1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
61
62
63
64
65
66
67
68
69
70
71
72
73
74
75
76
77
78
79
80
81
82
83
84
85
86
87
88
89
90
91
92
93
94
95
96
97
98
99
100
101
102
103
104
105
106
107
108
109
110
111
112
113
114
115
116
117
118
119
120
121
122
123
124
125
126
127
128
129
130
131
132
133
134
135
136
137
138
139
140
141
142
143
144
145
146
147
148
149
150
151
152
153
154
155
156
157
158
159
160
161
162
163
164
165
166
167
168
169
170
171
172
173
174
175
176
177
178
179
180
181
182
183
184
185
186
187
188
189
190
191
192
193
194
195
196
197
198
199
200
201
202
203
204
205
206
207
208
209
210
211
212
213
214
215
216
217
218
219
220
221
222
223
224
225
226
227
228
229
230
231
232
233
234
235
236
237
238
239
240
241
242
243
244
245
246
247
248
249
250
251
252
253
254
255
256
257
258
259
260
261
262
263
264
265
266
267
268
269
270
271
272
273
274
275
276
277
278
279
280
281
282
283
284
285
286
287
288
289
290
291
292
293
294
295
296
297
298
299
300
301
302
303
304
305
306
307
308
309
310
311
312
313
314
315
316
317
318
319
320
321
322
323
324
325
326
327
328
329
330
331
332
333
334
335
336
337
338
339
340
341
342
343
344
345
346
347
348
349
350
351
352
353
354
355
356
357
358
359
360
361
362
363
364
365
366
367
368
369
370
371
372
373
374
375
376
377
378
379
380
381
382
383
384
385
386
387
388
389
390
391
392
393
394
395
396
397
398
399
400
401
402
403
404
405
406
407
408
409
410
411
412
413
414
415
416
417
418
419
420
421
422
423
424
425
426
427
428
429
430
431
432
433
434
435
436
437
438
439
440
441
442
443
444
445
446
447
448
449
450
451
452
453
454
455
456
457
458
459
460
461
462
463
464
465
466
467
468
469
470
471
472
473
474
475
476
477
478
479
480
481
482
483
484
485
486
487
488
489
490
491
492
493
494
495
496
497
498
499
500
501
502
503
504
505
506
507
508
509
510
511
512
513
514
515
516
517
518
519
520
521
522
523
524
525
526
527
528
529
530
531
532
533
534
535
536
537
538
539
540
541
542
543
544
545
546
547
548
549
550
551
552
553
554
555
556
557
558
559
560
561
562
563
564
565
566
|
/*--------------------------------------------------------------------*//*:Ignore this sentence.
Copyright (C) 2003 SIL International. All rights reserved.
Distributable under the terms of either the Common Public License or the
GNU Lesser General Public License, as specified in the LICENSING.txt file.
File: GrJustifier.cpp
Responsibility: Sharon Correll
Last reviewed: Not yet.
Description:
A default justification agent for Graphite.
-------------------------------------------------------------------------------*//*:End Ignore*/
//:>********************************************************************************************
//:> Include files
//:>********************************************************************************************
//#include "main.h" // This is used by clients, so main.h is not available
#pragma hdrstop
// any other headers (not precompiled)
#include "GrClient.h"
#include "ITextSource.h"
#include "IGrJustifier.h"
#include "GraphiteProcess.h"
#include "GrDebug.h"
#include "GrJustifier.h"
#ifdef WIN32
#include <string>
#endif
#undef THIS_FILE
DEFINE_THIS_FILE
//:>********************************************************************************************
//:> Global constants
//:>********************************************************************************************
const int g_cnPrimes = 7;
static const int g_rgnPrimes[] =
{
2, 3, 5, 7, 11, 13, 17, // these primes will allow a range of weights up to 255
// 19, 23, 31, 37, 41, 43, 47, 53, 59, 61
};
//:>********************************************************************************************
//:> Forward declarations
//:>********************************************************************************************
//:>********************************************************************************************
//:> Methods
//:>********************************************************************************************
/*----------------------------------------------------------------------------------------------
Constructors.
