1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
61
62
63
64
65
66
67
68
69
70
71
72
73
74
75
76
77
78
79
80
81
82
83
84
85
86
87
88
89
90
91
92
93
94
95
96
97
98
99
100
101
102
103
104
105
106
107
108
109
110
111
112
113
114
115
116
117
118
119
120
121
122
123
124
125
126
127
128
129
130
131
132
133
134
135
136
137
138
139
140
141
142
143
144
145
146
147
148
149
150
151
152
153
154
155
156
157
158
159
160
161
162
163
164
165
166
167
168
169
170
171
172
173
174
175
176
177
178
179
180
181
182
183
184
185
186
187
188
189
190
191
192
193
194
195
196
197
198
199
200
201
202
203
204
205
206
207
208
209
210
211
212
213
214
215
216
217
218
219
220
221
222
223
224
225
226
227
228
229
230
231
232
233
234
235
236
237
238
239
240
241
242
243
244
245
246
247
248
249
250
251
252
253
254
255
256
257
258
259
260
261
262
263
264
265
266
267
268
269
270
271
272
273
274
275
276
277
278
279
280
281
282
283
284
285
286
287
288
289
290
291
292
293
294
295
296
297
298
299
300
301
302
303
304
305
306
307
308
309
310
311
312
313
314
315
316
317
318
319
320
321
322
323
324
325
326
327
328
329
330
331
332
333
334
335
336
337
338
339
340
341
342
343
344
345
346
347
348
349
350
351
352
353
354
355
356
357
358
359
360
361
362
363
364
365
366
367
368
369
370
371
372
373
374
375
376
377
378
379
380
381
382
383
384
385
386
387
388
389
390
391
392
393
394
395
396
397
398
399
400
401
402
403
404
405
406
407
408
409
410
411
412
413
414
415
416
417
418
419
420
421
422
423
424
425
426
427
428
429
430
431
432
433
434
435
436
437
438
439
440
441
442
443
444
445
446
447
448
449
450
451
452
453
454
455
456
457
458
459
460
461
462
463
464
465
466
467
468
469
470
471
472
473
474
475
476
477
478
479
480
481
482
483
484
485
486
487
488
489
490
491
492
493
494
495
496
497
498
499
500
501
502
503
504
505
506
507
508
509
510
511
512
513
514
515
516
517
518
519
520
521
522
523
524
525
526
527
528
529
530
531
532
533
534
535
536
537
538
539
540
541
542
543
544
545
546
547
548
549
550
551
552
553
554
555
556
557
558
559
560
561
562
563
564
565
566
567
568
569
570
571
572
573
574
575
576
577
578
579
580
581
582
583
584
585
586
587
588
589
590
591
592
593
594
595
596
597
598
599
600
601
602
603
604
605
606
607
608
609
610
611
612
613
614
615
616
617
618
619
620
621
622
623
624
625
626
627
628
629
630
631
632
633
634
635
636
637
638
639
640
641
642
643
644
645
646
647
648
649
650
651
652
653
654
655
656
657
658
659
660
661
662
663
664
665
666
667
668
669
670
671
672
673
674
675
676
677
678
679
680
681
682
683
684
685
686
687
688
689
690
691
692
693
694
695
696
697
698
699
700
701
702
703
704
705
706
707
708
709
710
711
712
713
714
715
716
717
718
719
720
721
722
723
724
725
726
727
728
729
730
731
732
733
734
735
736
737
738
739
740
741
742
743
744
745
746
747
748
749
750
751
752
753
754
755
756
757
758
759
760
761
762
763
764
765
766
767
768
769
770
771
772
773
774
775
776
777
778
779
780
781
782
783
784
785
786
787
788
789
790
791
792
793
794
795
796
797
798
799
800
801
802
803
804
805
806
807
808
809
810
811
812
813
814
815
816
817
818
819
820
821
822
823
824
825
826
827
828
829
830
831
832
833
834
835
836
837
838
839
840
841
842
843
844
845
846
847
848
849
850
851
852
853
854
855
856
857
858
859
860
861
862
863
864
865
866
867
868
869
870
871
872
873
874
875
876
877
878
879
880
881
882
883
884
885
886
887
888
889
890
891
892
893
894
895
896
897
898
899
900
901
902
903
904
905
906
907
908
909
910
911
912
913
914
915
916
917
918
919
920
921
922
923
924
925
926
927
928
929
930
931
932
933
934
935
936
937
938
939
940
941
942
943
944
945
946
947
948
949
950
951
952
953
954
955
956
957
958
959
960
961
962
963
964
965
966
967
968
969
970
971
972
973
974
975
976
977
978
979
980
981
982
983
984
985
986
987
988
989
990
991
992
993
994
995
996
997
998
999
1000
1001
1002
1003
1004
1005
1006
1007
1008
1009
1010
1011
1012
1013
1014
1015
1016
1017
1018
1019
1020
1021
1022
1023
1024
1025
1026
1027
1028
1029
1030
1031
1032
1033
1034
1035
1036
1037
1038
1039
1040
1041
1042
1043
1044
1045
1046
1047
1048
1049
1050
1051
1052
1053
1054
1055
1056
1057
1058
1059
1060
1061
1062
1063
1064
1065
1066
1067
1068
1069
1070
1071
1072
1073
1074
1075
1076
1077
1078
1079
1080
1081
1082
1083
1084
1085
1086
1087
1088
1089
1090
1091
1092
1093
1094
1095
1096
1097
1098
1099
1100
1101
1102
1103
1104
1105
1106
1107
1108
1109
1110
1111
1112
1113
1114
1115
1116
1117
1118
1119
1120
1121
1122
1123
1124
1125
1126
1127
1128
1129
1130
1131
1132
1133
1134
1135
1136
1137
1138
1139
1140
1141
1142
1143
1144
1145
1146
1147
1148
1149
1150
1151
1152
1153
1154
1155
1156
1157
1158
1159
1160
1161
1162
1163
1164
1165
1166
1167
1168
1169
1170
1171
1172
1173
1174
1175
1176
1177
1178
1179
1180
1181
1182
1183
1184
1185
1186
1187
1188
1189
1190
1191
1192
1193
1194
1195
1196
1197
1198
1199
1200
1201
1202
1203
1204
1205
1206
1207
1208
1209
1210
1211
1212
1213
1214
1215
1216
1217
1218
1219
1220
1221
1222
1223
1224
1225
1226
1227
1228
1229
1230
1231
1232
1233
1234
1235
1236
1237
1238
1239
1240
1241
1242
1243
1244
1245
1246
1247
1248
1249
1250
1251
1252
1253
1254
1255
1256
1257
1258
1259
1260
1261
1262
1263
1264
1265
1266
1267
1268
1269
1270
1271
1272
1273
1274
1275
1276
1277
1278
1279
1280
1281
1282
1283
1284
1285
1286
1287
1288
1289
1290
1291
1292
1293
1294
1295
1296
1297
1298
1299
1300
1301
1302
1303
1304
1305
1306
1307
1308
1309
1310
1311
1312
1313
1314
1315
1316
1317
1318
1319
1320
1321
1322
1323
1324
1325
1326
1327
1328
1329
1330
1331
1332
1333
1334
1335
1336
1337
1338
1339
1340
1341
1342
1343
1344
1345
1346
1347
1348
1349
1350
1351
1352
1353
1354
1355
1356
1357
1358
1359
1360
1361
1362
1363
1364
1365
1366
1367
1368
1369
1370
1371
1372
1373
1374
1375
1376
1377
1378
1379
1380
1381
1382
1383
1384
1385
1386
1387
1388
1389
1390
1391
1392
1393
1394
1395
1396
1397
1398
1399
1400
1401
1402
1403
1404
1405
1406
1407
1408
1409
1410
1411
1412
1413
1414
1415
1416
1417
1418
1419
1420
1421
1422
1423
1424
1425
1426
1427
1428
1429
1430
1431
1432
1433
1434
1435
1436
1437
1438
1439
1440
1441
1442
1443
1444
1445
1446
1447
1448
1449
1450
1451
1452
1453
1454
1455
1456
1457
1458
1459
1460
1461
1462
1463
1464
1465
1466
1467
1468
1469
1470
1471
1472
1473
1474
1475
1476
1477
1478
1479
1480
1481
1482
1483
1484
1485
1486
1487
1488
1489
1490
1491
1492
1493
1494
1495
1496
1497
1498
1499
1500
1501
1502
1503
1504
1505
1506
1507
1508
1509
1510
1511
1512
1513
1514
1515
1516
1517
1518
1519
1520
1521
1522
1523
1524
1525
1526
1527
1528
1529
1530
1531
1532
1533
1534
1535
1536
1537
1538
1539
1540
1541
1542
1543
1544
1545
1546
1547
1548
1549
1550
1551
1552
1553
1554
1555
1556
1557
1558
1559
1560
1561
1562
1563
1564
1565
1566
1567
1568
1569
1570
1571
1572
1573
1574
1575
1576
1577
1578
1579
1580
1581
1582
1583
1584
1585
1586
1587
1588
1589
1590
|
/************************************************************************
* Copyright (C) 1996-2008, International Business Machines Corporation *
* and others. All Rights Reserved. *
************************************************************************
* 2003-nov-07 srl Port from Java
*/
#include "astro.h"
#if !UCONFIG_NO_FORMATTING
#include "unicode/calendar.h"
#include <math.h>
#include <float.h>
#include "unicode/putil.h"
#include "uhash.h"
#include "umutex.h"
#include "ucln_in.h"
#include "putilimp.h"
#include <stdio.h> // for toString()
#if defined (PI)
#undef PI
#endif
#ifdef U_DEBUG_ASTRO
# include "uresimp.h" // for debugging
static void debug_astro_loc(const char *f, int32_t l)
{
fprintf(stderr, "%s:%d: ", f, l);
}
static void debug_astro_msg(const char *pat, ...)
