%PDF-1.4

pA

3 0 obj <<

/Length 152

>>

stream

BT

/F51 9.9626 Tf 91.925 759.927 Td
[(W)80(elcome)-250(to)-250(pdfT)]ITJ
67.818 -2.241 Td [(E)]TJ 4.842
2.241 Td [(X!)]TJ 138.924 -654.747
Td [(1)]TJ

ET

endstream

endobj

2 0 obj <<

/Type /Page

/Contents 3 0 R

/Resources 1 0 R

/MediaBox [0 O 595.276 841.89]
/Parent 5 0 R

>> endobj

1 0 obj <<

/Font << /F51 4 0 R >>

/ProcSet [/PDF /Text]

>> endobj

7 0 obj

[333 408 500 500 833 778 333 333
333 500 564 250 333 250 278 500

500 500 500 500 500 500 500 500

500 278 278 564 564 564 444 921

722 667 667 722 611 556 722 722

333 389 722 611 889 722 722 556 722
667 556 611 722 722 944 722 722 611
333 278 333 469 500 333 444 500 444
500 444 333 500 500 278 278 500 278
778 500 500 500 500 333 389 278]
endobj

8 0 obj <<

/Type /FontDescriptor

/FontName /Times-Roman

/Flags 34

/FontBBox [0 -216 1000 678]

/Ascent 678

/CapHeight 651

/Descent -216

/ItalicAngle O

/StemV 83

/XHeight 450

>> endobj

6 0 obj <<

/Type /Encoding

/Differences [33/exclam 49/one

69/E 84/T 87/W/X 99/c/d/e/f 108/1/m
111/0/p 116/t]

>> endobj

4 0 obj <<

/Type /Font

/Subtype /Typel

/BaseFont /Times-Roman
/FontDescriptor 8 0 R

/FirstChar 33

/LastChar 116

/Widths 7 0 R

/Encoding 6 0 R

>> endobj

5 0 obj <<

/Type /Pages

/Count 1

/Kids [2 0 R]

>> endobj

9 0 obj <<

/Type /Catalog

/Pages 5 0 R

>> endobj

10 0 obj <<

/Producer (pdfTeX-1.40.0)

/Creator (TeX)

/CreationDate
(D:20070101173828+01°00°)

/ModDate (D:20070101173828+01°00°)
/Trapped /False

/PTEX.Fullbanner (This is pdfTeX,
Version 3.141592-1.40.0-2.2 (Web2C
7.5.6) kpathsea version 3.5.6)

>> endobj

xref

0 11

0000000000 65535
0000000335 00000
0000000224 00000
0000000015 00000
0000001058 00000
0000001210 00000
0000000939 00000
0000000403 00000
0000000756 00000
0000001267 00000
0000001316 00000
trailer

<< /Size 11
/Root 9 O R
/Info 10 O R

/1D
[<F527022D65918CCOBE838BA613B48275>
<F527022D65918CCO8E838BA613B48275>]
>>

startxref

1570

% hEOF

BBBBBBBBBB M

The pdfTEX user manual

The pdfTEX user manual

Han Thé Thanh
Sebastian Rahtz
Hans Hagen
Hartmut Henkel
Pawel Jackowski
Martin Schroder

January 1, 2007
Rev. 1.671

The title page of this manual
represents the plain TgX coded
text “Welcome to pdfTgX!”

\pdfoutput=1

\pdf compresslevel=0
\font\tenrm=ptmr8r
\tenrm

Welcome to pdf\TeX!
\bye

1.1

The pdfTgX user manual

Contents

1 Introduction 1 9 Character translation 41
2 AboutPDF 2

3 Gettingstarted 3 Abbreviations oL 41
4 Macro packages supporting PDFIEX ... 10 Examples of HZ and protruding 42
5 Settingupfonts 10 Additional PDFkeys 44
6 Formal syntax specification 15 Colophon 45
7 PDFTEX primitives 19 GNU Free Documentation License 46
8 Graphicsand color 39

Introduction

The main purpose of the pdfTEX project is to create and maintain an extension of TgX that can produce
pdf directly from TgX source files and improve/enhance the result of TEX typesetting with the help of pdf.
When pdf output is not selected, pdfTEX produces normal dvi output, otherwise it generates pdf output that
looks identical to the dvi output. An important aspect of this project is to investigate alternative justification
algorithms (e. g. a font expansion algorithm akin to the hz micro-typography algorithm by Prof. Hermann
Zapf), optionally making use of Multiple Master fonts.

pdfIgX is based on the original TEX sources and Web2c, and has been successfully compiled on Unix, Win32
and MSDos systems. It is under active development, with new features trickling in. Great care is taken to
keep new pdfIgX versions backward compatible with earlier ones.

