1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
61
62
63
64
65
66
67
68
69
70
71
72
73
74
75
76
77
78
79
80
81
82
83
84
85
86
87
88
89
90
91
92
93
94
95
96
97
98
99
100
101
102
103
104
105
106
107
108
109
110
111
112
113
114
115
116
117
118
119
120
121
122
123
124
125
126
127
128
129
130
131
132
133
134
135
136
137
138
139
140
141
142
143
144
145
146
147
148
149
150
151
152
153
154
155
156
157
158
159
160
161
162
163
164
165
166
167
168
169
170
171
172
173
174
175
176
177
178
179
180
181
182
183
184
185
186
187
188
189
190
191
192
193
194
195
196
197
198
199
200
201
202
203
204
205
206
207
208
209
210
211
212
213
214
215
216
217
218
219
220
221
222
223
224
225
226
227
228
229
230
231
232
233
234
235
236
237
238
239
240
241
242
243
244
245
246
247
248
249
250
251
252
253
254
255
256
257
258
259
260
261
262
263
264
265
266
267
268
269
270
271
272
273
274
275
276
277
278
279
280
281
282
283
284
285
286
287
288
289
290
291
292
293
294
295
296
297
298
299
300
301
302
|
/* mpfr_div_ui -- divide a floating-point number by a machine integer
Copyright 1999-2018 Free Software Foundation, Inc.
Contributed by the AriC and Caramba projects, INRIA.
This file is part of the GNU MPFR Library.
The GNU MPFR Library is free software; you can redistribute it and/or modify
it under the terms of the GNU Lesser General Public License as published by
the Free Software Foundation; either version 3 of the License, or (at your
option) any later version.
The GNU MPFR Library is distributed in the hope that it will be useful, but
WITHOUT ANY WARRANTY; without even the implied warranty of MERCHANTABILITY
or FITNESS FOR A PARTICULAR PURPOSE. See the GNU Lesser General Public
License for more details.
You should have received a copy of the GNU Lesser General Public License
along with the GNU MPFR Library; see the file COPYING.LESSER. If not, see
http://www.gnu.org/licenses/ or write to the Free Software Foundation, Inc.,
51 Franklin St, Fifth Floor, Boston, MA 02110-1301, USA. */
#define MPFR_NEED_LONGLONG_H
#include "mpfr-impl.h"
#ifdef MPFR_COV_CHECK
int __gmpfr_cov_div_ui_sb[10][2] = { 0 };
#endif
/* returns 0 if result exact, non-zero otherwise */
#undef mpfr_div_ui
MPFR_HOT_FUNCTION_ATTR int
mpfr_div_ui (mpfr_ptr y, mpfr_srcptr x, unsigned long int u,
mpfr_rnd_t rnd_mode)
{
int sh;
mp_size_t i, xn, yn, dif;
mp_limb_t *xp, *yp, *tmp, c, d;
mpfr_exp_t exp;
int inexact;
mp_limb_t rb; /* round bit */
mp_limb_t sb; /* sticky bit */
MPFR_TMP_DECL(marker);
MPFR_LOG_FUNC
(("x[%Pu]=%.*Rg u=%lu rnd=%d",
mpfr_get_prec(x), mpfr_log_prec, x, u, rnd_mode),
("y[%Pu]=%.*Rg inexact=%d",
mpfr_get_prec(y), mpfr_log_prec, y, inexact));
if (MPFR_UNLIKELY (MPFR_IS_SINGULAR (x)))
{
if (MPFR_IS_NAN (x))
{
MPFR_SET_NAN (y);
MPFR_RET_NAN;
}
else if (MPFR_IS_INF (x))
{
MPFR_SET_INF (y);
MPFR_SET_SAME_SIGN (y, x);
MPFR_RET (0);
}
else
{
MPFR_ASSERTD (MPFR_IS_ZERO (x));
if (u == 0) /* 0/0 is NaN */
{
MPFR_SET_NAN (y);
MPFR_RET_NAN;
}
else
{
MPFR_SET_ZERO(y);
MPFR_SET_SAME_SIGN (y, x);
MPFR_RET(0);
}
}
}
else if (MPFR_UNLIKELY (u <= 1))
{
if (u < 1)
{
/* x/0 is Inf since x != 0 */
MPFR_SET_INF (y);
MPFR_SET_SAME_SIGN (y, x);
MPFR_SET_DIVBY0 ();
MPFR_RET (0);
}
else /* y = x/1 = x */
return mpfr_set (y, x, rnd_mode);
}
else if (MPFR_UNLIKELY (IS_POW2 (u)))
return mpfr_div_2si (y, x, MPFR_INT_CEIL_LOG2 (u), rnd_mode);
MPFR_SET_SAME_SIGN (y, x);
MPFR_TMP_MARK (marker);
xn = MPFR_LIMB_SIZE (x);
yn = MPFR_LIMB_SIZE (y);
xp = MPFR_MANT (x);
yp = MPFR_MANT (y);
exp = MPFR_GET_EXP (x);
dif = yn + 1 - xn;
/* we need to store yn + 1 = xn + dif limbs of the quotient */
tmp = MPFR_TMP_LIMBS_ALLOC (yn + 1);
/* Notation: {p, n} denotes the integer formed by the n limbs
from p[0] to p[n-1]. Let B = 2^GMP_NUMB_BITS.