{
va_list ap;
va_start(ap, pat);
vfprintf(stderr, pat, ap);
fflush(stderr);
}
#include "unicode/datefmt.h"
#include "unicode/ustring.h"
static const char * debug_astro_date(UDate d) {
static char gStrBuf[1024];
static DateFormat *df = NULL;
if(df == NULL) {
df = DateFormat::createDateTimeInstance(DateFormat::MEDIUM, DateFormat::MEDIUM, Locale::getUS());
df->adoptTimeZone(TimeZone::getGMT()->clone());
}
UnicodeString str;
df->format(d,str);
u_austrncpy(gStrBuf,str.getTerminatedBuffer(),sizeof(gStrBuf)-1);
return gStrBuf;
}
// must use double parens, i.e.: U_DEBUG_ASTRO_MSG(("four is: %d",4));
#define U_DEBUG_ASTRO_MSG(x) {debug_astro_loc(__FILE__,__LINE__);debug_astro_msg x;}
#else
#define U_DEBUG_ASTRO_MSG(x)
#endif
static inline UBool isINVALID(double d) {
return(uprv_isNaN(d));
}
static UMTX ccLock = NULL;
U_CDECL_BEGIN
static UBool calendar_astro_cleanup(void) {
umtx_destroy(&ccLock);
return TRUE;
}
U_CDECL_END
U_NAMESPACE_BEGIN
/**
* The number of standard hours in one sidereal day.
* Approximately 24.93.
* @internal
* @deprecated ICU 2.4. This class may be removed or modified.
*/
#define SIDEREAL_DAY (23.93446960027)
/**
* The number of sidereal hours in one mean solar day.
* Approximately 24.07.
* @internal
* @deprecated ICU 2.4. This class may be removed or modified.
*/
#define SOLAR_DAY (24.065709816)
/**
* The average number of solar days from one new moon to the next. This is the time
* it takes for the moon to return the same ecliptic longitude as the sun.
* It is longer than the sidereal month because the sun's longitude increases
* during the year due to the revolution of the earth around the sun.
* Approximately 29.53.
*
* @see #SIDEREAL_MONTH
* @internal
* @deprecated ICU 2.4. This class may be removed or modified.
*/
const double CalendarAstronomer::SYNODIC_MONTH = 29.530588853;
/**
* The average number of days it takes
* for the moon to return to the same ecliptic longitude relative to the
* stellar background. This is referred to as the sidereal month.
* It is shorter than the synodic month due to
* the revolution of the earth around the sun.
* Approximately 27.32.
*
* @see #SYNODIC_MONTH
* @internal
* @deprecated ICU 2.4. This class may be removed or modified.
*/
#define SIDEREAL_MONTH 27.32166
/**
* The average number number of days between successive vernal equinoxes.
* Due to the precession of the earth's
* axis, this is not precisely the same as the sidereal year.
* Approximately 365.24
*
* @see #SIDEREAL_YEAR
* @internal
* @deprecated ICU 2.4. This class may be removed or modified.
*/
#define TROPICAL_YEAR 365.242191
/**
* The average number of days it takes
* for the sun to return to the same position against the fixed stellar
* background. This is the duration of one orbit of the earth about the sun
* as it would appear to an outside observer.
* Due to the precession of the earth's
* axis, this is not precisely the same as the tropical year.
* Approximately 365.25.
*
* @see #TROPICAL_YEAR
* @internal
* @deprecated ICU 2.4. This class may be removed or modified.
*/
#define SIDEREAL_YEAR 365.25636
//-------------------------------------------------------------------------
// Time-related constants
//-------------------------------------------------------------------------
/**
* The number of milliseconds in one second.
* @internal
* @deprecated ICU 2.4. This class may be removed or modified.
*/
#define SECOND_MS U_MILLIS_PER_SECOND
/**
* The number of milliseconds in one minute.
* @internal
* @deprecated ICU 2.4. This class may be removed or modified.
*/
#define MINUTE_MS U_MILLIS_PER_MINUTE
/**
* The number of milliseconds in one hour.
* @internal
* @deprecated ICU 2.4. This class may be removed or modified.
*/
#define HOUR_MS U_MILLIS_PER_HOUR
/**
* The number of milliseconds in one day.
* @internal
* @deprecated ICU 2.4. This class may be removed or modified.
*/
#define DAY_MS U_MILLIS_PER_DAY
/**
* The start of the julian day numbering scheme used by astronomers, which
* is 1/1/4713 BC (Julian), 12:00 GMT. This is given as the number of milliseconds
* since 1/1/1970 AD (Gregorian), a negative number.
* Note that julian day numbers and
* the Julian calendar are <em>not</em> the same thing. Also note that
* julian days start at <em>noon</em>, not midnight.
* @internal
* @deprecated ICU 2.4. This class may be removed or modified.
*/
#define JULIAN_EPOCH_MS -210866760000000.0
/**
* Milliseconds value for 0.0 January 2000 AD.
*/
#define EPOCH_2000_MS 946598400000.0
//-------------------------------------------------------------------------
// Assorted private data used for conversions
//-------------------------------------------------------------------------
// My own copies of these so compilers are more likely to optimize them away
const double CalendarAstronomer::PI = 3.14159265358979323846;
#define CalendarAstronomer_PI2 (CalendarAstronomer::PI*2.0)
#define RAD_HOUR ( 12 / CalendarAstronomer::PI ) // radians -> hours
#define DEG_RAD ( CalendarAstronomer::PI / 180 ) // degrees -> radians
#define RAD_DEG ( 180 / CalendarAstronomer::PI ) // radians -> degrees
/***
* Given 'value', add or subtract 'range' until 0 <= 'value' < range.
* The modulus operator.
*/
inline static double normalize(double value, double range) {
return value - range * ClockMath::floorDivide(value, range);
}
/**
* Normalize an angle so that it's in the range 0 - 2pi.
* For positive angles this is just (angle % 2pi), but the Java
* mod operator doesn't work that way for negative numbers....
*/
inline static double norm2PI(double angle) {
return normalize(angle, CalendarAstronomer::PI * 2.0);
}
/**
* Normalize an angle into the range -PI - PI
*/
inline static double normPI(double angle) {
return normalize(angle + CalendarAstronomer::PI, CalendarAstronomer::PI * 2.0) - CalendarAstronomer::PI;
}
//-------------------------------------------------------------------------
// Constructors
//-------------------------------------------------------------------------
/**
* Construct a new <code>CalendarAstronomer</code> object that is initialized to
* the current date and time.
* @internal
* @deprecated ICU 2.4. This class may be removed or modified.