For some years there has been a ‘moderate” successor to TgX available, called e-TgX. Because mainstream
macro packages such as IXTEX have started supporting this welcome extension, the e-TgX functionality has
also been integrated into the pdfTgX code. For a while (TgX Live 2004 and 2005) pdfTgX therefore came in
two flavours: the ¢-TgX enabled pdfeTEX engine and the standard one, pdfTEX. The ability to produce both
pdf and dvi output made pdfeTgX the primary TgX engine in these distributions. Since pdfTEX version 1.40
now the e-TEX extensions are part already of the pdfTEX engine, so there is no need anymore to ship pdfeTgX.
The &-TgX functionality of pdfTEX can be disabled if not required. Other extensions are MLTEX and encTgX;
these are also included in the current pdfTgX code.

pdfTgX is maintained by Han Thé Thanh, Martin Schroder, Hans Hagen, Taco Hoekwater, Hartmut Henkel,
and others. The pdfTEX homepage is http://www.pdftex.org. Please send pdfIEX comments and bug
reports to the mailing list pdftex@tug.org.

We thank all readers who send us corrections and suggestions. We also wish to express the hope that pdfTEX
will be of as much use to you as it is to us. Since pdfTgX is still being improved and extended, we suggest
you to keep track of updates.

About this manual

This manual revision (1.671) tries to keep track with the recent pdfTgX development up to version 1.40.0.
Main text updates were done regarding the new configuration scheme, font mapping, and new or updated
primitives. The primary repository for the manual and its sources is at http://sarovar.org/projects
/pdftex/. Copies in pdf format can also be found at the CTAN network in directory ctan:systems
/pdftex.

Thanks to Karl Berry for proof reading and submitting a long changes list. New errors might have slipped in
afterwards by the editor. Please send questions or suggestions by email to pdftex@tug.org.

http://www.pdftex.org
http://www.pdftex.org
http://www.pdftex.org
http://www.pdftex.org
http://www.pdftex.org
mailto:pdftex@tug.org
http://sarovar.org/projects/pdftex/
http://sarovar.org/projects/pdftex/
http://sarovar.org/projects/pdftex/
http://sarovar.org/projects/pdftex/
http://sarovar.org/projects/pdftex/
http://sarovar.org/projects/pdftex/
ctan:systems/pdftex
ctan:systems/pdftex
ctan:systems/pdftex
mailto:pdftex@tug.org

The pdfTgX user manual

1.2 Legal Notice

Copyright © 1996-2007 Han Thé Thanh. Permission is granted to copy, distribute and/or modify this
document under the terms of the GNU Free Documentation License, Version 1.2 or any later version published
by the Free Software Foundation; with no Invariant Sections, no Front-Cover Texts, and no Back-Cover Texts.
A copy of the license is included in the section entitled “GNU Free Documentation License”.

2 About PDF

The cover of this manual lists an almost minimal pdf file generated by pdfTgX, with the corresponding source
file on the next page. Unless compression is enabled, such a pdf file is rather verbose and readable. The
first line specifies the version used; currently pdfTgX produces level 1.4 output by default. pdf viewers are
supposed to silently skip over all elements they cannot handle.

A pdf file consists of objects. These objects can be recognized by their number and keywords:
9 0 obj << /Type /Catalog /Pages 5 0 R >> endobj

Here9 O obj ... endobj is the object capsule. The first number is the object number. The sequence 5
0 Ris an object reference, a pointer to another object (no. 5). The second number (here a zero) is currently
not used in pdfIEX; it is the version number of the object. It is for instance used by pdf editors, when they
replace objects by new ones.

When a viewer opens a pdf file, it goes right to the end of the file, looking for the keyword startxref. The
number after startxref gives the absolute position (byte offset from the file start) of the so called ‘object
cross-reference table’ that begins with the keyword xref. This table in turn tells the byte offsets of all objects
that make up the pdf file, providing fast random access to the individual objects (here the xref table shows
11 objects, numbered from 0 to 10; the object no. 0 is always unused). The actual starting point of the file’s
object structure is defined after the trailer: The /Root entry points to the /Catalog object (no. 9). In this
object the viewer can find the pointer /Pages to the page list object (no. 5). In our example we have only
one page. The trailer also holds an /Info entry, which points to an object (no. 10) with a bit more about the
document. Just follow the thread:

/Root — object 9 — /Pages — object 5 — /Kids — object 2 — /Contents — object 3

As soon as we add annotations, a fancy word for hyperlinks and the like, some more entries will be present
in the catalog. We invite users to take a look at the pdf code of this file to get an impression of that.

