1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
61
62
63
64
65
66
67
68
69
70
71
72
73
74
75
76
77
78
79
80
81
82
83
84
85
86
87
88
89
90
91
92
93
94
95
96
97
98
99
100
101
102
103
104
105
106
107
108
109
110
111
112
113
114
115
116
117
118
119
120
121
122
123
124
125
126
127
128
129
130
131
132
133
134
135
136
137
138
139
140
141
142
143
144
145
146
147
148
149
150
151
152
153
154
155
156
157
158
159
160
161
162
163
164
165
166
167
168
169
170
171
172
173
174
175
176
177
178
179
180
181
182
183
184
185
186
187
188
189
190
191
192
193
194
195
196
197
198
199
200
201
202
203
204
205
206
207
208
209
210
211
212
213
214
215
216
217
218
219
220
221
222
223
224
225
226
227
228
229
230
231
232
233
234
235
236
237
238
239
240
241
242
243
244
245
246
247
248
249
250
251
252
253
254
255
256
257
258
259
260
261
262
263
264
265
266
267
268
269
270
271
272
273
274
275
276
277
278
279
280
281
282
283
284
285
286
287
288
289
290
291
292
293
294
295
296
297
298
299
300
301
302
303
304
305
306
307
308
309
310
311
312
313
314
315
316
317
318
319
320
321
322
323
324
325
326
327
328
329
330
331
332
333
334
335
336
337
338
339
340
341
342
343
344
345
346
347
348
349
350
351
352
353
354
355
356
357
358
359
360
361
362
363
364
365
366
367
368
369
370
371
372
373
374
375
376
377
378
379
380
381
382
383
384
385
386
387
388
389
390
391
392
393
394
395
396
397
398
399
400
401
402
403
404
405
406
407
408
409
410
411
412
413
414
415
416
417
418
419
420
421
422
423
424
425
426
427
428
429
430
431
432
433
434
435
436
437
438
439
440
441
442
443
444
445
446
447
448
449
450
451
452
453
454
455
456
457
458
459
460
461
462
463
464
465
466
467
468
469
470
471
472
473
474
475
476
477
478
479
480
481
482
483
484
485
486
487
488
489
490
491
492
493
494
495
496
497
498
499
500
501
502
503
504
505
506
507
508
509
510
511
512
513
514
515
516
517
518
519
520
521
522
523
524
525
526
527
528
529
530
531
532
533
534
535
536
537
538
539
540
541
542
543
544
545
546
547
548
549
550
551
552
553
554
555
556
557
558
559
560
561
562
563
564
565
566
567
568
569
570
571
572
573
574
575
576
577
578
579
580
581
582
583
584
585
586
587
588
589
590
591
592
593
594
595
596
597
598
599
600
601
602
603
604
605
606
607
608
609
610
611
612
613
614
615
616
617
618
619
620
621
622
623
624
625
626
627
628
629
630
631
632
633
634
635
636
637
638
639
640
641
642
643
644
645
646
647
648
649
650
651
652
653
654
655
656
657
658
659
660
661
662
663
664
665
666
667
668
669
670
671
672
673
674
675
676
677
678
679
680
681
682
683
684
685
686
687
688
689
690
691
692
693
694
695
696
697
698
699
700
701
702
703
704
705
706
707
708
709
710
711
712
713
714
715
716
717
718
719
720
721
722
723
724
725
726
727
728
729
730
731
732
733
734
735
736
737
738
739
740
741
742
743
744
745
746
747
748
749
750
751
752
753
754
755
756
757
758
759
760
761
762
763
764
765
766
767
768
769
770
771
772
773
774
775
776
777
778
779
780
781
782
783
784
785
786
787
788
789
790
791
792
793
794
795
796
797
798
799
800
801
802
803
804
805
806
807
808
809
810
811
812
813
814
815
816
817
818
819
820
821
822
823
824
825
826
827
828
829
830
831
832
833
834
835
836
837
838
839
840
841
842
843
844
845
846
847
848
849
850
851
852
853
854
855
856
857
858
859
860
861
862
863
864
865
866
867
868
869
870
871
872
873
874
875
876
877
878
879
880
881
882
883
884
885
886
887
888
889
890
891
892
893
894
895
896
897
898
899
900
901
902
903
904
905
906
907
908
909
910
911
912
913
914
915
916
917
918
919
920
921
922
923
924
925
926
927
928
929
930
931
932
933
934
935
936
937
938
939
940
941
942
943
944
945
946
947
948
949
950
951
952
953
954
955
956
957
958
959
960
961
962
963
964
965
966
967
968
969
970
971
972
973
974
975
976
977
978
979
980
981
982
983
984
985
986
987
988
989
990
991
992
993
994
995
996
997
998
999
1000
1001
1002
1003
1004
1005
1006
1007
1008
1009
1010
1011
1012
1013
1014
1015
1016
1017
1018
1019
1020
1021
1022
1023
1024
1025
1026
1027
1028
1029
1030
1031
1032
1033
1034
1035
1036
1037
1038
1039
1040
1041
1042
1043
1044
1045
1046
1047
1048
1049
1050
1051
1052
1053
1054
1055
1056
1057
1058
1059
1060
1061
1062
1063
1064
1065
1066
1067
1068
1069
1070
1071
1072
1073
1074
1075
1076
1077
1078
1079
1080
1081
1082
1083
1084
1085
1086
1087
1088
1089
1090
1091
1092
1093
1094
1095
1096
1097
1098
1099
1100
1101
1102
1103
1104
1105
1106
1107
1108
1109
1110
1111
1112
1113
1114
1115
1116
1117
1118
1119
1120
1121
1122
1123
1124
1125
1126
1127
1128
1129
1130
1131
1132
1133
1134
1135
1136
1137
1138
1139
1140
1141
1142
1143
1144
1145
1146
1147
1148
1149
1150
1151
1152
1153
1154
1155
1156
1157
1158
1159
1160
1161
1162
1163
1164
1165
1166
1167
1168
1169
1170
1171
1172
1173
1174
1175
1176
1177
1178
1179
1180
1181
1182
1183
1184
1185
1186
1187
1188
1189
1190
1191
1192
1193
1194
1195
1196
1197
1198
1199
1200
1201
1202
1203
1204
1205
1206
1207
1208
1209
1210
1211
1212
1213
1214
1215
1216
1217
1218
1219
1220
1221
1222
1223
1224
1225
1226
1227
1228
1229
1230
1231
1232
1233
1234
1235
1236
1237
1238
1239
1240
1241
1242
1243
1244
1245
1246
1247
1248
1249
1250
1251
1252
1253
1254
1255
1256
1257
1258
1259
1260
1261
1262
1263
1264
1265
1266
1267
1268
1269
1270
1271
1272
1273
1274
1275
1276
1277
1278
1279
1280
1281
1282
1283
1284
1285
1286
1287
1288
1289
1290
1291
1292
1293
1294
1295
1296
1297
1298
1299
1300
1301
1302
1303
1304
1305
1306
1307
1308
1309
1310
1311
1312
1313
1314
1315
1316
1317
1318
1319
1320
1321
1322
1323
1324
1325
1326
1327
1328
1329
1330
1331
1332
1333
1334
1335
1336
1337
1338
1339
1340
1341
1342
1343
1344
1345
1346
1347
1348
1349
1350
1351
1352
1353
1354
1355
1356
1357
1358
1359
1360
1361
1362
1363
1364
1365
1366
1367
1368
1369
1370
1371
1372
1373
1374
1375
1376
1377
1378
1379
1380
1381
1382
1383
1384
1385
1386
1387
1388
1389
1390
1391
1392
1393
1394
1395
1396
1397
1398
1399
1400
1401
1402
1403
1404
1405
1406
1407
1408
1409
1410
1411
1412
1413
1414
1415
1416
1417
1418
1419
1420
1421
1422
1423
1424
1425
1426
1427
1428
1429
1430
1431
1432
1433
1434
1435
1436
1437
1438
1439
1440
1441
1442
1443
1444
1445
1446
1447
1448
1449
1450
1451
1452
1453
1454
1455
1456
1457
1458
1459
1460
1461
1462
1463
1464
1465
1466
1467
1468
1469
1470
1471
1472
1473
1474
1475
1476
1477
1478
1479
1480
1481
1482
1483
1484
1485
1486
1487
1488
1489
1490
1491
1492
1493
1494
1495
1496
1497
1498
1499
1500
1501
1502
1503
1504
1505
1506
1507
1508
1509
1510
1511
1512
1513
1514
1515
1516
1517
1518
1519
1520
1521
1522
1523
1524
1525
1526
1527
1528
1529
1530
1531
1532
1533
1534
1535
1536
1537
1538
1539
1540
1541
1542
1543
1544
1545
1546
1547
1548
1549
1550
1551
1552
1553
1554
1555
1556
1557
1558
1559
1560
1561
1562
1563
1564
1565
1566
1567
1568
1569
1570
1571
1572
1573
1574
1575
1576
1577
1578
1579
1580
1581
1582
1583
1584
1585
1586
1587
1588
1589
1590
1591
1592
1593
1594
1595
1596
1597
1598
1599
1600
1601
1602
1603
1604
1605
1606
1607
1608
1609
1610
1611
1612
1613
1614
1615
1616
1617
1618
1619
1620
1621
1622
1623
1624
1625
1626
1627
1628
1629
1630
1631
1632
1633
1634
1635
1636
1637
1638
1639
1640
1641
1642
1643
1644
1645
1646
1647
1648
1649
1650
1651
1652
1653
1654
1655
1656
1657
1658
1659
1660
1661
1662
1663
1664
1665
1666
1667
1668
1669
1670
1671
1672
1673
1674
1675
1676
1677
1678
1679
1680
1681
1682
1683
1684
1685
1686
1687
1688
1689
1690
1691
1692
1693
1694
1695
1696
1697
1698
1699
1700
1701
1702
1703
1704
1705
1706
1707
1708
1709
1710
1711
1712
1713
1714
1715
1716
1717
1718
1719
1720
1721
1722
1723
1724
1725
1726
1727
1728
1729
1730
1731
1732
1733
1734
1735
1736
1737
1738
1739
1740
1741
1742
1743
1744
1745
1746
1747
1748
1749
1750
1751
1752
1753
1754
1755
1756
1757
1758
1759
1760
1761
1762
1763
1764
1765
1766
1767
1768
1769
1770
1771
1772
1773
1774
1775
1776
1777
1778
1779
1780
1781
1782
1783
1784
1785
1786
1787
1788
1789
1790
1791
1792
1793
1794
1795
1796
1797
1798
1799
1800
1801
1802
1803
1804
1805
1806
1807
1808
1809
1810
1811
1812
1813
1814
1815
1816
1817
1818
1819
1820
1821
1822
1823
1824
1825
1826
1827
1828
1829
1830
1831
1832
1833
1834
1835
1836
1837
1838
1839
1840
1841
1842
1843
1844
1845
1846
1847
1848
1849
1850
1851
1852
1853
1854
1855
1856
1857
1858
1859
1860
1861
1862
1863
1864
1865
1866
1867
1868
1869
1870
1871
1872
1873
1874
1875
1876
1877
1878
1879
1880
1881
1882
1883
1884
1885
1886
1887
1888
1889
1890
1891
1892
1893
1894
1895
1896
1897
1898
1899
1900
1901
1902
1903
1904
1905
1906
1907
1908
1909
1910
1911
1912
1913
1914
1915
1916
1917
1918
1919
1920
1921
1922
1923
1924
1925
1926
1927
1928
1929
1930
1931
1932
1933
1934
1935
1936
1937
1938
1939
1940
1941
1942
1943
1944
1945
1946
1947
1948
1949
1950
1951
1952
1953
1954
1955
1956
1957
1958
1959
1960
1961
1962
1963
1964
1965
1966
1967
1968
1969
1970
1971
1972
1973
1974
1975
1976
1977
1978
1979
1980
1981
1982
1983
1984
1985
1986
1987
1988
1989
1990
1991
1992
1993
1994
1995
1996
1997
1998
1999
2000
2001
2002
2003
2004
2005
2006
2007
2008
2009
2010
2011
2012
2013
2014
2015
2016
2017
2018
2019
2020
2021
2022
2023
2024
2025
2026
2027
2028
2029
2030
2031
2032
2033
2034
2035
2036
2037
2038
2039
2040
2041
2042
2043
2044
2045
2046
2047
2048
2049
2050
2051
2052
2053
2054
2055
2056
2057
2058
2059
2060
2061
2062
2063
2064
2065
2066
2067
2068
2069
2070
2071
2072
2073
2074
2075
2076
