summaryrefslogtreecommitdiff
path: root/Build/source/texk/web2c/luatexdir/tex/primitive.w
blob: e343a0ffd07f7aea129dc9ad857b55425563cef2 (plain)
1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
61
62
63
64
65
66
67
68
69
70
71
72
73
74
75
76
77
78
79
80
81
82
83
84
85
86
87
88
89
90
91
92
93
94
95
96
97
98
99
100
101
102
103
104
105
106
107
108
109
110
111
112
113
114
115
116
117
118
119
120
121
122
123
124
125
126
127
128
129
130
131
132
133
134
135
136
137
138
139
140
141
142
143
144
145
146
147
148
149
150
151
152
153
154
155
156
157
158
159
160
161
162
163
164
165
166
167
168
169
170
171
172
173
174
175
176
177
178
179
180
181
182
183
184
185
186
187
188
189
190
191
192
193
194
195
196
197
198
199
200
201
202
203
204
205
206
207
208
209
210
211
212
213
214
215
216
217
218
219
220
221
222
223
224
225
226
227
228
229
230
231
232
233
234
235
236
237
238
239
240
241
242
243
244
245
246
247
248
249
250
251
252
253
254
255
256
257
258
259
260
261
262
263
264
265
266
267
268
269
270
271
272
273
274
275
276
277
278
279
280
281
282
283
284
285
286
287
288
289
290
291
292
293
294
295
296
297
298
299
300
301
302
303
304
305
306
307
308
309
310
311
312
313
314
315
316
317
318
319
320
321
322
323
324
325
326
327
328
329
330
331
332
333
334
335
336
337
338
339
340
341
342
343
344
345
346
347
348
349
350
351
352
353
354
355
356
357
358
359
360
361
362
363
364
365
366
367
368
369
370
371
372
373
374
375
376
377
378
379
380
381
382
383
384
385
386
387
388
389
390
391
392
393
394
395
396
397
398
399
400
401
402
403
404
405
406
407
408
409
410
411
412
413
414
415
416
417
418
419
420
421
422
423
424
425
426
427
428
429
430
431
432
433
434
435
436
437
438
439
440
441
442
443
444
445
446
447
448
449
450
451
452
453
454
455
456
457
458
459
460
461
462
463
464
465
466
467
468
469
470
471
472
473
474
475
476
477
478
479
480
481
482
483
484
485
486
487
488
489
490
491
492
493
494
495
496
497
498
499
500
501
502
503
504
505
506
507
508
509
510
511
512
513
514
515
516
517
518
519
520
521
522
523
524
525
526
527
528
529
530
531
532
533
534
535
536
537
538
539
540
541
542
543
544
545
546
547
548
549
550
551
552
553
554
555
556
557
558
559
560
561
562
563
564
565
566
567
568
569
570
571
572
573
574
575
576
577
578
579
580
581
582
583
584
585
586
587
588
589
590
591
592
593
594
595
596
597
598
599
600
601
602
603
604
605
606
607
608
609
610
611
612
613
614
615
616
617
618
619
620
621
622
623
624
625
626
627
628
629
630
631
632
633
634
635
636
637
638
639
640
641
642
643
644
645
646
647
648
649
650
% primitive.w
%
% Copyright 2008-2010 Taco Hoekwater <taco@@luatex.org>
%
% This file is part of LuaTeX.
%
% LuaTeX is free software; you can redistribute it and/or modify it under
% the terms of the GNU General Public License as published by the Free
% Software Foundation; either version 2 of the License, or (at your
% option) any later version.
%
% LuaTeX is distributed in the hope that it will be useful, but WITHOUT
% ANY WARRANTY; without even the implied warranty of MERCHANTABILITY or
% FITNESS FOR A PARTICULAR PURPOSE.  See the GNU Lesser General Public
% License for more details.
%
% You should have received a copy of the GNU General Public License along
% with LuaTeX; if not, see <http://www.gnu.org/licenses/>.