The page content is a stream of drawing operations. Such a stream can be compressed, where the level of
compression can be set with \pdfcompresslevel (compression is switched off for the title page). Let’s take
a closer look at this stream in object 3. Often (but not in our example) there is a transformation matrix, six
numbers followed by cm. As in PostScript, the operator comes after the operands. Between BT and ET comes
the text. A font is selected by a Tf operator, which is given a font resource name /F. . and the font size. The
actual text goes into () bracket pairs so that it creates a PostScript string. The numbers inbetween bracket
pairs provide horizontal movements like spaces and fine glyph positioning (kerning). When one analyzes
a file produced by a less sophisticated typesetting engine, whole sequences of words can be recognized. In
pdf files generated by pdfTEX however, many words come out rather fragmented, mainly because a lot of
kerning takes place; in our example the 80 moves the text (elcome) left towards the letter (W) by 80/1000 of
the font size. pdf viewers in search mode simply ignore the kerning information in these text streams. When
a document is searched, the search engine reconstructs the text from these (string) snippets.

Every /Page object points also to a /Resources object (no. 1) that gives all ingredients needed to assemble
the page. In our example only a /Font object (no. 4) is referenced, which in turn tells that the text is typeset

The pdfTgX user manual

in /Font /Times-Roman. The /Font object points also to a /Widths array (object no. 7) that tells for each
character by how much the viewer must move forward horizontally after typesetting a glyph. More details
about the font can be found in the /FontDescriptor object (no. 8); if a font file is embedded, this object
points to the font program stream. But as the Times-Roman font used for our example is one of the 14 so-
called standard fonts that should always be present in any pdf viewer and therefore need not be embedded
in the pdf file, it is left out here for brevity. However, when we use for instance a Computer Modern Roman
font, we have to make sure that this font is later available to the pdf viewer, and the best way to do this is to
embed the font.

It’s highly recommended nowadays to embed even the standard fonts, as modern viewers often don't use the
original 14 standard fonts anymore, but instead approximate them by instances of built-in Multiple Master
fonts (e. g. the Adobe Reader 7 approximates the Times-Roman variants by the Minion font). So you never
really know how it looks exactly at the viewer side unless you embed every font.

In this simple file we don't specify in what way the file should be opened, for instance full screen or clipped.
A closer look at the page object no. 2 (/Type /Page) shows that a mediabox (/MediaBox) is part of the page
description. A mediabox acts like the (high-resolution) bounding box in a PostScript file. pdfTEX users can
add dictionary stuff to page objects by the \pdfpageattr primitive.

Although in most cases macro packages will shield users from these internals, pdfTEX provides access to
many of the entries described here, either automatically by translating the TgX data structures into pdf ones,
or manually by pushing entries to the catalog, page, info or self created objects. One can for instance create
an object by using \pdfobj after which \pdflastobj returns the number. So

\pdfobj{/Type /Catalog /Pages 5 0 R}

inserts an object into the pdf file, while \pdflastobj returns the number pdfIEX assigned to this object.
Unless objects are referenced by others, they will just end up as isolated entities, not doing any real harm but
bloating the pdf file. In general this rather direct way of pushing objects in the pdf files by primitives like
\pdfobj is not very useful, and only makes sense when implementing, say, fill-in field support or annotation
content reuse. We will come to that later.

For those who want to learn more about the gory pdf details, the best bet is to read the PDF Reference. As
of the time of writing you can download this book as a big pdf file from Adobe’s PDF Technology Center,
http://www.adobe.com/devnet/pdf/pdf reference.html — or get the heavy paper version.

Those who, after this introduction, feel unsure how to proceed, are advised to read on but skip section 7.
Before we come to that section, we will describe how to get started with pdfTgX.