----------------------------------------------------------------------------------------------*/
GrJustifier::GrJustifier()
{
m_cref = 1; // COM-like behavior
}
/*----------------------------------------------------------------------------------------------
Destructor.
----------------------------------------------------------------------------------------------*/
GrJustifier::~GrJustifier()
{
}
/*----------------------------------------------------------------------------------------------
Determine how to adjust the widths of the glyphs to get a justified effect.
Return kresFalse if we can't achieve the desired width.
----------------------------------------------------------------------------------------------*/
gr::GrResult GrJustifier::adjustGlyphWidths(gr::GraphiteProcess * pgje,
int iGlyphMin, int iGlyphLim,
float dxCurrentWidthArg, float dxDesiredWidthArg)
{
if (dxCurrentWidthArg == dxDesiredWidthArg)
return gr::kresOk; // no stretch needed
int dxCurrentWidth = (int)dxCurrentWidthArg;
int dxDesiredWidth = (int)dxDesiredWidthArg;
bool fShrinking = (dxDesiredWidth < dxCurrentWidth);
// First, get the relevant values for each glyph out of the Graphite engine.
int dxsStretchAvail = 0;
std::vector<int> viGlyphs;
std::vector<int> vdxStretchLeft;
std::vector<int> vdxStep;
std::vector<int> vnWeight;
std::vector<int> vdxWidth;
std::vector<int> vdxStretchOrig;
bool fStep = false;
int nMaxWt = 1;
int cUnits = 0; // glyph-weight units
int cStretchable = 0;
for (int iGlyph = iGlyphMin; iGlyph < iGlyphLim; iGlyph++)
{
int dx;
pgje->getGlyphAttribute(iGlyph,
(fShrinking ? gr::kjgatShrink : gr::kjgatStretch), 1, &dx);
if (dx > 0)
{
int dxStep = 0;
pgje->getGlyphAttribute(iGlyph, gr::kjgatStep, 1, &dxStep);
if (fShrinking)
dxStep = (dxStep > 0) ? 0 : dxStep; // step is applicable if it is negative
else // stretching
dxStep = (dxStep < 0) ? 0 : dxStep; // step is applicable if it is positive
if (dxStep != 0)
{
// Get the actual number of steps allowed. This is more accurate than
// trying to calculate it, due to rounding when converting between
// font units and pixels.
int cSteps;
pgje->getGlyphAttribute(iGlyph, gr::kjgatStretchInSteps, 1, &cSteps);
dx = abs(dxStep * cSteps);
fStep = true;
}
dxStep = abs(dxStep);
int nWt;
pgje->getGlyphAttribute(iGlyph, gr::kjgatWeight, 1, &nWt);
nWt = max(nWt, 0);
nMaxWt = max(nMaxWt, nWt);
viGlyphs.push_back(iGlyph);
vdxStretchLeft.push_back(dx);
vdxStep.push_back(dxStep);
vnWeight.push_back(nWt);
vdxWidth.push_back(0);
vdxStretchOrig.push_back(dx);
dxsStretchAvail += dx;
cUnits += nWt;
cStretchable++;
}
}
int dxStretchNeeded = dxDesiredWidth - dxCurrentWidth;
if (fShrinking)
dxStretchNeeded *= -1; // always a positive number
int dxStretchAchieved = 0;
bool fIgnoreStepGlyphs = false;
int iiGlyph;
std::vector<int> vnMFactor;
if (viGlyphs.size() > 0)
{
// The way weights are handled is the following: we calculate the least common multiple
// of all the weights, and then scale each stretch value accordingly before distributing
// widths. In other words, we put the stretch values into an alternate "common" scaled
// system based on the LCM. "cUnits" represents the total number of stretch-units
// available, where each glyph contributes a number of units equal to its weight.
