1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
61
62
63
64
65
66
67
68
69
70
71
72
73
74
75
76
77
78
79
80
81
82
83
84
85
86
87
88
89
90
91
92
93
94
95
96
97
98
99
100
101
102
103
104
105
106
107
108
109
110
111
112
113
114
115
116
117
118
119
120
121
122
123
124
125
126
127
128
129
130
131
132
133
134
135
136
137
138
139
140
141
142
143
144
145
146
147
148
149
150
151
152
153
154
155
156
157
158
159
160
161
162
163
164
165
166
167
168
169
170
171
172
173
174
175
176
177
178
179
180
181
182
183
184
185
186
187
188
189
190
191
192
193
194
195
196
197
198
199
200
201
202
203
204
205
206
207
208
209
210
211
212
213
214
215
216
217
218
219
220
221
222
223
224
225
226
227
228
229
230
231
232
233
234
235
236
237
238
239
240
241
242
243
244
245
246
247
248
249
250
251
252
253
254
255
256
257
258
259
260
261
262
263
264
265
266
267
268
269
270
271
272
273
274
275
276
277
278
279
280
281
282
283
284
285
286
287
288
289
290
291
292
293
294
295
296
297
298
299
300
301
302
303
304
305
306
307
308
309
310
311
312
313
314
315
316
317
318
319
320
321
322
323
324
325
326
327
328
329
330
331
332
333
334
335
336
337
338
339
340
341
342
343
344
345
346
347
348
349
350
351
352
353
354
355
356
357
358
359
360
361
362
363
364
365
366
367
368
369
370
371
372
373
374
375
376
377
378
379
380
381
382
383
384
385
386
387
388
389
390
391
392
393
394
395
396
397
398
399
400
401
402
403
404
405
406
407
408
409
410
411
412
413
414
415
416
417
418
419
420
421
422
423
424
425
426
427
428
429
430
431
432
433
434
435
436
437
438
439
440
441
442
443
444
445
446
447
448
449
450
451
452
453
454
455
456
457
458
459
460
461
462
463
464
465
466
467
468
469
470
471
472
473
474
475
476
477
478
479
480
481
482
483
484
485
486
487
488
489
490
491
492
493
494
495
496
497
498
499
500
501
502
503
504
505
506
507
508
509
510
511
512
513
514
515
516
517
518
519
520
521
522
523
524
525
526
527
528
529
530
531
532
533
534
535
536
537
538
539
540
541
542
543
544
545
546
547
548
549
550
551
552
553
554
555
556
557
558
559
560
561
562
563
564
565
566
567
568
569
570
571
572
573
574
575
576
577
578
579
580
581
582
583
584
585
586
587
588
589
590
591
592
593
594
595
596
597
598
599
600
601
602
603
604
605
606
607
608
609
610
611
612
613
614
615
616
617
618
619
620
621
622
623
624
625
626
627
628
629
630
631
632
633
634
635
636
637
638
639
640
641
642
643
644
645
646
647
648
649
650
651
652
653
654
655
656
657
658
659
660
661
662
663
664
665
666
667
668
669
670
671
672
673
674
675
676
677
678
679
680
681
682
683
684
685
686
687
688
689
690
691
692
693
694
695
696
697
698
699
700
701
702
703
704
705
706
707
708
709
710
711
712
713
714
715
716
717
718
719
720
721
722
723
724
725
726
727
728
729
730
731
732
733
734
735
736
737
738
739
740
741
742
743
744
745
746
747
748
749
750
751
752
753
754
755
756
757
758
759
760
761
762
763
764
765
766
767
768
769
770
771
772
773
774
775
776
777
778
779
780
781
782
783
784
785
786
787
788
789
790
791
792
793
794
795
796
797
798
799
800
801
802
803
804
805
806
807
808
809
810
811
812
813
814
815
816
817
818
819
820
821
822
823
824
825
826
827
828
829
830
831
832
833
834
835
836
837
838
839
840
841
842
843
844
845
846
847
848
849
850
851
852
853
854
855
856
857
858
859
860
861
862
863
864
865
866
867
868
869
870
871
872
873
874
875
876
877
878
879
880
881
882
883
884
885
886
887
888
889
890
891
892
893
894
895
896
897
898
899
900
901
902
903
904
905
906
907
908
909
910
911
912
913
914
915
916
917
918
919
920
921
922
923
924
925
926
927
928
929
930
931
932
933
934
935
936
937
938
939
940
941
942
943
944
945
946
947
948
949
950
951
952
953
954
955
956
957
958
959
|
/*
**********************************************************************
* Copyright (c) 2003-2007, International Business Machines
* Corporation and others. All Rights Reserved.
