1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
61
62
63
64
65
66
67
68
69
70
71
72
73
74
75
76
77
78
79
80
81
82
83
84
85
86
87
88
89
90
91
92
93
94
95
96
97
98
99
100
101
102
103
104
105
106
107
108
109
110
111
112
113
114
115
116
117
118
119
120
121
122
123
124
125
126
127
128
129
130
131
132
133
134
135
136
137
138
139
140
141
142
143
144
145
146
147
148
149
150
151
152
153
154
155
156
157
158
159
160
161
162
163
164
165
166
167
168
169
170
171
172
173
174
175
176
177
178
179
180
181
182
183
184
185
186
187
188
189
190
191
192
193
194
195
196
197
198
199
200
201
202
203
204
205
206
207
208
209
210
211
212
213
214
215
216
217
218
219
220
221
222
223
224
225
226
227
228
229
230
231
232
233
234
235
236
237
238
239
240
241
242
243
244
245
246
247
248
249
250
251
252
253
254
255
256
257
258
259
260
261
262
263
264
265
266
267
268
269
270
271
272
273
274
275
276
277
278
279
280
281
282
283
284
285
286
287
288
289
290
291
292
293
294
295
296
297
298
299
300
301
302
303
304
305
306
307
308
309
310
311
312
313
314
315
316
317
318
319
320
321
322
323
324
325
326
327
328
329
330
331
332
333
334
335
336
337
338
339
340
341
342
343
344
345
346
347
348
349
350
351
352
353
354
355
356
357
358
359
360
361
362
363
364
365
366
367
368
369
370
371
372
373
374
375
376
377
378
379
380
381
382
383
384
385
386
387
388
389
390
391
392
393
394
395
396
397
398
399
400
401
402
403
404
405
406
407
408
409
410
411
412
413
414
415
416
417
418
419
420
421
422
423
424
425
426
427
428
429
430
431
432
433
434
435
436
437
438
439
440
441
442
443
444
445
446
447
448
449
450
451
452
453
454
455
456
457
458
459
460
461
462
463
464
465
466
467
468
469
470
471
472
473
474
475
476
477
478
479
480
481
482
483
484
485
486
487
488
489
490
491
492
493
494
495
496
497
498
499
500
501
502
503
504
505
506
507
508
509
510
511
512
513
514
515
516
517
518
519
520
521
522
523
524
525
526
527
528
529
530
531
532
533
534
535
536
537
538
539
540
541
542
543
544
545
546
547
548
549
550
551
552
553
554
555
556
557
558
559
560
561
562
563
564
565
566
567
568
569
570
571
572
573
574
575
576
577
578
579
580
581
582
583
584
585
586
587
588
589
590
591
592
593
594
595
596
597
598
599
600
601
602
603
604
605
606
607
608
609
610
611
612
613
614
615
616
617
618
619
620
621
622
623
624
625
626
627
628
629
630
631
632
633
634
635
636
637
638
639
640
641
642
643
644
645
646
647
648
649
650
651
652
653
654
655
656
657
658
659
660
661
662
663
664
665
666
667
668
669
670
671
672
673
674
675
676
677
678
679
680
681
682
683
684
685
686
687
688
689
690
691
692
693
694
695
696
697
698
699
700
701
702
703
704
705
706
707
708
709
710
711
712
713
714
715
716
717
718
719
720
721
722
723
724
725
726
727
728
729
730
731
732
733
734
735
736
737
738
739
740
741
742
743
744
745
746
747
748
749
750
751
752
753
754
755
756
757
758
759
760
761
762
763
764
765
766
767
768
769
770
771
772
773
774
775
776
777
778
779
780
781
782
783
784
785
786
787
788
789
790
791
792
793
794
795
796
797
798
799
800
801
802
803
804
805
806
807
808
809
810
811
812
813
814
815
816
817
818
819
820
821
822
823
824
825
826
827
828
829
830
831
832
833
834
835
836
837
838
839
840
841
842
843
844
845
846
847
848
849
850
851
852
853
854
855
856
857
858
859
860
861
862
|
/*
*******************************************************************************
* Copyright (C) 1997-2011, International Business Machines Corporation and *
* others. All Rights Reserved. *
*******************************************************************************
*
* File FMTABLE.CPP
*
* Modification History:
*
* Date Name Description
* 03/25/97 clhuang Initial Implementation.