// To get into this scaled system, small-weight stretches are scaled by a large amount
// and large-weight stretches are scaled by a small amount. After assigning the width,
// we do the reverse scaling on that width. Since large-weight stretches are scaled
// back by less, this results in more width being assigned to glyphs with a large weight.
int nLcm = 1;
if (nMaxWt > 1)
nLcm = Lcm(vnWeight, vnMFactor);
else
{
vnMFactor.push_back(1); // weight 0 - bogus
vnMFactor.push_back(1); // weight 1
}
// Loop over the glyphs until we have assigned all the available space. (If a small amount
// is left over it will be distributed using a special method.)
LMainLoop:
int dxStretchStillNeeded = dxStretchNeeded - dxStretchAchieved;
int dxNonStepMore = 0;
int dxNonStepLess = 0;
while (cUnits > 0 && dxStretchStillNeeded >= cStretchable)
// && dxStretchStillNeeded * nLcm >= cUnits)
{
// This is the scaled stretch per glyph, that is, in the scaled system of the LCM.
int dxwStretchPerGlyph = dxStretchStillNeeded * nLcm / cUnits;
// Recalculate these for the next round:
cUnits = 0;
cStretchable = 0;
for (iiGlyph = 0; iiGlyph < (signed)viGlyphs.size(); iiGlyph++)
{
if (vdxStep[iiGlyph] > 0 && fIgnoreStepGlyphs)
continue; // leave step-glyphs as they are
int nWt = vnWeight[iiGlyph];
int dxwThis = vdxStretchLeft[iiGlyph] * vnMFactor[nWt]; // weighted stretch
dxwThis = min(dxwStretchPerGlyph, dxwThis);
int dxThis = dxwThis / vnMFactor[nWt]; // scale back to unweighted stretch
vdxWidth[iiGlyph] += dxThis;
dxStretchAchieved += dxThis;
vdxStretchLeft[iiGlyph] -= dxThis;
if (vdxStretchLeft[iiGlyph] > 0)
{
cUnits += nWt; // can do some more on the next round
cStretchable++;
}
// Keep track of how much we could adjust in either direction
// on the second round to handle steps.
if (vdxStep[iiGlyph] == 0)
{
dxNonStepMore += vdxStretchOrig[iiGlyph] - vdxWidth[iiGlyph];
dxNonStepLess += vdxWidth[iiGlyph];
}
}
dxStretchStillNeeded = dxStretchNeeded - dxStretchAchieved;
}
Assert(dxStretchAchieved <= dxStretchNeeded);
// Make adjustments so that the step values are honored.
if (fStep // there are some step-glyphs
&& !fIgnoreStepGlyphs) // and we didn't already do this
{
// First make some basic adjustments, alternating making more and fewer steps
// and see how much that buys us.
int dxAdjusted = 0;
int cNonStepUnits = 0;
int cStretchableNonStep = 0;
bool fReloop = false;
for (iiGlyph = 0; iiGlyph < (signed)viGlyphs.size(); iiGlyph++)
{
if (vdxStep[iiGlyph] > 1)
{
int dxRem = vdxWidth[iiGlyph] % vdxStep[iiGlyph];
int dxFewer = vdxWidth[iiGlyph] - dxRem; // round down
int dxMore = dxFewer + vdxStep[iiGlyph]; // round up
int dxAdd = dxMore - vdxWidth[iiGlyph];
if (dxRem == 0)
{ // Step is okay; no adjustment needed.