Getting started

This section describes the steps needed to get pdfTEX running on a system where pdfTgX is not yet installed.
Nowadays virtually all TgX distributions have pdfTgX as a component, such as TgX Live, teTgX, XEmTEX,
MikTeX, proTgXt, and CMacTgX. The ready to run TgX Live distribution comes with pdfTgX versions for many
Unix, Win32, and Mac OS X systems; more information can be found at http://www.tug.org/tex-live/.
teTEX by Thomas Esser is a source distribution with an automated compilation process for Unix systems; see
http://www.tug.org/teTeX/. For Win32 systems there are also three separate distributions that contain
pdfIEX, all in ctan:systems/win32: XEmTgX by Fabrice Popineau, MikTeX by Christian Schenk, and
proTeXt (based on MikTeX) by Thomas Feuerstack. So when you use any of these distributions, you don't
need to bother with the pdfTgX installation procedure in the next sections.

If there is no precompiled pdfTgX binary for your system, or the version coming with a distribution is not
the current one and you would like to try out a fresh pdfTEX immediately, you will need to build pdfTgX

http://www.adobe.com/devnet/pdf/pdf_reference.html
http://www.adobe.com/devnet/pdf/pdf_reference.html
http://www.adobe.com/devnet/pdf/pdf_reference.html
http://www.adobe.com/devnet/pdf/pdf_reference.html
http://www.adobe.com/devnet/pdf/pdf_reference.html
http://www.adobe.com/devnet/pdf/pdf_reference.html
http://www.adobe.com/devnet/pdf/pdf_reference.html
http://www.adobe.com/devnet/pdf/pdf_reference.html
http://www.adobe.com/devnet/pdf/pdf_reference.html
http://www.adobe.com/devnet/pdf/pdf_reference.html
http://www.tug.org/tex-live/
http://www.tug.org/tex-live/
http://www.tug.org/tex-live/
http://www.tug.org/tex-live/
http://www.tug.org/tex-live/
http://www.tug.org/tex-live/
http://www.tug.org/teTeX/
http://www.tug.org/teTeX/
http://www.tug.org/teTeX/
http://www.tug.org/teTeX/
http://www.tug.org/teTeX/
http://www.tug.org/teTeX/
ctan:systems/win32
ctan:systems/win32
ctan:systems/win32

3.1

3.2

3.3

3.4

The pdfTgX user manual

from sources; read on. You should already have a working TgX system, e. g. TgX Live or teTgX, into which the
freshly compiled pdfTgX will be integrated. Note that the installation description in this manual is Web2c—
specific.

Getting sources and binaries

The latest sources of pdfTgX are currently distributed for compilation on Unix systems (including Linux),
and Win32 systems (Windows 95, 98, NT, 2000, XP). The primary location where one can fetch the latest
released code is at the developers’ homepage http://sarovar.org/projects/pdftex/, where you also
find bug tracking information, and the manual sources. Download the pdfTEX archive from there.

The pdfTEX sources can also be found at their canonical place in the CTAN network, ctan:systems/pdftex.
Separate pdfTgX binaries for various systems might also be available, check out the subdirectories below
ctan:systems.

Compiling
The compilation is expected to be easy on Unix-like systems and can be described best by example. Assuming

that the file pdftex.zip is downloaded to some working directory, e. g. $HOME/pdftex, on a Unix system
the following steps are needed to compile pdfTgX:

cd $HOME/pdftex

unzip pdftex-1.40.0.zip
cd pdftex-1.40.0
./build.sh

The binary pdftex is then built in the subdirectory build/texk/web2c. In the same directory also the
corresponding pool file pdftex.pool is generated; it’s needed for creating the format files.

The obsolescent binary pdfetex is still generated for backward compatibility, but since version 1.40 it is just
a file copy of the file pdftex.

Together with the pdftex binary also the pdftosrc and ttf2afm binaries are generated.

Placing files

The next step is to put the freshly compiled pdftex, pdftosrc, and ttf2afm binaries and the pool file
pdftex.pool into their proper places within the tds structure of the TgX system. Put the binary files into the
binary directory (e. g. for a typical TgX Live system) /usr/local/texlive/2006/bin/x86_64-1inux, and
the pool file into /usr/local/texlive/2006/texmf/web2c.

Don’t forget to do a texconfig-sys init afterwards, so that all formats are regenerated system-wide with
the fresh pdftex binary.