**********************************************************************
* Author: Alan Liu
* Created: July 21 2003
* Since: ICU 2.8
**********************************************************************
*/
#include "olsontz.h"
#if !UCONFIG_NO_FORMATTING
#include "unicode/ures.h"
#include "unicode/simpletz.h"
#include "unicode/gregocal.h"
#include "gregoimp.h"
#include "cmemory.h"
#include "uassert.h"
#include "uvector.h"
#include <float.h> // DBL_MAX
#ifdef U_DEBUG_TZ
# include <stdio.h>
# include "uresimp.h" // for debugging
static void debug_tz_loc(const char *f, int32_t l)
{
fprintf(stderr, "%s:%d: ", f, l);
}
static void debug_tz_msg(const char *pat, ...)
{
va_list ap;
va_start(ap, pat);
vfprintf(stderr, pat, ap);
fflush(stderr);
}
// must use double parens, i.e.: U_DEBUG_TZ_MSG(("four is: %d",4));
#define U_DEBUG_TZ_MSG(x) {debug_tz_loc(__FILE__,__LINE__);debug_tz_msg x;}
#else
#define U_DEBUG_TZ_MSG(x)
#endif
U_NAMESPACE_BEGIN
#define SECONDS_PER_DAY (24*60*60)
static const int32_t ZEROS[] = {0,0};
UOBJECT_DEFINE_RTTI_IMPLEMENTATION(OlsonTimeZone)
/**
* Default constructor. Creates a time zone with an empty ID and
* a fixed GMT offset of zero.
*/
/*OlsonTimeZone::OlsonTimeZone() : finalYear(INT32_MAX), finalMillis(DBL_MAX), finalZone(0), transitionRulesInitialized(FALSE) {
clearTransitionRules();
constructEmpty();
}*/
/**
* Construct a GMT+0 zone with no transitions. This is done when a
* constructor fails so the resultant object is well-behaved.
*/
void OlsonTimeZone::constructEmpty() {
transitionCount = 0;
typeCount = 1;
transitionTimes = typeOffsets = ZEROS;
typeData = (const uint8_t*) ZEROS;
}
/**
* Construct from a resource bundle
* @param top the top-level zoneinfo resource bundle. This is used
* to lookup the rule that `res' may refer to, if there is one.
* @param res the resource bundle of the zone to be constructed
* @param ec input-output error code
*/
OlsonTimeZone::OlsonTimeZone(const UResourceBundle* top,
const UResourceBundle* res,
UErrorCode& ec) :
finalYear(INT32_MAX), finalMillis(DBL_MAX), finalZone(0), transitionRulesInitialized(FALSE)
{
clearTransitionRules();
U_DEBUG_TZ_MSG(("OlsonTimeZone(%s)\n", ures_getKey((UResourceBundle*)res)));
if ((top == NULL || res == NULL) && U_SUCCESS(ec)) {
ec = U_ILLEGAL_ARGUMENT_ERROR;
}
if (U_SUCCESS(ec)) {
// TODO -- clean up -- Doesn't work if res points to an alias
// // TODO remove nonconst casts below when ures_* API is fixed
// setID(ures_getKey((UResourceBundle*) res)); // cast away const
// Size 1 is an alias TO another zone (int)
// HOWEVER, the caller should dereference this and never pass it in to us
// Size 3 is a purely historical zone (no final rules)
// Size 4 is like size 3, but with an alias list at the end
// Size 5 is a hybrid zone, with historical and final elements
// Size 6 is like size 5, but with an alias list at the end
int32_t size = ures_getSize(res);
if (size < 3 || size > 6) {
ec = U_INVALID_FORMAT_ERROR;
}
// Transitions list may be empty
int32_t i;
UResourceBundle* r = ures_getByIndex(res, 0, NULL, &ec);
transitionTimes = ures_getIntVector(r, &i, &ec);
if ((i<0 || i>0x7FFF) && U_SUCCESS(ec)) {
ec = U_INVALID_FORMAT_ERROR;
}
transitionCount = (int16_t) i;
// Type offsets list must be of even size, with size >= 2
r = ures_getByIndex(res, 1, r, &ec);
typeOffsets = ures_getIntVector(r, &i, &ec);
if ((i<2 || i>0x7FFE || ((i&1)!=0)) && U_SUCCESS(ec)) {
ec = U_INVALID_FORMAT_ERROR;
}
typeCount = (int16_t) i >> 1;
// Type data must be of the same size as the transitions list
r = ures_getByIndex(res, 2, r, &ec);
int32_t len;
typeData = ures_getBinary(r, &len, &ec);
ures_close(r);
if (len != transitionCount && U_SUCCESS(ec)) {
ec = U_INVALID_FORMAT_ERROR;
}
#if defined (U_DEBUG_TZ)
U_DEBUG_TZ_MSG(("OlsonTimeZone(%s) - size = %d, typecount %d transitioncount %d - err %s\n", ures_getKey((UResourceBundle*)res), size, typeCount, transitionCount, u_errorName(ec)));