*/
CalendarAstronomer::CalendarAstronomer():
fTime(Calendar::getNow()), fLongitude(0.0), fLatitude(0.0), fGmtOffset(0.0), moonPosition(0,0), moonPositionSet(FALSE) {
clearCache();
}
/**
* Construct a new <code>CalendarAstronomer</code> object that is initialized to
* the specified date and time.
* @internal
* @deprecated ICU 2.4. This class may be removed or modified.
*/
CalendarAstronomer::CalendarAstronomer(UDate d): fTime(d), fLongitude(0.0), fLatitude(0.0), fGmtOffset(0.0), moonPosition(0,0), moonPositionSet(FALSE) {
clearCache();
}
/**
* Construct a new <code>CalendarAstronomer</code> object with the given
* latitude and longitude. The object's time is set to the current
* date and time.
* <p>
* @param longitude The desired longitude, in <em>degrees</em> east of
* the Greenwich meridian.
*
* @param latitude The desired latitude, in <em>degrees</em>. Positive
* values signify North, negative South.
*
* @see java.util.Date#getTime()
* @internal
* @deprecated ICU 2.4. This class may be removed or modified.
*/
CalendarAstronomer::CalendarAstronomer(double longitude, double latitude) :
fTime(Calendar::getNow()), moonPosition(0,0), moonPositionSet(FALSE) {
fLongitude = normPI(longitude * (double)DEG_RAD);
fLatitude = normPI(latitude * (double)DEG_RAD);
fGmtOffset = (double)(fLongitude * 24. * (double)HOUR_MS / (double)CalendarAstronomer_PI2);
clearCache();
}
CalendarAstronomer::~CalendarAstronomer()
{
}
//-------------------------------------------------------------------------
// Time and date getters and setters
//-------------------------------------------------------------------------
/**
* Set the current date and time of this <code>CalendarAstronomer</code> object. All
* astronomical calculations are performed based on this time setting.
*
* @param aTime the date and time, expressed as the number of milliseconds since
* 1/1/1970 0:00 GMT (Gregorian).
*
* @see #setDate
* @see #getTime
* @internal
* @deprecated ICU 2.4. This class may be removed or modified.
*/
void CalendarAstronomer::setTime(UDate aTime) {
fTime = aTime;
U_DEBUG_ASTRO_MSG(("setTime(%.1lf, %sL)\n", aTime, debug_astro_date(aTime+fGmtOffset)));
clearCache();
}
/**
* Set the current date and time of this <code>CalendarAstronomer</code> object. All
* astronomical calculations are performed based on this time setting.
*
* @param jdn the desired time, expressed as a "julian day number",
* which is the number of elapsed days since
* 1/1/4713 BC (Julian), 12:00 GMT. Note that julian day
* numbers start at <em>noon</em>. To get the jdn for
* the corresponding midnight, subtract 0.5.
*
* @see #getJulianDay
* @see #JULIAN_EPOCH_MS
* @internal
* @deprecated ICU 2.4. This class may be removed or modified.
*/
void CalendarAstronomer::setJulianDay(double jdn) {
fTime = (double)(jdn * DAY_MS) + JULIAN_EPOCH_MS;
clearCache();
julianDay = jdn;
}
/**
* Get the current time of this <code>CalendarAstronomer</code> object,
* represented as the number of milliseconds since
* 1/1/1970 AD 0:00 GMT (Gregorian).
*
* @see #setTime
* @see #getDate
* @internal
* @deprecated ICU 2.4. This class may be removed or modified.
*/
UDate CalendarAstronomer::getTime() {
return fTime;
}
/**
* Get the current time of this <code>CalendarAstronomer</code> object,
* expressed as a "julian day number", which is the number of elapsed
* days since 1/1/4713 BC (Julian), 12:00 GMT.
*
* @see #setJulianDay
* @see #JULIAN_EPOCH_MS
* @internal
* @deprecated ICU 2.4. This class may be removed or modified.
*/
double CalendarAstronomer::getJulianDay() {
if (isINVALID(julianDay)) {
julianDay = (fTime - (double)JULIAN_EPOCH_MS) / (double)DAY_MS;
}
return julianDay;
}
/**
* Return this object's time expressed in julian centuries:
* the number of centuries after 1/1/1900 AD, 12:00 GMT
*
* @see #getJulianDay
* @internal
* @deprecated ICU 2.4. This class may be removed or modified.
*/
double CalendarAstronomer::getJulianCentury() {
if (isINVALID(julianCentury)) {
julianCentury = (getJulianDay() - 2415020.0) / 36525.0;
}
return julianCentury;
}
/**
* Returns the current Greenwich sidereal time, measured in hours
* @internal
* @deprecated ICU 2.4. This class may be removed or modified.
*/
double CalendarAstronomer::getGreenwichSidereal() {
if (isINVALID(siderealTime)) {
// See page 86 of "Practial Astronomy with your Calculator",
// by Peter Duffet-Smith, for details on the algorithm.
double UT = normalize(fTime/(double)HOUR_MS, 24.);
siderealTime = normalize(getSiderealOffset() + UT*1.002737909, 24.);
}
return siderealTime;
}
double CalendarAstronomer::getSiderealOffset() {
if (isINVALID(siderealT0)) {
double JD = uprv_floor(getJulianDay() - 0.5) + 0.5;
double S = JD - 2451545.0;
double T = S / 36525.0;
siderealT0 = normalize(6.697374558 + 2400.051336*T + 0.000025862*T*T, 24);
}
return siderealT0;
}
/**
* Returns the current local sidereal time, measured in hours
* @internal
* @deprecated ICU 2.4. This class may be removed or modified.
*/
double CalendarAstronomer::getLocalSidereal() {
return normalize(getGreenwichSidereal() + (fGmtOffset/(double)HOUR_MS), 24.);
}
/**
* Converts local sidereal time to Universal Time.
*
* @param lst The Local Sidereal Time, in hours since sidereal midnight
* on this object's current date.
*
* @return The corresponding Universal Time, in milliseconds since
* 1 Jan 1970, GMT.
*/
double CalendarAstronomer::lstToUT(double lst) {
// Convert to local mean time
double lt = normalize((lst - getSiderealOffset()) * 0.9972695663, 24);
// Then find local midnight on this day
double base = (DAY_MS * ClockMath::floorDivide(fTime + fGmtOffset,(double)DAY_MS)) - fGmtOffset;
//out(" lt =" + lt + " hours");
//out(" base=" + new Date(base));
return base + (long)(lt * HOUR_MS);
}
//-------------------------------------------------------------------------
// Coordinate transformations, all based on the current time of this object
//-------------------------------------------------------------------------
/**
* Convert from ecliptic to equatorial coordinates.
*
* @param ecliptic A point in the sky in ecliptic coordinates.
* @return The corresponding point in equatorial coordinates.
* @internal
* @deprecated ICU 2.4. This class may be removed or modified.
*/
CalendarAstronomer::Equatorial& CalendarAstronomer::eclipticToEquatorial(CalendarAstronomer::Equatorial& result, const CalendarAstronomer::Ecliptic& ecliptic)
{
return eclipticToEquatorial(result, ecliptic.longitude, ecliptic.latitude);
}
/**
* Convert from ecliptic to equatorial coordinates.
*
* @param eclipLong The ecliptic longitude
* @param eclipLat The ecliptic latitude
*
* @return The corresponding point in equatorial coordinates.
* @internal
* @deprecated ICU 2.4. This class may be removed or modified.
*/
CalendarAstronomer::Equatorial& CalendarAstronomer::eclipticToEquatorial(CalendarAstronomer::Equatorial& result, double eclipLong, double eclipLat)
{
// See page 42 of "Practial Astronomy with your Calculator",
// by Peter Duffet-Smith, for details on the algorithm.
double obliq = eclipticObliquity();
double sinE = ::sin(obliq);
double cosE = cos(obliq);
double sinL = ::sin(eclipLong);
double cosL = cos(eclipLong);
double sinB = ::sin(eclipLat);
double cosB = cos(eclipLat);
double tanB = tan(eclipLat);
result.set(atan2(sinL*cosE - tanB*sinE, cosL),
asin(sinB*cosE + cosB*sinE*sinL) );
return result;
}
/**
* Convert from ecliptic longitude to equatorial coordinates.
