1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
61
62
63
64
65
66
67
68
69
70
71
72
73
74
75
76
77
78
79
80
81
82
83
84
85
86
87
88
89
90
91
92
93
94
95
96
97
98
99
100
101
102
103
104
105
106
107
108
109
110
111
112
113
114
115
116
117
118
119
120
121
122
123
124
125
126
127
128
129
130
131
132
133
134
135
136
137
138
139
140
141
142
143
144
145
146
147
148
149
150
151
152
153
154
155
156
157
158
159
160
161
162
163
164
165
166
167
168
169
170
171
172
173
174
175
176
177
178
179
180
181
182
183
184
185
186
187
188
189
190
191
192
193
194
195
196
197
198
199
200
201
202
203
204
205
206
207
208
209
210
211
212
213
214
215
216
217
218
219
220
221
222
223
224
225
226
227
228
229
230
231
232
233
234
235
236
237
238
239
240
241
242
243
244
245
246
247
248
249
250
251
252
253
254
255
256
257
258
259
260
|
real stepfactor=2.0; // Maximum dynamic step size adjustment factor.
struct RKTableau
{
int order;
real[] steps;
real[][] weights;
real[] highOrderWeights;
real[] lowOrderWeights;
real pgrow;
real pshrink;
void operator init(int order, real[][] weights, real[] highOrderWeights,
real[] lowOrderWeights=new real[],
real[] steps=sequence(new real(int i) {
return sum(weights[i]);},weights.length)) {
this.order=order;
this.steps=steps;
this.weights=weights;
this.highOrderWeights=highOrderWeights;
this.lowOrderWeights=lowOrderWeights;
pgrow=(order > 0) ? 1/order : 0;
pshrink=(order > 1) ? 1/(order-1) : pgrow;
}
}
// First-Order Euler
RKTableau Euler=RKTableau(1,new real[][],
new real[] {1});
// Second-Order Runge-Kutta
RKTableau RK2=RKTableau(2,new real[][] {{1/2}},
new real[] {0,1});
// Second-Order Predictor-Corrector
RKTableau PC=RKTableau(2,new real[][] {{1}},
new real[] {1/2,1/2});
// Third-Order Classical Runge-Kutta
RKTableau RK3=RKTableau(3,new real[][] {{1/2},{-1,2}},
new real[] {1/6,2/3,1/6});
// Third-Order Bogacki-Shampine Runge-Kutta
RKTableau RK3BS=RKTableau(3,new real[][] {{1/2},{0,3/4}},
new real[] {2/9,1/3,4/9}, // 3rd order
new real[] {7/24,1/4,1/3,1/8}); // 2nd order
// Fourth-Order Classical Runge-Kutta
RKTableau RK4=RKTableau(4,new real[][] {{1/2},{0,1/2},{0,0,1}},
new real[] {1/6,1/3,1/3,1/6});
// Fifth-Order Cash-Karp Runge-Kutta
RKTableau RK5CK=RKTableau(5,new real[][] {{1/5},
{3/40,9/40},
{3/10,-9/10,6/5},
{-11/54,5/2,-70/27,35/27},
{1631/55296,175/512,575/13824,
44275/110592,253/4096}},
new real[] {37/378,0,250/621,125/594,
0,512/1771}, // 5th order
new real[] {2825/27648,0,18575/48384,13525/55296,
277/14336,1/4}); // 4th order
// Fifth-Order Fehlberg Runge-Kutta
RKTableau RK5F=RKTableau(5,new real[][] {{1/4},
{3/32,9/32},
{1932/2197,-7200/2197,7296/2197},
{439/216,-8,3680/513,-845/4104},
{-8/27,2,-3544/2565,1859/4104,
-11/40}},
new real[] {16/135,0,6656/12825,28561/56430,-9/50,2/55}, // 5th order
new real[] {25/216,0,1408/2565,2197/4104,-1/5,0}); // 4th order
// Fifth-Order Dormand-Prince Runge-Kutta
RKTableau RK5DP=RKTableau(5,new real[][] {{1/5},
{3/40,9/40},
{44/45,-56/15,32/9},
{19372/6561,-25360/2187,64448/6561,
-212/729},
{9017/3168,-355/33,46732/5247,49/176,
-5103/18656}},
new real[] {35/384,0,500/1113,125/192,-2187/6784,
11/84}, // 5th order
new real[] {5179/57600,0,7571/16695,393/640,
-92097/339200,187/2100,1/40}); // 4th order
real error(real error, real initial, real norm, real lowOrder, real diff)
{
if(initial != 0.0 && lowOrder != initial) {
static real epsilon=realMin/realEpsilon;
real denom=max(abs(norm),abs(initial))+epsilon;
return max(error,max(abs(diff)/denom));
}
return error;
}
real adjust(real h, real error, real t, real tolmin, real tolmax,
real dtmin, real dtmax, RKTableau tableau, bool verbose=true)
{
real dt=h;
void report(real t) {
if(h != dt)
write("Time step changed from "+(string) dt+" to "+(string) h+" at t="+
(string) t+".");
}
if(error > tolmax) {
h=max(h*max((tolmin/error)^tableau.pshrink,1/stepfactor),dtmin);
if(verbose) report(t);
return h;
}
if(error > 0 && error < tolmin) {
h=min(h*min((tolmin/error)^tableau.pgrow,stepfactor),dtmax);
if(verbose) report(t+dt);
}
return h;
}
// Integrate dy/dt=f(t,y) from a to b using initial conditions y,
// specifying either the step size h or the number of steps n.