if(U_SUCCESS(ec)) {
int32_t jj;
for(jj=0;jj<transitionCount;jj++) {
int32_t year, month, dom, dow;
double millis=0;
double days = Math::floorDivide(((double)transitionTimes[jj])*1000.0, (double)U_MILLIS_PER_DAY, millis);
Grego::dayToFields(days, year, month, dom, dow);
U_DEBUG_TZ_MSG((" Transition %d: time %d (%04d.%02d.%02d+%.1fh), typedata%d\n", jj, transitionTimes[jj],
year, month+1, dom, (millis/kOneHour), typeData[jj]));
// U_DEBUG_TZ_MSG((" offset%d\n", typeOffsets[jj]));
int16_t f = jj;
f <<= 1;
U_DEBUG_TZ_MSG((" offsets[%d+%d]=(%d+%d)=(%d==%d)\n", (int)f,(int)f+1,(int)typeOffsets[f],(int)typeOffsets[f+1],(int)zoneOffset(jj),
(int)typeOffsets[f]+(int)typeOffsets[f+1]));
}
}
#endif
// Process final rule and data, if any
if (size >= 5) {
int32_t ruleidLen = 0;
const UChar* idUStr = ures_getStringByIndex(res, 3, &ruleidLen, &ec);
UnicodeString ruleid(TRUE, idUStr, ruleidLen);
r = ures_getByIndex(res, 4, NULL, &ec);
const int32_t* data = ures_getIntVector(r, &len, &ec);
#if defined U_DEBUG_TZ
const char *rKey = ures_getKey(r);
const char *zKey = ures_getKey((UResourceBundle*)res);
#endif
ures_close(r);
if (U_SUCCESS(ec)) {
if (data != 0 && len == 2) {
int32_t rawOffset = data[0] * U_MILLIS_PER_SECOND;
// Subtract one from the actual final year; we
// actually store final year - 1, and compare
// using > rather than >=. This allows us to use
// INT32_MAX as an exclusive upper limit for all
// years, including INT32_MAX.
U_ASSERT(data[1] > INT32_MIN);
finalYear = data[1] - 1;
// Also compute the millis for Jan 1, 0:00 GMT of the
// finalYear. This reduces runtime computations.
finalMillis = Grego::fieldsToDay(data[1], 0, 1) * U_MILLIS_PER_DAY;
U_DEBUG_TZ_MSG(("zone%s|%s: {%d,%d}, finalYear%d, finalMillis%.1lf\n",
zKey,rKey, data[0], data[1], finalYear, finalMillis));
r = TimeZone::loadRule(top, ruleid, NULL, ec);
if (U_SUCCESS(ec)) {
// 3, 1, -1, 7200, 0, 9, -31, -1, 7200, 0, 3600
data = ures_getIntVector(r, &len, &ec);
if (U_SUCCESS(ec) && len == 11) {
UnicodeString emptyStr;
U_DEBUG_TZ_MSG(("zone%s, rule%s: {%d,%d,%d,%d,%d,%d,%d,%d,%d,%d,%d}\n", zKey, ures_getKey(r),
data[0], data[1], data[2], data[3], data[4], data[5], data[6], data[7], data[8], data[9], data[10]));
finalZone = new SimpleTimeZone(rawOffset, emptyStr,
(int8_t)data[0], (int8_t)data[1], (int8_t)data[2],
data[3] * U_MILLIS_PER_SECOND,
(SimpleTimeZone::TimeMode) data[4],
(int8_t)data[5], (int8_t)data[6], (int8_t)data[7],
data[8] * U_MILLIS_PER_SECOND,
(SimpleTimeZone::TimeMode) data[9],
data[10] * U_MILLIS_PER_SECOND, ec);
} else {
ec = U_INVALID_FORMAT_ERROR;
}
}
ures_close(r);
} else {
ec = U_INVALID_FORMAT_ERROR;
}
}
}
}
if (U_FAILURE(ec)) {
constructEmpty();
}
}
/**
* Copy constructor
*/
OlsonTimeZone::OlsonTimeZone(const OlsonTimeZone& other) :
BasicTimeZone(other), finalZone(0) {
*this = other;
}
/**
* Assignment operator
*/
OlsonTimeZone& OlsonTimeZone::operator=(const OlsonTimeZone& other) {
transitionCount = other.transitionCount;
typeCount = other.typeCount;
transitionTimes = other.transitionTimes;
typeOffsets = other.typeOffsets;
typeData = other.typeData;
finalYear = other.finalYear;
finalMillis = other.finalMillis;
delete finalZone;
finalZone = (other.finalZone != 0) ?
(SimpleTimeZone*) other.finalZone->clone() : 0;
clearTransitionRules();
return *this;
}
/**
* Destructor
*/
OlsonTimeZone::~OlsonTimeZone() {
deleteTransitionRules();
delete finalZone;
}
/**
* Returns true if the two TimeZone objects are equal.
*/
UBool OlsonTimeZone::operator==(const TimeZone& other) const {
return ((this == &other) ||
(getDynamicClassID() == other.getDynamicClassID() &&
TimeZone::operator==(other) &&
hasSameRules(other)));
}
/**
* TimeZone API.
*/
TimeZone* OlsonTimeZone::clone() const {
return new OlsonTimeZone(*this);
}
/**
* TimeZone API.
