1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
61
62
63
64
65
66
67
68
69
70
71
72
73
74
75
76
77
78
79
80
81
82
83
84
85
86
87
88
89
90
91
92
93
94
95
96
97
98
99
100
101
102
103
104
105
106
107
108
109
110
111
112
113
114
115
116
117
118
119
120
121
122
123
124
125
126
127
128
129
130
131
132
133
134
135
136
137
138
139
140
141
142
143
144
145
146
147
148
149
150
151
152
153
154
155
156
157
158
159
160
161
162
163
164
165
166
167
168
169
170
171
172
173
174
175
176
177
178
179
180
181
182
183
184
185
186
187
188
189
190
191
192
193
194
195
196
197
198
199
200
201
202
203
204
205
206
207
208
209
210
211
212
213
214
215
216
217
218
219
220
221
222
223
224
225
226
227
228
229
230
231
232
233
234
235
236
237
238
239
240
241
242
243
244
245
|
#include "luatex-api.h"
#include <ptexlib.h>
#include "managed-sa.h"
static void
store_sa_stack (sa_tree a, integer n, integer v, integer gl) {
sa_stack_item st;
st.code = n;
st.value = v;
st.level = gl;
if (a->stack == NULL) {
a->stack = Mxmalloc_array(sa_stack_item,a->stack_size);
} else if (((a->stack_ptr)+1)>=a->stack_size) {
a->stack_size += a->stack_step;
a->stack = Mxrealloc_array(a->stack,sa_stack_item,a->stack_size);
}
(a->stack_ptr)++;
a->stack[a->stack_ptr] = st;
}
static void
skip_in_stack (sa_tree a, integer n) {
int p = a->stack_ptr;
if (a->stack == NULL)
return;
while (p>0) {
if (a->stack[p].code == n && a->stack[p].level > 0) {
a->stack[p].level = -(a->stack[p].level);
}
p--;
}
}
sa_tree_item
get_sa_item (const sa_tree head, const integer n) {
register int h;
register int m;
if (head->tree != NULL) {
h = HIGHPART_PART(n);
if (head->tree[h] != NULL) {
m = MIDPART_PART(n);
if (head->tree[h][m] != NULL) {
return head->tree[h][m][LOWPART_PART(n)];
}
}
}
return head->dflt;
}
void
set_sa_item (sa_tree head, integer n, sa_tree_item v, integer gl) {
int h,m,l;
int i;
h = HIGHPART_PART(n);
m = MIDPART_PART(n);
l = LOWPART_PART(n);
if (head->tree == NULL) {
head->tree = (sa_tree_item ***) Mxmalloc_array(sa_tree_item **,HIGHPART);
for (i=0; i<HIGHPART; i++) { head->tree[i] = NULL; }
}
if (head->tree[h] == NULL) {
head->tree[h] = (sa_tree_item **) Mxmalloc_array(sa_tree_item *,MIDPART);
for (i=0; i<MIDPART; i++) { head->tree[h][i] = NULL; }
}
if (head->tree[h][m] == NULL) {
head->tree[h][m] = (sa_tree_item *) Mxmalloc_array(sa_tree_item,LOWPART);
for (i=0; i<LOWPART; i++) { head->tree[h][m][i] = head->dflt; }
}
if (gl<=1) {
skip_in_stack(head,n);
} else {
store_sa_stack(head,n,head->tree[h][m][l],gl);
}
head->tree[h][m][l] = v;
}
static void
rawset_sa_item (sa_tree head, integer n, integer v) {
head->tree[HIGHPART_PART(n)][MIDPART_PART(n)][LOWPART_PART(n)] = v;
}
void
clear_sa_stack (sa_tree a) {
if (a->stack != NULL) {
Mxfree(a->stack);
}
a->stack = NULL;
a->stack_ptr = 0;
