summaryrefslogtreecommitdiff
path: root/Build/source/texk/web2c/luatexdir/luapplib/util/utilfpred.c
blob: 4416161eab34940f6a306538a39a675c3c43d066 (plain)
1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
61
62
63
64
65
66
67
68
69
70
71
72
73
74
75
76
77
78
79
80
81
82
83
84
85
86
87
88
89
90
91
92
93
94
95
96
97
98
99
100
101
102
103
104
105
106
107
108
109
110
111
112
113
114
115
116
117
118
119
120
121
122
123
124
125
126
127
128
129
130
131
132
133
134
135
136
137
138
139
140
141
142
143
144
145
146
147
148
149
150
151
152
153
154
155
156
157
158
159
160
161
162
163
164
165
166
167
168
169
170
171
172
173
174
175
176
177
178
179
180
181
182
183
184
185
186
187
188
189
190
191
192
193
194
195
196
197
198
199
200
201
202
203
204
205
206
207
208
209
210
211
212
213
214
215
216
217
218
219
220
221
222
223
224
225
226
227
228
229
230
231
232
233
234
235
236
237
238
239
240
241
242
243
244
245
246
247
248
249
250
251
252
253
254
255
256
257
258
259
260
261
262
263
264
265
266
267
268
269
270
271
272
273
274
275
276
277
278
279
280
281
282
283
284
285
286
287
288
289
290
291
292
293
294
295
296
297
298
299
300
301
302
303
304
305
306
307
308
309
310
311
312
313
314
315
316
317
318
319
320
321
322
323
324
325
326
327
328
329
330
331
332
333
334
335
336
337
338
339
340
341
342
343
344
345
346
347
348
349
350
351
352
353
354
355
356
357
358
359
360
361
362
363
364
365
366
367
368
369
370
371
372
373
374
375
376
377
378
379
380
381
382
383
384
385
386
387
388
389
390
391
392
393
394
395
396
397
398
399
400
401
402
403
404
405
406
407
408
409
410
411
412
413
414
415
416
417
418
419
420
421
422
423
424
425
426
427
428
429
430
431
432
433
434
435
436
437
438
439
440
441
442
443
444
445
446
447
448
449
450
451
452
453
454
455
456
457
458
459
460
461
462
463
464
465
466
467
468
469
470
471
472
473
474
475
476
477
478
479
480
481
482
483
484
485
486
487
488
489
490
491
492
493
494
495
496
497
498
499
500
501
502
503
504
505
506
507
508
509
510
511
512
513
514
515
516
517
518
519
520
521
522
523
524
525
526
527
528
529
530
531
532
533
534
535
536
537
538
539
540
541
542
543
544
545
546
547
548
549
550
551
552
553
554
555
556
557
558
559
560
561
562
563
564
565
566
567
568
569
570
571
572
573
574
575
576
577
578
579
580
581
582
583
584
585
586
587
588
589
590
591
592
593
594
595
596
597
598
599
600
601
602
603
604
605
606
607
608
609
610
611
612
613
614
615
616
617
618
619
620
621
622
623
624
625
626
627
628
629
630
631
632
633
634
635
636
637
638
639
640
641
642
643
644
645
646
647
648
649
650
651
652
653
654
655
656
657
658
659
660
661
662
663
664
665
666
667
668
669
670
671
672
673
674
675
676
677
678
679
680
681
682
683
684
685
686
687
688
689
690
691
692
693
694
695
696
697
698
699
700
701
702
703
704
705
706
707
708
709
710
711
712
713
714
715
716
717
718
719
720
721
722
723
724
725
726
727
728
729
730
731
732
733
734
735
736
737
738
739
740
741
742
743
744
745
746
747
748
749
750
751
752
753
754
755
756
757
758
759
760
761
762
763
764
765
766
767
768
769
770
771
/* predictor filters; common for flate and lzw */

#include "utilmem.h"
#include "utillog.h"
#include "utilfpred.h"

/*
Here we implement predictor filters used with flate and lzw compressions in PDF streams. The main idea of data prediction
is to compute and output the differences between data records instead of those records. Adjacent pixels in images are usually
similar, so differences between pixel values tends to be zero. And both Flate and LZW performs better when the input
is rather smooth. Although a preliminary use of predictors is related to bitmap data, The actual need for predictor filter
came from the fact that xref streams may also be predicted (usually with PNG up-predictor).