@ @c


#include "ptexlib.h"

@ Control sequences are stored and retrieved by means of a fairly standard hash
table algorithm called the method of ``coalescing lists'' (cf.\ Algorithm 6.4C
in {\sl The Art of Computer Programming\/}). Once a control sequence enters the
table, it is never removed, because there are complicated situations
involving \.{\\gdef} where the removal of a control sequence at the end of
a group would be a mistake preventable only by the introduction of a
complicated reference-count mechanism.

The actual sequence of letters forming a control sequence identifier is
stored in the |str_pool| array together with all the other strings. An
auxiliary array |hash| consists of items with two halfword fields per
word. The first of these, called |next(p)|, points to the next identifier
belonging to the same coalesced list as the identifier corresponding to~|p|;
and the other, called |text(p)|, points to the |str_start| entry for
|p|'s identifier. If position~|p| of the hash table is empty, we have
|text(p)=0|; if position |p| is either empty or the end of a coalesced
hash list, we have |next(p)=0|. An auxiliary pointer variable called
|hash_used| is maintained in such a way that all locations |p>=hash_used|
are nonempty. The global variable |cs_count| tells how many multiletter
control sequences have been defined, if statistics are being kept.

A global boolean variable called |no_new_control_sequence| is set to
|true| during the time that new hash table entries are forbidden.

@c
two_halves *hash;               /* the hash table */
halfword hash_used;             /* allocation pointer for |hash| */
int hash_extra;                 /* |hash_extra=hash| above |eqtb_size| */
halfword hash_top;              /* maximum of the hash array */
halfword hash_high;             /* pointer to next high hash location */
boolean no_new_control_sequence;        /* are new identifiers legal? */
int cs_count;                   /* total number of known identifiers */

#define hash_is_full (hash_used==hash_base)     /* test if all positions are occupied */

@ \.{\\primitive} support needs a few extra variables and definitions

@c
#define prim_base 1

@ The arrays |prim| and |prim_eqtb| are used for name -> cmd,chr lookups.
  
 The are  modelled after |hash| and |eqtb|, except that primitives do not 
  have an |eq_level|, that field is replaced by |origin|.

@c
#define prim_next(a) prim[(a)].lhfield  /* link for coalesced lists */
#define prim_text(a) prim[(a)].rh       /* string number for control sequence name */
#define prim_is_full (prim_used==prim_base)     /* test if all positions are occupied */

#define prim_origin_field(a) (a).hh.b1
#define prim_eq_type_field(a)  (a).hh.b0
#define prim_equiv_field(a) (a).hh.rh
#define prim_origin(a) prim_origin_field(prim_eqtb[(a)])        /* level of definition */
#define prim_eq_type(a) prim_eq_type_field(prim_eqtb[(a)])      /* command code for equivalent */
#define prim_equiv(a) prim_equiv_field(prim_eqtb[(a)])  /* equivalent value */

static pointer prim_used;       /* allocation pointer for |prim| */
static two_halves prim[(prim_size + 1)];        /* the primitives table */
static memory_word prim_eqtb[(prim_size + 1)];

@ The array |prim_data| works the other way around, it is used for
   cmd,chr -> name lookups. 

@c
typedef struct prim_info {
    halfword subids;            /* number of name entries */
    halfword offset;            /* offset to be used for |chr_code|s */
    str_number *names;          /* array of names */
} prim_info;

static prim_info prim_data[(last_cmd + 1)];

@ initialize the memory arrays 
@c
void init_primitives(void)
{
    int k;
    memset(prim_data, 0, (sizeof(prim_info) * (last_cmd + 1)));
    memset(prim, 0, (sizeof(two_halves) * (prim_size + 1)));
    memset(prim_eqtb, 0, (sizeof(memory_word) * (prim_size + 1)));
    for (k = 0; k <= prim_size; k++)
        prim_eq_type(k) = undefined_cs_cmd;
}

void ini_init_primitives(void)
{
    prim_used = prim_size;      /* nothing is used */
}


@ The value of |hash_prime| should be roughly 85\%! of |hash_size|, and it
   should be a prime number.  The theory of hashing tells us to expect fewer
   than two table probes, on the average, when the search is successful.
   [See J.~S. Vitter, {\sl Journal of the ACM\/ \bf30} (1983), 231--258.]
   @^Vitter, Jeffrey Scott@>