a->stack_size = a->stack_step;
}
void
destroy_sa_tree (sa_tree a) {
int h,m;
if (a == NULL)
return;
if (a->tree != NULL) {
for (h=0; h<HIGHPART;h++ ) {
if (a->tree[h] != NULL) {
for (m=0; m<MIDPART; m++ ) {
if (a->tree[h][m] != NULL) {
Mxfree(a->tree[h][m]);
}
}
Mxfree(a->tree[h]);
}
}
Mxfree(a->tree);
}
if (a->stack != NULL) {
Mxfree(a->stack);
}
Mxfree(a);
}
sa_tree
copy_sa_tree(sa_tree b) {
int h,m,l;
sa_tree a = (sa_tree)Mxmalloc_array(sa_tree_head,1);
a->stack_step = b->stack_step;
a->stack_size = b->stack_size;
a->dflt = b->dflt;
a->stack = NULL;
a->stack_ptr = 0;
a->tree = NULL;
if (b->tree !=NULL) {
a->tree = (sa_tree_item ***)Mxmalloc_array(void *,HIGHPART);
for (h=0; h<HIGHPART;h++ ) {
if (b->tree[h] != NULL) {
a->tree[h]=(sa_tree_item **)Mxmalloc_array(void *,MIDPART);
for (m=0; m<MIDPART; m++ ) {
if (b->tree[h][m]!=NULL) {
a->tree[h][m]=Mxmalloc_array(sa_tree_item,LOWPART);
for (l=0; l<LOWPART; l++) {
a->tree[h][m][l] = b->tree[h][m][l] ;
}
} else {
a->tree[h][m] = NULL;
}
}
} else {
a->tree[h]= NULL;
}
}
}
return a;
}
sa_tree
new_sa_tree (integer size, sa_tree_item dflt) {
sa_tree_head *a;
a = (sa_tree_head *)xmalloc(sizeof(sa_tree_head));
a->dflt = dflt;
a->stack = NULL;
a->tree = NULL;
a->stack_size = size;
a->stack_step = size;
a->stack_ptr = 0;
return (sa_tree)a;
}
void
restore_sa_stack (sa_tree head, integer gl) {
sa_stack_item st;
if (head->stack == NULL)
return;
while (head->stack_ptr>0 && abs(head->stack[head->stack_ptr].level)>=gl) {
st = head->stack[head->stack_ptr];
if (st.level>0) {
rawset_sa_item (head, st.code, st.value);
}
(head->stack_ptr)--;
}
}
void
dump_sa_tree (sa_tree a) {
boolean f;
unsigned int x;
int h,m,l;
if (a == NULL)
return;
dump_int(a->stack_step);
dump_int(a->dflt);
if (a->tree != NULL) {
for (h=0; h<HIGHPART;h++ ) {
if (a->tree[h] != NULL) {
f = 1; dump_qqqq(f);
for (m=0; m<MIDPART; m++ ) {
if (a->tree[h][m] != NULL) {
f = 1; dump_qqqq(f);
for (l=0;l<LOWPART;l++) {
x = a->tree[h][m][l]; dump_int(x);
}
} else {
f = 0; dump_qqqq(f);
}
}
} else {
f = 0; dump_qqqq(f);
}
}
}
}
sa_tree
undump_sa_tree(void) {
unsigned int x;
int h,m,l;
boolean f;
sa_tree a = (sa_tree)Mxmalloc_array(sa_tree_head,1);
undump_int(x) ; a->stack_step = x; a->stack_size = x;
undump_int(x) ; a->dflt = x;
a->stack = Mxmalloc_array(sa_stack_item,a->stack_size);
a->stack_ptr = 0;
a->tree = (sa_tree_item ***)Mxmalloc_array(void *,HIGHPART);
for (h=0; h<HIGHPART;h++ ) {
undump_qqqq(f);
if (f>0) {
a->tree[h]=(sa_tree_item **)Mxmalloc_array(void *,MIDPART);
for (m=0; m<MIDPART; m++ ) {
undump_qqqq(f);
if (f>0) {
a->tree[h][m]=Mxmalloc_array(sa_tree_item,LOWPART);
for (l=0; l<LOWPART; l++) {
undump_int(x); a->tree[h][m][l] = x;
}
} else {
a->tree[h][m] = NULL;
}
}
} else {
a->tree[h]= NULL;
}
}
return a;
}
|