PDF specification allows to use several predictor algorithms, specified by /Predictor key in /DecodeParms dictionary:

   1 - no predictor (default)
   2 - TIFF horizontal predictor
  10 - PNG none predictor
  11 - PNG sub predictor
  12 - PNG up predictor
  13 - PNG average predictor
  14 - PNG paeth predictor

All PNG predictors works on bytes, regardless the image color-depth. While encoding, every input data byte is decreased
by the appropriate byte of the previous pixel. Even if the pixel does not fit a full byte, PNG predictors use an artificial
pixel size rounded up to a full byte. PNG predictors utilizes previous (left) pixel, pixel above and previous to above
pixel. In case of PNG, the type of the predictor is written on a dedicated byte at the beginning of every scanline. It
means all predictor functions must maintain and information about left, above and left-above pixels.

Despite the same differencing idea, TIFF predictors are different. The prediction process bases on pixel components,
which are not necessarily bytes (component of a pixel is added/substracted from a relevant component of a previous
pixel). In TIFF predictor 2, only the previous (the left) pixel is taken into account, there is no need to keep
an information about other surrounding pixels. Also there is no expicit algorithm marker in data; the same prediction
method is applied to all input rows.

Not surprisingly, predictor encoders and decoders are pretty similar. Encoders take some input value and the previous
input value (or 0 at the beginning of the scanline) and output a difference between them. Decoders takes an input value,
previously decoded value (or zero) and outputs their sum. When encoding, the result is cast to the proper unsigned integer,
when decoding, modulo 256 (or appropriate) is used, which makes encoding and decoding looseless.

Some extra bits trickery is involved in TIFF predictor function, when components don't fit bytes boundary. In that case,
an input is treated as a bits stream. Every input byte is "buffered" in a larger integer, as its lower bits (from right).
Every output value is taken from its higher (left) bits. In a special case of bits-per-component equal 1, we buffer all
pixel bits and use XOR to compute bits difference between pixels. I've excerpted that trick from poppler, but I'm not
really sure if it works any better, especially when the number of components per pixel is 1. In that case we do a hard
bit-by-bit work anyway.

In PNG prediction, we record every pixel byte (in decoded form) in state->rowsave. At the end of a scanline
we copy state->rowsave to state->rowup, so that in the next scanline we can access up-pixel byte.
Left pixel byte is accessed as state->rowsave (the byte recently stored or virtual left edge byte \0).
Up-left pixel byte is accessed via state->rowup, but with state->pixelsize offset (same as left byte, possibly \0
at the left edge of the row). Both state->rowup and state->rowsave has a safe span of pixelsize bytes on the left,
that are permanently \0.
*/

#define predictor_component_t uint16_t
#define predictor_pixel1b_t uint32_t

#define MAX_COMPONENTS 8

typedef struct predictor_state {
  int default_predictor;                      /* default predictor indicator */
  int current_predictor;                      /* current predictor, possibly taken from algorithm marker in PNG data */
  int rowsamples;                             /* number of pixels in a scanline (/DecodeParms << /Columns ... >>) */
  int compbits;                               /* number of bits per component (/DecodeParms << /BitsPerComponent ... >>) */
  int components;                             /* number of components (/DecodeParms << /Colors ... >>) */
  uint8_t *buffer;                            /* temporary private buffer area */
  uint8_t *rowin;                             /* an input row buffer position */	
  int rowsize;                                /* size of a current scanline in bytes (rounded up) */
  int rowend;                                 /* an input buffer end position */
  int rowindex;                               /* an output buffer position */
  union {
    struct {                                  /* used by PNG predictor codecs */
      uint8_t *rowup, *rowsave;               /* previous scanline buffers */
      int predictorbyte;                      /* flag indicating that algorithm byte is read/written */
      int pixelsize;                          /* number of bytes per pixel (rounded up) */
    };
    struct {                                  /* used by TIFF predictor codecs */
      predictor_component_t compbuffer[MAX_COMPONENTS];
      union {
        predictor_component_t *prevcomp;      /* an array of left pixel components, typically eq ->compbuffer */
        predictor_pixel1b_t *prevpixel;       /* left pixel value stored on a single integer (for 1bit color-depth) */
      };
      int compin, compout;                    /* bit stream buffers */
      int bitsin, bitsout;                    /* bit stream counters */
      int sampleindex;                        /* pixel counter */
      int compindex;                          /* component counter */
      int pixbufsize;                         /* size of pixel buffer in bytes */
    };
  };
  int flush;
  int status;
} predictor_state;