}
else if (
// this glyph has stretch available to make more steps:
(dxMore <= vdxStretchOrig[iiGlyph])
// and we need at least this much extra:
&& (dxAdd + dxStretchAchieved <= dxStretchNeeded)
// and we still have enough slack in the non-step-glyphs:
&& (dxNonStepLess - dxAdjusted - dxAdd > 0)
// and we don't have to adjust much to get to the next step
// (we're 75% of the way there):
&& ((dxRem > ((vdxStep[iiGlyph] * 3) << 2))
// or this glyph has a high weight:
|| (vnWeight[iiGlyph] > (nMaxWt >> 2))
// or we've removed a fair amount already:
|| (dxAdjusted < (dxAdd * -2))
// or we don't have enough slack to remove more:
|| (dxNonStepMore + dxAdjusted - dxRem < 0)))
{
// Use the next larger number of steps.
vdxWidth[iiGlyph] += dxAdd;
dxStretchAchieved += dxAdd;
dxAdjusted += dxAdd;
fReloop = true;
}
else
{
// Use the next smaller number of steps.
vdxWidth[iiGlyph] -= dxRem;
dxStretchAchieved -= dxRem;
dxAdjusted -= dxRem;
fReloop = true;
}
}
else if (vdxStep[iiGlyph] == 0)
{
cNonStepUnits += vnWeight[iiGlyph];
cStretchableNonStep++;
}
}
if (cNonStepUnits < cUnits || cStretchableNonStep < cStretchable)
{
// Even if no step-glyphs need to be adjusted, there is a different number
// of (non-step) glyphs to divide the space over. (The first time through
// there may not have been enough space per glyph to run the main loop,
// but now there may be.)
fReloop = true;
}
// Any left over adjustments need to be made by adjusting the items with
// step = 1 (ie, the glyphs that allow fine-grained adjustments).
// Do the main loop again, but only adjust the non-step glyphs.
if (fReloop)
{
cUnits = cNonStepUnits;
cStretchable = cStretchableNonStep;
fIgnoreStepGlyphs = true;
goto LMainLoop;
}
}
// Divide up any remainder that is due to rounding errors.
int dxRemainder = dxStretchNeeded - dxStretchAchieved;
if (0 < dxRemainder && dxRemainder < cStretchable)
{
if (cStretchable < (signed)viGlyphs.size() || fStep)
{
// Make sub-lists using the glyphs that are still stretchable.
std::vector<int> vdxStretchRem;
std::vector<int> vdxWidthRem;
std::vector<int> viiGlyphsRem;
for (iiGlyph = 0; iiGlyph < (signed)viGlyphs.size(); iiGlyph++)
{
if (vdxStretchLeft[iiGlyph] > 0 && vdxStep[iiGlyph] == 0)
{
viiGlyphsRem.push_back(iiGlyph);
vdxStretchRem.push_back(vdxStretchLeft[iiGlyph]);
vdxWidthRem.push_back(vdxWidth[iiGlyph]);
}
}
Assert(viiGlyphsRem.size() == size_t(cStretchable));
DistributeRemainder(vdxWidthRem, vdxStretchRem, dxRemainder, 0, vdxWidthRem.size(),
&dxStretchAchieved);
for (int iiiGlyph = 0; iiiGlyph < cStretchable; iiiGlyph++)
{
int iiGlyph = viiGlyphsRem[iiiGlyph];
vdxStretchLeft[iiGlyph] = vdxStretchRem[iiiGlyph];
vdxWidth[iiGlyph] = vdxWidthRem[iiiGlyph];
}
}
else
{
// All glyphs are still stretchable.
DistributeRemainder(vdxWidth, vdxStretchLeft, dxRemainder, 0, vdxWidth.size(),
&dxStretchAchieved);
}
}
// otherwise we assume left-over is cannot be handled
// Assign the widths to the glyphs.
for (iiGlyph = 0; iiGlyph < (signed)viGlyphs.size(); iiGlyph++)
{
int dxThis = vdxWidth[iiGlyph] * ((fShrinking) ? -1 : 1);
if (vdxStep[iiGlyph] == 0)
pgje->setGlyphAttribute(viGlyphs[iiGlyph], gr::kjgatWidth, 1, dxThis);
else
{
// Set the actual number of steps allowed. This is more accurate than
// setting the pixels and then converting to font em-units.