2077
2078
2079
2080
2081
2082
2083
2084
2085
2086
2087
2088
2089
2090
2091
2092
2093
2094
2095
2096
2097
2098
2099
2100
2101
2102
2103
2104
2105
2106
2107
2108
2109
2110
2111
2112
2113
2114
2115
2116
2117
2118
2119
2120
2121
2122
2123
2124
2125
2126
2127
2128
2129
2130
2131
2132
2133
2134
2135
2136
2137
2138
2139
2140
2141
2142
2143
2144
2145
2146
2147
2148
2149
2150
2151
2152
2153
2154
2155
2156
2157
2158
2159
2160
2161
2162
2163
2164
2165
2166
2167
2168
2169
2170
2171
2172
2173
2174
2175
2176
2177
2178
2179
2180
2181
2182
2183
2184
2185
2186
2187
2188
2189
2190
2191
2192
2193
2194
2195
2196
2197
2198
2199
2200
2201
2202
2203
2204
2205
2206
2207
2208
2209
2210
2211
2212
2213
2214
2215
2216
2217
2218
2219
2220
2221
2222
2223
2224
2225
2226
2227
2228
2229
2230
2231
2232
2233
2234
2235
2236
2237
2238
2239
2240
2241
2242
2243
2244
2245
2246
2247
2248
2249
2250
2251
2252
2253
2254
2255
2256
2257
2258
2259
2260
2261
2262
2263
2264
2265
2266
2267
2268
2269
2270
2271
2272
2273
2274
2275
2276
2277
2278
2279
2280
2281
2282
2283
2284
2285
2286
2287
2288
2289
2290
2291
2292
2293
2294
2295
2296
2297
2298
2299
2300
2301
2302
2303
2304
2305
2306
2307
2308
2309
2310
2311
2312
2313
2314
2315
2316
2317
2318
2319
2320
2321
2322
2323
2324
2325
2326
2327
2328
2329
2330
2331
2332
2333
2334
2335
2336
2337
2338
2339
2340
2341
2342
2343
2344
2345
2346
2347
2348
2349
2350
2351
2352
2353
2354
2355
2356
2357
2358
2359
2360
2361
2362
2363
2364
2365
2366
2367
2368
2369
2370
2371
2372
2373
2374
2375
2376
2377
2378
2379
2380
2381
2382
2383
2384
2385
2386
2387
2388
|
/*
* Copyright © 2021 Google, Inc.
*
* This is part of HarfBuzz, a text shaping library.
*
* Permission is hereby granted, without written agreement and without
* license or royalty fees, to use, copy, modify, and distribute this
* software and its documentation for any purpose, provided that the
* above copyright notice and the following two paragraphs appear in
* all copies of this software.
*
* IN NO EVENT SHALL THE COPYRIGHT HOLDER BE LIABLE TO ANY PARTY FOR
* DIRECT, INDIRECT, SPECIAL, INCIDENTAL, OR CONSEQUENTIAL DAMAGES
* ARISING OUT OF THE USE OF THIS SOFTWARE AND ITS DOCUMENTATION, EVEN
* IF THE COPYRIGHT HOLDER HAS BEEN ADVISED OF THE POSSIBILITY OF SUCH
* DAMAGE.
*
* THE COPYRIGHT HOLDER SPECIFICALLY DISCLAIMS ANY WARRANTIES, INCLUDING,
* BUT NOT LIMITED TO, THE IMPLIED WARRANTIES OF MERCHANTABILITY AND
* FITNESS FOR A PARTICULAR PURPOSE. THE SOFTWARE PROVIDED HEREUNDER IS
* ON AN "AS IS" BASIS, AND THE COPYRIGHT HOLDER HAS NO OBLIGATION TO
* PROVIDE MAINTENANCE, SUPPORT, UPDATES, ENHANCEMENTS, OR MODIFICATIONS.
*
*/
#ifndef HB_OT_VAR_COMMON_HH
#define HB_OT_VAR_COMMON_HH
#include "hb-ot-layout-common.hh"
#include "hb-priority-queue.hh"
#include "hb-subset-instancer-iup.hh"
namespace OT {
template <typename MapCountT>
struct DeltaSetIndexMapFormat01
{
friend struct DeltaSetIndexMap;
unsigned get_size () const
{ return min_size + mapCount * get_width (); }
private:
DeltaSetIndexMapFormat01* copy (hb_serialize_context_t *c) const
{
TRACE_SERIALIZE (this);
return_trace (c->embed (this));
}
template <typename T>
bool serialize (hb_serialize_context_t *c, const T &plan)
{
unsigned int width = plan.get_width ();
unsigned int inner_bit_count = plan.get_inner_bit_count ();
const hb_array_t<const uint32_t> output_map = plan.get_output_map ();
TRACE_SERIALIZE (this);
if (unlikely (output_map.length && ((((inner_bit_count-1)&~0xF)!=0) || (((width-1)&~0x3)!=0))))
return_trace (false);
if (unlikely (!c->extend_min (this))) return_trace (false);
entryFormat = ((width-1)<<4)|(inner_bit_count-1);
mapCount = output_map.length;
HBUINT8 *p = c->allocate_size<HBUINT8> (width * output_map.length);
if (unlikely (!p)) return_trace (false);
for (unsigned int i = 0; i < output_map.length; i++)
{
unsigned int v = output_map.arrayZ[i];
if (v)
{
unsigned int outer = v >> 16;
unsigned int inner = v & 0xFFFF;
unsigned int u = (outer << inner_bit_count) | inner;
for (unsigned int w = width; w > 0;)
{
p[--w] = u;
u >>= 8;
}
}
p += width;
}
return_trace (true);
}
uint32_t map (unsigned int v) const /* Returns 16.16 outer.inner. */
{
/* If count is zero, pass value unchanged. This takes
* care of direct mapping for advance map. */
if (!mapCount)
return v;
if (v >= mapCount)
v = mapCount - 1;
unsigned int u = 0;
{ /* Fetch it. */
unsigned int w = get_width ();
const HBUINT8 *p = mapDataZ.arrayZ + w * v;
for (; w; w--)
u = (u << 8) + *p++;
}
{ /* Repack it. */
unsigned int n = get_inner_bit_count ();
unsigned int outer = u >> n;
unsigned int inner = u & ((1 << n) - 1);
u = (outer<<16) | inner;
}
return u;
}
unsigned get_map_count () const { return mapCount; }
unsigned get_width () const { return ((entryFormat >> 4) & 3) + 1; }
unsigned get_inner_bit_count () const { return (entryFormat & 0xF) + 1; }
bool sanitize (hb_sanitize_context_t *c) const
{
TRACE_SANITIZE (this);
return_trace (c->check_struct (this) &&
hb_barrier () &&
c->check_range (mapDataZ.arrayZ,
mapCount,
get_width ()));
}
protected:
HBUINT8 format; /* Format identifier--format = 0 */
HBUINT8 entryFormat; /* A packed field that describes the compressed
* representation of delta-set indices. */
MapCountT mapCount; /* The number of mapping entries. */
UnsizedArrayOf<HBUINT8>
mapDataZ; /* The delta-set index mapping data. */
public:
DEFINE_SIZE_ARRAY (2+MapCountT::static_size, mapDataZ);
};
struct DeltaSetIndexMap
{
template <typename T>
bool serialize (hb_serialize_context_t *c, const T &plan)
{
TRACE_SERIALIZE (this);
unsigned length = plan.get_output_map ().length;
u.format = length <= 0xFFFF ? 0 : 1;
switch (u.format) {
case 0: return_trace (u.format0.serialize (c, plan));
case 1: return_trace (u.format1.serialize (c, plan));
default:return_trace (false);
}
}
uint32_t map (unsigned v) const
{
switch (u.format) {
case 0: return (u.format0.map (v));
case 1: return (u.format1.map (v));
default:return v;
}
}
unsigned get_map_count () const
{
switch (u.format) {
case 0: return u.format0.get_map_count ();
case 1: return u.format1.get_map_count ();
default:return 0;
}
}
unsigned get_width () const
{
switch (u.format) {
case 0: return u.format0.get_width ();
case 1: return u.format1.get_width ();
default:return 0;
}
}
unsigned get_inner_bit_count () const
{
switch (u.format) {
case 0: return u.format0.get_inner_bit_count ();
case 1: return u.format1.get_inner_bit_count ();
default:return 0;
}
}
bool sanitize (hb_sanitize_context_t *c) const
{
TRACE_SANITIZE (this);
if (!u.format.sanitize (c)) return_trace (false);
hb_barrier ();
switch (u.format) {
case 0: return_trace (u.format0.sanitize (c));
case 1: return_trace (u.format1.sanitize (c));
default:return_trace (true);
}
}
DeltaSetIndexMap* copy (hb_serialize_context_t *c) const
{
TRACE_SERIALIZE (this);
switch (u.format) {
case 0: return_trace (reinterpret_cast<DeltaSetIndexMap *> (u.format0.copy (c)));
case 1: return_trace (reinterpret_cast<DeltaSetIndexMap *> (u.format1.copy (c)));
default:return_trace (nullptr);
}
}
protected:
union {
HBUINT8 format; /* Format identifier */
DeltaSetIndexMapFormat01<HBUINT16> format0;
DeltaSetIndexMapFormat01<HBUINT32> format1;
} u;
public:
DEFINE_SIZE_UNION (1, format);
};
struct ItemVarStoreInstancer
{
ItemVarStoreInstancer (const ItemVariationStore *varStore,
const DeltaSetIndexMap *varIdxMap,
hb_array_t<int> coords) :
varStore (varStore), varIdxMap (varIdxMap), coords (coords) {}
operator bool () const { return varStore && bool (coords); }
/* according to the spec, if colr table has varStore but does not have
* varIdxMap, then an implicit identity mapping is used */
float operator() (uint32_t varIdx, unsigned short offset = 0) const
{ return coords ? varStore->get_delta (varIdxMap ? varIdxMap->map (VarIdx::add (varIdx, offset)) : varIdx + offset, coords) : 0; }
const ItemVariationStore *varStore;
const DeltaSetIndexMap *varIdxMap;
hb_array_t<int> coords;
};
/* https://docs.microsoft.com/en-us/typography/opentype/spec/otvarcommonformats#tuplevariationheader */
struct TupleVariationHeader
{
friend struct tuple_delta_t;
unsigned get_size (unsigned axis_count) const
{ return min_size + get_all_tuples (axis_count).get_size (); }
unsigned get_data_size () const { return varDataSize; }
const TupleVariationHeader &get_next (unsigned axis_count) const
{ return StructAtOffset<TupleVariationHeader> (this, get_size (axis_count)); }
bool unpack_axis_tuples (unsigned axis_count,
const hb_array_t<const F2DOT14> shared_tuples,
const hb_map_t *axes_old_index_tag_map,
hb_hashmap_t<hb_tag_t, Triple>& axis_tuples /* OUT */) const
{
const F2DOT14 *peak_tuple = nullptr;
if (has_peak ())
peak_tuple = get_peak_tuple (axis_count).arrayZ;
else
{
unsigned int index = get_index ();
if (unlikely ((index + 1) * axis_count > shared_tuples.length))
return false;
peak_tuple = shared_tuples.sub_array (axis_count * index, axis_count).arrayZ;
}
const F2DOT14 *start_tuple = nullptr;
const F2DOT14 *end_tuple = nullptr;
bool has_interm = has_intermediate ();
if (has_interm)
{
start_tuple = get_start_tuple (axis_count).arrayZ;
end_tuple = get_end_tuple (axis_count).arrayZ;
}
for (unsigned i = 0; i < axis_count; i++)
{
float peak = peak_tuple[i].to_float ();