enum {
  STATUS_LAST = 0,
  STATUS_CONTINUE = 1 // any value different then IOFEOF, IOFERR, ... which are < 0
};

/*
Predictor type identifiers (pdf spec 76). lpdf doesn't hire the codec if predictor is 1. Predictor 15 indicates
that the type of PNG prediction algorithm may change in subsequent lines. We always check algorithm marker anyway.
*/

enum predictor_code {
  NONE_PREDICTOR = 1,
  TIFF_PREDICTOR = 2,
  PNG_NONE_PREDICTOR = 10,
  PNG_SUB_PREDICTOR = 11,
  PNG_UP_PREDICTOR = 12,
  PNG_AVERAGE_PREDICTOR = 13,
  PNG_PAETH_PREDICTOR = 14,
  PNG_OPTIMUM_PREDICTOR = 15
};

predictor_state * predictor_decoder_init (predictor_state *state, int predictor, int rowsamples, int components, int compbits)
{
  int rowsize, pixelsize;
#define storage_pos(b, p, size) ((b = p), (p += size))
  uint8_t *buffer, *p;
  size_t buffersize;

  pixelsize = (components * compbits + 7) >> 3; // to bytes, rounded up
  rowsize = (rowsamples * components * compbits + 7) >> 3;

  state->default_predictor = state->current_predictor = predictor;
  state->rowsamples = rowsamples;
  state->components = components;
  state->compbits = compbits;

  if (predictor == TIFF_PREDICTOR)
  { /* tiff predictor */
    size_t compbuf, pixbuf;
    compbuf = components * sizeof(predictor_component_t);
    pixbuf = 1 * sizeof(predictor_pixel1b_t);
    state->pixbufsize = (int)(compbuf > pixbuf ? compbuf : pixbuf);
    buffersize = rowsize * sizeof(uint8_t);
    buffer = (uint8_t *)util_calloc(buffersize, 1);
    if (state->pixbufsize > sizeof(state->compbuffer)) // components > MAX_COMPONENTS
    	state->prevcomp = (predictor_component_t *)util_calloc(state->pixbufsize, 1);
    else
      state->prevcomp = state->compbuffer;
    // &state->prevcomp == &state->prevpixel
    state->sampleindex = state->compindex = 0;
    state->bitsin = state->bitsout = 0;
    state->compin = state->compout = 0;
  }
  else
  { /* png predictors */
    buffersize = (3 * rowsize + 2 * pixelsize + 1) * sizeof(uint8_t);
    p = buffer = (uint8_t *)util_calloc(buffersize, 1);
    storage_pos(state->rowin, p, 1 + rowsize); // one extra byte for prediction algorithm tag
    p += pixelsize;                            // pixelsize extra bytes for virtual left pixel at the edge, eg. rowup[-1] (permanently \0)
    storage_pos(state->rowup, p, rowsize);     // actual row byte
    p += pixelsize;                            // ditto
    storage_pos(state->rowsave, p, rowsize);
    state->pixelsize = pixelsize;
    state->predictorbyte = 0;
  }
  state->buffer = buffer;
  state->rowsize = rowsize;
  state->rowindex = 0;
  state->rowend = 0;
  state->status = STATUS_CONTINUE;
  return state;
}

predictor_state * predictor_encoder_init (predictor_state *state, int predictor, int rowsamples, int components, int compbits)
{
  return predictor_decoder_init(state, predictor, rowsamples, components, compbits);
}

void predictor_decoder_close (predictor_state *state)
{
  util_free(state->buffer);
  if (state->default_predictor == TIFF_PREDICTOR && state->prevcomp != NULL && state->prevcomp != state->compbuffer)
    util_free(state->prevcomp);
}

void predictor_encoder_close (predictor_state *state)
{
  predictor_decoder_close(state);
}