********************************************************************************
*/
#include "unicode/utypes.h"
#if !UCONFIG_NO_FORMATTING
#include <math.h>
#include "unicode/fmtable.h"
#include "unicode/ustring.h"
#include "unicode/measure.h"
#include "unicode/curramt.h"
#include "charstr.h"
#include "cmemory.h"
#include "cstring.h"
#include "decNumber.h"
#include "digitlst.h"
// *****************************************************************************
// class Formattable
// *****************************************************************************
U_NAMESPACE_BEGIN
UOBJECT_DEFINE_RTTI_IMPLEMENTATION(Formattable)
//-.-.-.-.-.-.-.-.-.-.-.-.-.-.-.-.-.-.-.-.-.-.-.-.-.-.-.-.-.-.-.-.-.-.-.
// NOTE: As of 3.0, there are limitations to the UObject API. It does
// not (yet) support cloning, operator=, nor operator==. To
// work around this, I implement some simple inlines here. Later
// these can be modified or removed. [alan]
// NOTE: These inlines assume that all fObjects are in fact instances
// of the Measure class, which is true as of 3.0. [alan]
// Return TRUE if *a == *b.
static inline UBool objectEquals(const UObject* a, const UObject* b) {
// LATER: return *a == *b;
return *((const Measure*) a) == *((const Measure*) b);
}
// Return a clone of *a.
static inline UObject* objectClone(const UObject* a) {
// LATER: return a->clone();
return ((const Measure*) a)->clone();
}
// Return TRUE if *a is an instance of Measure.
static inline UBool instanceOfMeasure(const UObject* a) {
return dynamic_cast<const Measure*>(a) != NULL;
}
/**
* Creates a new Formattable array and copies the values from the specified
* original.
* @param array the original array
* @param count the original array count
* @return the new Formattable array.
*/
static Formattable* createArrayCopy(const Formattable* array, int32_t count) {
Formattable *result = new Formattable[count];
if (result != NULL) {
for (int32_t i=0; i<count; ++i)
result[i] = array[i]; // Don't memcpy!
}
return result;
}
//-.-.-.-.-.-.-.-.-.-.-.-.-.-.-.-.-.-.-.-.-.-.-.-.-.-.-.-.-.-.-.-.-.-.-.
/**
* Set 'ec' to 'err' only if 'ec' is not already set to a failing UErrorCode.
*/
static void setError(UErrorCode& ec, UErrorCode err) {
if (U_SUCCESS(ec)) {
ec = err;
}
}
//
// Common initialization code, shared by constructors.
// Put everything into a known state.
//
void Formattable::init() {
fValue.fInt64 = 0;
fType = kLong;
fDecimalStr = NULL;
fDecimalNum = NULL;
fBogus.setToBogus();
}
// -------------------------------------
// default constructor.
// Creates a formattable object with a long value 0.
Formattable::Formattable() {
init();
}
// -------------------------------------
// Creates a formattable object with a Date instance.
Formattable::Formattable(UDate date, ISDATE /*isDate*/)
{
init();
fType = kDate;
fValue.fDate = date;
}
// -------------------------------------
// Creates a formattable object with a double value.
Formattable::Formattable(double value)
{
init();
fType = kDouble;
fValue.fDouble = value;
}
// -------------------------------------
// Creates a formattable object with an int32_t value.
Formattable::Formattable(int32_t value)
{
init();
fValue.fInt64 = value;
}
// -------------------------------------
// Creates a formattable object with an int64_t value.
Formattable::Formattable(int64_t value)
{
init();
fType = kInt64;
fValue.fInt64 = value;
}
// -------------------------------------
// Creates a formattable object with a decimal number value from a string.
Formattable::Formattable(const StringPiece &number, UErrorCode &status) {
init();
setDecimalNumber(number, status);
}
// -------------------------------------
// Creates a formattable object with a UnicodeString instance.
Formattable::Formattable(const UnicodeString& stringToCopy)
{
init();
fType = kString;
fValue.fString = new UnicodeString(stringToCopy);
}
// -------------------------------------
// Creates a formattable object with a UnicodeString* value.