if (peak == 0.f) continue;
hb_tag_t *axis_tag;
if (!axes_old_index_tag_map->has (i, &axis_tag))
return false;
float start, end;
if (has_interm)
{
start = start_tuple[i].to_float ();
end = end_tuple[i].to_float ();
}
else
{
start = hb_min (peak, 0.f);
end = hb_max (peak, 0.f);
}
axis_tuples.set (*axis_tag, Triple ((double) start, (double) peak, (double) end));
}
return true;
}
double calculate_scalar (hb_array_t<int> coords, unsigned int coord_count,
const hb_array_t<const F2DOT14> shared_tuples,
const hb_vector_t<hb_pair_t<int,int>> *shared_tuple_active_idx = nullptr) const
{
const F2DOT14 *peak_tuple;
unsigned start_idx = 0;
unsigned end_idx = coord_count;
unsigned step = 1;
if (has_peak ())
peak_tuple = get_peak_tuple (coord_count).arrayZ;
else
{
unsigned int index = get_index ();
if (unlikely ((index + 1) * coord_count > shared_tuples.length))
return 0.0;
peak_tuple = shared_tuples.sub_array (coord_count * index, coord_count).arrayZ;
if (shared_tuple_active_idx)
{
if (unlikely (index >= shared_tuple_active_idx->length))
return 0.0;
auto _ = (*shared_tuple_active_idx).arrayZ[index];
if (_.second != -1)
{
start_idx = _.first;
end_idx = _.second + 1;
step = _.second - _.first;
}
else if (_.first != -1)
{
start_idx = _.first;
end_idx = start_idx + 1;
}
}
}
const F2DOT14 *start_tuple = nullptr;
const F2DOT14 *end_tuple = nullptr;
bool has_interm = has_intermediate ();
if (has_interm)
{
start_tuple = get_start_tuple (coord_count).arrayZ;
end_tuple = get_end_tuple (coord_count).arrayZ;
}
double scalar = 1.0;
for (unsigned int i = start_idx; i < end_idx; i += step)
{
int peak = peak_tuple[i].to_int ();
if (!peak) continue;
int v = coords[i];
if (v == peak) continue;
if (has_interm)
{
int start = start_tuple[i].to_int ();
int end = end_tuple[i].to_int ();
if (unlikely (start > peak || peak > end ||
(start < 0 && end > 0 && peak))) continue;
if (v < start || v > end) return 0.0;
if (v < peak)
{ if (peak != start) scalar *= (double) (v - start) / (peak - start); }
else
{ if (peak != end) scalar *= (double) (end - v) / (end - peak); }
}
else if (!v || v < hb_min (0, peak) || v > hb_max (0, peak)) return 0.0;
else
scalar *= (double) v / peak;
}
return scalar;
}
bool has_peak () const { return tupleIndex & TuppleIndex::EmbeddedPeakTuple; }
bool has_intermediate () const { return tupleIndex & TuppleIndex::IntermediateRegion; }
bool has_private_points () const { return tupleIndex & TuppleIndex::PrivatePointNumbers; }
unsigned get_index () const { return tupleIndex & TuppleIndex::TupleIndexMask; }
protected:
struct TuppleIndex : HBUINT16
{
enum Flags {
EmbeddedPeakTuple = 0x8000u,
IntermediateRegion = 0x4000u,
PrivatePointNumbers = 0x2000u,
TupleIndexMask = 0x0FFFu
};
TuppleIndex& operator = (uint16_t i) { HBUINT16::operator= (i); return *this; }
DEFINE_SIZE_STATIC (2);
};
hb_array_t<const F2DOT14> get_all_tuples (unsigned axis_count) const
{ return StructAfter<UnsizedArrayOf<F2DOT14>> (tupleIndex).as_array ((has_peak () + has_intermediate () * 2) * axis_count); }
hb_array_t<const F2DOT14> get_peak_tuple (unsigned axis_count) const
{ return get_all_tuples (axis_count).sub_array (0, axis_count); }
hb_array_t<const F2DOT14> get_start_tuple (unsigned axis_count) const
{ return get_all_tuples (axis_count).sub_array (has_peak () * axis_count, axis_count); }
hb_array_t<const F2DOT14> get_end_tuple (unsigned axis_count) const
{ return get_all_tuples (axis_count).sub_array (has_peak () * axis_count + axis_count, axis_count); }
HBUINT16 varDataSize; /* The size in bytes of the serialized
* data for this tuple variation table. */
TuppleIndex tupleIndex; /* A packed field. The high 4 bits are flags (see below).
The low 12 bits are an index into a shared tuple
records array. */
/* UnsizedArrayOf<F2DOT14> peakTuple - optional */
/* Peak tuple record for this tuple variation table — optional,
* determined by flags in the tupleIndex value.
*
* Note that this must always be included in the 'cvar' table. */
/* UnsizedArrayOf<F2DOT14> intermediateStartTuple - optional */
/* Intermediate start tuple record for this tuple variation table — optional,
determined by flags in the tupleIndex value. */
/* UnsizedArrayOf<F2DOT14> intermediateEndTuple - optional */
/* Intermediate end tuple record for this tuple variation table — optional,
* determined by flags in the tupleIndex value. */
public:
DEFINE_SIZE_MIN (4);
};
enum packed_delta_flag_t
{
DELTAS_ARE_ZERO = 0x80,
DELTAS_ARE_WORDS = 0x40,
DELTA_RUN_COUNT_MASK = 0x3F
};
struct tuple_delta_t
{
static constexpr bool realloc_move = true; // Watch out when adding new members!
public:
hb_hashmap_t<hb_tag_t, Triple> axis_tuples;
/* indices_length = point_count, indice[i] = 1 means point i is referenced */
hb_vector_t<bool> indices;
hb_vector_t<double> deltas_x;
/* empty for cvar tuples */
hb_vector_t<double> deltas_y;
/* compiled data: header and deltas
* compiled point data is saved in a hashmap within tuple_variations_t cause
* some point sets might be reused by different tuple variations */
hb_vector_t<char> compiled_tuple_header;
hb_vector_t<char> compiled_deltas;
/* compiled peak coords, empty for non-gvar tuples */
hb_vector_t<char> compiled_peak_coords;
tuple_delta_t () = default;
tuple_delta_t (const tuple_delta_t& o) = default;
friend void swap (tuple_delta_t& a, tuple_delta_t& b) noexcept
{
hb_swap (a.axis_tuples, b.axis_tuples);
hb_swap (a.indices, b.indices);
hb_swap (a.deltas_x, b.deltas_x);
hb_swap (a.deltas_y, b.deltas_y);
hb_swap (a.compiled_tuple_header, b.compiled_tuple_header);
hb_swap (a.compiled_deltas, b.compiled_deltas);
hb_swap (a.compiled_peak_coords, b.compiled_peak_coords);
}
tuple_delta_t (tuple_delta_t&& o) noexcept : tuple_delta_t ()
{ hb_swap (*this, o); }
tuple_delta_t& operator = (tuple_delta_t&& o) noexcept
{
hb_swap (*this, o);
return *this;
}
void remove_axis (hb_tag_t axis_tag)
{ axis_tuples.del (axis_tag); }
bool set_tent (hb_tag_t axis_tag, Triple tent)
{ return axis_tuples.set (axis_tag, tent); }
tuple_delta_t& operator += (const tuple_delta_t& o)
{
unsigned num = indices.length;
for (unsigned i = 0; i < num; i++)
{
if (indices.arrayZ[i])
{
if (o.indices.arrayZ[i])
{
deltas_x[i] += o.deltas_x[i];
if (deltas_y && o.deltas_y)
deltas_y[i] += o.deltas_y[i];
}
}
else
{
if (!o.indices.arrayZ[i]) continue;
indices.arrayZ[i] = true;
deltas_x[i] = o.deltas_x[i];
if (deltas_y && o.deltas_y)
deltas_y[i] = o.deltas_y[i];
}
}
return *this;
}
tuple_delta_t& operator *= (double scalar)
{
if (scalar == 1.0)
return *this;
unsigned num = indices.length;
if (deltas_y)
for (unsigned i = 0; i < num; i++)
{
if (!indices.arrayZ[i]) continue;
deltas_x[i] *= scalar;
deltas_y[i] *= scalar;
}
else
for (unsigned i = 0; i < num; i++)
{
if (!indices.arrayZ[i]) continue;
deltas_x[i] *= scalar;
}
return *this;
}
hb_vector_t<tuple_delta_t> change_tuple_var_axis_limit (hb_tag_t axis_tag, Triple axis_limit,
TripleDistances axis_triple_distances) const
{
hb_vector_t<tuple_delta_t> out;
Triple *tent;
if (!axis_tuples.has (axis_tag, &tent))
{
out.push (*this);
return out;
}
if ((tent->minimum < 0.0 && tent->maximum > 0.0) ||
!(tent->minimum <= tent->middle && tent->middle <= tent->maximum))
return out;
if (tent->middle == 0.0)
{
out.push (*this);
return out;
}
rebase_tent_result_t solutions = rebase_tent (*tent, axis_limit, axis_triple_distances);
for (auto &t : solutions)
{
tuple_delta_t new_var = *this;
if (t.second == Triple ())
new_var.remove_axis (axis_tag);
else
new_var.set_tent (axis_tag, t.second);
new_var *= t.first;
out.push (std::move (new_var));
}
return out;
}
bool compile_peak_coords (const hb_map_t& axes_index_map,
const hb_map_t& axes_old_index_tag_map)
{
unsigned axis_count = axes_index_map.get_population ();
if (unlikely (!compiled_peak_coords.alloc (axis_count * F2DOT14::static_size)))
return false;
unsigned orig_axis_count = axes_old_index_tag_map.get_population ();
for (unsigned i = 0; i < orig_axis_count; i++)
{
if (!axes_index_map.has (i))
continue;
hb_tag_t axis_tag = axes_old_index_tag_map.get (i);
Triple *coords;
F2DOT14 peak_coord;
if (axis_tuples.has (axis_tag, &coords))
peak_coord.set_float (coords->middle);
else
peak_coord.set_int (0);
/* push F2DOT14 value into char vector */
int16_t val = peak_coord.to_int ();
compiled_peak_coords.push (static_cast<char> (val >> 8));
compiled_peak_coords.push (static_cast<char> (val & 0xFF));
}
return !compiled_peak_coords.in_error ();
}
/* deltas should be compiled already before we compile tuple
* variation header cause we need to fill in the size of the
* serialized data for this tuple variation */
bool compile_tuple_var_header (const hb_map_t& axes_index_map,
unsigned points_data_length,
const hb_map_t& axes_old_index_tag_map,
const hb_hashmap_t<const hb_vector_t<char>*, unsigned>* shared_tuples_idx_map)
{
/* compiled_deltas could be empty after iup delta optimization, we can skip
* compiling this tuple and return true */
if (!compiled_deltas) return true;
unsigned cur_axis_count = axes_index_map.get_population ();
/* allocate enough memory: 1 peak + 2 intermediate coords + fixed header size */
unsigned alloc_len = 3 * cur_axis_count * (F2DOT14::static_size) + 4;
if (unlikely (!compiled_tuple_header.resize (alloc_len))) return false;