*/
int32_t OlsonTimeZone::getOffset(uint8_t era, int32_t year, int32_t month,
int32_t dom, uint8_t dow,
int32_t millis, UErrorCode& ec) const {
if (month < UCAL_JANUARY || month > UCAL_DECEMBER) {
if (U_SUCCESS(ec)) {
ec = U_ILLEGAL_ARGUMENT_ERROR;
}
return 0;
} else {
return getOffset(era, year, month, dom, dow, millis,
Grego::monthLength(year, month),
ec);
}
}
/**
* TimeZone API.
*/
int32_t OlsonTimeZone::getOffset(uint8_t era, int32_t year, int32_t month,
int32_t dom, uint8_t dow,
int32_t millis, int32_t monthLength,
UErrorCode& ec) const {
if (U_FAILURE(ec)) {
return 0;
}
if ((era != GregorianCalendar::AD && era != GregorianCalendar::BC)
|| month < UCAL_JANUARY
|| month > UCAL_DECEMBER
|| dom < 1
|| dom > monthLength
|| dow < UCAL_SUNDAY
|| dow > UCAL_SATURDAY
|| millis < 0
|| millis >= U_MILLIS_PER_DAY
|| monthLength < 28
|| monthLength > 31) {
ec = U_ILLEGAL_ARGUMENT_ERROR;
return 0;
}
if (era == GregorianCalendar::BC) {
year = -year;
}
if (year > finalYear) { // [sic] >, not >=; see above
U_ASSERT(finalZone != 0);
return finalZone->getOffset(era, year, month, dom, dow,
millis, monthLength, ec);
}
// Compute local epoch millis from input fields
UDate date = (UDate)(Grego::fieldsToDay(year, month, dom) * U_MILLIS_PER_DAY + millis);
int32_t rawoff, dstoff;
getHistoricalOffset(date, TRUE, kDaylight, kStandard, rawoff, dstoff);
return rawoff + dstoff;
}
/**
* TimeZone API.
*/
void OlsonTimeZone::getOffset(UDate date, UBool local, int32_t& rawoff,
int32_t& dstoff, UErrorCode& ec) const {
if (U_FAILURE(ec)) {
return;
}
// The check against finalMillis will suffice most of the time, except
// for the case in which finalMillis == DBL_MAX, date == DBL_MAX,
// and finalZone == 0. For this case we add "&& finalZone != 0".
if (date >= finalMillis && finalZone != 0) {
finalZone->getOffset(date, local, rawoff, dstoff, ec);
} else {
getHistoricalOffset(date, local, kFormer, kLatter, rawoff, dstoff);
}
}
void
OlsonTimeZone::getOffsetFromLocal(UDate date, int32_t nonExistingTimeOpt, int32_t duplicatedTimeOpt,
int32_t& rawoff, int32_t& dstoff, UErrorCode& ec) /*const*/ {
if (U_FAILURE(ec)) {
return;
}
if (date >= finalMillis && finalZone != 0) {
finalZone->getOffsetFromLocal(date, nonExistingTimeOpt, duplicatedTimeOpt, rawoff, dstoff, ec);
} else {
getHistoricalOffset(date, TRUE, nonExistingTimeOpt, duplicatedTimeOpt, rawoff, dstoff);
}
}
/**
* TimeZone API.
*/
void OlsonTimeZone::setRawOffset(int32_t /*offsetMillis*/) {
// We don't support this operation, since OlsonTimeZones are
// immutable (except for the ID, which is in the base class).
// Nothing to do!
}
/**
* TimeZone API.
*/
int32_t OlsonTimeZone::getRawOffset() const {
UErrorCode ec = U_ZERO_ERROR;
int32_t raw, dst;
getOffset((double) uprv_getUTCtime() * U_MILLIS_PER_SECOND,
FALSE, raw, dst, ec);
return raw;
}
#if defined U_DEBUG_TZ
void printTime(double ms) {
int32_t year, month, dom, dow;
double millis=0;
double days = Math::floorDivide(((double)ms), (double)U_MILLIS_PER_DAY, millis);
Grego::dayToFields(days, year, month, dom, dow);
U_DEBUG_TZ_MSG((" getHistoricalOffset: time %.1f (%04d.%02d.%02d+%.1fh)\n", ms,
year, month+1, dom, (millis/kOneHour)));
}
#endif
void
OlsonTimeZone::getHistoricalOffset(UDate date, UBool local,
int32_t NonExistingTimeOpt, int32_t DuplicatedTimeOpt,
int32_t& rawoff, int32_t& dstoff) const {
U_DEBUG_TZ_MSG(("getHistoricalOffset(%.1f, %s, %d, %d, raw, dst)\n",
date, local?"T":"F", NonExistingTimeOpt, DuplicatedTimeOpt));
#if defined U_DEBUG_TZ
printTime(date*1000.0);
#endif
if (transitionCount != 0) {
double sec = uprv_floor(date / U_MILLIS_PER_SECOND);
// Linear search from the end is the fastest approach, since
// most lookups will happen at/near the end.