real integrate(real y, real f(real t, real y), real a, real b=a, real h=0,
int n=0, bool dynamic=false, real tolmin=0, real tolmax=0,
real dtmin=0, real dtmax=realMax, RKTableau tableau,
bool verbose=false)
{
if(h == 0) {
if(b == a) return y;
if(n == 0) abort("Either n or h must be specified");
else h=(b-a)/n;
}
real t=a;
real f0;
bool fsal=tableau.lowOrderWeights.length > tableau.highOrderWeights.length;
if(fsal) f0=f(t,y);
if(tableau.lowOrderWeights.length == 0) dynamic=false;
while(t < b) {
real[] predictions={fsal ? f0 : f(t,y)};
for(int i=0; i < tableau.steps.length; ++i)
predictions.push(f(t+h*tableau.steps[i],
y+h*dot(tableau.weights[i],predictions)));
real highOrder=h*dot(tableau.highOrderWeights,predictions);
if(dynamic) {
real f1;
if(fsal) {
f1=f(t+h,y+highOrder);
predictions.push(f1);
}
real lowOrder=h*dot(tableau.lowOrderWeights,predictions);
real error;
error=error(error,y,y+highOrder,y+lowOrder,highOrder-lowOrder);
real dt=h;
h=adjust(h,error,t,tolmin,tolmax,dtmin,min(dtmax,b-t-h),tableau,verbose);
if(h >= dt) {
t += dt;
y += highOrder;
f0=f1;
}
} else {
t += h;
y += highOrder;
}
h=min(h,b-t);
if(t >= b || t+h == t) break;
}
return y;
}
// Integrate a set of equations, dy/dt=f(t,y), from a to b using initial
// conditions y, specifying either the step size h or the number of steps n.
real[] integrate(real[] y, real[] f(real t, real[] y), real a, real b=a,
real h=0, int n=0, bool dynamic=false,
real tolmin=0, real tolmax=0, real dtmin=0, real dtmax=realMax,
RKTableau tableau, bool verbose=false)
{
if(h == 0) {
if(b == a) return y;
if(n == 0) abort("Either n or h must be specified");
else h=(b-a)/n;
}
real[] y=copy(y);
real t=a;
real[] f0;
bool fsal=tableau.lowOrderWeights.length > tableau.highOrderWeights.length;
if(fsal) f0=f(t,y);
if(tableau.lowOrderWeights.length == 0) dynamic=false;
while(t < b) {
real[][] predictions={fsal ? f0 : f(t,y)};
for(int i=0; i < tableau.steps.length; ++i)
predictions.push(f(t+h*tableau.steps[i],
y+h*tableau.weights[i]*predictions));
real[] highOrder=h*tableau.highOrderWeights*predictions;
if(dynamic) {
real[] f1;
if(fsal) {
f1=f(t+h,y+highOrder);
predictions.push(f1);
}
real[] lowOrder=h*tableau.lowOrderWeights*predictions;
real error;
for(int i=0; i < y.length; ++i)
error=error(error,y[i],y[i]+highOrder[i],y[i]+lowOrder[i],
highOrder[i]-lowOrder[i]);
real dt=h;
h=adjust(h,error,t,tolmin,tolmax,dtmin,min(dtmax,b-t-h),tableau,verbose);
if(h >= dt) {
t += dt;
y += highOrder;
f0=f1;
}
} else {
t += h;
y += highOrder;
}
h=min(h,b-t);
if(t >= b || t+h == t) break;
}
return y;
}
real[][] finiteDifferenceJacobian(real[] f(real[]), real[] t,
real[] h=sqrtEpsilon*abs(t))
{
real[] ft=f(t);
real[][] J=new real[t.length][ft.length];
real[] ti=copy(t);
real tlast=ti[0];
ti[0] += h[0];
J[0]=(f(ti)-ft)/h[0];
for(int i=1; i < t.length; ++i) {
ti[i-1]=tlast;
tlast=ti[i];
ti[i] += h[i];
J[i]=(f(ti)-ft)/h[i];
}
return transpose(J);
}
// Solve simultaneous nonlinear system by Newton's method.
real[] newton(int iterations=100, real[] f(real[]), real[][] jacobian(real[]),
real[] t)
{
real[] t=copy(t);
for(int i=0; i < iterations; ++i)
t += solve(jacobian(t),-f(t));
return t;
}
real[] solveBVP(real[] f(real, real[]), real a, real b=a, real h=0, int n=0,
real[] initial(real[]), real[] discrepancy(real[]),
real[] guess, RKTableau tableau, int iterations=100)
{
real[] g(real[] t) {
return discrepancy(integrate(initial(t),f,a,b,h,n,tableau));
}
real[][] jacobian(real[] t) {return finiteDifferenceJacobian(g,t);}
return initial(newton(iterations,g,jacobian,guess));
}
|