unsigned flag = 0;
/* skip the first 4 header bytes: variationDataSize+tupleIndex */
F2DOT14* p = reinterpret_cast<F2DOT14 *> (compiled_tuple_header.begin () + 4);
F2DOT14* end = reinterpret_cast<F2DOT14 *> (compiled_tuple_header.end ());
hb_array_t<F2DOT14> coords (p, end - p);
/* encode peak coords */
unsigned peak_count = 0;
unsigned *shared_tuple_idx;
if (shared_tuples_idx_map &&
shared_tuples_idx_map->has (&compiled_peak_coords, &shared_tuple_idx))
{
flag = *shared_tuple_idx;
}
else
{
peak_count = encode_peak_coords(coords, flag, axes_index_map, axes_old_index_tag_map);
if (!peak_count) return false;
}
/* encode interim coords, it's optional so returned num could be 0 */
unsigned interim_count = encode_interm_coords (coords.sub_array (peak_count), flag, axes_index_map, axes_old_index_tag_map);
/* pointdata length = 0 implies "use shared points" */
if (points_data_length)
flag |= TupleVariationHeader::TuppleIndex::PrivatePointNumbers;
unsigned serialized_data_size = points_data_length + compiled_deltas.length;
TupleVariationHeader *o = reinterpret_cast<TupleVariationHeader *> (compiled_tuple_header.begin ());
o->varDataSize = serialized_data_size;
o->tupleIndex = flag;
unsigned total_header_len = 4 + (peak_count + interim_count) * (F2DOT14::static_size);
return compiled_tuple_header.resize (total_header_len);
}
unsigned encode_peak_coords (hb_array_t<F2DOT14> peak_coords,
unsigned& flag,
const hb_map_t& axes_index_map,
const hb_map_t& axes_old_index_tag_map) const
{
unsigned orig_axis_count = axes_old_index_tag_map.get_population ();
auto it = peak_coords.iter ();
unsigned count = 0;
for (unsigned i = 0; i < orig_axis_count; i++)
{
if (!axes_index_map.has (i)) /* axis pinned */
continue;
hb_tag_t axis_tag = axes_old_index_tag_map.get (i);
Triple *coords;
if (!axis_tuples.has (axis_tag, &coords))
(*it).set_int (0);
else
(*it).set_float (coords->middle);
it++;
count++;
}
flag |= TupleVariationHeader::TuppleIndex::EmbeddedPeakTuple;
return count;
}
/* if no need to encode intermediate coords, then just return p */
unsigned encode_interm_coords (hb_array_t<F2DOT14> coords,
unsigned& flag,
const hb_map_t& axes_index_map,
const hb_map_t& axes_old_index_tag_map) const
{
unsigned orig_axis_count = axes_old_index_tag_map.get_population ();
unsigned cur_axis_count = axes_index_map.get_population ();
auto start_coords_iter = coords.sub_array (0, cur_axis_count).iter ();
auto end_coords_iter = coords.sub_array (cur_axis_count).iter ();
bool encode_needed = false;
unsigned count = 0;
for (unsigned i = 0; i < orig_axis_count; i++)
{
if (!axes_index_map.has (i)) /* axis pinned */
continue;
hb_tag_t axis_tag = axes_old_index_tag_map.get (i);
Triple *coords;
float min_val = 0.f, val = 0.f, max_val = 0.f;
if (axis_tuples.has (axis_tag, &coords))
{
min_val = coords->minimum;
val = coords->middle;
max_val = coords->maximum;
}
(*start_coords_iter).set_float (min_val);
(*end_coords_iter).set_float (max_val);
start_coords_iter++;
end_coords_iter++;
count += 2;
if (min_val != hb_min (val, 0.f) || max_val != hb_max (val, 0.f))
encode_needed = true;
}
if (encode_needed)
{
flag |= TupleVariationHeader::TuppleIndex::IntermediateRegion;
return count;
}
return 0;
}
bool compile_deltas ()
{ return compile_deltas (indices, deltas_x, deltas_y, compiled_deltas); }
bool compile_deltas (const hb_vector_t<bool> &point_indices,
const hb_vector_t<double> &x_deltas,
const hb_vector_t<double> &y_deltas,
hb_vector_t<char> &compiled_deltas /* OUT */)
{
hb_vector_t<int> rounded_deltas;
if (unlikely (!rounded_deltas.alloc (point_indices.length)))
return false;
for (unsigned i = 0; i < point_indices.length; i++)
{
if (!point_indices[i]) continue;
int rounded_delta = (int) roundf (x_deltas.arrayZ[i]);
rounded_deltas.push (rounded_delta);
}
if (!rounded_deltas) return true;
/* allocate enough memories 3 * num_deltas */
unsigned alloc_len = 3 * rounded_deltas.length;
if (y_deltas)
alloc_len *= 2;
if (unlikely (!compiled_deltas.resize (alloc_len))) return false;
unsigned i = 0;
unsigned encoded_len = encode_delta_run (i, compiled_deltas.as_array (), rounded_deltas);
if (y_deltas)
{
/* reuse the rounded_deltas vector, check that y_deltas have the same num of deltas as x_deltas */
unsigned j = 0;
for (unsigned idx = 0; idx < point_indices.length; idx++)
{
if (!point_indices[idx]) continue;
int rounded_delta = (int) roundf (y_deltas.arrayZ[idx]);
if (j >= rounded_deltas.length) return false;
rounded_deltas[j++] = rounded_delta;
}
if (j != rounded_deltas.length) return false;
/* reset i because we reuse rounded_deltas for y_deltas */
i = 0;
encoded_len += encode_delta_run (i, compiled_deltas.as_array ().sub_array (encoded_len), rounded_deltas);
}
return compiled_deltas.resize (encoded_len);
}
unsigned encode_delta_run (unsigned& i,
hb_array_t<char> encoded_bytes,
const hb_vector_t<int>& deltas) const
{
unsigned num_deltas = deltas.length;
unsigned encoded_len = 0;
while (i < num_deltas)
{
int val = deltas.arrayZ[i];
if (val == 0)
encoded_len += encode_delta_run_as_zeroes (i, encoded_bytes.sub_array (encoded_len), deltas);
else if (val >= -128 && val <= 127)
encoded_len += encode_delta_run_as_bytes (i, encoded_bytes.sub_array (encoded_len), deltas);
else
encoded_len += encode_delta_run_as_words (i, encoded_bytes.sub_array (encoded_len), deltas);
}
return encoded_len;
}
unsigned encode_delta_run_as_zeroes (unsigned& i,
hb_array_t<char> encoded_bytes,
const hb_vector_t<int>& deltas) const
{
unsigned num_deltas = deltas.length;
unsigned run_length = 0;
auto it = encoded_bytes.iter ();
unsigned encoded_len = 0;
while (i < num_deltas && deltas.arrayZ[i] == 0)
{
i++;
run_length++;
}
while (run_length >= 64)
{
*it++ = char (DELTAS_ARE_ZERO | 63);
run_length -= 64;
encoded_len++;
}
if (run_length)
{
*it++ = char (DELTAS_ARE_ZERO | (run_length - 1));
encoded_len++;
}
return encoded_len;
}
unsigned encode_delta_run_as_bytes (unsigned &i,
hb_array_t<char> encoded_bytes,
const hb_vector_t<int>& deltas) const
{
unsigned start = i;
unsigned num_deltas = deltas.length;
while (i < num_deltas)
{
int val = deltas.arrayZ[i];
if (val > 127 || val < -128)
break;
/* from fonttools: if there're 2 or more zeros in a sequence,
* it is better to start a new run to save bytes. */
if (val == 0 && i + 1 < num_deltas && deltas.arrayZ[i+1] == 0)
break;
i++;
}
unsigned run_length = i - start;
unsigned encoded_len = 0;
auto it = encoded_bytes.iter ();
while (run_length >= 64)
{
*it++ = 63;
encoded_len++;
for (unsigned j = 0; j < 64; j++)
{
*it++ = static_cast<char> (deltas.arrayZ[start + j]);
encoded_len++;
}
start += 64;
run_length -= 64;
}
if (run_length)
{
*it++ = run_length - 1;
encoded_len++;
while (start < i)
{
*it++ = static_cast<char> (deltas.arrayZ[start++]);
encoded_len++;
}
}
return encoded_len;
}
unsigned encode_delta_run_as_words (unsigned &i,
hb_array_t<char> encoded_bytes,
const hb_vector_t<int>& deltas) const
{
unsigned start = i;
unsigned num_deltas = deltas.length;
while (i < num_deltas)
{
int val = deltas.arrayZ[i];
/* start a new run for a single zero value*/
if (val == 0) break;
/* from fonttools: continue word-encoded run if there's only one
* single value in the range [-128, 127] because it is more compact.
* Only start a new run when there're 2 continuous such values. */
if (val >= -128 && val <= 127 &&
i + 1 < num_deltas &&
deltas.arrayZ[i+1] >= -128 && deltas.arrayZ[i+1] <= 127)
break;
i++;
}
unsigned run_length = i - start;
auto it = encoded_bytes.iter ();
unsigned encoded_len = 0;
while (run_length >= 64)
{
*it++ = (DELTAS_ARE_WORDS | 63);
encoded_len++;
for (unsigned j = 0; j < 64; j++)
{
int16_t delta_val = deltas.arrayZ[start + j];
*it++ = static_cast<char> (delta_val >> 8);
*it++ = static_cast<char> (delta_val & 0xFF);
encoded_len += 2;
}
start += 64;
run_length -= 64;
}
if (run_length)
{
*it++ = (DELTAS_ARE_WORDS | (run_length - 1));
encoded_len++;
while (start < i)
{
int16_t delta_val = deltas.arrayZ[start++];
*it++ = static_cast<char> (delta_val >> 8);
*it++ = static_cast<char> (delta_val & 0xFF);
encoded_len += 2;
}
}
return encoded_len;
}
bool calc_inferred_deltas (const contour_point_vector_t& orig_points)
{
unsigned point_count = orig_points.length;
if (point_count != indices.length)
return false;
unsigned ref_count = 0;
hb_vector_t<unsigned> end_points;
for (unsigned i = 0; i < point_count; i++)
{
if (indices.arrayZ[i])
ref_count++;
if (orig_points.arrayZ[i].is_end_point)
end_points.push (i);
}
/* all points are referenced, nothing to do */
if (ref_count == point_count)
return true;
if (unlikely (end_points.in_error ())) return false;
hb_set_t inferred_idxes;
unsigned start_point = 0;
for (unsigned end_point : end_points)
{
/* Check the number of unreferenced points in a contour. If no unref points or no ref points, nothing to do. */
unsigned unref_count = 0;
for (unsigned i = start_point; i < end_point + 1; i++)
unref_count += indices.arrayZ[i];
unref_count = (end_point - start_point + 1) - unref_count;
unsigned j = start_point;
if (unref_count == 0 || unref_count > end_point - start_point)
goto no_more_gaps;
for (;;)
{
/* Locate the next gap of unreferenced points between two referenced points prev and next.