int16_t i;
for (i = transitionCount - 1; i > 0; --i) {
int32_t transition = transitionTimes[i];
if (local) {
int32_t offsetBefore = zoneOffset(typeData[i-1]);
UBool dstBefore = dstOffset(typeData[i-1]) != 0;
int32_t offsetAfter = zoneOffset(typeData[i]);
UBool dstAfter = dstOffset(typeData[i]) != 0;
UBool dstToStd = dstBefore && !dstAfter;
UBool stdToDst = !dstBefore && dstAfter;
if (offsetAfter - offsetBefore >= 0) {
// Positive transition, which makes a non-existing local time range
if (((NonExistingTimeOpt & kStdDstMask) == kStandard && dstToStd)
|| ((NonExistingTimeOpt & kStdDstMask) == kDaylight && stdToDst)) {
transition += offsetBefore;
} else if (((NonExistingTimeOpt & kStdDstMask) == kStandard && stdToDst)
|| ((NonExistingTimeOpt & kStdDstMask) == kDaylight && dstToStd)) {
transition += offsetAfter;
} else if ((NonExistingTimeOpt & kFormerLatterMask) == kLatter) {
transition += offsetBefore;
} else {
// Interprets the time with rule before the transition,
// default for non-existing time range
transition += offsetAfter;
}
} else {
// Negative transition, which makes a duplicated local time range
if (((DuplicatedTimeOpt & kStdDstMask) == kStandard && dstToStd)
|| ((DuplicatedTimeOpt & kStdDstMask) == kDaylight && stdToDst)) {
transition += offsetAfter;
} else if (((DuplicatedTimeOpt & kStdDstMask) == kStandard && stdToDst)
|| ((DuplicatedTimeOpt & kStdDstMask) == kDaylight && dstToStd)) {
transition += offsetBefore;
} else if ((DuplicatedTimeOpt & kFormerLatterMask) == kFormer) {
transition += offsetBefore;
} else {
// Interprets the time with rule after the transition,
// default for duplicated local time range
transition += offsetAfter;
}
}
}
if (sec >= transition) {
U_DEBUG_TZ_MSG(("Found@%d: time=%.1f, localtransition=%d (orig %d) dz %d\n", i, sec, transition, transitionTimes[i],
zoneOffset(typeData[i-1])));
#if defined U_DEBUG_TZ
printTime(transition*1000.0);
printTime(transitionTimes[i]*1000.0);
#endif
break;
} else {
U_DEBUG_TZ_MSG(("miss@%d: time=%.1f, localtransition=%d (orig %d) dz %d\n", i, sec, transition, transitionTimes[i],
zoneOffset(typeData[i-1])));
#if defined U_DEBUG_TZ
printTime(transition*1000.0);
printTime(transitionTimes[i]*1000.0);
#endif
}
}
U_ASSERT(i>=0 && i<transitionCount);
// Check invariants for GMT times; if these pass for GMT times
// the local logic should be working too.
U_ASSERT(local || sec < transitionTimes[0] || sec >= transitionTimes[i]);
U_ASSERT(local || i == transitionCount-1 || sec < transitionTimes[i+1]);
U_DEBUG_TZ_MSG(("getHistoricalOffset(%.1f, %s, %d, %d, raw, dst) - trans %d\n",
date, local?"T":"F", NonExistingTimeOpt, DuplicatedTimeOpt, i));
// Since ICU tzdata 2007c, the first transition data is actually not a
// transition, but used for representing the initial offset. So the code
// below works even if i == 0.
int16_t index = typeData[i];
rawoff = rawOffset(index) * U_MILLIS_PER_SECOND;
dstoff = dstOffset(index) * U_MILLIS_PER_SECOND;
} else {
// No transitions, single pair of offsets only
rawoff = rawOffset(0) * U_MILLIS_PER_SECOND;
dstoff = dstOffset(0) * U_MILLIS_PER_SECOND;
}
U_DEBUG_TZ_MSG(("getHistoricalOffset(%.1f, %s, %d, %d, raw, dst) - raw=%d, dst=%d\n",
date, local?"T":"F", NonExistingTimeOpt, DuplicatedTimeOpt, rawoff, dstoff));
}
/**
* TimeZone API.
*/
UBool OlsonTimeZone::useDaylightTime() const {
// If DST was observed in 1942 (for example) but has never been
// observed from 1943 to the present, most clients will expect
// this method to return FALSE. This method determines whether
// DST is in use in the current year (at any point in the year)
// and returns TRUE if so.
int32_t days = (int32_t)Math::floorDivide(uprv_getUTCtime(), (double)U_MILLIS_PER_DAY); // epoch days
int32_t year, month, dom, dow;
Grego::dayToFields(days, year, month, dom, dow);
if (year > finalYear) { // [sic] >, not >=; see above
U_ASSERT(finalZone != 0 && finalZone->useDaylightTime());
return TRUE;
}
// Find start of this year, and start of next year
int32_t start = (int32_t) Grego::fieldsToDay(year, 0, 1) * SECONDS_PER_DAY;
int32_t limit = (int32_t) Grego::fieldsToDay(year+1, 0, 1) * SECONDS_PER_DAY;
// Return TRUE if DST is observed at any time during the current
// year.
for (int16_t i=0; i<transitionCount; ++i) {
if (transitionTimes[i] >= limit) {
break;
}
if (transitionTimes[i] >= start &&
dstOffset(typeData[i]) != 0) {
return TRUE;
}
}
return FALSE;
}
int32_t
OlsonTimeZone::getDSTSavings() const{
if(finalZone!=NULL){
return finalZone->getDSTSavings();
}
return TimeZone::getDSTSavings();
}
/**
* TimeZone API.