/*
All predoctor codecs first read the entire data row into a buffer. This is not crucial for the process,
but allows to separate read/write states. In particular, there is one place in which codec functions
may return on EOD.
*/

#define start_row(state) (state->rowindex = 0, state->rowin = state->buffer)

static int read_scanline (predictor_state *state, iof *I, int size)
{
  int rowtail, left;
  while ((rowtail = size - state->rowend) > 0)
  {
    left = (int)iof_left(I);
    if (left >= rowtail)
    {
      memcpy(state->buffer + state->rowend, I->pos, (size_t)rowtail);
      state->rowend += rowtail;
      I->pos += rowtail;
      start_row(state);
      break;
    }
    else
    {
      if ((rowtail = left) > 0)
      {
        memcpy(state->buffer + state->rowend, I->pos, (size_t)rowtail);
        state->rowend += rowtail;
        I->pos += rowtail;
      }
      if (iof_input(I) == 0)
      {
        if (state->rowend == 0) // no scanline to process, no more input
          return state->flush ? IOFEOF : IOFEMPTY;
        /* If we are here, there is an incomplete scanline in buffer:
           - if there is a chance for more (state->flush == 0), than wait for more
           - otherwise encode/decode the last incomplete line?
           pdf spec p. 76 says that "A row occupies a whole number of bytes",
           so this situation should be considered abnormal (not found so far).
         */
        if (!state->flush)
          return IOFEMPTY;
        loggerf("incomplete scanline in predictor filter");
        //return IOFERR;
        state->status = STATUS_LAST;
        state->rowsize -= size - state->rowend;
        start_row(state);
        break;
      }
    }
  }
  return STATUS_CONTINUE;
}

#define read_row(state, I, size, status) if ((status = read_scanline(state, I, size)) != STATUS_CONTINUE) return status

#define ensure_output_bytes(O, n) if (!iof_ensure(O, n)) return IOFFULL

#define tobyte(c) ((uint8_t)(c))
#define tocomp(c) ((uint16_t)(c))

#define row_byte(state) (state->rowin[state->rowindex])

/* png predictor macros; on bytes */

#define up_pixel_byte(state)     (state->rowup[state->rowindex])
#define upleft_pixel_byte(state) (state->rowup[state->rowindex - state->pixelsize])
#define left_pixel_byte(state)   (state->rowsave[state->rowindex - state->pixelsize])
#define save_pixel_byte(state, c) (state->rowsave[state->rowindex] = c)

/* tiff predictor macros; on components */

#define left_pixel_component(state) (state->prevcomp[state->compindex]) // tiff predictor with 2, 4, 8, 16 components
#define left_pixel_value(state) (state->prevpixel[0])                   // tiff predictor with 1bit components
#define save_pixel_component(state, c) ((void)\
  ((state->prevcomp[state->compindex] = c), \
   (++state->compindex < state->components || (state->compindex = 0))))

#define save_pixel_value(state, c) (state->prevpixel[0] = c)

/* Once the codec function is done with the scanline, we set imaginary left pixel data to zero, and reset row counters to
zero in order to allow buffering another input scanline. */

#define reset_row(state) state->rowend = 0

#define reset_png_row(state) (memcpy(state->rowup, state->rowsave, state->rowsize), state->predictorbyte = 0, reset_row(state))

#define reset_tiff_row(state) \
  memset(state->prevcomp, 0, state->pixbufsize), \
  state->bitsin = state->bitsout = 0, \
  state->compin = state->compout = 0, \
  reset_row(state), \
  state->sampleindex = state->compindex = 0