* Note that a gap may wrap around at left (start_point) and/or at right (end_point).
*/
unsigned int prev, next, i;
for (;;)
{
i = j;
j = next_index (i, start_point, end_point);
if (indices.arrayZ[i] && !indices.arrayZ[j]) break;
}
prev = j = i;
for (;;)
{
i = j;
j = next_index (i, start_point, end_point);
if (!indices.arrayZ[i] && indices.arrayZ[j]) break;
}
next = j;
/* Infer deltas for all unref points in the gap between prev and next */
i = prev;
for (;;)
{
i = next_index (i, start_point, end_point);
if (i == next) break;
deltas_x.arrayZ[i] = infer_delta ((double) orig_points.arrayZ[i].x,
(double) orig_points.arrayZ[prev].x,
(double) orig_points.arrayZ[next].x,
deltas_x.arrayZ[prev], deltas_x.arrayZ[next]);
deltas_y.arrayZ[i] = infer_delta ((double) orig_points.arrayZ[i].y,
(double) orig_points.arrayZ[prev].y,
(double) orig_points.arrayZ[next].y,
deltas_y.arrayZ[prev], deltas_y.arrayZ[next]);
inferred_idxes.add (i);
if (--unref_count == 0) goto no_more_gaps;
}
}
no_more_gaps:
start_point = end_point + 1;
}
for (unsigned i = 0; i < point_count; i++)
{
/* if points are not referenced and deltas are not inferred, set to 0.
* reference all points for gvar */
if ( !indices[i])
{
if (!inferred_idxes.has (i))
{
deltas_x.arrayZ[i] = 0.0;
deltas_y.arrayZ[i] = 0.0;
}
indices[i] = true;
}
}
return true;
}
bool optimize (const contour_point_vector_t& contour_points,
bool is_composite,
double tolerance = 0.5 + 1e-10)
{
unsigned count = contour_points.length;
if (deltas_x.length != count ||
deltas_y.length != count)
return false;
hb_vector_t<bool> opt_indices;
hb_vector_t<int> rounded_x_deltas, rounded_y_deltas;
if (unlikely (!rounded_x_deltas.alloc (count) ||
!rounded_y_deltas.alloc (count)))
return false;
for (unsigned i = 0; i < count; i++)
{
int rounded_x_delta = (int) roundf (deltas_x.arrayZ[i]);
int rounded_y_delta = (int) roundf (deltas_y.arrayZ[i]);
rounded_x_deltas.push (rounded_x_delta);
rounded_y_deltas.push (rounded_y_delta);
}
if (!iup_delta_optimize (contour_points, rounded_x_deltas, rounded_y_deltas, opt_indices, tolerance))
return false;
unsigned ref_count = 0;
for (bool ref_flag : opt_indices)
ref_count += ref_flag;
if (ref_count == count) return true;
hb_vector_t<double> opt_deltas_x, opt_deltas_y;
bool is_comp_glyph_wo_deltas = (is_composite && ref_count == 0);
if (is_comp_glyph_wo_deltas)
{
if (unlikely (!opt_deltas_x.resize (count) ||
!opt_deltas_y.resize (count)))
return false;
opt_indices.arrayZ[0] = true;
for (unsigned i = 1; i < count; i++)
opt_indices.arrayZ[i] = false;
}
hb_vector_t<char> opt_point_data;
if (!compile_point_set (opt_indices, opt_point_data))
return false;
hb_vector_t<char> opt_deltas_data;
if (!compile_deltas (opt_indices,
is_comp_glyph_wo_deltas ? opt_deltas_x : deltas_x,
is_comp_glyph_wo_deltas ? opt_deltas_y : deltas_y,
opt_deltas_data))
return false;
hb_vector_t<char> point_data;
if (!compile_point_set (indices, point_data))
return false;
hb_vector_t<char> deltas_data;
if (!compile_deltas (indices, deltas_x, deltas_y, deltas_data))
return false;
if (opt_point_data.length + opt_deltas_data.length < point_data.length + deltas_data.length)
{
indices.fini ();
indices = std::move (opt_indices);
if (is_comp_glyph_wo_deltas)
{
deltas_x.fini ();
deltas_x = std::move (opt_deltas_x);
deltas_y.fini ();
deltas_y = std::move (opt_deltas_y);
}
}
return !indices.in_error () && !deltas_x.in_error () && !deltas_y.in_error ();
}
static bool compile_point_set (const hb_vector_t<bool> &point_indices,
hb_vector_t<char>& compiled_points /* OUT */)
{
unsigned num_points = 0;
for (bool i : point_indices)
if (i) num_points++;
/* when iup optimization is enabled, num of referenced points could be 0 */
if (!num_points) return true;
unsigned indices_length = point_indices.length;
/* If the points set consists of all points in the glyph, it's encoded with a
* single zero byte */
if (num_points == indices_length)
return compiled_points.resize (1);
/* allocate enough memories: 2 bytes for count + 3 bytes for each point */
unsigned num_bytes = 2 + 3 *num_points;
if (unlikely (!compiled_points.resize (num_bytes, false)))
return false;
unsigned pos = 0;
/* binary data starts with the total number of reference points */
if (num_points < 0x80)
compiled_points.arrayZ[pos++] = num_points;
else
{
compiled_points.arrayZ[pos++] = ((num_points >> 8) | 0x80);
compiled_points.arrayZ[pos++] = num_points & 0xFF;
}
const unsigned max_run_length = 0x7F;
unsigned i = 0;
unsigned last_value = 0;
unsigned num_encoded = 0;
while (i < indices_length && num_encoded < num_points)
{
unsigned run_length = 0;
unsigned header_pos = pos;
compiled_points.arrayZ[pos++] = 0;
bool use_byte_encoding = false;
bool new_run = true;
while (i < indices_length && num_encoded < num_points &&
run_length <= max_run_length)
{
// find out next referenced point index
while (i < indices_length && !point_indices[i])
i++;
if (i >= indices_length) break;
unsigned cur_value = i;
unsigned delta = cur_value - last_value;
if (new_run)
{
use_byte_encoding = (delta <= 0xFF);
new_run = false;
}
if (use_byte_encoding && delta > 0xFF)
break;
if (use_byte_encoding)
compiled_points.arrayZ[pos++] = delta;
else
{
compiled_points.arrayZ[pos++] = delta >> 8;
compiled_points.arrayZ[pos++] = delta & 0xFF;
}
i++;
last_value = cur_value;
run_length++;
num_encoded++;
}
if (use_byte_encoding)
compiled_points.arrayZ[header_pos] = run_length - 1;
else
compiled_points.arrayZ[header_pos] = (run_length - 1) | 0x80;
}
return compiled_points.resize (pos, false);
}
static double infer_delta (double target_val, double prev_val, double next_val, double prev_delta, double next_delta)
{
if (prev_val == next_val)
return (prev_delta == next_delta) ? prev_delta : 0.0;
else if (target_val <= hb_min (prev_val, next_val))
return (prev_val < next_val) ? prev_delta : next_delta;
else if (target_val >= hb_max (prev_val, next_val))
return (prev_val > next_val) ? prev_delta : next_delta;
double r = (target_val - prev_val) / (next_val - prev_val);
return prev_delta + r * (next_delta - prev_delta);
}
static unsigned int next_index (unsigned int i, unsigned int start, unsigned int end)
{ return (i >= end) ? start : (i + 1); }
};
struct TupleVariationData
{
bool sanitize (hb_sanitize_context_t *c) const
{
TRACE_SANITIZE (this);
// here check on min_size only, TupleVariationHeader and var data will be
// checked while accessing through iterator.
return_trace (c->check_struct (this));
}
unsigned get_size (unsigned axis_count) const
{
unsigned total_size = min_size;
unsigned count = tupleVarCount.get_count ();
const TupleVariationHeader *tuple_var_header = &(get_tuple_var_header());
for (unsigned i = 0; i < count; i++)
{
total_size += tuple_var_header->get_size (axis_count) + tuple_var_header->get_data_size ();
tuple_var_header = &tuple_var_header->get_next (axis_count);
}
return total_size;
}
const TupleVariationHeader &get_tuple_var_header (void) const
{ return StructAfter<TupleVariationHeader> (data); }
struct tuple_iterator_t;
struct tuple_variations_t
{
hb_vector_t<tuple_delta_t> tuple_vars;
private:
/* referenced point set->compiled point data map */
hb_hashmap_t<const hb_vector_t<bool>*, hb_vector_t<char>> point_data_map;
/* referenced point set-> count map, used in finding shared points */
hb_hashmap_t<const hb_vector_t<bool>*, unsigned> point_set_count_map;
/* empty for non-gvar tuples.