One has: 0 <= {p, n} < B^n. */
MPFR_STAT_STATIC_ASSERT (MPFR_LIMB_MAX >= ULONG_MAX);
if (dif >= 0)
{
c = mpn_divrem_1 (tmp, dif, xp, xn, u); /* used all the dividend */
/* {xp, xn} = ({tmp, xn+dif} * u + c) * B^(-dif)
= ({tmp, yn+1} * u + c) * B^(-dif) */
}
else /* dif < 0, i.e. xn > yn+1; ignore the (-dif) low limbs from x */
{
c = mpn_divrem_1 (tmp, 0, xp - dif, yn + 1, u);
/* {xp-dif, yn+1} = {tmp, yn+1} * u + c
thus
{xp, xn} = {xp, -dif} + {xp-dif, yn+1} * B^(-dif)
= {xp, -dif} + ({tmp, yn+1} * u + c) * B^(-dif) */
}
/* Let r = {xp, -dif} / B^(-dif) if dif < 0, r = 0 otherwise; 0 <= r < 1.
Then {xp, xn} = ({tmp, yn+1} * u + c + r) * B^(-dif).
x / u = ({xp, xn} / u) * B^(-xn) * 2^exp
= ({tmp, yn+1} + (c + r) / u) * B^(-(yn+1)) * 2^exp
where 0 <= (c + r) / u < 1. */
for (sb = 0, i = 0; sb == 0 && i < -dif; i++)
if (xp[i])
sb = 1;
/* sb != 0 iff r != 0 */
/*
If the highest limb of the result is 0 (xp[xn-1] < u), remove it.
Otherwise, compute the left shift to be performed to normalize.
In the latter case, we discard some low bits computed. They
contain information useful for the rounding, hence the updating
of middle and inexact.