/* PNG paeth predictor function; http://www.libpng.org/pub/png/book/chapter09.html
Compute the base value p := left + up - upleft, then choose that byte the closest
(of the smallest absolute difference) to the base value. Left byte has a precedence. */


static int paeth (predictor_state *state)
{
  int p, p1, p2, p3;
  p = left_pixel_byte(state) + up_pixel_byte(state) - upleft_pixel_byte(state);
  p1 = p >= left_pixel_byte(state)   ? (p - left_pixel_byte(state))   : (left_pixel_byte(state) - p);
  p2 = p >= up_pixel_byte(state)     ? (p - up_pixel_byte(state))     : (up_pixel_byte(state) - p);
  p3 = p >= upleft_pixel_byte(state) ? (p - upleft_pixel_byte(state)) : (upleft_pixel_byte(state) - p);
  return (p1 <= p2 && p1 <= p3) ? left_pixel_byte(state) : (p2 <= p3 ? up_pixel_byte(state) : upleft_pixel_byte(state));
}

/* predictor decoder */

iof_status predictor_decode_state (iof *I, iof *O, predictor_state *state)
{
  int status, c, d, outbytes;
  while (state->status == STATUS_CONTINUE)
  {
    if (state->default_predictor >= 10) // PNG predictor?
    {
      read_row(state, I, state->rowsize + 1, status);
      if (state->predictorbyte == 0)
      { // we could actually check state->rowin <> state->buffer, but we need this flag for encoder anyway
        state->current_predictor = row_byte(state) + 10;
        state->predictorbyte = 1;
        ++state->rowin;
      }
    }
    else
    {
      read_row(state, I, state->rowsize, status);
    }
    switch (state->current_predictor)
    {
      case NONE_PREDICTOR:
        for ( ; state->rowindex < state->rowsize; ++state->rowindex)
        {
          ensure_output_bytes(O, 1);
          c = row_byte(state);
          iof_set(O, c);
        }
        reset_row(state);
        break;
      case TIFF_PREDICTOR:
        switch (state->compbits)
        {
          case 1:
            outbytes = (state->components + 7) >> 3;
            for ( ; state->sampleindex < state->rowsamples; ++state->sampleindex)
            {
              ensure_output_bytes(O, outbytes);
              while (state->bitsin < state->components)
              {
                state->compin = (state->compin << 8) | row_byte(state);
                state->bitsin += 8;
                ++state->rowindex;
              }
              state->bitsin -= state->components;
              d = state->compin >> state->bitsin;
              state->compin &= (1 << state->bitsin) - 1;
              c = d ^ left_pixel_value(state);
              save_pixel_value(state, c);
              state->compout = (state->compout << state->components) | c;
              state->bitsout += state->components;
              while (state->bitsout >= 8)
              {
                state->bitsout -= 8;
                iof_set(O, state->compout >> state->bitsout);
                state->compout &= (1 << state->bitsout) - 1;
              }
            }
            if (state->bitsout > 0)
            {
              ensure_output_bytes(O, 1);
              iof_set(O, state->compin << (8 - state->bitsout));
            }
            break;
          case 2: case 4:
            for ( ; state->sampleindex < state->rowsamples; ++state->sampleindex)
            {
              for ( ; state->compindex < state->components; ) // state->compindex is ++ed  by save_pixel_component()
              {
                ensure_output_bytes(O, 1);
                if (state->bitsin < state->compbits)
                {
                  state->compin = (state->compin << 8) | row_byte(state);
                  state->bitsin += 8;
                  ++state->rowindex;