* shared_points_bytes is a pointer to some value in the point_data_map,
* which will be freed during map destruction. Save it for serialization, so
* no need to do find_shared_points () again */
hb_vector_t<char> *shared_points_bytes = nullptr;
/* total compiled byte size as TupleVariationData format, initialized to its
* min_size: 4 */
unsigned compiled_byte_size = 4;
/* for gvar iup delta optimization: whether this is a composite glyph */
bool is_composite = false;
public:
tuple_variations_t () = default;
tuple_variations_t (const tuple_variations_t&) = delete;
tuple_variations_t& operator=(const tuple_variations_t&) = delete;
tuple_variations_t (tuple_variations_t&&) = default;
tuple_variations_t& operator=(tuple_variations_t&&) = default;
~tuple_variations_t () = default;
explicit operator bool () const { return bool (tuple_vars); }
unsigned get_var_count () const
{
unsigned count = 0;
/* when iup delta opt is enabled, compiled_deltas could be empty and we
* should skip this tuple */
for (auto& tuple: tuple_vars)
if (tuple.compiled_deltas) count++;
if (shared_points_bytes && shared_points_bytes->length)
count |= TupleVarCount::SharedPointNumbers;
return count;
}
unsigned get_compiled_byte_size () const
{ return compiled_byte_size; }
bool create_from_tuple_var_data (tuple_iterator_t iterator,
unsigned tuple_var_count,
unsigned point_count,
bool is_gvar,
const hb_map_t *axes_old_index_tag_map,
const hb_vector_t<unsigned> &shared_indices,
const hb_array_t<const F2DOT14> shared_tuples,
bool is_composite_glyph)
{
do
{
const HBUINT8 *p = iterator.get_serialized_data ();
unsigned int length = iterator.current_tuple->get_data_size ();
if (unlikely (!iterator.var_data_bytes.check_range (p, length)))
return false;
hb_hashmap_t<hb_tag_t, Triple> axis_tuples;
if (!iterator.current_tuple->unpack_axis_tuples (iterator.get_axis_count (), shared_tuples, axes_old_index_tag_map, axis_tuples)
|| axis_tuples.is_empty ())
return false;
hb_vector_t<unsigned> private_indices;
bool has_private_points = iterator.current_tuple->has_private_points ();
const HBUINT8 *end = p + length;
if (has_private_points &&
!TupleVariationData::unpack_points (p, private_indices, end))
return false;
const hb_vector_t<unsigned> &indices = has_private_points ? private_indices : shared_indices;
bool apply_to_all = (indices.length == 0);
unsigned num_deltas = apply_to_all ? point_count : indices.length;
hb_vector_t<int> deltas_x;
if (unlikely (!deltas_x.resize (num_deltas, false) ||
!TupleVariationData::unpack_deltas (p, deltas_x, end)))
return false;
hb_vector_t<int> deltas_y;
if (is_gvar)
{
if (unlikely (!deltas_y.resize (num_deltas, false) ||
!TupleVariationData::unpack_deltas (p, deltas_y, end)))
return false;
}
tuple_delta_t var;
var.axis_tuples = std::move (axis_tuples);
if (unlikely (!var.indices.resize (point_count) ||
!var.deltas_x.resize (point_count, false)))
return false;
if (is_gvar && unlikely (!var.deltas_y.resize (point_count, false)))
return false;
for (unsigned i = 0; i < num_deltas; i++)
{
unsigned idx = apply_to_all ? i : indices[i];
if (idx >= point_count) continue;
var.indices[idx] = true;
var.deltas_x[idx] = deltas_x[i];
if (is_gvar)
var.deltas_y[idx] = deltas_y[i];
}
tuple_vars.push (std::move (var));
} while (iterator.move_to_next ());
is_composite = is_composite_glyph;
return true;
}
bool create_from_item_var_data (const VarData &var_data,
const hb_vector_t<hb_hashmap_t<hb_tag_t, Triple>>& regions,
const hb_map_t& axes_old_index_tag_map,
unsigned& item_count,
const hb_inc_bimap_t* inner_map = nullptr)
{
/* NULL offset, to keep original varidx valid, just return */
if (&var_data == &Null (VarData))
return true;
unsigned num_regions = var_data.get_region_index_count ();
if (!tuple_vars.alloc (num_regions)) return false;
item_count = inner_map ? inner_map->get_population () : var_data.get_item_count ();
if (!item_count) return true;
unsigned row_size = var_data.get_row_size ();
const HBUINT8 *delta_bytes = var_data.get_delta_bytes ();
for (unsigned r = 0; r < num_regions; r++)
{
/* In VarData, deltas are organized in rows, convert them into
* column(region) based tuples, resize deltas_x first */
tuple_delta_t tuple;
if (!tuple.deltas_x.resize (item_count, false) ||
!tuple.indices.resize (item_count, false))
return false;
for (unsigned i = 0; i < item_count; i++)
{
tuple.indices.arrayZ[i] = true;
tuple.deltas_x.arrayZ[i] = var_data.get_item_delta_fast (inner_map ? inner_map->backward (i) : i,
r, delta_bytes, row_size);
}
unsigned region_index = var_data.get_region_index (r);
if (region_index >= regions.length) return false;
tuple.axis_tuples = regions.arrayZ[region_index];
tuple_vars.push (std::move (tuple));
}
return !tuple_vars.in_error ();
}
private:
static int _cmp_axis_tag (const void *pa, const void *pb)
{
const hb_tag_t *a = (const hb_tag_t*) pa;
const hb_tag_t *b = (const hb_tag_t*) pb;
return (int)(*a) - (int)(*b);
}
bool change_tuple_variations_axis_limits (const hb_hashmap_t<hb_tag_t, Triple>& normalized_axes_location,
const hb_hashmap_t<hb_tag_t, TripleDistances>& axes_triple_distances)
{
/* sort axis_tag/axis_limits, make result deterministic */
hb_vector_t<hb_tag_t> axis_tags;
if (!axis_tags.alloc (normalized_axes_location.get_population ()))
return false;
for (auto t : normalized_axes_location.keys ())
axis_tags.push (t);
axis_tags.qsort (_cmp_axis_tag);
for (auto axis_tag : axis_tags)
{
Triple *axis_limit;
if (!normalized_axes_location.has (axis_tag, &axis_limit))
return false;
TripleDistances axis_triple_distances{1.0, 1.0};
if (axes_triple_distances.has (axis_tag))
axis_triple_distances = axes_triple_distances.get (axis_tag);
hb_vector_t<tuple_delta_t> new_vars;
for (const tuple_delta_t& var : tuple_vars)
{
hb_vector_t<tuple_delta_t> out = var.change_tuple_var_axis_limit (axis_tag, *axis_limit, axis_triple_distances);
if (!out) continue;
unsigned new_len = new_vars.length + out.length;
if (unlikely (!new_vars.alloc (new_len, false)))
return false;
for (unsigned i = 0; i < out.length; i++)
new_vars.push (std::move (out[i]));
}
tuple_vars.fini ();
tuple_vars = std::move (new_vars);
}
return true;
}
/* merge tuple variations with overlapping tents, if iup delta optimization
* is enabled, add default deltas to contour_points */
bool merge_tuple_variations (contour_point_vector_t* contour_points = nullptr)
{
hb_vector_t<tuple_delta_t> new_vars;
hb_hashmap_t<const hb_hashmap_t<hb_tag_t, Triple>*, unsigned> m;
unsigned i = 0;
for (const tuple_delta_t& var : tuple_vars)
{
/* if all axes are pinned, drop the tuple variation */
if (var.axis_tuples.is_empty ())
{
/* if iup_delta_optimize is enabled, add deltas to contour coords */
if (contour_points && !contour_points->add_deltas (var.deltas_x,
var.deltas_y,
var.indices))
return false;
continue;
}
unsigned *idx;
if (m.has (&(var.axis_tuples), &idx))
{
new_vars[*idx] += var;
}
else
{
new_vars.push (var);
if (!m.set (&(var.axis_tuples), i))
return false;
i++;
}
}
tuple_vars.fini ();
tuple_vars = std::move (new_vars);
return true;
}
/* compile all point set and store byte data in a point_set->hb_bytes_t hashmap,
* also update point_set->count map, which will be used in finding shared
* point set*/
bool compile_all_point_sets ()
{
for (const auto& tuple: tuple_vars)
{
const hb_vector_t<bool>* points_set = &(tuple.indices);
if (point_data_map.has (points_set))
{
unsigned *count;
if (unlikely (!point_set_count_map.has (points_set, &count) ||
!point_set_count_map.set (points_set, (*count) + 1)))
return false;
continue;
}
hb_vector_t<char> compiled_point_data;
if (!tuple_delta_t::compile_point_set (*points_set, compiled_point_data))
return false;
if (!point_data_map.set (points_set, std::move (compiled_point_data)) ||
!point_set_count_map.set (points_set, 1))
return false;
}
return true;
}
/* find shared points set which saves most bytes */
void find_shared_points ()
{
unsigned max_saved_bytes = 0;
for (const auto& _ : point_data_map.iter_ref ())
{
const hb_vector_t<bool>* points_set = _.first;
unsigned data_length = _.second.length;
if (!data_length) continue;
unsigned *count;
if (unlikely (!point_set_count_map.has (points_set, &count) ||
*count <= 1))
{
shared_points_bytes = nullptr;
return;
}
unsigned saved_bytes = data_length * ((*count) -1);
if (saved_bytes > max_saved_bytes)
{
max_saved_bytes = saved_bytes;
shared_points_bytes = &(_.second);
}
}
}
bool calc_inferred_deltas (const contour_point_vector_t& contour_points)
{
for (tuple_delta_t& var : tuple_vars)
if (!var.calc_inferred_deltas (contour_points))
return false;
return true;
}
bool iup_optimize (const contour_point_vector_t& contour_points)
{
for (tuple_delta_t& var : tuple_vars)
{
if (!var.optimize (contour_points, is_composite))
return false;
}
return true;
}
public:
bool instantiate (const hb_hashmap_t<hb_tag_t, Triple>& normalized_axes_location,
const hb_hashmap_t<hb_tag_t, TripleDistances>& axes_triple_distances,
contour_point_vector_t* contour_points = nullptr,
bool optimize = false)
{
if (!tuple_vars) return true;
if (!change_tuple_variations_axis_limits (normalized_axes_location, axes_triple_distances))
return false;
/* compute inferred deltas only for gvar */
if (contour_points)
if (!calc_inferred_deltas (*contour_points))
return false;
/* if iup delta opt is on, contour_points can't be null */
if (optimize && !contour_points)
return false;
if (!merge_tuple_variations (optimize ? contour_points : nullptr))
return false;
if (optimize && !iup_optimize (*contour_points)) return false;
return !tuple_vars.in_error ();
}
bool compile_bytes (const hb_map_t& axes_index_map,
const hb_map_t& axes_old_index_tag_map,