@c
static halfword compute_hash(const char *j, unsigned int l,
                             halfword prime_number)
{
    int k;
    halfword h = (unsigned char) *j;
    for (k = 1; k <= (int)(l - 1); k++) {
        h = h + h + (unsigned char) *(j + k);
        while (h >= prime_number)
            h = h - prime_number;
    }
    return h;
}


@ Here is the subroutine that searches the primitive table for an identifier 
@c
pointer prim_lookup(str_number s)
{
    int h;                      /* hash code */
    pointer p;                  /* index in |hash| array */
    unsigned char *j;
    unsigned l;
    if (s < STRING_OFFSET) {
        p = s;
        if ((p < 0) || (get_prim_eq_type(p) == undefined_cs_cmd)) {
            p = undefined_primitive;
        }
    } else {
        j = str_string(s);
        l = (unsigned) str_length(s);
        h = compute_hash((char *) j, l, prim_prime);
        p = h + prim_base;      /* we start searching here; note that |0<=h<hash_prime| */
        while (1) {
            if (prim_text(p) > 0)
                if (str_length(prim_text(p)) == l)
                    if (str_eq_str(prim_text(p), s))
                        goto FOUND;
            if (prim_next(p) == 0) {
                if (no_new_control_sequence) {
                    p = undefined_primitive;
                } else {
                    /* Insert a new primitive after |p|, then make |p| point to it */
                    if (prim_text(p) > 0) {
                        do {    /* search for an empty location in |prim| */
                            if (prim_is_full)
                                overflow("primitive size", prim_size);
                            decr(prim_used);
                        } while (prim_text(prim_used) != 0);
                        prim_next(p) = prim_used;
                        p = prim_used;
                    }
                    prim_text(p) = s;
                }
                goto FOUND;
            }
            p = prim_next(p);
        }
    }
  FOUND:
    return p;
}

@ how to test a csname for primitive-ness 
@c
boolean is_primitive(str_number csname)
{
    int n, m;
    char *ss;
    m = prim_lookup(csname);
    ss = makecstring(csname);
    n = string_lookup(ss, str_length(csname));
    free(ss);
    return ((n != undefined_cs_cmd) &&
            (m != undefined_primitive) &&
            (eq_type(n) == prim_eq_type(m)) && (equiv(n) == prim_equiv(m)));
}


@ a few simple accessors 
@c
quarterword get_prim_eq_type(int p)
{
    return prim_eq_type(p);
}

quarterword get_prim_origin(int p)
{
    return prim_origin(p);
}

halfword get_prim_equiv(int p)
{
    return prim_equiv(p);
}

str_number get_prim_text(int p)
{
    return prim_text(p);
}


@ dumping and undumping 
@c
void dump_primitives(void)
{
    int p, q;
    for (p = 0; p <= prim_size; p++)
        dump_hh(prim[p]);
    for (p = 0; p <= prim_size; p++)
        dump_wd(prim_eqtb[p]);
    for (p = 0; p <= last_cmd; p++) {
        dump_int(prim_data[p].offset);
        dump_int(prim_data[p].subids);
        for (q = 0; q < prim_data[p].subids; q++) {
            dump_int(prim_data[p].names[q]);
        }
    }
}

void undump_primitives(void)
{
    int p, q;
    for (p = 0; p <= prim_size; p++)
        undump_hh(prim[p]);
    for (p = 0; p <= prim_size; p++)
        undump_wd(prim_eqtb[p]);

    for (p = 0; p <= last_cmd; p++) {
        undump_int(prim_data[p].offset);
        undump_int(prim_data[p].subids);
        if (prim_data[p].subids > 0) {
            prim_data[p].names = (str_number *)
                xmalloc((unsigned)
                        ((unsigned) prim_data[p].subids *
                         sizeof(str_number *)));
            for (q = 0; q < prim_data[p].subids; q++)
                undump_int(prim_data[p].names[q]);
        }
    }
}

@   We need to put \TeX's ``primitive'' control sequences into the hash
   table, together with their command code (which will be the |eq_type|)
   and an operand (which will be the |equiv|). The |primitive| procedure
   does this, in a way that no \TeX\ user can. The global value |cur_val|
   contains the new |eqtb| pointer after |primitive| has acted.