                }
                state->bitsin -= state->compbits;
                d = state->compin >> state->bitsin;
                state->compin &= (1 << state->bitsin) - 1;
                c = (d + left_pixel_component(state)) & 0xff;
                save_pixel_component(state, c);
                state->compout = (state->compout << state->compbits) | c;
                state->bitsout += state->compbits;
                if (state->bitsout >= 8)
                {
                  state->bitsout -= 8;
                  iof_set(O, state->compout >> state->bitsout);
                  state->compout &= (1 << state->bitsout) - 1;
                }
              }
            }
            if (state->bitsout > 0)
            {
              ensure_output_bytes(O, 1);
              iof_set(O, state->compin << (8 - state->bitsout));
            }
            break;
          case 8:
            for ( ; state->rowindex < state->rowsize; ++state->rowindex)
            {
              ensure_output_bytes(O, 1);
              c = (row_byte(state) + left_pixel_component(state)) & 0xff;
              save_pixel_component(state, c);
              iof_set(O, c);
            }
            break;
          case 16:
            for ( ; state->rowindex < state->rowsize - 1; ++state->rowindex)
            {
              ensure_output_bytes(O, 2);
              d = row_byte(state) << 8;
              ++state->rowindex;
              d |= row_byte(state);
              c = (d + left_pixel_component(state)) & 0xffff;
              save_pixel_component(state, c);
              iof_set2(O, c >> 8, c & 0xff);
            }
            break;
          default:
            return IOFERR;
        }
        reset_tiff_row(state);
        break;
      case PNG_NONE_PREDICTOR:
        for ( ; state->rowindex < state->rowsize; ++state->rowindex)
        {
          ensure_output_bytes(O, 1);
          c = row_byte(state);
          save_pixel_byte(state, c); // next row may need it
          iof_set(O, c);
        }
        reset_png_row(state);
        break;
      case PNG_SUB_PREDICTOR:
        for ( ; state->rowindex < state->rowsize; ++state->rowindex)
        {
          ensure_output_bytes(O, 1);
          c = (row_byte(state) + left_pixel_byte(state)) & 0xff;
          save_pixel_byte(state, c);
          iof_set(O, c);
        }
        reset_png_row(state);
        break;
      case PNG_UP_PREDICTOR:
        for ( ; state->rowindex < state->rowsize; ++state->rowindex)
        {
          ensure_output_bytes(O, 1);
          c = (row_byte(state) + up_pixel_byte(state)) & 0xff;
          save_pixel_byte(state, c);
          iof_set(O, c);
        }
        reset_png_row(state);
        break;
      case PNG_AVERAGE_PREDICTOR:
        for ( ; state->rowindex < state->rowsize; ++state->rowindex)
        {
          ensure_output_bytes(O, 1);
          c = (row_byte(state) + ((up_pixel_byte(state) + left_pixel_byte(state)) / 2)) & 0xff;
          save_pixel_byte(state, c);
          iof_set(O, c);
        }
        reset_png_row(state);
        break;
      case PNG_PAETH_PREDICTOR:
        for ( ; state->rowindex < state->rowsize; ++state->rowindex)
        {
          ensure_output_bytes(O, 1);
          c = (row_byte(state) + paeth(state)) & 0xff;
          save_pixel_byte(state, c);
          iof_set(O, c);
        }
        reset_png_row(state);
        break;
      //case PNG_OPTIMUM_PREDICTOR: // valid as default_redictor, but not as algorithm identifier byte
      default:
        return IOFERR;
    }
  }
  return state->status == STATUS_LAST ? IOFERR : IOFEOF;
}