// (adopting symantics)
Formattable::Formattable(UnicodeString* stringToAdopt)
{
init();
fType = kString;
fValue.fString = stringToAdopt;
}
Formattable::Formattable(UObject* objectToAdopt)
{
init();
fType = kObject;
fValue.fObject = objectToAdopt;
}
// -------------------------------------
Formattable::Formattable(const Formattable* arrayToCopy, int32_t count)
: UObject(), fType(kArray)
{
init();
fType = kArray;
fValue.fArrayAndCount.fArray = createArrayCopy(arrayToCopy, count);
fValue.fArrayAndCount.fCount = count;
}
// -------------------------------------
// copy constructor
Formattable::Formattable(const Formattable &source)
: UObject(*this)
{
init();
*this = source;
}
// -------------------------------------
// assignment operator
Formattable&
Formattable::operator=(const Formattable& source)
{
if (this != &source)
{
// Disposes the current formattable value/setting.
dispose();
// Sets the correct data type for this value.
fType = source.fType;
switch (fType)
{
case kArray:
// Sets each element in the array one by one and records the array count.
fValue.fArrayAndCount.fCount = source.fValue.fArrayAndCount.fCount;
fValue.fArrayAndCount.fArray = createArrayCopy(source.fValue.fArrayAndCount.fArray,
source.fValue.fArrayAndCount.fCount);
break;
case kString:
// Sets the string value.
fValue.fString = new UnicodeString(*source.fValue.fString);
break;
case kDouble:
// Sets the double value.
fValue.fDouble = source.fValue.fDouble;
break;
case kLong:
case kInt64:
// Sets the long value.
fValue.fInt64 = source.fValue.fInt64;
break;
case kDate:
// Sets the Date value.
fValue.fDate = source.fValue.fDate;
break;
case kObject:
fValue.fObject = objectClone(source.fValue.fObject);
break;
}
UErrorCode status = U_ZERO_ERROR;
if (source.fDecimalNum != NULL) {
fDecimalNum = new DigitList(*source.fDecimalNum);
}
if (source.fDecimalStr != NULL) {
fDecimalStr = new CharString(*source.fDecimalStr, status);
if (U_FAILURE(status)) {
delete fDecimalStr;
fDecimalStr = NULL;
}
}
}
return *this;
}
// -------------------------------------
UBool
Formattable::operator==(const Formattable& that) const
{
int32_t i;
if (this == &that) return TRUE;
// Returns FALSE if the data types are different.
if (fType != that.fType) return FALSE;
// Compares the actual data values.
UBool equal = TRUE;
switch (fType) {
case kDate:
equal = (fValue.fDate == that.fValue.fDate);
break;
case kDouble:
equal = (fValue.fDouble == that.fValue.fDouble);
break;
case kLong:
case kInt64:
equal = (fValue.fInt64 == that.fValue.fInt64);
break;
case kString:
equal = (*(fValue.fString) == *(that.fValue.fString));
break;
case kArray:
if (fValue.fArrayAndCount.fCount != that.fValue.fArrayAndCount.fCount) {
equal = FALSE;
break;
}
// Checks each element for equality.
for (i=0; i<fValue.fArrayAndCount.fCount; ++i) {
if (fValue.fArrayAndCount.fArray[i] != that.fValue.fArrayAndCount.fArray[i]) {
equal = FALSE;
break;
}
}
break;
case kObject:
if (fValue.fObject == NULL || that.fValue.fObject == NULL) {
equal = FALSE;
} else {
equal = objectEquals(fValue.fObject, that.fValue.fObject);
}
break;
}
// TODO: compare digit lists if numeric.
return equal;
}
// -------------------------------------
Formattable::~Formattable()
{
dispose();
}
// -------------------------------------
void Formattable::dispose()
{
// Deletes the data value if necessary.
switch (fType) {
case kString:
delete fValue.fString;
break;
case kArray:
delete[] fValue.fArrayAndCount.fArray;
break;
case kObject:
delete fValue.fObject;
break;
default:
break;
}
fType = kLong;
fValue.fInt64 = 0;
delete fDecimalStr;
fDecimalStr = NULL;
delete fDecimalNum;
fDecimalNum = NULL;
}
Formattable *
Formattable::clone() const {
return new Formattable(*this);
}
// -------------------------------------
// Gets the data type of this Formattable object.