Setting search paths

Web2c-based programs, including pdfTgX, use the Web2c run-time configuration file called texmf . cnf. The
location of this file is the appropriate position within the tds tree relative to the place of the pdfTgX binary;
on a TeX Live system, file texmf . cnf typically is located either in directory texmf/web2c or texmf-local
/web2c. The path to file texmf . cnf can also be set up by the environment variable TEXMFCNF.

http://sarovar.org/projects/pdftex/
http://sarovar.org/projects/pdftex/
http://sarovar.org/projects/pdftex/
http://sarovar.org/projects/pdftex/
http://sarovar.org/projects/pdftex/
http://sarovar.org/projects/pdftex/
ctan:systems/pdftex
ctan:systems/pdftex
ctan:systems/pdftex
ctan:systems
ctan:systems

The pdfTgX user manual

Next you might need to edit texmf . cnf so that pdfTgX can find all necessary files, but the texmf . cnf files
coming with the major TgX distributions should already be set up for normal use. You might check into the
file texmf . cnf to see where the various bits and pieces are going.

pdfTgX uses the search path variables shown in table 1.

used for texmf.cnf
output files TEXMFOUTPUT
input files, images TEXINPUTS
format files TEXFORMATS
text pool files TEXPOOL
encoding files ENCFONTS
font map files TEXFONTMAPS
tfm files TFMFONTS
virtual fonts VFFONTS
typel fonts T1FONTS
TrueType fonts TTFONTS
OpenType fonts OPENTYPEFONTS
pixel fonts PKFONTS

Table 1 The Web2c variables.

Normally, pdfTgX puts its output files in the current directory. If any output file cannot
be opened there, it tries to open it in the directory specified in the environment variable
TEXMFQUTPUT. There is no default value for that variable. For example, if you type
pdftex paper and the current directory is not writable, if TEXMFOUTPUT has the value
/tmp, pdfTEX attempts to create /tmp/paper.log (and /tmp/paper.pdf, if any output

This variable specifies where pdfTEX finds its input files. Image files are considered input

Search path for virtual font (. vf) files. Virtual fonts are fonts made up of other fonts.
Because pdfTEX produces the final output code, it must consult those files.

TEXMFOUTPUT

is produced.)
TEXINPUTS

files and searched for along this path.
TEXFORMATS Search path for format (. fmt) files.
TEXPOOL Search path for pool (.pool) files.
ENCFONTS Search path for encoding (. enc) files.
TEXFONTMAPS Search path for font map (.map) files.
TFMFONTS Search path for font metric (. t£fm) files.
VFFONTS
T1FONTS

TTFFONTS, OPEN-
TYPEFONTS

PKFONTS

Search path for Type 1 font files (. pfa and . pfb). These outline (vector) fonts are to be
preferred over bitmap pk fonts. In most cases Type 1 fonts are used and this variable
tells pdfTEX where to find them.

Search paths for TrueType (.ttf) and OpenType (.otf) font files. Like Type 1 fonts,
TrueType and OpenType fonts are also outlines.

Search path for packed (bitmap) font (. pk) files. Unfortunately bitmap fonts are still
displayed poorly by some pdf viewers, so when possible one should use outline fonts.

3.5

3.6

The pdfTgX user manual

When no outline is available, pdfTgX tries to locate a suitable pk font (or invoke a process
that generates it).

The PDFTEgX configuration

One has to keep in mind that, as opposed to TgX with its dvi output, the pdfTEX program does not require
a separate postprocessing stage to transform the TgX input into a pdf file. As a consequence, all data needed
for building a ready pdf page must be available during the pdfTgX run, in particular information on media
dimensions and offsets, graphics files for embedding, and font information (font files, encodings).

When TgX builds a page, it places items relative to the top left page corner (the dvi reference point). Separate
dvi postprocessors allow specifying the paper size (e. g. “A4’ or ‘letter’), so that this reference point is moved
to the correct position on the paper, and the text ends up at the right place.

In pdf, the paper dimensions are part of the page definition, and pdfIgX therefore requires that they be
defined at the beginning of the pdfTEX run. As with pages described by PostScript, the pdf reference point is
in the lower-left corner.

Formerly, these dimensions and other pdfIEX parameters were read in from a configuration file named
pdftex.cfg, which had a special (non-TgX) format, at the start of processing. Nowadays such a file is
ignored by pdfTEX. Instead, the page dimensions and offsets, as well as many other parameters, can be set
by pdfTgX primitives during the pdfIgX format building process, so that the settings are dumped into the
fresh format and consequently will be used when pdfTgX is later called with that format. All settings from
the format can still be overridden during a pdfTEX run by using the same primitives. This new configuration
concept is a more unified approach, as it avoids the configuration file with a special format.