*
* @param eclipLong The ecliptic longitude
*
* @return The corresponding point in equatorial coordinates.
* @internal
* @deprecated ICU 2.4. This class may be removed or modified.
*/
CalendarAstronomer::Equatorial& CalendarAstronomer::eclipticToEquatorial(CalendarAstronomer::Equatorial& result, double eclipLong)
{
return eclipticToEquatorial(result, eclipLong, 0); // TODO: optimize
}
/**
* @internal
* @deprecated ICU 2.4. This class may be removed or modified.
*/
CalendarAstronomer::Horizon& CalendarAstronomer::eclipticToHorizon(CalendarAstronomer::Horizon& result, double eclipLong)
{
Equatorial equatorial;
eclipticToEquatorial(equatorial, eclipLong);
double H = getLocalSidereal()*CalendarAstronomer::PI/12 - equatorial.ascension; // Hour-angle
double sinH = ::sin(H);
double cosH = cos(H);
double sinD = ::sin(equatorial.declination);
double cosD = cos(equatorial.declination);
double sinL = ::sin(fLatitude);
double cosL = cos(fLatitude);
double altitude = asin(sinD*sinL + cosD*cosL*cosH);
double azimuth = atan2(-cosD*cosL*sinH, sinD - sinL * ::sin(altitude));
result.set(azimuth, altitude);
return result;
}
//-------------------------------------------------------------------------
// The Sun
//-------------------------------------------------------------------------
//
// Parameters of the Sun's orbit as of the epoch Jan 0.0 1990
// Angles are in radians (after multiplying by CalendarAstronomer::PI/180)
//
#define JD_EPOCH 2447891.5 // Julian day of epoch
#define SUN_ETA_G (279.403303 * CalendarAstronomer::PI/180) // Ecliptic longitude at epoch
#define SUN_OMEGA_G (282.768422 * CalendarAstronomer::PI/180) // Ecliptic longitude of perigee
#define SUN_E 0.016713 // Eccentricity of orbit
//double sunR0 1.495585e8 // Semi-major axis in KM
//double sunTheta0 (0.533128 * CalendarAstronomer::PI/180) // Angular diameter at R0
// The following three methods, which compute the sun parameters
// given above for an arbitrary epoch (whatever time the object is
// set to), make only a small difference as compared to using the
// above constants. E.g., Sunset times might differ by ~12
// seconds. Furthermore, the eta-g computation is befuddled by
// Duffet-Smith's incorrect coefficients (p.86). I've corrected
// the first-order coefficient but the others may be off too - no
// way of knowing without consulting another source.
// /**
// * Return the sun's ecliptic longitude at perigee for the current time.
// * See Duffett-Smith, p. 86.
// * @return radians
// */
// private double getSunOmegaG() {
// double T = getJulianCentury();
// return (281.2208444 + (1.719175 + 0.000452778*T)*T) * DEG_RAD;
// }
// /**
// * Return the sun's ecliptic longitude for the current time.
// * See Duffett-Smith, p. 86.
// * @return radians
// */
// private double getSunEtaG() {
// double T = getJulianCentury();
// //return (279.6966778 + (36000.76892 + 0.0003025*T)*T) * DEG_RAD;
// //
// // The above line is from Duffett-Smith, and yields manifestly wrong
// // results. The below constant is derived empirically to match the
// // constant he gives for the 1990 EPOCH.
// //
// return (279.6966778 + (-0.3262541582718024 + 0.0003025*T)*T) * DEG_RAD;
// }
// /**
// * Return the sun's eccentricity of orbit for the current time.
// * See Duffett-Smith, p. 86.
// * @return double
// */
// private double getSunE() {
// double T = getJulianCentury();
// return 0.01675104 - (0.0000418 + 0.000000126*T)*T;
// }
/**
* Find the "true anomaly" (longitude) of an object from
* its mean anomaly and the eccentricity of its orbit. This uses
* an iterative solution to Kepler's equation.
*
* @param meanAnomaly The object's longitude calculated as if it were in
* a regular, circular orbit, measured in radians
* from the point of perigee.
*
* @param eccentricity The eccentricity of the orbit
*
* @return The true anomaly (longitude) measured in radians
*/
static double trueAnomaly(double meanAnomaly, double eccentricity)
{
// First, solve Kepler's equation iteratively
// Duffett-Smith, p.90
double delta;
double E = meanAnomaly;
do {
delta = E - eccentricity * ::sin(E) - meanAnomaly;
E = E - delta / (1 - eccentricity * ::cos(E));
}
while (uprv_fabs(delta) > 1e-5); // epsilon = 1e-5 rad
return 2.0 * ::atan( ::tan(E/2) * ::sqrt( (1+eccentricity)
/(1-eccentricity) ) );
}
/**
* The longitude of the sun at the time specified by this object.
* The longitude is measured in radians along the ecliptic
* from the "first point of Aries," the point at which the ecliptic
* crosses the earth's equatorial plane at the vernal equinox.
* <p>
* Currently, this method uses an approximation of the two-body Kepler's
* equation for the earth and the sun. It does not take into account the
* perturbations caused by the other planets, the moon, etc.
* @internal
* @deprecated ICU 2.4. This class may be removed or modified.
*/
double CalendarAstronomer::getSunLongitude()
{
// See page 86 of "Practial Astronomy with your Calculator",
// by Peter Duffet-Smith, for details on the algorithm.
if (isINVALID(sunLongitude)) {
getSunLongitude(getJulianDay(), sunLongitude, meanAnomalySun);
}
return sunLongitude;
}
/**
* TODO Make this public when the entire class is package-private.
*/
/*public*/ void CalendarAstronomer::getSunLongitude(double jDay, double &longitude, double &meanAnomaly)
{
// See page 86 of "Practial Astronomy with your Calculator",
// by Peter Duffet-Smith, for details on the algorithm.
double day = jDay - JD_EPOCH; // Days since epoch
// Find the angular distance the sun in a fictitious
// circular orbit has travelled since the epoch.
double epochAngle = norm2PI(CalendarAstronomer_PI2/TROPICAL_YEAR*day);
// The epoch wasn't at the sun's perigee; find the angular distance
// since perigee, which is called the "mean anomaly"
meanAnomaly = norm2PI(epochAngle + SUN_ETA_G - SUN_OMEGA_G);
// Now find the "true anomaly", e.g. the real solar longitude
// by solving Kepler's equation for an elliptical orbit
// NOTE: The 3rd ed. of the book lists omega_g and eta_g in different
// equations; omega_g is to be correct.
longitude = norm2PI(trueAnomaly(meanAnomaly, SUN_E) + SUN_OMEGA_G);
}
/**
* The position of the sun at this object's current date and time,
* in equatorial coordinates.
* @internal
* @deprecated ICU 2.4. This class may be removed or modified.
*/
CalendarAstronomer::Equatorial& CalendarAstronomer::getSunPosition(CalendarAstronomer::Equatorial& result) {
return eclipticToEquatorial(result, getSunLongitude(), 0);
}
/**
* Constant representing the vernal equinox.
* For use with {@link #getSunTime getSunTime}.
* Note: In this case, "vernal" refers to the northern hemisphere's seasons.
* @internal
* @deprecated ICU 2.4. This class may be removed or modified.
*/
/*double CalendarAstronomer::VERNAL_EQUINOX() {
return 0;
}*/
/**
* Constant representing the summer solstice.
* For use with {@link #getSunTime getSunTime}.
* Note: In this case, "summer" refers to the northern hemisphere's seasons.
* @internal
* @deprecated ICU 2.4. This class may be removed or modified.
*/
double CalendarAstronomer::SUMMER_SOLSTICE() {
return (CalendarAstronomer::PI/2);
}
/**
* Constant representing the autumnal equinox.
* For use with {@link #getSunTime getSunTime}.
* Note: In this case, "autumn" refers to the northern hemisphere's seasons.
* @internal
* @deprecated ICU 2.4. This class may be removed or modified.
*/
/*double CalendarAstronomer::AUTUMN_EQUINOX() {
return (CalendarAstronomer::PI);
}*/
/**
* Constant representing the winter solstice.
* For use with {@link #getSunTime getSunTime}.
