1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
61
62
63
64
65
66
67
68
69
70
71
72
73
74
75
76
77
78
79
80
|
/* bernoulli -- internal function to compute Bernoulli numbers.
Copyright 2005-2016 Free Software Foundation, Inc.
Contributed by the AriC and Caramba projects, INRIA.
This file is part of the GNU MPFR Library.
The GNU MPFR Library is free software; you can redistribute it and/or modify
it under the terms of the GNU Lesser General Public License as published by
the Free Software Foundation; either version 3 of the License, or (at your
option) any later version.
The GNU MPFR Library is distributed in the hope that it will be useful, but
WITHOUT ANY WARRANTY; without even the implied warranty of MERCHANTABILITY
or FITNESS FOR A PARTICULAR PURPOSE. See the GNU Lesser General Public
License for more details.
You should have received a copy of the GNU Lesser General Public License
along with the GNU MPFR Library; see the file COPYING.LESSER. If not, see
http://www.gnu.org/licenses/ or write to the Free Software Foundation, Inc.,
51 Franklin St, Fifth Floor, Boston, MA 02110-1301, USA. */
#include "mpfr-impl.h"
/* assuming b[0]...b[2(n-1)] are computed, computes and stores B[2n]*(2n+1)!
t/(exp(t)-1) = sum(B[j]*t^j/j!, j=0..infinity)
thus t = (exp(t)-1) * sum(B[j]*t^j/j!, n=0..infinity).
Taking the coefficient of degree n+1 > 1, we get:
0 = sum(1/(n+1-k)!*B[k]/k!, k=0..n)
which gives:
B[n] = -sum(binomial(n+1,k)*B[k], k=0..n-1)/(n+1).
Let C[n] = B[n]*(n+1)!.
Then C[n] = -sum(binomial(n+1,k)*C[k]*n!/(k+1)!, k=0..n-1),
which proves that the C[n] are integers.
*/
mpz_t*
mpfr_bernoulli_internal (mpz_t *b, unsigned long n)
{
if (n == 0)
{
b = (mpz_t *) (*__gmp_allocate_func) (sizeof (mpz_t));
mpz_init_set_ui (b[0], 1);
}
else
{
mpz_t t;
unsigned long k;
b = (mpz_t *) (*__gmp_reallocate_func)
(b, n * sizeof (mpz_t), (n + 1) * sizeof (mpz_t));
mpz_init (b[n]);
/* b[n] = -sum(binomial(2n+1,2k)*C[k]*(2n)!/(2k+1)!, k=0..n-1) */
mpz_init_set_ui (t, 2 * n + 1);
mpz_mul_ui (t, t, 2 * n - 1);
mpz_mul_ui (t, t, 2 * n);
mpz_mul_ui (t, t, n);
mpz_fdiv_q_ui (t, t, 3); /* exact: t=binomial(2*n+1,2*k)*(2*n)!/(2*k+1)!
for k=n-1 */
mpz_mul (b[n], t, b[n-1]);
for (k = n - 1; k-- > 0;)
{
mpz_mul_ui (t, t, 2 * k + 1);
mpz_mul_ui (t, t, 2 * k + 2);
mpz_mul_ui (t, t, 2 * k + 2);
mpz_mul_ui (t, t, 2 * k + 3);
mpz_fdiv_q_ui (t, t, 2 * (n - k) + 1);
mpz_fdiv_q_ui (t, t, 2 * (n - k));
mpz_addmul (b[n], t, b[k]);
}
/* take into account C[1] */
mpz_mul_ui (t, t, 2 * n + 1);
mpz_fdiv_q_2exp (t, t, 1);
mpz_sub (b[n], b[n], t);
mpz_neg (b[n], b[n]);
mpz_clear (t);
}
return b;
}
|