*/
MPFR_UNSIGNED_MINUS_MODULO (sh, MPFR_PREC (y));
/* sh: number of the trailing bits of y */
if (tmp[yn] == 0)
{
MPN_COPY(yp, tmp, yn);
exp -= GMP_NUMB_BITS;
if (sh == 0) /* round bit is 1 iff (c + r) / u >= 1/2 */
{
/* In this case tmp[yn]=0 and sh=0, the round bit is not in
{tmp,yn+1}. It is 1 iff 2*(c+r) - u >= 0. This means that in
some cases, we should look at the most significant bit of r. */
if (c >= u - c) /* i.e. 2c >= u: round bit is always 1 */
{
rb = 1;
/* The sticky bit is 1 unless 2c-u = 0 and r = 0. */
sb |= 2 * c - u;
MPFR_COV_SET (div_ui_sb[0][!!sb]);
}
else /* 2*c < u */
{
/* The round bit is 1 iff r >= 1/2 and 2*(c+1/2) = u. */
rb = (c == u/2) && (dif < 0) && (xp[-dif-1] & MPFR_LIMB_HIGHBIT);
/* If rb is set, we need to recompute sb, since it might have
taken into account the msb of xp[-dif-1]. */
if (rb)
{
sb = xp[-dif-1] << 1; /* discard the most significant bit */
for (i = 0; sb == 0 && i < -dif-1; i++)
if (xp[i])
sb = 1;
/* The dif < -1 case with sb = 0, i.e. [2][0], will
ensure that the body of the loop is covered. */
MPFR_COV_SET (div_ui_sb[1 + (dif < -1)][!!sb]);
}
else
{
sb |= c;
MPFR_COV_SET (div_ui_sb[3][!!sb]);
}
}
}
else
{
/* round bit is in tmp[0] */
rb = tmp[0] & (MPFR_LIMB_ONE << (sh - 1));
sb |= (tmp[0] & MPFR_LIMB_MASK(sh - 1)) | c;
MPFR_COV_SET (div_ui_sb[4+!!rb][!!sb]);
}
}
else /* tmp[yn] != 0 */
{
int shlz;
mp_limb_t w;
MPFR_ASSERTD (tmp[yn] != 0);
count_leading_zeros (shlz, tmp[yn]);
MPFR_ASSERTD (u >= 2); /* see special cases at the beginning */
MPFR_ASSERTD (shlz > 0); /* since u >= 2 */
/* shift left to normalize */
w = tmp[0] << shlz;
mpn_lshift (yp, tmp + 1, yn, shlz);
yp[0] |= tmp[0] >> (GMP_NUMB_BITS - shlz);
/* now {yp, yn} is the approximate quotient, w is the next limb */
if (sh == 0) /* round bit is upper bit from w */
{
rb = w & MPFR_LIMB_HIGHBIT;
sb |= (w - rb) | c;
MPFR_COV_SET (div_ui_sb[6+!!rb][!!sb]);
}
else
{
rb = yp[0] & (MPFR_LIMB_ONE << (sh - 1));
sb |= (yp[0] & MPFR_LIMB_MASK(sh - 1)) | w | c;
MPFR_COV_SET (div_ui_sb[8+!!rb][!!sb]);
}
exp -= shlz;
}
d = yp[0] & MPFR_LIMB_MASK (sh);
yp[0] ^= d; /* clear the lowest sh bits */
MPFR_TMP_FREE (marker);
if (MPFR_UNLIKELY (exp < __gmpfr_emin - 1))
return mpfr_underflow (y, rnd_mode == MPFR_RNDN ? MPFR_RNDZ : rnd_mode,
MPFR_SIGN (y));
if (MPFR_UNLIKELY (rb == 0 && sb == 0))
inexact = 0; /* result is exact */
else
{
int nexttoinf;
MPFR_UPDATE2_RND_MODE(rnd_mode, MPFR_SIGN (y));
switch (rnd_mode)
{
case MPFR_RNDZ:
case MPFR_RNDF:
inexact = - MPFR_INT_SIGN (y); /* result is inexact */
nexttoinf = 0;
break;
case MPFR_RNDA:
inexact = MPFR_INT_SIGN (y);
nexttoinf = 1;
break;
default: /* should be MPFR_RNDN */
MPFR_ASSERTD (rnd_mode == MPFR_RNDN);
/* We have one more significant bit in yn. */
if (rb == 0)
{
inexact = - MPFR_INT_SIGN (y);
nexttoinf = 0;
}
else if (sb != 0) /* necessarily rb != 0 */
{
inexact = MPFR_INT_SIGN (y);
nexttoinf = 1;
}
else /* middle case */
{
if (yp[0] & (MPFR_LIMB_ONE << sh))
{
inexact = MPFR_INT_SIGN (y);
nexttoinf = 1;
}
else
{
inexact = - MPFR_INT_SIGN (y);
nexttoinf = 0;
}
}
}
if (nexttoinf &&
MPFR_UNLIKELY (mpn_add_1 (yp, yp, yn, MPFR_LIMB_ONE << sh)))
{
exp++;
yp[yn-1] = MPFR_LIMB_HIGHBIT;
}
}
/* Set the exponent. Warning! One may still have an underflow. */
MPFR_EXP (y) = exp;
return mpfr_check_range (y, inexact, rnd_mode);
}
|