*/
UBool OlsonTimeZone::inDaylightTime(UDate date, UErrorCode& ec) const {
int32_t raw, dst;
getOffset(date, FALSE, raw, dst, ec);
return dst != 0;
}
UBool
OlsonTimeZone::hasSameRules(const TimeZone &other) const {
if (this == &other) {
return TRUE;
}
if (other.getDynamicClassID() != OlsonTimeZone::getStaticClassID()) {
return FALSE;
}
const OlsonTimeZone* z = (const OlsonTimeZone*) &other;
// [sic] pointer comparison: typeData points into
// memory-mapped or DLL space, so if two zones have the same
// pointer, they are equal.
if (typeData == z->typeData) {
return TRUE;
}
// If the pointers are not equal, the zones may still
// be equal if their rules and transitions are equal
return
(finalYear == z->finalYear &&
// Don't compare finalMillis; if finalYear is ==, so is finalMillis
((finalZone == 0 && z->finalZone == 0) ||
(finalZone != 0 && z->finalZone != 0 && *finalZone == *z->finalZone)) &&
transitionCount == z->transitionCount &&
typeCount == z->typeCount &&
uprv_memcmp(transitionTimes, z->transitionTimes,
sizeof(transitionTimes[0]) * transitionCount) == 0 &&
uprv_memcmp(typeOffsets, z->typeOffsets,
(sizeof(typeOffsets[0]) * typeCount) << 1) == 0 &&
uprv_memcmp(typeData, z->typeData,
(sizeof(typeData[0]) * typeCount)) == 0);
}
void
OlsonTimeZone::clearTransitionRules(void) {
initialRule = NULL;
firstTZTransition = NULL;
firstFinalTZTransition = NULL;
historicRules = NULL;
historicRuleCount = 0;
finalZoneWithStartYear = NULL;
firstTZTransitionIdx = 0;
transitionRulesInitialized = FALSE;
}
void
OlsonTimeZone::deleteTransitionRules(void) {
if (initialRule != NULL) {
delete initialRule;
}
if (firstTZTransition != NULL) {
delete firstTZTransition;
}
if (firstFinalTZTransition != NULL) {
delete firstFinalTZTransition;
}
if (finalZoneWithStartYear != NULL) {
delete finalZoneWithStartYear;
}
if (historicRules != NULL) {
for (int i = 0; i < historicRuleCount; i++) {
if (historicRules[i] != NULL) {
delete historicRules[i];
}
}
uprv_free(historicRules);
}
clearTransitionRules();
}
void
OlsonTimeZone::initTransitionRules(UErrorCode& status) {
if(U_FAILURE(status)) {
return;
}
if (transitionRulesInitialized) {
return;
}
deleteTransitionRules();
UnicodeString tzid;
getID(tzid);
UnicodeString stdName = tzid + UNICODE_STRING_SIMPLE("(STD)");
UnicodeString dstName = tzid + UNICODE_STRING_SIMPLE("(DST)");
int32_t raw, dst;
if (transitionCount > 0) {
int16_t transitionIdx, typeIdx;
// Note: Since 2007c, the very first transition data is a dummy entry
// added for resolving a offset calculation problem.
// Create initial rule
typeIdx = (int16_t)typeData[0]; // initial type
raw = rawOffset(typeIdx) * U_MILLIS_PER_SECOND;
dst = dstOffset(typeIdx) * U_MILLIS_PER_SECOND;
initialRule = new InitialTimeZoneRule((dst == 0 ? stdName : dstName), raw, dst);
firstTZTransitionIdx = 0;
for (transitionIdx = 1; transitionIdx < transitionCount; transitionIdx++) {
firstTZTransitionIdx++;
if (typeIdx != (int16_t)typeData[transitionIdx]) {
break;
}
}
if (transitionIdx == transitionCount) {
// Actually no transitions...