@  Because the definitions of the actual user-accessible name of a
   primitive can be postponed until runtime, the function |primitive_def|
   is needed that does nothing except creating the control sequence name. 

@c
void primitive_def(const char *s, size_t l, quarterword c, halfword o)
{
    int nncs = no_new_control_sequence;
    no_new_control_sequence = false;
    cur_val = string_lookup(s, l);      /* this creates the |text()| string */
    no_new_control_sequence = nncs;
    eq_level(cur_val) = level_one;
    eq_type(cur_val) = c;
    equiv(cur_val) = o;
}

@ The function |store_primitive_name| sets up the bookkeeping for the
   reverse lookup. It is quite paranoid, because it is easy to mess this up
   accidentally.

   The |offset| is needed because sometimes character codes (in |o|)
   are indices into |eqtb| or are offset by a magical value to make
   sure they do not conflict with something else. We don't want the
   |prim_data[c].names| to have too many entries as it will just be
   wasted room, so |offset| is substracted from |o| because creating
   or accessing the array. The |assert(idx<=0xFFFF)| is not strictly
   needed, but it helps catch errors of this kind.

@c
static void
store_primitive_name(str_number s, quarterword c, halfword o, halfword offset)
{
    int idx;
    if (prim_data[c].offset != 0 && prim_data[c].offset != offset) {
        assert(false);
    }
    prim_data[c].offset = offset;
    idx = ((int) o - offset);
    assert(idx >= 0);
    assert(idx <= 0xFFFF);
    if (prim_data[c].subids < (idx + 1)) {
        str_number *new =
            (str_number *) xcalloc((unsigned) (idx + 1), sizeof(str_number *));
        if (prim_data[c].names != NULL) {
            assert(prim_data[c].subids);
            memcpy(new, (prim_data[c].names),
                   (unsigned) (prim_data[c].subids) * sizeof(str_number));
            free(prim_data[c].names);
        }
        prim_data[c].names = new;
        prim_data[c].subids = idx + 1;
    }
    prim_data[c].names[idx] = s;
}

@ Compared to tex82, |primitive| has two extra parameters. The |off| is an offset 
   that will be passed on to |store_primitive_name|, the |cmd_origin| is the bit
   that is used to group primitives by originator.

@c
void
primitive(const char *thes, quarterword c, halfword o, halfword off,
          int cmd_origin)
{
    int prim_val;               /* needed to fill |prim_eqtb| */
    str_number ss;
    assert(o >= off);
    ss = maketexstring(thes);
    if (cmd_origin == tex_command || cmd_origin == core_command) {
        primitive_def(thes, strlen(thes), c, o);
    }
    prim_val = prim_lookup(ss);
    prim_origin(prim_val) = (quarterword) cmd_origin;
    prim_eq_type(prim_val) = c;
    prim_equiv(prim_val) = o;
    store_primitive_name(ss, c, o, off);
}



@ Here is a helper that does the actual hash insertion.

@c
static halfword insert_id(halfword p, const unsigned char *j, unsigned int l)
{
    unsigned saved_cur_length;
    unsigned saved_cur_string_size;
    unsigned char *saved_cur_string;
    const unsigned char *k;
    /* This code far from ideal: the existance of |hash_extra| changes
       all the potential (short) coalesced lists into a single (long)
       one. This will create a slowdown. */
    if (cs_text(p) > 0) {
        if (hash_high < hash_extra) {
            incr(hash_high);
            /* can't use |eqtb_top| here (perhaps because that is not finalized 
               yet when called from |primitive|?) */
            cs_next(p) = hash_high + eqtb_size;
            p = cs_next(p);
        } else {
            do {
                if (hash_is_full)
                    overflow("hash size", (unsigned) (hash_size + hash_extra));
                decr(hash_used);
            } while (cs_text(hash_used) != 0);  /* search for an empty location in |hash| */
            cs_next(p) = hash_used;
            p = hash_used;
        }
    }
    saved_cur_length = cur_length;
    saved_cur_string = cur_string;
    saved_cur_string_size = cur_string_size;
    reset_cur_string();
    for (k = j; k <= j + l - 1; k++)
        append_char(*k);
    cs_text(p) = make_string();
    cur_length = saved_cur_length;
    xfree(cur_string);
    cur_string = saved_cur_string;
    cur_string_size = saved_cur_string_size;
    incr(cs_count);
    return p;
}