bool use_shared_points,
const hb_hashmap_t<const hb_vector_t<char>*, unsigned>* shared_tuples_idx_map = nullptr)
{
// compile points set and store data in hashmap
if (!compile_all_point_sets ())
return false;
if (use_shared_points)
{
find_shared_points ();
if (shared_points_bytes)
compiled_byte_size += shared_points_bytes->length;
}
// compile delta and tuple var header for each tuple variation
for (auto& tuple: tuple_vars)
{
const hb_vector_t<bool>* points_set = &(tuple.indices);
hb_vector_t<char> *points_data;
if (unlikely (!point_data_map.has (points_set, &points_data)))
return false;
/* when iup optimization is enabled, num of referenced points could be 0
* and thus the compiled points bytes is empty, we should skip compiling
* this tuple */
if (!points_data->length)
continue;
if (!tuple.compile_deltas ())
return false;
unsigned points_data_length = (points_data != shared_points_bytes) ? points_data->length : 0;
if (!tuple.compile_tuple_var_header (axes_index_map, points_data_length, axes_old_index_tag_map,
shared_tuples_idx_map))
return false;
compiled_byte_size += tuple.compiled_tuple_header.length + points_data_length + tuple.compiled_deltas.length;
}
return true;
}
bool serialize_var_headers (hb_serialize_context_t *c, unsigned& total_header_len) const
{
TRACE_SERIALIZE (this);
for (const auto& tuple: tuple_vars)
{
tuple.compiled_tuple_header.as_array ().copy (c);
if (c->in_error ()) return_trace (false);
total_header_len += tuple.compiled_tuple_header.length;
}
return_trace (true);
}
bool serialize_var_data (hb_serialize_context_t *c, bool is_gvar) const
{
TRACE_SERIALIZE (this);
if (is_gvar && shared_points_bytes)
{
hb_bytes_t s (shared_points_bytes->arrayZ, shared_points_bytes->length);
s.copy (c);
}
for (const auto& tuple: tuple_vars)
{
const hb_vector_t<bool>* points_set = &(tuple.indices);
hb_vector_t<char> *point_data;
if (!point_data_map.has (points_set, &point_data))
return_trace (false);
if (!is_gvar || point_data != shared_points_bytes)
{
hb_bytes_t s (point_data->arrayZ, point_data->length);
s.copy (c);
}
tuple.compiled_deltas.as_array ().copy (c);
if (c->in_error ()) return_trace (false);
}
/* padding for gvar */
if (is_gvar && (compiled_byte_size % 2))
{
HBUINT8 pad;
pad = 0;
if (!c->embed (pad)) return_trace (false);
}
return_trace (true);
}
};
struct tuple_iterator_t
{
unsigned get_axis_count () const { return axis_count; }
void init (hb_bytes_t var_data_bytes_, unsigned int axis_count_, const void *table_base_)
{
var_data_bytes = var_data_bytes_;
var_data = var_data_bytes_.as<TupleVariationData> ();
index = 0;
axis_count = axis_count_;
current_tuple = &var_data->get_tuple_var_header ();
data_offset = 0;
table_base = table_base_;
}
bool get_shared_indices (hb_vector_t<unsigned int> &shared_indices /* OUT */)
{
if (var_data->has_shared_point_numbers ())
{
const HBUINT8 *base = &(table_base+var_data->data);
const HBUINT8 *p = base;
if (!unpack_points (p, shared_indices, (const HBUINT8 *) (var_data_bytes.arrayZ + var_data_bytes.length))) return false;
data_offset = p - base;
}
return true;
}
bool is_valid () const
{
return (index < var_data->tupleVarCount.get_count ()) &&
var_data_bytes.check_range (current_tuple, TupleVariationHeader::min_size) &&
var_data_bytes.check_range (current_tuple, hb_max (current_tuple->get_data_size (),
current_tuple->get_size (axis_count)));
}
bool move_to_next ()
{
data_offset += current_tuple->get_data_size ();
current_tuple = ¤t_tuple->get_next (axis_count);
index++;
return is_valid ();
}
const HBUINT8 *get_serialized_data () const
{ return &(table_base+var_data->data) + data_offset; }
private:
const TupleVariationData *var_data;
unsigned int index;
unsigned int axis_count;
unsigned int data_offset;
const void *table_base;
public:
hb_bytes_t var_data_bytes;
const TupleVariationHeader *current_tuple;
};
static bool get_tuple_iterator (hb_bytes_t var_data_bytes, unsigned axis_count,
const void *table_base,
hb_vector_t<unsigned int> &shared_indices /* OUT */,
tuple_iterator_t *iterator /* OUT */)
{
iterator->init (var_data_bytes, axis_count, table_base);
if (!iterator->get_shared_indices (shared_indices))
return false;
return iterator->is_valid ();
}
bool has_shared_point_numbers () const { return tupleVarCount.has_shared_point_numbers (); }
static bool unpack_points (const HBUINT8 *&p /* IN/OUT */,
hb_vector_t<unsigned int> &points /* OUT */,
const HBUINT8 *end)
{
enum packed_point_flag_t
{
POINTS_ARE_WORDS = 0x80,
POINT_RUN_COUNT_MASK = 0x7F
};
if (unlikely (p + 1 > end)) return false;
unsigned count = *p++;
if (count & POINTS_ARE_WORDS)
{
if (unlikely (p + 1 > end)) return false;
count = ((count & POINT_RUN_COUNT_MASK) << 8) | *p++;
}
if (unlikely (!points.resize (count, false))) return false;
unsigned n = 0;
unsigned i = 0;
while (i < count)
{
if (unlikely (p + 1 > end)) return false;
unsigned control = *p++;
unsigned run_count = (control & POINT_RUN_COUNT_MASK) + 1;
unsigned stop = i + run_count;
if (unlikely (stop > count)) return false;
if (control & POINTS_ARE_WORDS)
{
if (unlikely (p + run_count * HBUINT16::static_size > end)) return false;
for (; i < stop; i++)
{
n += *(const HBUINT16 *)p;
points.arrayZ[i] = n;
p += HBUINT16::static_size;
}
}
else
{
if (unlikely (p + run_count > end)) return false;
for (; i < stop; i++)
{
n += *p++;
points.arrayZ[i] = n;
}
}
}
return true;
}
static bool unpack_deltas (const HBUINT8 *&p /* IN/OUT */,
hb_vector_t<int> &deltas /* IN/OUT */,
const HBUINT8 *end)
{
unsigned i = 0;
unsigned count = deltas.length;
while (i < count)
{
if (unlikely (p + 1 > end)) return false;
unsigned control = *p++;
unsigned run_count = (control & DELTA_RUN_COUNT_MASK) + 1;
unsigned stop = i + run_count;
if (unlikely (stop > count)) return false;
if (control & DELTAS_ARE_ZERO)
{
for (; i < stop; i++)
deltas.arrayZ[i] = 0;
}
else if (control & DELTAS_ARE_WORDS)
{
if (unlikely (p + run_count * HBUINT16::static_size > end)) return false;
for (; i < stop; i++)
{
deltas.arrayZ[i] = * (const HBINT16 *) p;
p += HBUINT16::static_size;
}
}
else
{
if (unlikely (p + run_count > end)) return false;
for (; i < stop; i++)
{
deltas.arrayZ[i] = * (const HBINT8 *) p++;
}
}
}
return true;
}
bool has_data () const { return tupleVarCount; }
bool decompile_tuple_variations (unsigned point_count,
bool is_gvar,
tuple_iterator_t iterator,
const hb_map_t *axes_old_index_tag_map,
const hb_vector_t<unsigned> &shared_indices,
const hb_array_t<const F2DOT14> shared_tuples,
tuple_variations_t& tuple_variations, /* OUT */
bool is_composite_glyph = false) const
{
return tuple_variations.create_from_tuple_var_data (iterator, tupleVarCount,
point_count, is_gvar,
axes_old_index_tag_map,
shared_indices,
shared_tuples,
is_composite_glyph);
}
bool serialize (hb_serialize_context_t *c,
bool is_gvar,
const tuple_variations_t& tuple_variations) const
{
TRACE_SERIALIZE (this);
/* empty tuple variations, just return and skip serialization. */
if (!tuple_variations) return_trace (true);
auto *out = c->start_embed (this);
if (unlikely (!c->extend_min (out))) return_trace (false);
if (!c->check_assign (out->tupleVarCount, tuple_variations.get_var_count (),
HB_SERIALIZE_ERROR_INT_OVERFLOW)) return_trace (false);
unsigned total_header_len = 0;
if (!tuple_variations.serialize_var_headers (c, total_header_len))
return_trace (false);
unsigned data_offset = min_size + total_header_len;
if (!is_gvar) data_offset += 4;
if (!c->check_assign (out->data, data_offset, HB_SERIALIZE_ERROR_INT_OVERFLOW)) return_trace (false);
return tuple_variations.serialize_var_data (c, is_gvar);
}
protected:
struct TupleVarCount : HBUINT16
{
friend struct tuple_variations_t;
bool has_shared_point_numbers () const { return ((*this) & SharedPointNumbers); }
unsigned int get_count () const { return (*this) & CountMask; }
TupleVarCount& operator = (uint16_t i) { HBUINT16::operator= (i); return *this; }
explicit operator bool () const { return get_count (); }
protected:
enum Flags
{
SharedPointNumbers= 0x8000u,
CountMask = 0x0FFFu
};
public:
DEFINE_SIZE_STATIC (2);
};
TupleVarCount tupleVarCount; /* A packed field. The high 4 bits are flags, and the
* low 12 bits are the number of tuple variation tables
* for this glyph. The number of tuple variation tables
* can be any number between 1 and 4095. */
Offset16To<HBUINT8>
data; /* Offset from the start of the base table
* to the serialized data. */
/* TupleVariationHeader tupleVariationHeaders[] *//* Array of tuple variation headers. */
public:
DEFINE_SIZE_MIN (4);
};
using tuple_variations_t = TupleVariationData::tuple_variations_t;
struct item_variations_t
{
using region_t = const hb_hashmap_t<hb_tag_t, Triple>*;
private:
/* each subtable is decompiled into a tuple_variations_t, in which all tuples
* have the same num of deltas (rows) */
hb_vector_t<tuple_variations_t> vars;
/* num of retained rows for each subtable, there're 2 cases when var_data is empty:
* 1. retained item_count is zero
* 2. regions is empty and item_count is non-zero.
* when converting to tuples, both will be dropped because the tuple is empty,
* however, we need to retain 2. as all-zero rows to keep original varidx
* valid, so we need a way to remember the num of rows for each subtable */
hb_vector_t<unsigned> var_data_num_rows;
/* original region list, decompiled from item varstore, used when rebuilding
* region list after instantiation */
hb_vector_t<hb_hashmap_t<hb_tag_t, Triple>> orig_region_list;
/* region list: vector of Regions, maintain the original order for the regions
* that existed before instantiate (), append the new regions at the end.
* Regions are stored in each tuple already, save pointers only.
