[6],p[10],p[14]));
}
struct Split3 {
triple m0,m2,m3,m4,m5;
Split3() {}
Split3(triple z0, triple c0, triple c1, triple z1) {
m0=0.5*(z0+c0);
triple m1=0.5*(c0+c1);
m2=0.5*(c1+z1);
m3=0.5*(m0+m1);
m4=0.5*(m1+m2);
m5=0.5*(m3+m4);
}
};
// Approximate bounds by bounding box of control polyhedron.
bool offscreen(size_t n, const triple *v) {
double x,y,z;
double X,Y,Z;
boundstriples(x,y,z,X,Y,Z,n,v);
return
X < Min.getx() || x > Max.getx() ||
Y < Min.gety() || y > Max.gety() ||
Z < Min.getz() || z > Max.getz();
}
~BezierPatch() {}
void render(const triple *p,
GLuint I0, GLuint I1, GLuint I2, GLuint I3,
triple P0, triple P1, triple P2, triple P3,
bool flat0, bool flat1, bool flat2, bool flat3,
GLfloat *C0=NULL, GLfloat *C1=NULL, GLfloat *C2=NULL,
GLfloat *C3=NULL);
virtual void render(const triple *p, bool straight, GLfloat *c0=NULL);
void queue(const triple *g, bool straight, double ratio,
const triple& Min, const triple& Max, bool transparent,
GLfloat *colors=NULL) {
init(pixel*ratio,Min,Max,transparent,colors);
render(g,straight,colors);
}
void drawMaterials();
void drawColors(GLuint& Nvertices,
std::vector<VertexData>& Vertexbuffer,
std::vector<GLuint>& Indices);
void sortTriangles();
void drawColors() {
drawColors(Nvertices,Vertexbuffer,Indices);
}
void drawOpaque() {
drawMaterials();
drawColors();
}
void drawTransparent() {
glDepthMask(GL_FALSE);
sortTriangles();
drawColors(Ntvertices,tVertexbuffer,tIndices);
glDepthMask(GL_TRUE);
}
void draw() {
drawOpaque();
drawTransparent();
}
};
struct BezierTriangle : public BezierPatch {
public:
BezierTriangle() : BezierPatch() {}
double Distance(const triple *p) {
triple p0=p[0];
triple p6=p[6];
triple p9=p[9];
// Check how far the internal point is from the centroid of the vertices.
double d=abs2((p0+p6+p9)*third-p[4]);
// Determine how straight the edges are.
d=max(d,Straightness(p0,p[1],p[3],p6));
d=max(d,Straightness(p0,p[2],p[5],p9));
return max(d,Straightness(p6,p[7],p[8],p9));
}
void render(const triple *p,
GLuint I0, GLuint I1, GLuint I2,
triple P0, triple P1, triple P2,
bool flat0, bool flat1, bool flat2,
GLfloat *C0=NULL, GLfloat *C1=NULL, GLfloat *C2=NULL);
void render(const triple *p, bool straight, GLfloat *c0=NULL);
};
struct Triangles : public BezierPatch {
public:
Triangles() : BezierPatch() {}
void queue(size_t nP, triple* P, size_t nN, triple* N,
size_t nC, prc::RGBAColour* C, size_t nI,
uint32_t (*PI)[3], uint32_t (*NI)[3], uint32_t (*CI)[3],
bool transparent);
};
#endif
} //namespace camp
#endif
|