1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
61
62
63
64
65
66
67
68
69
70
71
72
73
74
75
76
77
78
79
80
81
82
83
84
85
86
87
88
89
90
91
92
93
94
95
96
97
98
99
100
101
102
103
104
105
|
/* Copyright (C) 2001-2010 Peter Selinger.
This file is part of Potrace. It is free software and it is covered
by the GNU General Public License. See the file COPYING for details. */
/* This header file collects some general-purpose macros (and static
inline functions) that are used in various places. */
#ifndef AUXILIARY_H
#define AUXILIARY_H
#ifdef HAVE_CONFIG_H
#include "config.h"
#endif
/* ---------------------------------------------------------------------- */
/* point arithmetic */
#include "potracelib.h"
struct point_s {
long x;
long y;
};
typedef struct point_s point_t;
typedef potrace_dpoint_t dpoint_t;
/* convert point_t to dpoint_t */
static inline dpoint_t dpoint(point_t p) {
dpoint_t res;
res.x = p.x;
res.y = p.y;
return res;
}
/* range over the straight line segment [a,b] when lambda ranges over [0,1] */
static inline dpoint_t interval(double lambda, dpoint_t a, dpoint_t b) {
dpoint_t res;
res.x = a.x + lambda * (b.x - a.x);
res.y = a.y + lambda * (b.y - a.y);
return res;
}
/* ---------------------------------------------------------------------- */
/* some useful macros. Note: the "mod" macro works correctly for
negative a. Also note that the test for a>=n, while redundant,
speeds up the mod function by 70% in the average case (significant
since the program spends about 16% of its time here - or 40%
without the test). The "floordiv" macro returns the largest integer
<= a/n, and again this works correctly for negative a, as long as
a,n are integers and n>0. */
/* integer arithmetic */
static inline int mod(int a, int n) {
return a>=n ? a%n : a>=0 ? a : n-1-(-1-a)%n;
}
static inline int floordiv(int a, int n) {
return a>=0 ? a/n : -1-(-1-a)/n;
}
/* Note: the following work for integers and other numeric types. */
#undef sign
#undef abs
#undef min
#undef max
#undef sq
#undef cu
#define sign(x) ((x)>0 ? 1 : (x)<0 ? -1 : 0)
#define abs(a) ((a)>0 ? (a) : -(a))
#define min(a,b) ((a)<(b) ? (a) : (b))
#define max(a,b) ((a)>(b) ? (a) : (b))
#define sq(a) ((a)*(a))
#define cu(a) ((a)*(a)*(a))
/* ---------------------------------------------------------------------- */
/* deterministically and efficiently hash (x,y) into a pseudo-random bit */
static inline int detrand(int x, int y) {
unsigned int z;
static const unsigned char t[256] = {
/* non-linear sequence: constant term of inverse in GF(8),
mod x^8+x^4+x^3+x+1 */
0, 1, 1, 0, 1, 0, 1, 1, 0, 1, 1, 0, 0, 1, 1, 1, 0, 0, 0, 1, 1, 1, 0, 1,
0, 1, 1, 0, 1, 0, 0, 0, 0, 0, 0, 1, 1, 1, 0, 1, 1, 0, 0, 1, 0, 0, 0, 0,
0, 1, 0, 0, 1, 1, 0, 0, 0, 1, 0, 1, 1, 1, 1, 1, 1, 0, 1, 1, 1, 1, 1, 1,
1, 0, 1, 1, 0, 1, 1, 1, 1, 0, 1, 0, 0, 0, 1, 1, 0, 0, 0, 0, 1, 0, 1, 1,
0, 0, 1, 1, 1, 0, 0, 1, 0, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 0, 1, 0, 0,
0, 0, 0, 0, 1, 0, 1, 0, 1, 0, 1, 0, 0, 1, 0, 0, 1, 0, 1, 1, 1, 0, 1, 0,
0, 0, 0, 1, 0, 0, 0, 0, 0, 0, 1, 0, 1, 0, 1, 0, 1, 0, 0, 1, 1, 0, 1, 0,
0, 0, 0, 0, 0, 1, 0, 0, 0, 0, 1, 1, 1, 1, 0, 1, 1, 0, 0, 1, 1, 0, 0, 1,
1, 0, 1, 1, 0, 0, 0, 1, 1, 1, 1, 0, 1, 0, 0, 0, 0, 1, 0, 1, 1, 1, 0, 0,
0, 1, 0, 1, 1, 0, 0, 1, 1, 1, 0, 1, 0, 0, 1, 1, 0, 0, 1, 1, 1, 0, 0, 1,
1, 1, 0, 0, 0, 0, 1, 0, 1, 0, 1, 0, 1, 0, 1, 0,
};
/* 0x04b3e375 and 0x05a8ef93 are chosen to contain every possible
5-bit sequence */
z = ((0x04b3e375 * x) ^ y) * 0x05a8ef93;
z = t[z & 0xff] ^ t[(z>>8) & 0xff] ^ t[(z>>16) & 0xff] ^ t[(z>>24) & 0xff];
return z;
}
#endif /* AUXILIARY_H */
|