Formattable::Type
Formattable::getType() const
{
return fType;
}
UBool
Formattable::isNumeric() const {
switch (fType) {
case kDouble:
case kLong:
case kInt64:
return TRUE;
default:
return FALSE;
}
}
// -------------------------------------
int32_t
//Formattable::getLong(UErrorCode* status) const
Formattable::getLong(UErrorCode& status) const
{
if (U_FAILURE(status)) {
return 0;
}
switch (fType) {
case Formattable::kLong:
return (int32_t)fValue.fInt64;
case Formattable::kInt64:
if (fValue.fInt64 > INT32_MAX) {
status = U_INVALID_FORMAT_ERROR;
return INT32_MAX;
} else if (fValue.fInt64 < INT32_MIN) {
status = U_INVALID_FORMAT_ERROR;
return INT32_MIN;
} else {
return (int32_t)fValue.fInt64;
}
case Formattable::kDouble:
if (fValue.fDouble > INT32_MAX) {
status = U_INVALID_FORMAT_ERROR;
return INT32_MAX;
} else if (fValue.fDouble < INT32_MIN) {
status = U_INVALID_FORMAT_ERROR;
return INT32_MIN;
} else {
return (int32_t)fValue.fDouble; // loses fraction
}
case Formattable::kObject:
if (fValue.fObject == NULL) {
status = U_MEMORY_ALLOCATION_ERROR;
return 0;
}
// TODO Later replace this with instanceof call
if (instanceOfMeasure(fValue.fObject)) {
return ((const Measure*) fValue.fObject)->
getNumber().getLong(status);
}
default:
status = U_INVALID_FORMAT_ERROR;
return 0;
}
}
// -------------------------------------
// Maximum int that can be represented exactly in a double. (53 bits)
// Larger ints may be rounded to a near-by value as not all are representable.
// TODO: move this constant elsewhere, possibly configure it for different
// floating point formats, if any non-standard ones are still in use.
static const int64_t U_DOUBLE_MAX_EXACT_INT = 9007199254740992LL;
int64_t
Formattable::getInt64(UErrorCode& status) const
{
if (U_FAILURE(status)) {
return 0;
}
switch (fType) {
case Formattable::kLong:
case Formattable::kInt64:
return fValue.fInt64;
case Formattable::kDouble:
if (fValue.fDouble > (double)U_INT64_MAX) {
status = U_INVALID_FORMAT_ERROR;
return U_INT64_MAX;
} else if (fValue.fDouble < (double)U_INT64_MIN) {
status = U_INVALID_FORMAT_ERROR;
return U_INT64_MIN;
} else if (fabs(fValue.fDouble) > U_DOUBLE_MAX_EXACT_INT && fDecimalNum != NULL) {
int64_t val = fDecimalNum->getInt64();
if (val != 0) {
return val;
} else {
status = U_INVALID_FORMAT_ERROR;
return fValue.fDouble > 0 ? U_INT64_MAX : U_INT64_MIN;
}
} else {
return (int64_t)fValue.fDouble;
}
case Formattable::kObject:
if (fValue.fObject == NULL) {
status = U_MEMORY_ALLOCATION_ERROR;
return 0;
}
if (instanceOfMeasure(fValue.fObject)) {
return ((const Measure*) fValue.fObject)->
getNumber().getInt64(status);
}
default:
status = U_INVALID_FORMAT_ERROR;
return 0;
}
}
// -------------------------------------
double
Formattable::getDouble(UErrorCode& status) const
{
if (U_FAILURE(status)) {
return 0;
}
switch (fType) {
case Formattable::kLong:
case Formattable::kInt64: // loses precision
return (double)fValue.fInt64;
case Formattable::kDouble:
return fValue.fDouble;
case Formattable::kObject:
if (fValue.fObject == NULL) {
status = U_MEMORY_ALLOCATION_ERROR;
return 0;
}
// TODO Later replace this with instanceof call
if (instanceOfMeasure(fValue.fObject)) {
return ((const Measure*) fValue.fObject)->
getNumber().getDouble(status);
}
default:
status = U_INVALID_FORMAT_ERROR;
return 0;
}
}
const UObject*
Formattable::getObject() const {
return (fType == kObject) ? fValue.fObject : NULL;
}
// -------------------------------------
// Sets the value to a double value d.