@ Here is the subroutine that searches the hash table for an identifier
 that matches a given string of length |l>1| appearing in |buffer[j..
 (j+l-1)]|. If the identifier is found, the corresponding hash table address
 is returned. Otherwise, if the global variable |no_new_control_sequence|
 is |true|, the dummy address |undefined_control_sequence| is returned.
 Otherwise the identifier is inserted into the hash table and its location
 is returned.

@c
pointer id_lookup(int j, int l)
{                               /* search the hash table */
    int h;                      /* hash code */
    pointer p;                  /* index in |hash| array */

    h = compute_hash((char *) (buffer + j), (unsigned) l, hash_prime);
#ifdef VERBOSE
    {
        unsigned char *todo = xmalloc(l + 2);
        strncpy(todo, (buffer + j), l);
        todo[l] = '\0';
        todo[l + 1] = '\0';
        fprintf(stdout, "id_lookup(%s)\n", todo);
        free(todo);
    }
#endif
    p = h + hash_base;          /* we start searching here; note that |0<=h<hash_prime| */
    while (1) {
        if (cs_text(p) > 0)
            if (str_length(cs_text(p)) == (unsigned) l)
                if (str_eq_buf(cs_text(p), j))
                    goto FOUND;
        if (cs_next(p) == 0) {
            if (no_new_control_sequence) {
                p = undefined_control_sequence;
            } else {
                p = insert_id(p, (buffer + j), (unsigned) l);
            }
            goto FOUND;
        }
        p = cs_next(p);
    }
  FOUND:
    return p;
}

@ Here is a similar subroutine for finding a primitive in the hash.
This one is based on a C string.

@c
pointer string_lookup(const char *s, size_t l)
{                               /* search the hash table */
    int h;                      /* hash code */
    pointer p;                  /* index in |hash| array */
    h = compute_hash(s, (unsigned) l, hash_prime);
    p = h + hash_base;          /* we start searching here; note that |0<=h<hash_prime| */
    while (1) {
        if (cs_text(p) > 0)
            if (str_eq_cstr(cs_text(p), s, l))
                goto FOUND;
        if (cs_next(p) == 0) {
            if (no_new_control_sequence) {
                p = undefined_control_sequence;
            } else {
                p = insert_id(p, (const unsigned char *) s, (unsigned) l);
            }
            goto FOUND;
        }
        p = cs_next(p);
    }
  FOUND:
    return p;
}

@ The |print_cmd_chr| routine prints a symbolic interpretation of a
   command code and its modifier. This is used in certain `\.{You can\'t}'
   error messages, and in the implementation of diagnostic routines like
   \.{\\show}.

   The body of |print_cmd_chr| use to be  a rather tedious listing of print
   commands, and most of it was essentially an inverse to the |primitive|
   routine that enters a \TeX\ primitive into |eqtb|. 

   Thanks to |prim_data|, there is no need for all that tediousness. What 
   is left of |primt_cnd_chr| are just the exceptions to the general rule
   that the  |cmd,chr_code| pair represents in a single primitive command.

@c
#define chr_cmd(A) do { tprint(A); print(chr_code); } while (0)

static void prim_cmd_chr(quarterword cmd, halfword chr_code)
{
    int idx = chr_code - prim_data[cmd].offset;
    if (cmd <= last_cmd &&
        idx >= 0 && idx < prim_data[cmd].subids &&
        prim_data[cmd].names != NULL && prim_data[cmd].names[idx] != 0) {
        tprint_esc("");
        print(prim_data[cmd].names[idx]);
    } else {
        /* TEX82 didn't print the |cmd,idx| information, but it may be useful */
        tprint("[unknown command code! (");
        print_int(cmd);
        tprint(", ");
        print_int(idx);
        tprint(")]");
    }
}

