summaryrefslogtreecommitdiff
path: root/Build/source/utils/asymptote/base/three_light.asy
blob: 388c344895a5fae7a6b993ef8d1875b20851e240 (plain)
1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
61
62
63
64
65
66
67
68
69
70
71
72
73
74
75
76
77
78
79
80
81
82
83
84
85
86
87
88
89
90
91
92
93
94
95
96
97
98
99
100
101
102
103
104
105
106
107
108
109
110
111
112
113
114
115
116
117
118
119
120
121
122
123
124
125
126
127
128
129
130
131
132
133
134
135
136
137
138
139
140
141
142
143
144
145
146
147
148
149
150
151
152
153
154
155
156
157
158
159
160
161
162
163
164
165
166
167
struct material {
  pen[] p; // diffusepen,ambientpen,emissivepen,specularpen
  real opacity;
  real shininess;  
  real granularity;
  void operator init(pen diffusepen=black, pen ambientpen=black,
                     pen emissivepen=black, pen specularpen=mediumgray,
                     real opacity=opacity(diffusepen),
                     real shininess=defaultshininess,
                     real granularity=-1) {
    p=new pen[] {diffusepen,ambientpen,emissivepen,specularpen};
    this.opacity=opacity;
    this.shininess=shininess;
    this.granularity=granularity;
  }
  void operator init(material m, real granularity=m.granularity) {
    p=copy(m.p);
    opacity=m.opacity;
    shininess=m.shininess;
    this.granularity=granularity;
  }
  pen diffuse() {return p[0];}
  pen ambient() {return p[1];}
  pen emissive() {return p[2];}
  pen specular() {return p[3];}
  void diffuse(pen q) {p[0]=q;}
  void ambient(pen q) {p[1]=q;}
  void emissive(pen q) {p[2]=q;}
  void specular(pen q) {p[3]=q;}
}

void write(file file, string s="", material x, suffix suffix=none)
{
  write(file,s);
  write(file,"{");
  write(file,"diffuse=",x.diffuse());
  write(file,", ambient=",x.ambient());
  write(file,", emissive=",x.emissive());
  write(file,", specular=",x.specular());
  write(file,", opacity=",x.opacity);
  write(file,", shininess=",x.shininess);
  write(file,", granularity=",x.granularity);
  write(file,"}",suffix);
}

void write(string s="", material x, suffix suffix=endl)
{
  write(stdout,s,x,suffix);
}
  
bool operator == (material m, material n)
{
  return all(m.p == n.p) && m.opacity == n.opacity &&
  m.shininess == n.shininess && m.granularity == n.granularity;
}

material operator cast(pen p)
{
  return material(p);
}

material[] operator cast(pen[] p)
{
  return sequence(new material(int i) {return p[i];},p.length);
}

pen operator ecast(material m)
{
  return m.p.length > 0 ? m.diffuse() : nullpen;
}

material emissive(material m, real granularity=m.granularity)
{
  return material(black+opacity(m.opacity),black,m.diffuse(),black,m.opacity,1,
                  granularity);
}

struct light {
  real[][] diffuse;
  real[][] ambient;
  real[][] specular;
  real specularfactor;
  bool viewport; // Are the lights specified (and fixed) in the viewport frame?
  triple[] position; // Only directional lights are implemented.

  transform3 T=identity(4); // Transform to apply to normal vectors.

  bool on() {return position.length > 0;}
  
  void operator init(pen[] diffuse=array(position.length,white),
		     pen[] ambient=array(position.length,black),
		     pen[] specular=diffuse, real specularfactor=1,
		     bool viewport=true, triple[] position) {
    this.position=new triple[position.length];
    this.diffuse=new real[position.length][];
    this.ambient=new real[position.length][];
    this.specular=new real[position.length][];
    for(int i=0; i < position.length; ++i) {
      this.position[i]=unit(position[i]);
      this.diffuse[i]=rgba(diffuse[i]);
      this.ambient[i]=rgba(ambient[i]);
      this.specular[i]=rgba(specular[i]);
    }
    this.specularfactor=specularfactor;
    this.viewport=viewport;
  }

  void operator init(pen diffuse=white, pen ambient=black, pen specular=diffuse,
		     real specularfactor=1,
		     bool viewport=true...triple[] position) {
    int n=position.length;
    operator init(array(n,diffuse),array(n,ambient),array(n,specular),
		  specularfactor,viewport,position);
  }

  void operator init(pen diffuse=white, pen ambient=black, pen specular=diffuse,
		     bool viewport=true, real x, real y, real z) {
    operator init(diffuse,ambient,specular,viewport,(x,y,z));
  }

  void operator init(explicit light light) {
    diffuse=copy(light.diffuse);
    ambient=copy(light.ambient);
    specular=copy(light.specular);
    specularfactor=light.specularfactor;
    viewport=light.viewport;
    position=copy(light.position);
  }

  pen color(triple normal, material m, transform3 T=T) {
    if(invisible((pen) m)) return invisible;
    if(position.length == 0) return m.diffuse();
    normal=unit(T*normal);
    if(settings.twosided) normal *= sgn(normal.z);
    real s=m.shininess*128;
    real[] Diffuse=rgba(m.diffuse());
    real[] Ambient=rgba(m.ambient());
    real[] Specular=rgba(m.specular());
    real[] p=rgba(m.emissive());
    for(int i=0; i < position.length; ++i) {
      triple L=viewport ? position[i] : T*position[i];
      real Ldotn=max(dot(normal,L),0);
      p += ambient[i]*Ambient+Ldotn*diffuse[i]*Diffuse;
// Apply specularfactor to partially compensate non-pixel-based rendering.
      if(Ldotn > 0) // Phong-Blinn model of specular reflection
	p += dot(normal,unit(L+Z))^s*specularfactor*specular[i]*Specular;
    }
    return rgb(p[0],p[1],p[2])+opacity(opacity(m.diffuse()));
  }
}

light operator * (transform3 t, light light)
{
  light light=light(light);
  if(!light.viewport) light.position=shiftless(t)*light.position;
  return light;
}

light operator cast(triple v) {return light(v);}

light currentlight=light(ambient=rgb(0.1,0.1,0.1),specularfactor=3,
                         (0.25,-0.25,1));

light adobe=light(gray(0.4),specularfactor=3,viewport=false,
		  (0.5,-0.5,-0.25),(0.5,0.5,0.25),
		  (0.5,-0.5,0.2),(-0.5,0.5,-0.2));
light nolight;