void
Formattable::setDouble(double d)
{
dispose();
fType = kDouble;
fValue.fDouble = d;
}
// -------------------------------------
// Sets the value to a long value l.
void
Formattable::setLong(int32_t l)
{
dispose();
fType = kLong;
fValue.fInt64 = l;
}
// -------------------------------------
// Sets the value to an int64 value ll.
void
Formattable::setInt64(int64_t ll)
{
dispose();
fType = kInt64;
fValue.fInt64 = ll;
}
// -------------------------------------
// Sets the value to a Date instance d.
void
Formattable::setDate(UDate d)
{
dispose();
fType = kDate;
fValue.fDate = d;
}
// -------------------------------------
// Sets the value to a string value stringToCopy.
void
Formattable::setString(const UnicodeString& stringToCopy)
{
dispose();
fType = kString;
fValue.fString = new UnicodeString(stringToCopy);
}
// -------------------------------------
// Sets the value to an array of Formattable objects.
void
Formattable::setArray(const Formattable* array, int32_t count)
{
dispose();
fType = kArray;
fValue.fArrayAndCount.fArray = createArrayCopy(array, count);
fValue.fArrayAndCount.fCount = count;
}
// -------------------------------------
// Adopts the stringToAdopt value.
void
Formattable::adoptString(UnicodeString* stringToAdopt)
{
dispose();
fType = kString;
fValue.fString = stringToAdopt;
}
// -------------------------------------
// Adopts the array value and its count.
void
Formattable::adoptArray(Formattable* array, int32_t count)
{
dispose();
fType = kArray;
fValue.fArrayAndCount.fArray = array;
fValue.fArrayAndCount.fCount = count;
}
void
Formattable::adoptObject(UObject* objectToAdopt) {
dispose();
fType = kObject;
fValue.fObject = objectToAdopt;
}
// -------------------------------------
UnicodeString&
Formattable::getString(UnicodeString& result, UErrorCode& status) const
{
if (fType != kString) {
setError(status, U_INVALID_FORMAT_ERROR);
result.setToBogus();
} else {
if (fValue.fString == NULL) {
setError(status, U_MEMORY_ALLOCATION_ERROR);
} else {
result = *fValue.fString;
}
}
return result;
}
// -------------------------------------
const UnicodeString&
Formattable::getString(UErrorCode& status) const
{
if (fType != kString) {
setError(status, U_INVALID_FORMAT_ERROR);
return *getBogus();
}
if (fValue.fString == NULL) {
setError(status, U_MEMORY_ALLOCATION_ERROR);
return *getBogus();
}
return *fValue.fString;
}
// -------------------------------------
UnicodeString&
Formattable::getString(UErrorCode& status)
{
if (fType != kString) {
setError(status, U_INVALID_FORMAT_ERROR);
return *getBogus();
}
if (fValue.fString == NULL) {
setError(status, U_MEMORY_ALLOCATION_ERROR);
return *getBogus();
}
return *fValue.fString;
}
// -------------------------------------
const Formattable*
Formattable::getArray(int32_t& count, UErrorCode& status) const
{
if (fType != kArray) {
setError(status, U_INVALID_FORMAT_ERROR);
count = 0;
return NULL;
}
count = fValue.fArrayAndCount.fCount;
return fValue.fArrayAndCount.fArray;
}
// -------------------------------------
// Gets the bogus string, ensures mondo bogosity.
UnicodeString*
Formattable::getBogus() const
{
return (UnicodeString*)&fBogus; /* cast away const :-( */
}
// --------------------------------------
StringPiece Formattable::getDecimalNumber(UErrorCode &status) {
if (U_FAILURE(status)) {
return "";
}
if (fDecimalStr != NULL) {
return fDecimalStr->toStringPiece();
}
if (fDecimalNum == NULL) {
// No decimal number for the formattable yet. Which means the value was
// set directly by the user as an int, int64 or double. If the value came
// from parsing, or from the user setting a decimal number, fDecimalNum
// would already be set.