void print_cmd_chr(quarterword cmd, halfword chr_code)
{
    int n;                      /* temp variable */
    switch (cmd) {
    case left_brace_cmd:
        chr_cmd("begin-group character ");
        break;
    case right_brace_cmd:
        chr_cmd("end-group character ");
        break;
    case math_shift_cmd:
        chr_cmd("math shift character ");
        break;
    case mac_param_cmd:
        if (chr_code == tab_mark_cmd_code)
            tprint_esc("alignmark");
        else
            chr_cmd("macro parameter character ");
        break;
    case sup_mark_cmd:
        chr_cmd("superscript character ");
        break;
    case sub_mark_cmd:
        chr_cmd("subscript character ");
        break;
    case endv_cmd:
        tprint("end of alignment template");
        break;
    case spacer_cmd:
        chr_cmd("blank space ");
        break;
    case letter_cmd:
        chr_cmd("the letter ");
        break;
    case other_char_cmd:
        chr_cmd("the character ");
        break;
    case tab_mark_cmd:
        if (chr_code == span_code)
            tprint_esc("span");
        else if (chr_code == tab_mark_cmd_code)
            tprint_esc("aligntab");
        else
            chr_cmd("alignment tab character ");
        break;
    case if_test_cmd:
        if (chr_code >= unless_code)
            tprint_esc("unless");
        prim_cmd_chr(cmd, (chr_code % unless_code));
        break;
    case char_given_cmd:
        tprint_esc("char");
        print_hex(chr_code);
        break;
    case math_given_cmd:
        tprint_esc("mathchar");
        show_mathcode_value(mathchar_from_integer(chr_code, tex_mathcode));
        break;
    case xmath_given_cmd:
        tprint_esc("Umathchar");
        show_mathcode_value(mathchar_from_integer(chr_code, xetex_mathcode));
        break;
    case set_font_cmd:
        tprint("select font ");
        tprint(font_name(chr_code));
        if (font_size(chr_code) != font_dsize(chr_code)) {
            tprint(" at ");
            print_scaled(font_size(chr_code));
            tprint("pt");
        }
        break;
    case undefined_cs_cmd:
        tprint("undefined");
        break;
    case call_cmd:
    case long_call_cmd:
    case outer_call_cmd:
    case long_outer_call_cmd:
        n = cmd - call_cmd;
        if (token_info(token_link(chr_code)) == protected_token)
            n = n + 4;
        if (odd(n / 4))
            tprint_esc("protected");
        if (odd(n))
            tprint_esc("long");
        if (odd(n / 2))
            tprint_esc("outer");
        if (n > 0)
            tprint(" ");
        tprint("macro");
        break;
    case extension_cmd:
        if (chr_code < prim_data[cmd].subids &&
            prim_data[cmd].names[chr_code] != 0) {
            prim_cmd_chr(cmd, chr_code);
        } else {
            tprint("[unknown extension! (");
            print_int(chr_code);
            tprint(")]");

        }
        break;
    case assign_glue_cmd:
    case assign_mu_glue_cmd:
        if (chr_code < skip_base) {
            prim_cmd_chr(cmd, chr_code);
        } else if (chr_code < mu_skip_base) {
            tprint_esc("skip");
            print_int(chr_code - skip_base);
        } else {
            tprint_esc("muskip");
            print_int(chr_code - mu_skip_base);
        }
        break;
    case assign_toks_cmd:
        if (chr_code >= toks_base) {
            tprint_esc("toks");
            print_int(chr_code - toks_base);
        } else {
            prim_cmd_chr(cmd, chr_code);
        }
        break;
    case assign_int_cmd:
        if (chr_code < count_base) {
            prim_cmd_chr(cmd, chr_code);
        } else {
            tprint_esc("count");
            print_int(chr_code - count_base);
        }
        break;
    case assign_attr_cmd:
        tprint_esc("attribute");
        print_int(chr_code - attribute_base);
        break;
    case assign_dimen_cmd:
        if (chr_code < scaled_base) {
            prim_cmd_chr(cmd, chr_code);
        } else {
            tprint_esc("dimen");
            print_int(chr_code - scaled_base);
        }
        break;
    default:
        /* these are most commands, actually */
        prim_cmd_chr(cmd, chr_code);
        break;
    }
}