* Note: In this case, "winter" refers to the northern hemisphere's seasons.
* @internal
* @deprecated ICU 2.4. This class may be removed or modified.
*/
double CalendarAstronomer::WINTER_SOLSTICE() {
return ((CalendarAstronomer::PI*3)/2);
}
CalendarAstronomer::AngleFunc::~AngleFunc() {}
/**
* Find the next time at which the sun's ecliptic longitude will have
* the desired value.
* @internal
* @deprecated ICU 2.4. This class may be removed or modified.
*/
class SunTimeAngleFunc : public CalendarAstronomer::AngleFunc {
public:
virtual double eval(CalendarAstronomer& a) { return a.getSunLongitude(); }
};
UDate CalendarAstronomer::getSunTime(double desired, UBool next)
{
SunTimeAngleFunc func;
return timeOfAngle( func,
desired,
TROPICAL_YEAR,
MINUTE_MS,
next);
}
CalendarAstronomer::CoordFunc::~CoordFunc() {}
class RiseSetCoordFunc : public CalendarAstronomer::CoordFunc {
public:
virtual void eval(CalendarAstronomer::Equatorial& result, CalendarAstronomer&a) { a.getSunPosition(result); }
};
UDate CalendarAstronomer::getSunRiseSet(UBool rise)
{
UDate t0 = fTime;
// Make a rough guess: 6am or 6pm local time on the current day
double noon = ClockMath::floorDivide(fTime + fGmtOffset, (double)DAY_MS)*DAY_MS - fGmtOffset + (12*HOUR_MS);
U_DEBUG_ASTRO_MSG(("Noon=%.2lf, %sL, gmtoff %.2lf\n", noon, debug_astro_date(noon+fGmtOffset), fGmtOffset));
setTime(noon + ((rise ? -6 : 6) * HOUR_MS));
U_DEBUG_ASTRO_MSG(("added %.2lf ms as a guess,\n", ((rise ? -6. : 6.) * HOUR_MS)));
RiseSetCoordFunc func;
double t = riseOrSet(func,
rise,
.533 * DEG_RAD, // Angular Diameter
34. /60.0 * DEG_RAD, // Refraction correction
MINUTE_MS / 12.); // Desired accuracy
setTime(t0);
return t;
}
// Commented out - currently unused. ICU 2.6, Alan
// //-------------------------------------------------------------------------
// // Alternate Sun Rise/Set
// // See Duffett-Smith p.93
// //-------------------------------------------------------------------------
//
// // This yields worse results (as compared to USNO data) than getSunRiseSet().
// /**
// * TODO Make this when the entire class is package-private.
// */
// /*public*/ long getSunRiseSet2(boolean rise) {
// // 1. Calculate coordinates of the sun's center for midnight
// double jd = uprv_floor(getJulianDay() - 0.5) + 0.5;
// double[] sl = getSunLongitude(jd);// double lambda1 = sl[0];
// Equatorial pos1 = eclipticToEquatorial(lambda1, 0);
//
// // 2. Add ... to lambda to get position 24 hours later
// double lambda2 = lambda1 + 0.985647*DEG_RAD;
// Equatorial pos2 = eclipticToEquatorial(lambda2, 0);
//
// // 3. Calculate LSTs of rising and setting for these two positions
// double tanL = ::tan(fLatitude);
// double H = ::acos(-tanL * ::tan(pos1.declination));
// double lst1r = (CalendarAstronomer_PI2 + pos1.ascension - H) * 24 / CalendarAstronomer_PI2;
// double lst1s = (pos1.ascension + H) * 24 / CalendarAstronomer_PI2;
// H = ::acos(-tanL * ::tan(pos2.declination));
// double lst2r = (CalendarAstronomer_PI2-H + pos2.ascension ) * 24 / CalendarAstronomer_PI2;
// double lst2s = (H + pos2.ascension ) * 24 / CalendarAstronomer_PI2;
// if (lst1r > 24) lst1r -= 24;
// if (lst1s > 24) lst1s -= 24;
// if (lst2r > 24) lst2r -= 24;
// if (lst2s > 24) lst2s -= 24;
//
// // 4. Convert LSTs to GSTs. If GST1 > GST2, add 24 to GST2.
// double gst1r = lstToGst(lst1r);
// double gst1s = lstToGst(lst1s);
// double gst2r = lstToGst(lst2r);
// double gst2s = lstToGst(lst2s);
// if (gst1r > gst2r) gst2r += 24;
// if (gst1s > gst2s) gst2s += 24;
//
// // 5. Calculate GST at 0h UT of this date
// double t00 = utToGst(0);
//
// // 6. Calculate GST at 0h on the observer's longitude
// double offset = ::round(fLongitude*12/PI); // p.95 step 6; he _rounds_ to nearest 15 deg.
// double t00p = t00 - offset*1.002737909;
// if (t00p < 0) t00p += 24; // do NOT normalize
//
// // 7. Adjust
// if (gst1r < t00p) {
// gst1r += 24;
// gst2r += 24;
// }
// if (gst1s < t00p) {
// gst1s += 24;
// gst2s += 24;
// }
//
// // 8.
// double gstr = (24.07*gst1r-t00*(gst2r-gst1r))/(24.07+gst1r-gst2r);
// double gsts = (24.07*gst1s-t00*(gst2s-gst1s))/(24.07+gst1s-gst2s);
//
// // 9. Correct for parallax, refraction, and sun's diameter
// double dec = (pos1.declination + pos2.declination) / 2;
// double psi = ::acos(sin(fLatitude) / cos(dec));
// double x = 0.830725 * DEG_RAD; // parallax+refraction+diameter
// double y = ::asin(sin(x) / ::sin(psi)) * RAD_DEG;
// double delta_t = 240 * y / cos(dec) / 3600; // hours
//
// // 10. Add correction to GSTs, subtract from GSTr
// gstr -= delta_t;
// gsts += delta_t;
//
// // 11. Convert GST to UT and then to local civil time
// double ut = gstToUt(rise ? gstr : gsts);
// //System.out.println((rise?"rise=":"set=") + ut + ", delta_t=" + delta_t);
// long midnight = DAY_MS * (time / DAY_MS); // Find UT midnight on this day
// return midnight + (long) (ut * 3600000);
// }
// Commented out - currently unused. ICU 2.6, Alan
// /**
// * Convert local sidereal time to Greenwich sidereal time.
// * Section 15. Duffett-Smith p.21
// * @param lst in hours (0..24)
// * @return GST in hours (0..24)
// */
// double lstToGst(double lst) {
// double delta = fLongitude * 24 / CalendarAstronomer_PI2;
// return normalize(lst - delta, 24);
// }
// Commented out - currently unused. ICU 2.6, Alan
// /**
// * Convert UT to GST on this date.
// * Section 12. Duffett-Smith p.17
// * @param ut in hours
// * @return GST in hours
// */
// double utToGst(double ut) {
// return normalize(getT0() + ut*1.002737909, 24);
// }
// Commented out - currently unused. ICU 2.6, Alan
// /**
// * Convert GST to UT on this date.
// * Section 13. Duffett-Smith p.18
// * @param gst in hours
// * @return UT in hours
// */
// double gstToUt(double gst) {
// return normalize(gst - getT0(), 24) * 0.9972695663;
// }
// Commented out - currently unused. ICU 2.6, Alan
// double getT0() {
// // Common computation for UT <=> GST
//
// // Find JD for 0h UT
// double jd = uprv_floor(getJulianDay() - 0.5) + 0.5;
//
// double s = jd - 2451545.0;
// double t = s / 36525.0;
// double t0 = 6.697374558 + (2400.051336 + 0.000025862*t)*t;
// return t0;
// }
// Commented out - currently unused. ICU 2.6, Alan
// //-------------------------------------------------------------------------
// // Alternate Sun Rise/Set
// // See sci.astro FAQ
// // http://www.faqs.org/faqs/astronomy/faq/part3/section-5.html
// //-------------------------------------------------------------------------
//
// // Note: This method appears to produce inferior accuracy as
// // compared to getSunRiseSet().
//
// /**
// * TODO Make this when the entire class is package-private.