//
fDecimalNum = new DigitList;
if (fDecimalNum == NULL) {
status = U_MEMORY_ALLOCATION_ERROR;
return "";
}
switch (fType) {
case kDouble:
fDecimalNum->set(this->getDouble());
break;
case kLong:
fDecimalNum->set(this->getLong());
break;
case kInt64:
fDecimalNum->set(this->getInt64());
break;
default:
// The formattable's value is not a numeric type.
status = U_INVALID_STATE_ERROR;
return "";
}
}
fDecimalStr = new CharString;
if (fDecimalStr == NULL) {
status = U_MEMORY_ALLOCATION_ERROR;
return "";
}
fDecimalNum->getDecimal(*fDecimalStr, status);
return fDecimalStr->toStringPiece();
}
// ---------------------------------------
void
Formattable::adoptDigitList(DigitList *dl) {
dispose();
fDecimalNum = dl;
// Set the value into the Union of simple type values.
// Cannot use the set() functions because they would delete the fDecimalNum value,
if (fDecimalNum->fitsIntoLong(FALSE)) {
fType = kLong;
fValue.fInt64 = fDecimalNum->getLong();
} else if (fDecimalNum->fitsIntoInt64(FALSE)) {
fType = kInt64;
fValue.fInt64 = fDecimalNum->getInt64();
} else {
fType = kDouble;
fValue.fDouble = fDecimalNum->getDouble();
}
}
// ---------------------------------------
void
Formattable::setDecimalNumber(const StringPiece &numberString, UErrorCode &status) {
if (U_FAILURE(status)) {
return;
}
dispose();
// Copy the input string and nul-terminate it.
// The decNumber library requires nul-terminated input. StringPiece input
// is not guaranteed nul-terminated. Too bad.
// CharString automatically adds the nul.
DigitList *dnum = new DigitList();
if (dnum == NULL) {
status = U_MEMORY_ALLOCATION_ERROR;
return;
}
dnum->set(CharString(numberString, status).toStringPiece(), status);
if (U_FAILURE(status)) {
delete dnum;
return; // String didn't contain a decimal number.
}
adoptDigitList(dnum);
// Note that we do not hang on to the caller's input string.
// If we are asked for the string, we will regenerate one from fDecimalNum.
}
#if 0
//----------------------------------------------------
// console I/O
//----------------------------------------------------
#ifdef _DEBUG
#include <iostream>
using namespace std;
#include "unicode/datefmt.h"
#include "unistrm.h"
class FormattableStreamer /* not : public UObject because all methods are static */ {
public:
static void streamOut(ostream& stream, const Formattable& obj);
private:
FormattableStreamer() {} // private - forbid instantiation
};
// This is for debugging purposes only. This will send a displayable
// form of the Formattable object to the output stream.
void
FormattableStreamer::streamOut(ostream& stream, const Formattable& obj)
{
static DateFormat *defDateFormat = 0;
UnicodeString buffer;
switch(obj.getType()) {
case Formattable::kDate :
// Creates a DateFormat instance for formatting the
// Date instance.
if (defDateFormat == 0) {
defDateFormat = DateFormat::createInstance();
}
defDateFormat->format(obj.getDate(), buffer);
stream << buffer;
break;
case Formattable::kDouble :
// Output the double as is.
stream << obj.getDouble() << 'D';
break;
case Formattable::kLong :
// Output the double as is.
stream << obj.getLong() << 'L';
break;
case Formattable::kString:
// Output the double as is. Please see UnicodeString console
// I/O routine for more details.
stream << '"' << obj.getString(buffer) << '"';
break;
case Formattable::kArray:
int32_t i, count;
const Formattable* array;
array = obj.getArray(count);
stream << '[';
// Recursively calling the console I/O routine for each element in the array.
for (i=0; i<count; ++i) {
FormattableStreamer::streamOut(stream, array[i]);
stream << ( (i==(count-1)) ? "" : ", " );
}
stream << ']';
break;
default:
// Not a recognizable Formattable object.
stream << "INVALID_Formattable";
}
stream.flush();
}
#endif
#endif
U_NAMESPACE_END
#endif /* #if !UCONFIG_NO_FORMATTING */
//eof
|