Assert(int(dxThis) % vdxStep[iiGlyph] == 0); // width divides evenly into steps
int cSteps = dxThis/vdxStep[iiGlyph];
pgje->setGlyphAttribute(viGlyphs[iiGlyph], gr::kjgatWidthInSteps, 1, cSteps);
}
}
}
//LLeave:
if (dxStretchAchieved == dxStretchNeeded)
return gr::kresOk;
else
{
#ifdef WIN32
wchar_t rgchw[20];
std::fill_n(rgchw, 20, 0);
_itow(dxStretchNeeded - dxStretchAchieved, rgchw, 10);
std::wstring strTmp(L"justification failed by ");
strTmp += rgchw;
strTmp += L" units (width needed = ";
std::fill_n(rgchw, 10, 0);
_itow(dxDesiredWidth, rgchw, 10);
strTmp += rgchw;
strTmp += L")\n";
OutputDebugString(strTmp.c_str());
#else
Assert(fprintf(stderr,
"justification failed by %d units (width needed = %d)\n",
dxStretchNeeded - dxStretchAchieved, dxDesiredWidth));
#endif
return gr::kresFalse;
}
}
/*----------------------------------------------------------------------------------------------
Distribute the remainder of the width evenly over the stretchable glyphs.
----------------------------------------------------------------------------------------------*/
void GrJustifier::DistributeRemainder(std::vector<int> & vdxWidths, std::vector<int> & vdxStretch,
int dx, int iiMin, int iiLim,
int * pdxStretchAchieved)
{
if (dx == 0)
return;
Assert(dx <= iiLim - iiMin);
if (iiMin + 1 == iiLim)
{
int dxThis = min(dx, vdxStretch[iiMin]);
Assert(dxThis == 1); // we're never adjusting by more than 1, and the glyph should be
// adjustable by that much
vdxWidths[iiMin] += dxThis;
vdxStretch[iiMin] -= dxThis;
*pdxStretchAchieved += dxThis;
}
else
{
int iiMid = (iiLim + iiMin) / 2;
int dxHalf1 = dx / 2;
int dxHalf2 = dx - dxHalf1;
DistributeRemainder(vdxWidths, vdxStretch, dxHalf1, iiMin, iiMid, pdxStretchAchieved);
DistributeRemainder(vdxWidths, vdxStretch, dxHalf2, iiMid, iiLim, pdxStretchAchieved);
}
}
/*----------------------------------------------------------------------------------------------
Return the least common multiple of the given weights. Also return
a std::vector of multiplicative factors for each weight.
----------------------------------------------------------------------------------------------*/
int GrJustifier::Lcm(std::vector<int> & vnWeights, std::vector<int> & vnMFactors)
{
// The basic algorithm is to factor each weight into primes, counting how many times
// each prime occurs in the factorization. The LCM is the multiple of the primes
// with each prime raised to maximum power encountered within the factorizations.
// Example: weights = [2, 4, 5, 10]
// 2 = 2^1
// 4 = 2^2
// 5 = 5^1
// 10 = 2^1 * 5^1
// So the LCM = 2^2 * 5^1 = 20.
std::vector<int> vnPowersForLcm;
int inPrime;
for (inPrime = 0; inPrime < g_cnPrimes; inPrime++)
vnPowersForLcm.push_back(0);
std::vector<int> vnPowersPerPrime;
vnPowersPerPrime.resize(g_cnPrimes);
int nWtMax = 1;
for (int inWt = 0; inWt < (signed)vnWeights.size(); inWt++)
{
int inMax = PrimeFactors(vnWeights[inWt], vnPowersPerPrime);
for (inPrime = 0; inPrime <= inMax; inPrime++)
vnPowersForLcm[inPrime] = max(vnPowersForLcm[inPrime], vnPowersPerPrime[inPrime]);
nWtMax = max(nWtMax, vnWeights[inWt]);
}
int nLcm = 1;
for (inPrime = 0; inPrime < g_cnPrimes; inPrime++)
nLcm = nLcm * NthPower(g_rgnPrimes[inPrime], vnPowersForLcm[inPrime]);
// For each weight, calculate the multiplicative factor. This is the value by which
// to multiply stretch values of this weight in order to get them properly proportioned.