/* predictor encoder */

iof_status predictor_encode_state (iof *I, iof *O, predictor_state *state)
{
  int status, c, d, outbytes;
  while (state->status == STATUS_CONTINUE)
  {
    read_row(state, I, state->rowsize, status);
    if (state->current_predictor >= 10 && state->predictorbyte == 0)
    {
      ensure_output_bytes(O, 1);
      iof_set(O, state->current_predictor - 10);
      state->predictorbyte = 1;
    }
    switch (state->current_predictor)
    {
      case NONE_PREDICTOR:
        for ( ; state->rowindex < state->rowsize; ++state->rowindex)
        {
          ensure_output_bytes(O, 1);
          c = row_byte(state);
          iof_set(O, c);
        }
        reset_row(state);
        break;
      case TIFF_PREDICTOR:
        switch (state->compbits)
        {
          case 1:
            outbytes = (state->components + 7) >> 3;
            for ( ; state->sampleindex < state->rowsamples; ++state->sampleindex)
            {
              ensure_output_bytes(O, outbytes);
              while (state->bitsin < state->components)
              {
                state->compin = (state->compin << 8) | row_byte(state);
                state->bitsin += 8;
                ++state->rowindex;
              }
              state->bitsin -= state->components;
              c = state->compin >> state->bitsin;
              state->compin &= (1 << state->bitsin) - 1;
              d = c ^ left_pixel_value(state);
              save_pixel_value(state, c);
              state->compout = (state->compout << state->components) | d;
              state->bitsout += state->components;
              while (state->bitsout >= 8)
              {
                state->bitsout -= 8;
                iof_set(O, state->compout >> state->bitsout);
                state->compout &= (1 << state->bitsout) - 1;
              }
            }
            if (state->bitsout > 0)
            {
              ensure_output_bytes(O, 1);
              iof_set(O, state->compin << (8 - state->bitsout));
            }
            break;
          case 2: case 4:
            for ( ; state->sampleindex < state->rowsamples; ++state->sampleindex)
            {
              for ( ; state->compindex < state->components; )
              {
                ensure_output_bytes(O, 1);
                if (state->bitsin < state->compbits)
                {
                  state->compin = (state->compin << 8) | row_byte(state);
                  state->bitsin += 8;
                  ++state->rowindex;
                }
                state->bitsin -= state->compbits;
                c = state->compin >> state->bitsin;
                state->compin &= (1 << state->bitsin) - 1;
                d = tocomp(c - left_pixel_component(state));
                save_pixel_component(state, c);
                state->compout = (state->compout << state->compbits) | d;
                state->bitsout += state->compbits;
                if (state->bitsout >= 8)
                {
                  state->bitsout -= 8;
                  iof_set(O, state->compout >> state->bitsout);
                  state->compout &= (1 << state->bitsout) - 1;
                }
              }
            }
            if (state->bitsout > 0)
            {
              ensure_output_bytes(O, 1);
              iof_set(O, state->compin << (8 - state->bitsout));
            }
            break;
          case 8:
            for ( ; state->rowindex < state->rowsize; ++state->rowindex)
            {
              ensure_output_bytes(O, 1);
              c = row_byte(state);
              d = tobyte(c - left_pixel_component(state));
              save_pixel_component(state, c);
              iof_set(O, d);
            }
            break;
          case 16:
            for ( ; state->rowindex < state->rowsize - 1; ++state->rowindex)
            {
              ensure_output_bytes(O, 2);
              c = row_byte(state) << 8;
              ++state->rowindex;
              c |= row_byte(state);
              d = tocomp(c - left_pixel_component(state));
              save_pixel_component(state, c);
              iof_set2(O, d >> 8, d & 0xff);
            }
            break;
          default:
            return IOFERR;
        }
        reset_tiff_row(state);
        break;
      case PNG_NONE_PREDICTOR:
        for ( ; state->rowindex < state->rowsize; ++state->rowindex)
        {
          ensure_output_bytes(O, 1);
          c = row_byte(state);
          save_pixel_byte(state, c); // next row may need it
          iof_set(O, c);
        }
        reset_png_row(state);
        break;
      case PNG_SUB_PREDICTOR:
        for ( ; state->rowindex < state->rowsize; ++state->rowindex)
        {
          ensure_output_bytes(O, 1);
          c = row_byte(state);
          d = tobyte(c - left_pixel_byte(state));
          save_pixel_byte(state, c);
          iof_set(O, d);
        }
        reset_png_row(state);
        break;
      case PNG_OPTIMUM_PREDICTOR: // not worthy to perform optimization
      case PNG_UP_PREDICTOR:
        for ( ; state->rowindex < state->rowsize; ++state->rowindex)
        {
          ensure_output_bytes(O, 1);
          c = row_byte(state);
          d = tobyte(c - up_pixel_byte(state));
          save_pixel_byte(state, c);
          iof_set(O, d);
        }
        reset_png_row(state);
        break;
      case PNG_AVERAGE_PREDICTOR:
        for ( ; state->rowindex < state->rowsize; ++state->rowindex)
        {
          ensure_output_bytes(O, 1);
          c = row_byte(state);
          d = tobyte(c - ((up_pixel_byte(state) + left_pixel_byte(state)) >> 1));
          save_pixel_byte(state, c);
          iof_set(O, d);
        }
        reset_png_row(state);
        break;
      case PNG_PAETH_PREDICTOR:
        for ( ; state->rowindex < state->rowsize; ++state->rowindex)
        {
          ensure_output_bytes(O, 1);
          c = row_byte(state);
          d = tobyte(c - paeth(state));
          save_pixel_byte(state, c);
          iof_set(O, d);
        }
        reset_png_row(state);
        break;
      default:
        return IOFERR;
    }
  }
  return state->status == STATUS_LAST ? IOFERR : IOFEOF;
}