// */
// /*public*/ long getSunRiseSet3(boolean rise) {
//
// // Compute day number for 0.0 Jan 2000 epoch
// double d = (double)(time - EPOCH_2000_MS) / DAY_MS;
//
// // Now compute the Local Sidereal Time, LST:
// //
// double LST = 98.9818 + 0.985647352 * d + /*UT*15 + long*/
// fLongitude*RAD_DEG;
// //
// // (east long. positive). Note that LST is here expressed in degrees,
// // where 15 degrees corresponds to one hour. Since LST really is an angle,
// // it's convenient to use one unit---degrees---throughout.
//
// // COMPUTING THE SUN'S POSITION
// // ----------------------------
// //
// // To be able to compute the Sun's rise/set times, you need to be able to
// // compute the Sun's position at any time. First compute the "day
// // number" d as outlined above, for the desired moment. Next compute:
// //
// double oblecl = 23.4393 - 3.563E-7 * d;
// //
// double w = 282.9404 + 4.70935E-5 * d;
// double M = 356.0470 + 0.9856002585 * d;
// double e = 0.016709 - 1.151E-9 * d;
// //
// // This is the obliquity of the ecliptic, plus some of the elements of
// // the Sun's apparent orbit (i.e., really the Earth's orbit): w =
// // argument of perihelion, M = mean anomaly, e = eccentricity.
// // Semi-major axis is here assumed to be exactly 1.0 (while not strictly
// // true, this is still an accurate approximation). Next compute E, the
// // eccentric anomaly:
// //
// double E = M + e*(180/PI) * ::sin(M*DEG_RAD) * ( 1.0 + e*cos(M*DEG_RAD) );
// //
// // where E and M are in degrees. This is it---no further iterations are
// // needed because we know e has a sufficiently small value. Next compute
// // the true anomaly, v, and the distance, r:
// //
// /* r * cos(v) = */ double A = cos(E*DEG_RAD) - e;
// /* r * ::sin(v) = */ double B = ::sqrt(1 - e*e) * ::sin(E*DEG_RAD);
// //
// // and
// //
// // r = sqrt( A*A + B*B )
// double v = ::atan2( B, A )*RAD_DEG;
// //
// // The Sun's true longitude, slon, can now be computed:
// //
// double slon = v + w;
// //
// // Since the Sun is always at the ecliptic (or at least very very close to
// // it), we can use simplified formulae to convert slon (the Sun's ecliptic
// // longitude) to sRA and sDec (the Sun's RA and Dec):
// //
// // ::sin(slon) * cos(oblecl)
// // tan(sRA) = -------------------------
// // cos(slon)
// //
// // ::sin(sDec) = ::sin(oblecl) * ::sin(slon)
// //
// // As was the case when computing az, the Azimuth, if possible use an
// // atan2() function to compute sRA.
//
// double sRA = ::atan2(sin(slon*DEG_RAD) * cos(oblecl*DEG_RAD), cos(slon*DEG_RAD))*RAD_DEG;
//
// double sin_sDec = ::sin(oblecl*DEG_RAD) * ::sin(slon*DEG_RAD);
// double sDec = ::asin(sin_sDec)*RAD_DEG;
//
// // COMPUTING RISE AND SET TIMES
// // ----------------------------
// //
// // To compute when an object rises or sets, you must compute when it
// // passes the meridian and the HA of rise/set. Then the rise time is
// // the meridian time minus HA for rise/set, and the set time is the
// // meridian time plus the HA for rise/set.
// //
// // To find the meridian time, compute the Local Sidereal Time at 0h local
// // time (or 0h UT if you prefer to work in UT) as outlined above---name
// // that quantity LST0. The Meridian Time, MT, will now be:
// //
// // MT = RA - LST0
// double MT = normalize(sRA - LST, 360);
// //
// // where "RA" is the object's Right Ascension (in degrees!). If negative,
// // add 360 deg to MT. If the object is the Sun, leave the time as it is,
// // but if it's stellar, multiply MT by 365.2422/366.2422, to convert from
// // sidereal to solar time. Now, compute HA for rise/set, name that
// // quantity HA0:
// //
// // ::sin(h0) - ::sin(lat) * ::sin(Dec)
// // cos(HA0) = ---------------------------------
// // cos(lat) * cos(Dec)
// //
// // where h0 is the altitude selected to represent rise/set. For a purely
// // mathematical horizon, set h0 = 0 and simplify to:
// //
// // cos(HA0) = - tan(lat) * tan(Dec)
// //
// // If you want to account for refraction on the atmosphere, set h0 = -35/60
// // degrees (-35 arc minutes), and if you want to compute the rise/set times
// // for the Sun's upper limb, set h0 = -50/60 (-50 arc minutes).
// //
// double h0 = -50/60 * DEG_RAD;
//
// double HA0 = ::acos(
// (sin(h0) - ::sin(fLatitude) * sin_sDec) /
// (cos(fLatitude) * cos(sDec*DEG_RAD)))*RAD_DEG;
//
// // When HA0 has been computed, leave it as it is for the Sun but multiply
// // by 365.2422/366.2422 for stellar objects, to convert from sidereal to
// // solar time. Finally compute:
// //
// // Rise time = MT - HA0
// // Set time = MT + HA0
// //
// // convert the times from degrees to hours by dividing by 15.
// //
// // If you'd like to check that your calculations are accurate or just
// // need a quick result, check the USNO's Sun or Moon Rise/Set Table,
// // <URL:http://aa.usno.navy.mil/AA/data/docs/RS_OneYear.html>.
//
// double result = MT + (rise ? -HA0 : HA0); // in degrees
//
// // Find UT midnight on this day
// long midnight = DAY_MS * (time / DAY_MS);
//
// return midnight + (long) (result * 3600000 / 15);
// }
//-------------------------------------------------------------------------
// The Moon
//-------------------------------------------------------------------------
#define moonL0 (318.351648 * CalendarAstronomer::PI/180 ) // Mean long. at epoch
#define moonP0 ( 36.340410 * CalendarAstronomer::PI/180 ) // Mean long. of perigee
#define moonN0 ( 318.510107 * CalendarAstronomer::PI/180 ) // Mean long. of node
#define moonI ( 5.145366 * CalendarAstronomer::PI/180 ) // Inclination of orbit
#define moonE ( 0.054900 ) // Eccentricity of orbit
// These aren't used right now
#define moonA ( 3.84401e5 ) // semi-major axis (km)
#define moonT0 ( 0.5181 * CalendarAstronomer::PI/180 ) // Angular size at distance A
#define moonPi ( 0.9507 * CalendarAstronomer::PI/180 ) // Parallax at distance A
/**
* The position of the moon at the time set on this
* object, in equatorial coordinates.
* @internal
* @deprecated ICU 2.4. This class may be removed or modified.
*/
const CalendarAstronomer::Equatorial& CalendarAstronomer::getMoonPosition()
{
//
// See page 142 of "Practial Astronomy with your Calculator",
// by Peter Duffet-Smith, for details on the algorithm.
//
if (moonPositionSet == FALSE) {
// Calculate the solar longitude. Has the side effect of
// filling in "meanAnomalySun" as well.
getSunLongitude();
//
// Find the # of days since the epoch of our orbital parameters.
// TODO: Convert the time of day portion into ephemeris time
//
double day = getJulianDay() - JD_EPOCH; // Days since epoch
// Calculate the mean longitude and anomaly of the moon, based on
// a circular orbit. Similar to the corresponding solar calculation.
double meanLongitude = norm2PI(13.1763966*PI/180*day + moonL0);
meanAnomalyMoon = norm2PI(meanLongitude - 0.1114041*PI/180 * day - moonP0);
//
// Calculate the following corrections:
// Evection: the sun's gravity affects the moon's eccentricity
// Annual Eqn: variation in the effect due to earth-sun distance
// A3: correction factor (for ???)
//
double evection = 1.2739*PI/180 * ::sin(2 * (meanLongitude - sunLongitude)
- meanAnomalyMoon);
double annual = 0.1858*PI/180 * ::sin(meanAnomalySun);
double a3 = 0.3700*PI/180 * ::sin(meanAnomalySun);
meanAnomalyMoon += evection - annual - a3;
//
// More correction factors:
// center equation of the center correction
// a4 yet another error correction (???)
//
// TODO: Skip the equation of the center correction and solve Kepler's eqn?