} else {
// Build historic rule array
UDate* times = (UDate*)uprv_malloc(sizeof(UDate)*transitionCount); /* large enough to store all transition times */
if (times == NULL) {
status = U_MEMORY_ALLOCATION_ERROR;
deleteTransitionRules();
return;
}
for (typeIdx = 0; typeIdx < typeCount; typeIdx++) {
// Gather all start times for each pair of offsets
int32_t nTimes = 0;
for (transitionIdx = firstTZTransitionIdx; transitionIdx < transitionCount; transitionIdx++) {
if (typeIdx == (int16_t)typeData[transitionIdx]) {
UDate tt = ((UDate)transitionTimes[transitionIdx]) * U_MILLIS_PER_SECOND;
if (tt < finalMillis) {
// Exclude transitions after finalMillis
times[nTimes++] = tt;
}
}
}
if (nTimes > 0) {
// Create a TimeArrayTimeZoneRule
raw = rawOffset(typeIdx) * U_MILLIS_PER_SECOND;
dst = dstOffset(typeIdx) * U_MILLIS_PER_SECOND;
if (historicRules == NULL) {
historicRuleCount = typeCount;
historicRules = (TimeArrayTimeZoneRule**)uprv_malloc(sizeof(TimeArrayTimeZoneRule*)*historicRuleCount);
if (historicRules == NULL) {
status = U_MEMORY_ALLOCATION_ERROR;
deleteTransitionRules();
uprv_free(times);
return;
}
for (int i = 0; i < historicRuleCount; i++) {
// Initialize TimeArrayTimeZoneRule pointers as NULL
historicRules[i] = NULL;
}
}
historicRules[typeIdx] = new TimeArrayTimeZoneRule((dst == 0 ? stdName : dstName),
raw, dst, times, nTimes, DateTimeRule::UTC_TIME);
}
}
uprv_free(times);
// Create initial transition
typeIdx = (int16_t)typeData[firstTZTransitionIdx];
firstTZTransition = new TimeZoneTransition(((UDate)transitionTimes[firstTZTransitionIdx]) * U_MILLIS_PER_SECOND,
*initialRule, *historicRules[typeIdx]);
}
}
if (initialRule == NULL) {
// No historic transitions
raw = rawOffset(0) * U_MILLIS_PER_SECOND;
dst = dstOffset(0) * U_MILLIS_PER_SECOND;
initialRule = new InitialTimeZoneRule((dst == 0 ? stdName : dstName), raw, dst);
}
if (finalZone != NULL) {
// Get the first occurence of final rule starts
UDate startTime = (UDate)finalMillis;
TimeZoneRule *firstFinalRule = NULL;
if (finalZone->useDaylightTime()) {
/*
* Note: When an OlsonTimeZone is constructed, we should set the final year
* as the start year of finalZone. However, the bounday condition used for
* getting offset from finalZone has some problems. So setting the start year
* in the finalZone will cause a problem. For now, we do not set the valid
* start year when the construction time and create a clone and set the
* start year when extracting rules.
*/
finalZoneWithStartYear = (SimpleTimeZone*)finalZone->clone();
// finalYear is 1 year before the actual final year.
// See the comment in the construction method.
finalZoneWithStartYear->setStartYear(finalYear + 1);
TimeZoneTransition tzt;
finalZoneWithStartYear->getNextTransition(startTime, false, tzt);
firstFinalRule = tzt.getTo()->clone();
startTime = tzt.getTime();
} else {
finalZoneWithStartYear = (SimpleTimeZone*)finalZone->clone();
finalZone->getID(tzid);
firstFinalRule = new TimeArrayTimeZoneRule(tzid,
finalZone->getRawOffset(), 0, &startTime, 1, DateTimeRule::UTC_TIME);
}
TimeZoneRule *prevRule = NULL;
if (transitionCount > 0) {
prevRule = historicRules[typeData[transitionCount - 1]];
}
if (prevRule == NULL) {
// No historic transitions, but only finalZone available
prevRule = initialRule;
}
firstFinalTZTransition = new TimeZoneTransition();
firstFinalTZTransition->setTime(startTime);
firstFinalTZTransition->adoptFrom(prevRule->clone());
firstFinalTZTransition->adoptTo(firstFinalRule);
}
transitionRulesInitialized = TRUE;
}
UBool
OlsonTimeZone::getNextTransition(UDate base, UBool inclusive, TimeZoneTransition& result) /*const*/ {
UErrorCode status = U_ZERO_ERROR;
initTransitionRules(status);
if (U_FAILURE(status)) {
return FALSE;
}
if (finalZone != NULL) {
if (inclusive && base == firstFinalTZTransition->getTime()) {
result = *firstFinalTZTransition;
return TRUE;
} else if (base >= firstFinalTZTransition->getTime()) {
if (finalZone->useDaylightTime()) {
//return finalZone->getNextTransition(base, inclusive, result);
return finalZoneWithStartYear->getNextTransition(base, inclusive, result);
} else {
// No more transitions
return FALSE;
}
}
}
if (historicRules != NULL) {
// Find a historical transition
int16_t ttidx = transitionCount - 1;
for (; ttidx >= firstTZTransitionIdx; ttidx--) {