iof_status predictor_decode (iof *I, iof *O, int predictor, int rowsamples, int components, int compbits)
{
  predictor_state state;
  int ret;
  predictor_decoder_init(&state, predictor, rowsamples, components, compbits);
  state.flush = 1;
  ret = predictor_decode_state(I, O, &state);
  predictor_decoder_close(&state);
  return ret;
}

iof_status predictor_encode (iof *I, iof *O, int predictor, int rowsamples, int components, int compbits)
{
  predictor_state state;
  int ret;
  predictor_encoder_init(&state, predictor, rowsamples, components, compbits);
  state.flush = 1;
  ret = predictor_encode_state(I, O, &state);
  predictor_encoder_close(&state);
  return ret;
}

/* filters */

// predictor decoder function

static size_t predictor_decoder (iof *F, iof_mode mode)
{
  predictor_state *state;
  iof_status status;
  size_t tail;

  state = iof_filter_state(predictor_state *, F);
  switch(mode)
  {
    case IOFLOAD:
    case IOFREAD:
      if (F->flags & IOF_STOPPED)
        return 0;
      tail = iof_tail(F);
      F->pos = F->buf + tail;
      F->end = F->buf + F->space;
      do {
        status = predictor_decode_state(F->next, F, state);
      } while (mode == IOFLOAD && status == IOFFULL && iof_resize_buffer(F));
      return iof_decoder_retval(F, "predictor", status);
    case IOFCLOSE:
      predictor_decoder_close(state);
      iof_free(F);
      return 0;
    default:
      break;
  }
  return 0;
}

// predictor encoder function

static size_t predictor_encoder (iof *F, iof_mode mode)
{
  predictor_state *state;
  iof_status status;

  state = iof_filter_state(predictor_state *, F);
  switch (mode)
  {
    case IOFFLUSH:
      state->flush = 1;
      // fall through
    case IOFWRITE:
      F->end = F->pos;
      F->pos = F->buf;
      status = predictor_encode_state(F, F->next, state);
      return iof_encoder_retval(F, "predictor", status);
    case IOFCLOSE:
      if (!state->flush)
        predictor_encoder(F, IOFFLUSH);
      predictor_encoder_close(state);
      iof_free(F);
      return 0;
    default:
      break;
  }
  return 0;
}

iof * iof_filter_predictor_decoder (iof *N, int predictor, int rowsamples, int components, int compbits)
{
  iof *I;
  predictor_state *state;
  I = iof_filter_reader(predictor_decoder, sizeof(predictor_state), &state);
  iof_setup_next(I, N);
  if (predictor_decoder_init(state, predictor, rowsamples, components, compbits) == NULL)
  {
    iof_discard(I);
    return NULL;
  }
  state->flush = 1;
  return I;
}

iof * iof_filter_predictor_encoder (iof *N, int predictor, int rowsamples, int components, int compbits)
{
  iof *O;
  predictor_state *state;
  O = iof_filter_writer(predictor_encoder, sizeof(predictor_state), &state);
  iof_setup_next(O, N);
  if (predictor_encoder_init(state, predictor, rowsamples, components, compbits) == NULL)
  {
    iof_discard(O);
    return NULL;
  }
  return O;
}