// Note that weights that are not used will have bogus factors.
vnMFactors.push_back(nLcm); // bogus, for weight 0
for (int nWt = 1; nWt <= nWtMax; nWt++)
{
vnMFactors.push_back(nLcm / nWt);
}
return nLcm;
}
/*----------------------------------------------------------------------------------------------
Return a std::vector indicating the prime factors of n. The values of the std::vector correspond
to the primes in g_rgnPrimes: [2, 3, 5, 7, ...]; they are the powers to which each
prime should be raised. For instance, 20 = 2^2 * 5^1, so the result would contain
[2, 0, 1, 0, 0, ...].
The returned int is index of the highest prime in the list that we found.
----------------------------------------------------------------------------------------------*/
int GrJustifier::PrimeFactors(int n, std::vector<int> & vnPowersPerPrime)
{
// Short-cut for common cases:
switch (n)
{
case 0:
case 1:
vnPowersPerPrime[0] = 0;
return 0;
case 2:
vnPowersPerPrime[0] = 1; // 2^1
return 0;
case 3:
vnPowersPerPrime[0] = 0;
vnPowersPerPrime[1] = 1; // 3^1
return 1;
case 4:
vnPowersPerPrime[0] = 2; // 2^2
return 0;
case 5:
vnPowersPerPrime[0] = 0;
vnPowersPerPrime[1] = 0;
vnPowersPerPrime[2] = 1; // 5^1
return 2;
case 6:
vnPowersPerPrime[0] = 1; // 2^1
vnPowersPerPrime[1] = 1; // 3^1
return 1;
case 7:
vnPowersPerPrime[0] = 0;
vnPowersPerPrime[1] = 0;
vnPowersPerPrime[2] = 0;
vnPowersPerPrime[3] = 1; // 7^1
return 3;
case 8:
vnPowersPerPrime[0] = 3; // 2^3
return 0;
case 9:
vnPowersPerPrime[0] = 0;
vnPowersPerPrime[1] = 2; // 3^2
return 1;
case 10:
vnPowersPerPrime[0] = 1; // 2^1
vnPowersPerPrime[1] = 0;
vnPowersPerPrime[2] = 1; // 5^1
return 2;
default:
break;
}
// Otherwise use the general algorithm: suck out prime numbers one by one,
// keeping track of how many we have of each.
int inPrime;
for (inPrime = 0; inPrime < g_cnPrimes; inPrime++)
vnPowersPerPrime[inPrime] = 0;
int nRem = n;
for (inPrime = 0; inPrime < g_cnPrimes; inPrime++)
{
while (nRem % g_rgnPrimes[inPrime] == 0)
{
vnPowersPerPrime[inPrime] += 1;
nRem = nRem / g_rgnPrimes[inPrime];
}
if (nRem == 1)
break;
}
Assert(n > 255 || nRem == 1);
return inPrime;
}
/*----------------------------------------------------------------------------------------------
Return nX raised to the nY power.
----------------------------------------------------------------------------------------------*/
int GrJustifier::NthPower(int nX, int nY)
{
int nRet = 1;
for (int i = 0; i < nY; i++)
nRet *= nX;
return nRet;
}
/*----------------------------------------------------------------------------------------------
Determine how much shrinking is possible for low-end justification.
----------------------------------------------------------------------------------------------*/
//GrResult GrJustifier::suggestShrinkAndBreak(GraphiteProcess * pgje,
// int iGlyphMin, int iGlyphLim, int dxsWidth, LgLineBreak lbPref, LgLineBreak lbMax,
// int * pdxShrink, LgLineBreak * plbToTry)
//{
// *pdxShrink = 0;
// *plbToTry = lbPref;
// return kresOk;
//}
|