UDate t = ((UDate)transitionTimes[ttidx]) * U_MILLIS_PER_SECOND;
if (base > t || (!inclusive && base == t)) {
break;
}
}
if (ttidx == transitionCount - 1) {
if (firstFinalTZTransition != NULL) {
result = *firstFinalTZTransition;
return TRUE;
} else {
return FALSE;
}
} else if (ttidx < firstTZTransitionIdx) {
result = *firstTZTransition;
return TRUE;
} else {
// Create a TimeZoneTransition
TimeZoneRule *to = historicRules[typeData[ttidx + 1]];
TimeZoneRule *from = historicRules[typeData[ttidx]];
UDate startTime = ((UDate)transitionTimes[ttidx+1]) * U_MILLIS_PER_SECOND;
// The transitions loaded from zoneinfo.res may contain non-transition data
UnicodeString fromName, toName;
from->getName(fromName);
to->getName(toName);
if (fromName == toName && from->getRawOffset() == to->getRawOffset()
&& from->getDSTSavings() == to->getDSTSavings()) {
return getNextTransition(startTime, false, result);
}
result.setTime(startTime);
result.adoptFrom(from->clone());
result.adoptTo(to->clone());
return TRUE;
}
}
return FALSE;
}
UBool
OlsonTimeZone::getPreviousTransition(UDate base, UBool inclusive, TimeZoneTransition& result) /*const*/ {
UErrorCode status = U_ZERO_ERROR;
initTransitionRules(status);
if (U_FAILURE(status)) {
return FALSE;
}
if (finalZone != NULL) {
if (inclusive && base == firstFinalTZTransition->getTime()) {
result = *firstFinalTZTransition;
return TRUE;
} else if (base > firstFinalTZTransition->getTime()) {
if (finalZone->useDaylightTime()) {
//return finalZone->getPreviousTransition(base, inclusive, result);
return finalZoneWithStartYear->getPreviousTransition(base, inclusive, result);
} else {
result = *firstFinalTZTransition;
return TRUE;
}
}
}
if (historicRules != NULL) {
// Find a historical transition
int16_t ttidx = transitionCount - 1;
for (; ttidx >= firstTZTransitionIdx; ttidx--) {
UDate t = ((UDate)transitionTimes[ttidx]) * U_MILLIS_PER_SECOND;
if (base > t || (inclusive && base == t)) {
break;
}
}
if (ttidx < firstTZTransitionIdx) {
// No more transitions
return FALSE;
} else if (ttidx == firstTZTransitionIdx) {
result = *firstTZTransition;
return TRUE;
} else {
// Create a TimeZoneTransition
TimeZoneRule *to = historicRules[typeData[ttidx]];
TimeZoneRule *from = historicRules[typeData[ttidx-1]];
UDate startTime = ((UDate)transitionTimes[ttidx]) * U_MILLIS_PER_SECOND;
// The transitions loaded from zoneinfo.res may contain non-transition data
UnicodeString fromName, toName;
from->getName(fromName);
to->getName(toName);
if (fromName == toName && from->getRawOffset() == to->getRawOffset()
&& from->getDSTSavings() == to->getDSTSavings()) {
return getPreviousTransition(startTime, false, result);
}
result.setTime(startTime);
result.adoptFrom(from->clone());
result.adoptTo(to->clone());
return TRUE;
}
}
return FALSE;
}
int32_t
OlsonTimeZone::countTransitionRules(UErrorCode& status) /*const*/ {
if (U_FAILURE(status)) {
return 0;
}
initTransitionRules(status);
if (U_FAILURE(status)) {
return 0;
}
int32_t count = 0;
if (historicRules != NULL) {
// historicRules may contain null entries when original zoneinfo data
// includes non transition data.
for (int32_t i = 0; i < historicRuleCount; i++) {
if (historicRules[i] != NULL) {
count++;
}
}
}
if (finalZone != NULL) {
if (finalZone->useDaylightTime()) {
count += 2;
} else {
count++;
}
}
return count;
}
void
OlsonTimeZone::getTimeZoneRules(const InitialTimeZoneRule*& initial,
const TimeZoneRule* trsrules[],
int32_t& trscount,
UErrorCode& status) /*const*/ {
if (U_FAILURE(status)) {
return;
}
initTransitionRules(status);
if (U_FAILURE(status)) {
return;
}
// Initial rule
initial = initialRule;
// Transition rules
int32_t cnt = 0;
if (historicRules != NULL && trscount > cnt) {
// historicRules may contain null entries when original zoneinfo data
// includes non transition data.
for (int32_t i = 0; i < historicRuleCount; i++) {
if (historicRules[i] != NULL) {
trsrules[cnt++] = historicRules[i];
if (cnt >= trscount) {
break;
}
}
}
}
if (finalZoneWithStartYear != NULL && trscount > cnt) {
const InitialTimeZoneRule *tmpini;
int32_t tmpcnt = trscount - cnt;
finalZoneWithStartYear->getTimeZoneRules(tmpini, &trsrules[cnt], tmpcnt, status);
if (U_FAILURE(status)) {
return;
}
cnt += tmpcnt;
}
// Set the result length
trscount = cnt;
}
U_NAMESPACE_END
#endif // !UCONFIG_NO_FORMATTING
//eof
|