* When converting back to item varstore, unused regions will be pruned */
hb_vector_t<region_t> region_list;
/* region -> idx map after instantiation and pruning unused regions */
hb_hashmap_t<region_t, unsigned> region_map;
/* all delta rows after instantiation */
hb_vector_t<hb_vector_t<int>> delta_rows;
/* final optimized vector of encoding objects used to assemble the varstore */
hb_vector_t<delta_row_encoding_t> encodings;
/* old varidxes -> new var_idxes map */
hb_map_t varidx_map;
/* has long words */
bool has_long = false;
public:
bool has_long_word () const
{ return has_long; }
const hb_vector_t<region_t>& get_region_list () const
{ return region_list; }
const hb_vector_t<delta_row_encoding_t>& get_vardata_encodings () const
{ return encodings; }
const hb_map_t& get_varidx_map () const
{ return varidx_map; }
bool instantiate (const ItemVariationStore& varStore,
const hb_subset_plan_t *plan,
bool optimize=true,
bool use_no_variation_idx=true,
const hb_array_t <const hb_inc_bimap_t> inner_maps = hb_array_t<const hb_inc_bimap_t> ())
{
if (!create_from_item_varstore (varStore, plan->axes_old_index_tag_map, inner_maps))
return false;
if (!instantiate_tuple_vars (plan->axes_location, plan->axes_triple_distances))
return false;
return as_item_varstore (optimize, use_no_variation_idx);
}
/* keep below APIs public only for unit test: test-item-varstore */
bool create_from_item_varstore (const ItemVariationStore& varStore,
const hb_map_t& axes_old_index_tag_map,
const hb_array_t <const hb_inc_bimap_t> inner_maps = hb_array_t<const hb_inc_bimap_t> ())
{
const VarRegionList& regionList = varStore.get_region_list ();
if (!regionList.get_var_regions (axes_old_index_tag_map, orig_region_list))
return false;
unsigned num_var_data = varStore.get_sub_table_count ();
if (inner_maps && inner_maps.length != num_var_data) return false;
if (!vars.alloc (num_var_data) ||
!var_data_num_rows.alloc (num_var_data)) return false;
for (unsigned i = 0; i < num_var_data; i++)
{
if (inner_maps && !inner_maps.arrayZ[i].get_population ())
continue;
tuple_variations_t var_data_tuples;
unsigned item_count = 0;
if (!var_data_tuples.create_from_item_var_data (varStore.get_sub_table (i),
orig_region_list,
axes_old_index_tag_map,
item_count,
inner_maps ? &(inner_maps.arrayZ[i]) : nullptr))
return false;
var_data_num_rows.push (item_count);
vars.push (std::move (var_data_tuples));
}
return !vars.in_error () && !var_data_num_rows.in_error () && vars.length == var_data_num_rows.length;
}
bool instantiate_tuple_vars (const hb_hashmap_t<hb_tag_t, Triple>& normalized_axes_location,
const hb_hashmap_t<hb_tag_t, TripleDistances>& axes_triple_distances)
{
for (tuple_variations_t& tuple_vars : vars)
if (!tuple_vars.instantiate (normalized_axes_location, axes_triple_distances))
return false;
if (!build_region_list ()) return false;
return true;
}
bool build_region_list ()
{
/* scan all tuples and collect all unique regions, prune unused regions */
hb_hashmap_t<region_t, unsigned> all_regions;
hb_hashmap_t<region_t, unsigned> used_regions;
/* use a vector when inserting new regions, make result deterministic */
hb_vector_t<region_t> all_unique_regions;
for (const tuple_variations_t& sub_table : vars)
{
for (const tuple_delta_t& tuple : sub_table.tuple_vars)
{
region_t r = &(tuple.axis_tuples);
if (!used_regions.has (r))
{
bool all_zeros = true;
for (float d : tuple.deltas_x)
{
int delta = (int) roundf (d);
if (delta != 0)
{
all_zeros = false;
break;
}
}
if (!all_zeros)
{
if (!used_regions.set (r, 1))
return false;
}
}
if (all_regions.has (r))
continue;
if (!all_regions.set (r, 1))
return false;
all_unique_regions.push (r);
}
}
if (!all_regions || !all_unique_regions) return false;
if (!region_list.alloc (all_regions.get_population ()))
return false;
unsigned idx = 0;
/* append the original regions that pre-existed */
for (const auto& r : orig_region_list)
{
if (!all_regions.has (&r) || !used_regions.has (&r))
continue;
region_list.push (&r);
if (!region_map.set (&r, idx))
return false;
all_regions.del (&r);
idx++;
}
/* append the new regions at the end */
for (const auto& r: all_unique_regions)
{
if (!all_regions.has (r) || !used_regions.has (r))
continue;
region_list.push (r);
if (!region_map.set (r, idx))
return false;
all_regions.del (r);
idx++;
}
return (!region_list.in_error ()) && (!region_map.in_error ());
}
/* main algorithm ported from fonttools VarStore_optimize() method, optimize
* varstore by default */
struct combined_gain_idx_tuple_t
{
int gain;
unsigned idx_1;
unsigned idx_2;
combined_gain_idx_tuple_t () = default;
combined_gain_idx_tuple_t (int gain_, unsigned i, unsigned j)
:gain (gain_), idx_1 (i), idx_2 (j) {}
bool operator < (const combined_gain_idx_tuple_t& o)
{
if (gain != o.gain)
return gain < o.gain;
if (idx_1 != o.idx_1)
return idx_1 < o.idx_1;
return idx_2 < o.idx_2;
}
bool operator <= (const combined_gain_idx_tuple_t& o)
{
if (*this < o) return true;
return gain == o.gain && idx_1 == o.idx_1 && idx_2 == o.idx_2;
}
};
bool as_item_varstore (bool optimize=true, bool use_no_variation_idx=true)
{
if (!region_list) return false;
unsigned num_cols = region_list.length;
/* pre-alloc a 2D vector for all sub_table's VarData rows */
unsigned total_rows = 0;
for (unsigned major = 0; major < var_data_num_rows.length; major++)
total_rows += var_data_num_rows[major];
if (!delta_rows.resize (total_rows)) return false;
/* init all rows to [0]*num_cols */
for (unsigned i = 0; i < total_rows; i++)
if (!(delta_rows[i].resize (num_cols))) return false;
/* old VarIdxes -> full encoding_row mapping */
hb_hashmap_t<unsigned, const hb_vector_t<int>*> front_mapping;
unsigned start_row = 0;
hb_vector_t<delta_row_encoding_t> encoding_objs;
hb_hashmap_t<hb_vector_t<uint8_t>, unsigned> chars_idx_map;
/* delta_rows map, used for filtering out duplicate rows */
hb_hashmap_t<const hb_vector_t<int>*, unsigned> delta_rows_map;
for (unsigned major = 0; major < vars.length; major++)
{
/* deltas are stored in tuples(column based), convert them back into items
* (row based) delta */
const tuple_variations_t& tuples = vars[major];
unsigned num_rows = var_data_num_rows[major];
for (const tuple_delta_t& tuple: tuples.tuple_vars)
{
if (tuple.deltas_x.length != num_rows)
return false;
/* skip unused regions */
unsigned *col_idx;
if (!region_map.has (&(tuple.axis_tuples), &col_idx))
continue;
for (unsigned i = 0; i < num_rows; i++)
{
int rounded_delta = roundf (tuple.deltas_x[i]);
delta_rows[start_row + i][*col_idx] += rounded_delta;
if ((!has_long) && (rounded_delta < -65536 || rounded_delta > 65535))
has_long = true;
}
}
if (!optimize)
{
/* assemble a delta_row_encoding_t for this subtable, skip optimization so
* chars is not initialized, we only need delta rows for serialization */
delta_row_encoding_t obj;
for (unsigned r = start_row; r < start_row + num_rows; r++)
obj.add_row (&(delta_rows.arrayZ[r]));
encodings.push (std::move (obj));
start_row += num_rows;
continue;
}
for (unsigned minor = 0; minor < num_rows; minor++)
{
const hb_vector_t<int>& row = delta_rows[start_row + minor];
if (use_no_variation_idx)
{
bool all_zeros = true;
for (int delta : row)
{
if (delta != 0)
{
all_zeros = false;
break;
}
}
if (all_zeros)
continue;
}
if (!front_mapping.set ((major<<16) + minor, &row))
return false;
hb_vector_t<uint8_t> chars = delta_row_encoding_t::get_row_chars (row);
if (!chars) return false;
if (delta_rows_map.has (&row))
continue;
delta_rows_map.set (&row, 1);
unsigned *obj_idx;
if (chars_idx_map.has (chars, &obj_idx))
{
delta_row_encoding_t& obj = encoding_objs[*obj_idx];
if (!obj.add_row (&row))
return false;
}
else
{
if (!chars_idx_map.set (chars, encoding_objs.length))
return false;
delta_row_encoding_t obj (std::move (chars), &row);
encoding_objs.push (std::move (obj));
}
}
start_row += num_rows;
}
/* return directly if no optimization, maintain original VariationIndex so
* varidx_map would be empty */
if (!optimize) return !encodings.in_error ();
/* sort encoding_objs */
encoding_objs.qsort ();
/* main algorithm: repeatedly pick 2 best encodings to combine, and combine
* them */
hb_priority_queue_t<combined_gain_idx_tuple_t> queue;
unsigned num_todos = encoding_objs.length;
for (unsigned i = 0; i < num_todos; i++)
{
for (unsigned j = i + 1; j < num_todos; j++)
{
int combining_gain = encoding_objs.arrayZ[i].gain_from_merging (encoding_objs.arrayZ[j]);
if (combining_gain > 0)
queue.insert (combined_gain_idx_tuple_t (-combining_gain, i, j), 0);
}
}
hb_set_t removed_todo_idxes;
while (queue)
{
auto t = queue.pop_minimum ().first;
unsigned i = t.idx_1;
unsigned j = t.idx_2;
if (removed_todo_idxes.has (i) || removed_todo_idxes.has (j))
continue;
delta_row_encoding_t& encoding = encoding_objs.arrayZ[i];
delta_row_encoding_t& other_encoding = encoding_objs.arrayZ[j];
removed_todo_idxes.add (i);
removed_todo_idxes.add (j);
hb_vector_t<uint8_t> combined_chars;
if (!combined_chars.alloc (encoding.chars.length))
return false;
for (unsigned idx = 0; idx < encoding.chars.length; idx++)
{
uint8_t v = hb_max (encoding.chars.arrayZ[idx], other_encoding.chars.arrayZ[idx]);
combined_chars.push (v);
}
delta_row_encoding_t combined_encoding_obj (std::move (combined_chars));
for (const auto& row : hb_concat (encoding.items, other_encoding.items))
combined_encoding_obj.add_row (row);
for (unsigned idx = 0; idx < encoding_objs.length; idx++)
{
if (removed_todo_idxes.has (idx)) continue;
const delta_row_encoding_t& obj = encoding_objs.arrayZ[idx];
if (obj.chars == combined_chars)
{
for (const auto& row : obj.items)
combined_encoding_obj.add_row (row);
removed_todo_idxes.add (idx);
continue;
}
int combined_gain = combined_encoding_obj.gain_from_merging (obj);
if (combined_gain > 0)
queue.insert (combined_gain_idx_tuple_t (-combined_gain, idx, encoding_objs.length), 0);
}
encoding_objs.push (std::move (combined_encoding_obj));
}
int num_final_encodings = (int) encoding_objs.length - (int) removed_todo_idxes.get_population ();
if (num_final_encodings <= 0) return false;
if (!encodings.alloc (num_final_encodings)) return false;
for (unsigned i = 0; i < encoding_objs.length; i++)
{
if (removed_todo_idxes.has (i)) continue;
encodings.push (std::move (encoding_objs.arrayZ[i]));
}
/* sort again based on width, make result deterministic */
encodings.qsort (delta_row_encoding_t::cmp_width);
return compile_varidx_map (front_mapping);
}
private:
/* compile varidx_map for one VarData subtable (index specified by major) */
bool compile_varidx_map (const hb_hashmap_t<unsigned, const hb_vector_t<int>*>& front_mapping)
{
/* full encoding_row -> new VarIdxes mapping */
hb_hashmap_t<const hb_vector_t<int>*, unsigned> back_mapping;
for (unsigned major = 0; major < encodings.length; major++)
{
delta_row_encoding_t& encoding = encodings[major];
/* just sanity check, this shouldn't happen */
if (encoding.is_empty ())
return false;
unsigned num_rows = encoding.items.length;
/* sort rows, make result deterministic */
encoding.items.qsort (_cmp_row);
/* compile old to new var_idxes mapping */
for (unsigned minor = 0; minor < num_rows; minor++)
{
unsigned new_varidx = (major << 16) + minor;
back_mapping.set (encoding.items.arrayZ[minor], new_varidx);
}
}
for (auto _ : front_mapping.iter ())
{
unsigned old_varidx = _.first;
unsigned *new_varidx;
if (back_mapping.has (_.second, &new_varidx))
varidx_map.set (old_varidx, *new_varidx);
else
varidx_map.set (old_varidx, HB_OT_LAYOUT_NO_VARIATIONS_INDEX);
}
return !varidx_map.in_error ();
}
static int _cmp_row (const void *pa, const void *pb)
{
/* compare pointers of vectors(const hb_vector_t<int>*) that represent a row */
const hb_vector_t<int>** a = (const hb_vector_t<int>**) pa;
const hb_vector_t<int>** b = (const hb_vector_t<int>**) pb;
for (unsigned i = 0; i < (*b)->length; i++)
{
int va = (*a)->arrayZ[i];
int vb = (*b)->arrayZ[i];
if (va != vb)
return va < vb ? -1 : 1;
}
return 0;
}
};
} /* namespace OT */
#endif /* HB_OT_VAR_COMMON_HH */
|