//
double center = 6.2886*PI/180 * ::sin(meanAnomalyMoon);
double a4 = 0.2140*PI/180 * ::sin(2 * meanAnomalyMoon);
// Now find the moon's corrected longitude
moonLongitude = meanLongitude + evection + center - annual + a4;
//
// And finally, find the variation, caused by the fact that the sun's
// gravitational pull on the moon varies depending on which side of
// the earth the moon is on
//
double variation = 0.6583*CalendarAstronomer::PI/180 * ::sin(2*(moonLongitude - sunLongitude));
moonLongitude += variation;
//
// What we've calculated so far is the moon's longitude in the plane
// of its own orbit. Now map to the ecliptic to get the latitude
// and longitude. First we need to find the longitude of the ascending
// node, the position on the ecliptic where it is crossed by the moon's
// orbit as it crosses from the southern to the northern hemisphere.
//
double nodeLongitude = norm2PI(moonN0 - 0.0529539*PI/180 * day);
nodeLongitude -= 0.16*PI/180 * ::sin(meanAnomalySun);
double y = ::sin(moonLongitude - nodeLongitude);
double x = cos(moonLongitude - nodeLongitude);
moonEclipLong = ::atan2(y*cos(moonI), x) + nodeLongitude;
double moonEclipLat = ::asin(y * ::sin(moonI));
eclipticToEquatorial(moonPosition, moonEclipLong, moonEclipLat);
moonPositionSet = TRUE;
}
return moonPosition;
}
/**
* The "age" of the moon at the time specified in this object.
* This is really the angle between the
* current ecliptic longitudes of the sun and the moon,
* measured in radians.
*
* @see #getMoonPhase
* @internal
* @deprecated ICU 2.4. This class may be removed or modified.
*/
double CalendarAstronomer::getMoonAge() {
// See page 147 of "Practial Astronomy with your Calculator",
// by Peter Duffet-Smith, for details on the algorithm.
//
// Force the moon's position to be calculated. We're going to use
// some the intermediate results cached during that calculation.
//
getMoonPosition();
return norm2PI(moonEclipLong - sunLongitude);
}
/**
* Calculate the phase of the moon at the time set in this object.
* The returned phase is a <code>double</code> in the range
* <code>0 <= phase < 1</code>, interpreted as follows:
* <ul>
* <li>0.00: New moon
* <li>0.25: First quarter
* <li>0.50: Full moon
* <li>0.75: Last quarter
* </ul>
*
* @see #getMoonAge
* @internal
* @deprecated ICU 2.4. This class may be removed or modified.
*/
double CalendarAstronomer::getMoonPhase() {
// See page 147 of "Practial Astronomy with your Calculator",
// by Peter Duffet-Smith, for details on the algorithm.
return 0.5 * (1 - cos(getMoonAge()));
}
/**
* Constant representing a new moon.
* For use with {@link #getMoonTime getMoonTime}
* @internal
* @deprecated ICU 2.4. This class may be removed or modified.
*/
const CalendarAstronomer::MoonAge CalendarAstronomer::NEW_MOON() {
return CalendarAstronomer::MoonAge(0);
}
/**
* Constant representing the moon's first quarter.
* For use with {@link #getMoonTime getMoonTime}
* @internal
* @deprecated ICU 2.4. This class may be removed or modified.
*/
/*const CalendarAstronomer::MoonAge CalendarAstronomer::FIRST_QUARTER() {
return CalendarAstronomer::MoonAge(CalendarAstronomer::PI/2);
}*/
/**
* Constant representing a full moon.
* For use with {@link #getMoonTime getMoonTime}
* @internal
* @deprecated ICU 2.4. This class may be removed or modified.
*/
const CalendarAstronomer::MoonAge CalendarAstronomer::FULL_MOON() {
return CalendarAstronomer::MoonAge(CalendarAstronomer::PI);
}
/**
* Constant representing the moon's last quarter.
* For use with {@link #getMoonTime getMoonTime}
* @internal
* @deprecated ICU 2.4. This class may be removed or modified.
*/
class MoonTimeAngleFunc : public CalendarAstronomer::AngleFunc {
public:
virtual double eval(CalendarAstronomer&a) { return a.getMoonAge(); }
};
/*const CalendarAstronomer::MoonAge CalendarAstronomer::LAST_QUARTER() {
return CalendarAstronomer::MoonAge((CalendarAstronomer::PI*3)/2);
}*/
/**
* Find the next or previous time at which the Moon's ecliptic
* longitude will have the desired value.
* <p>
* @param desired The desired longitude.
* @param next <tt>true</tt> if the next occurrance of the phase
* is desired, <tt>false</tt> for the previous occurrance.
* @internal
* @deprecated ICU 2.4. This class may be removed or modified.
*/
UDate CalendarAstronomer::getMoonTime(double desired, UBool next)
{
MoonTimeAngleFunc func;
return timeOfAngle( func,
desired,
SYNODIC_MONTH,
MINUTE_MS,
next);
}
/**
* Find the next or previous time at which the moon will be in the
* desired phase.
* <p>
* @param desired The desired phase of the moon.
* @param next <tt>true</tt> if the next occurrance of the phase
* is desired, <tt>false</tt> for the previous occurrance.
* @internal
* @deprecated ICU 2.4. This class may be removed or modified.
*/
UDate CalendarAstronomer::getMoonTime(const CalendarAstronomer::MoonAge& desired, UBool next) {
return getMoonTime(desired.value, next);
}
class MoonRiseSetCoordFunc : public CalendarAstronomer::CoordFunc {
public:
virtual void eval(CalendarAstronomer::Equatorial& result, CalendarAstronomer&a) { result = a.getMoonPosition(); }
};
/**
* Returns the time (GMT) of sunrise or sunset on the local date to which
* this calendar is currently set.
* @internal
* @deprecated ICU 2.4. This class may be removed or modified.
*/
UDate CalendarAstronomer::getMoonRiseSet(UBool rise)
{
MoonRiseSetCoordFunc func;
return riseOrSet(func,
rise,
.533 * DEG_RAD, // Angular Diameter
34 /60.0 * DEG_RAD, // Refraction correction
MINUTE_MS); // Desired accuracy
}
//-------------------------------------------------------------------------
// Interpolation methods for finding the time at which a given event occurs
//-------------------------------------------------------------------------
UDate CalendarAstronomer::timeOfAngle(AngleFunc& func, double desired,
double periodDays, double epsilon, UBool next)
{
// Find the value of the function at the current time
double lastAngle = func.eval(*this);
// Find out how far we are from the desired angle
double deltaAngle = norm2PI(desired - lastAngle) ;
// Using the average period, estimate the next (or previous) time at
// which the desired angle occurs.
double deltaT = (deltaAngle + (next ? 0.0 : - CalendarAstronomer_PI2 )) * (periodDays*DAY_MS) / CalendarAstronomer_PI2;
double lastDeltaT = deltaT; // Liu
UDate startTime = fTime; // Liu
setTime(fTime + uprv_ceil(deltaT));
// Now iterate until we get the error below epsilon. Throughout
// this loop we use normPI to get values in the range -Pi to Pi,
// since we're using them as correction factors rather than absolute angles.
do {
// Evaluate the function at the time we've estimated
double angle = func.eval(*this);
// Find the # of milliseconds per radian at this point on the curve
double factor = uprv_fabs(deltaT / normPI(angle-lastAngle));
// Correct the time estimate based on how far off the angle is
deltaT = normPI(desired - angle) * factor;
// HACK:
//
// If abs(deltaT) begins to diverge we need to quit this loop.
// This only appears to happen when attempting to locate, for
// example, a new moon on the day of the new moon. E.g.:
//
// This result is correct:
// newMoon(7508(Mon Jul 23 00:00:00 CST 1990,false))=
// Sun Jul 22 10:57:41 CST 1990
//
// But attempting to make the same call a day earlier causes deltaT
// to diverge:
// CalendarAstronomer.timeOfAngle() diverging: 1.348508727575625E9 ->
// 1.3649828540224032E9
// newMoon(7507(Sun Jul 22 00:00:00 CST 1990,false))=
// Sun Jul 08 13:56:15 CST 1990
//
// As a temporary solution, we catch this specific condition and
// adjust our start time by one eighth period days (either forward
// or backward) and try again.
// Liu 11/9/00
if (uprv_fabs(deltaT) > uprv_fabs(lastDeltaT)) {
double delta = uprv_ceil (periodDays * DAY_MS / 8.0);
setTime(startTime + (next ? delta : -delta));
return timeOfAngle(func, desired, periodDays, epsilon, next);
}
lastDeltaT = deltaT;
lastAngle = angle;
setTime(fTime + uprv_ceil(deltaT));
}
while (uprv_fabs(deltaT) > epsilon);
return fTime;
}
UDate CalendarAstronomer::riseOrSet(CoordFunc& func, UBool rise,
double diameter, double refraction,
double epsilon)
{
Equatorial pos;
double tanL = ::tan(fLatitude);
double deltaT = 0;
int32_t count = 0;
//
// Calculate the object's position at the current time, then use that
// position to calculate the time of rising or setting. The position
// will be different at that time, so iterate until the error is allowable.
//
U_DEBUG_ASTRO_MSG(("setup rise=%s, dia=%.3lf, ref=%.3lf, eps=%.3lf\n",
rise?"T":"F", diameter, refraction, epsilon));
do {
// See "Practical Astronomy With Your Calculator, section 33.
func.eval(pos, *this);
double angle = ::acos(-tanL * ::tan(pos.declination));
double lst = ((rise ? CalendarAstronomer_PI2-angle : angle) + pos.ascension ) * 24 / CalendarAstronomer_PI2;
// Convert from LST to Universal Time.
UDate newTime = lstToUT( lst );
deltaT = newTime - fTime;
setTime(newTime);
U_DEBUG_ASTRO_MSG(("%d] dT=%.3lf, angle=%.3lf, lst=%.3lf, A=%.3lf/D=%.3lf\n",
count, deltaT, angle, lst, pos.ascension, pos.declination));
}
while (++ count < 5 && uprv_fabs(deltaT) > epsilon);
// Calculate the correction due to refraction and the object's angular diameter
double cosD = ::cos(pos.declination);
double psi = ::acos(sin(fLatitude) / cosD);
double x = diameter / 2 + refraction;
double y = ::asin(sin(x) / ::sin(psi));
long delta = (long)((240 * y * RAD_DEG / cosD)*SECOND_MS);
return fTime + (rise ? -delta : delta);
}
/**
* Return the obliquity of the ecliptic (the angle between the ecliptic
* and the earth's equator) at the current time. This varies due to
* the precession of the earth's axis.
*
* @return the obliquity of the ecliptic relative to the equator,
* measured in radians.
*/
double CalendarAstronomer::eclipticObliquity() {
if (isINVALID(eclipObliquity)) {
const double epoch = 2451545.0; // 2000 AD, January 1.5
double T = (getJulianDay() - epoch) / 36525;
eclipObliquity = 23.439292
- 46.815/3600 * T
- 0.0006/3600 * T*T
+ 0.00181/3600 * T*T*T;
eclipObliquity *= DEG_RAD;
}
return eclipObliquity;
}
//-------------------------------------------------------------------------
// Private data
//-------------------------------------------------------------------------
void CalendarAstronomer::clearCache() {
const double INVALID = uprv_getNaN();
julianDay = INVALID;
julianCentury = INVALID;
sunLongitude = INVALID;
meanAnomalySun = INVALID;
moonLongitude = INVALID;
moonEclipLong = INVALID;
meanAnomalyMoon = INVALID;
eclipObliquity = INVALID;
siderealTime = INVALID;
siderealT0 = INVALID;
moonPositionSet = FALSE;
}
//private static void out(String s) {
// System.out.println(s);
//}
//private static String deg(double rad) {
// return Double.toString(rad * RAD_DEG);
//}
//private static String hours(long ms) {
// return Double.toString((double)ms / HOUR_MS) + " hours";
//}
/**
* @internal
* @deprecated ICU 2.4. This class may be removed or modified.
*/
/*UDate CalendarAstronomer::local(UDate localMillis) {
// TODO - srl ?
TimeZone *tz = TimeZone::createDefault();
int32_t rawOffset;
int32_t dstOffset;
UErrorCode status = U_ZERO_ERROR;
tz->getOffset(localMillis, TRUE, rawOffset, dstOffset, status);
delete tz;
return localMillis - rawOffset;
}*/
// Debugging functions
UnicodeString CalendarAstronomer::Ecliptic::toString() const
{
#ifdef U_DEBUG_ASTRO
char tmp[800];
sprintf(tmp, "[%.5f,%.5f]", longitude*RAD_DEG, latitude*RAD_DEG);
return UnicodeString(tmp, "");
#else
return UnicodeString();
#endif
}
UnicodeString CalendarAstronomer::Equatorial::toString() const
{
#ifdef U_DEBUG_ASTRO
char tmp[400];
sprintf(tmp, "%f,%f",
(ascension*RAD_DEG), (declination*RAD_DEG));
return UnicodeString(tmp, "");
#else
return UnicodeString();
#endif
}
UnicodeString CalendarAstronomer::Horizon::toString() const
{
#ifdef U_DEBUG_ASTRO
char tmp[800];
sprintf(tmp, "[%.5f,%.5f]", altitude*RAD_DEG, azimuth*RAD_DEG);
return UnicodeString(tmp, "");
#else
return UnicodeString();
#endif
}
// static private String radToHms(double angle) {
// int hrs = (int) (angle*RAD_HOUR);
// int min = (int)((angle*RAD_HOUR - hrs) * 60);
// int sec = (int)((angle*RAD_HOUR - hrs - min/60.0) * 3600);
// return Integer.toString(hrs) + "h" + min + "m" + sec + "s";
// }
// static private String radToDms(double angle) {
// int deg = (int) (angle*RAD_DEG);
// int min = (int)((angle*RAD_DEG - deg) * 60);
// int sec = (int)((angle*RAD_DEG - deg - min/60.0) * 3600);
// return Integer.toString(deg) + "\u00b0" + min + "'" + sec + "\"";
// }
// =============== Calendar Cache ================
void CalendarCache::createCache(CalendarCache** cache, UErrorCode& status) {
ucln_i18n_registerCleanup(UCLN_I18N_ASTRO_CALENDAR, calendar_astro_cleanup);
if(cache == NULL) {
status = U_MEMORY_ALLOCATION_ERROR;
} else {
*cache = new CalendarCache(32, status);
if(U_FAILURE(status)) {
delete *cache;
*cache = NULL;
}
}
}
int32_t CalendarCache::get(CalendarCache** cache, int32_t key, UErrorCode &status) {
int32_t res;
if(U_FAILURE(status)) {
return 0;
}
umtx_lock(&ccLock);
if(*cache == NULL) {
createCache(cache, status);
if(U_FAILURE(status)) {
umtx_unlock(&ccLock);
return 0;
}
}
res = uhash_igeti((*cache)->fTable, key);
U_DEBUG_ASTRO_MSG(("%p: GET: [%d] == %d\n", (*cache)->fTable, key, res));
umtx_unlock(&ccLock);
return res;
}
void CalendarCache::put(CalendarCache** cache, int32_t key, int32_t value, UErrorCode &status) {
if(U_FAILURE(status)) {
return;
}
umtx_lock(&ccLock);
if(*cache == NULL) {
createCache(cache, status);
if(U_FAILURE(status)) {
umtx_unlock(&ccLock);
return;
}
}
uhash_iputi((*cache)->fTable, key, value, &status);
U_DEBUG_ASTRO_MSG(("%p: PUT: [%d] := %d\n", (*cache)->fTable, key, value));
umtx_unlock(&ccLock);
}
CalendarCache::CalendarCache(int32_t size, UErrorCode &status) {
fTable = uhash_openSize(uhash_hashLong, uhash_compareLong, NULL, size, &status);
U_DEBUG_ASTRO_MSG(("%p: Opening.\n", fTable));
}
CalendarCache::~CalendarCache() {
if(fTable != NULL) {
U_DEBUG_ASTRO_MSG(("%p: Closing.\n", fTable));
uhash_close(fTable);
}
}
U_NAMESPACE_END
#endif // !UCONFIG_NO_FORMATTING
|