A list of pdfTgX primitives relevant for setting up the pdfTEX engine is given in table 2. All primitives are
described in detail within later sections. Figure 1 shows a recent configuration file (pdftexconfig.tex) in
TEX format, using the primitives from table 2, which typically is read in during the format building process.
It enables pdf output, sets paper dimensions and the default pixel density for pk font inclusion. The default
values are chosen so that pdfTEX often can be used (e. g. in ~ini mode) even without setting any parameters.

Independent of whether such a configuration file is read or not, the first action in a pdfTEX run is that the
program reads the global Web2c configuration file (texmf . cnf), which is common to all programs in the
web2C system. This file mainly defines file search paths, the memory layout (e. g. pool and hash size), and
other general parameters.

Creating format files

The pdfTEX engine allow building formats for dvi and pdf output in the same way as the classical TgX
engine does for dvi. Format generation is enabled by the —ini option. The default mode (dvi or pdf) can
be chosen either on the command line by setting the option —output-format to dvi or pdf, or by setting
the \pdfoutput parameter. The format file then inherits this setting, so that a later call to pdfTEX with this
format starts in the preselected mode (which still can be overrun then). A format file can be read in only by
the engine that has generated it; a format incompatible with an engine leads to a fatal error.

It is customary to package the configuration and macro file input into a . ini file. E. g., the file etex.ini
in figure 2 is for generating an ¢-TgX format with dvi output (it contains a few comparisons to be safe also
for TgX engines). A similar file pdflatex.ini can be used for generating a I“TEX format with pdf output;
refer to figure 3. One can see how the primitive \pdfoutput is used to override the output mode set by file
pdftexconfig.tex. The corresponding pdfTgX calls for format generation are:

The pdfTgX user manual

internal name type default comment
\pdfoutput integer 0 dvi
\pdfadjustspacing integer 0 off
\pdfcompresslevel integer 9 best
\pdfobjcompresslevel integer 0 no object streams
\pdfdecimaldigits integer 4 max.
\pdfimageresolution integer 72 dpi
\pdfpkresolution integer 0 72dpi
\pdfpkmode tokenreg. empty mode set in mktex.cnf
\pdfuniqueresname integer 0

\pdfprotrudechars integer 0

\pdfminorversion integer 4 pdf 1.4
\pdfforcepagebox integer 0
\pdfinclusionerrorlevel integer 0

\pdfhorigin dimension 1in

\pdfvorigin dimension 1in

\pdfpagewidth dimension 0pt

\pdfpageheight dimension 0pt

\pdflinkmargin dimension 0pt

\pdfdestmargin dimension 0pt

\pdfthreadmargin dimension 0pt

\pdfmapfile text pdftex.map notdumped

Table 2 The set of pdfIEX configuration parameters.

% Set pdfTeX parameters for pdf mode (replacing pdftex.cfg file).
% Thomas Esser, 2004. public domain.

\pdfoutput=1

\pdfpagewidth=210 true mm

\pdfpageheight=297 true mm

\pdfpkresolution=600

\endinput

Figure 1 A typical configuration file (pdftexconfig. tex).

pdftex -ini *etex.ini
pdftex -ini pdflatex.ini

These calls produce format files etex.fmt and pdflatex.fmt, as the default format file name is taken from
the input file name. You can overrule this with the —-jobname option. The asterisk * in the first example
line below tells the pdfTEX engine to go into extended -ini mode (e-IgX enabled); otherwise it stays in non—
extended -ini mode. The extended -ini mode can also be forced by the —etex command line option, as
shown in the 2nd line below.

pdftex -ini -jobname=pdfelatex *pdflatex.ini
pdftex -ini -jobname=pdfelatex -etex pdflatex.ini

In ConTgXt the generation depends on the interface used. A format using the English user interface is
generated with

pdftex -ini cont-en

3.7

The pdfTgX user manual

% Thomas Esser, 1998, 2004. public domain.
\ifx\pdfoutput\undefined
\else
\ifx\pdfoutput\relax
\else
\input pdftexconfig
\pdfoutput=0
\fi
\fi
\input etex.src
\dump
\endinput

Figure 2 File etex.ini for e-IgX format with dvi output.

\ifx\pdfoutput\undefined
\else
\ifx\pdfoutput\relax
\else
\input pdftexconfig
\pdfoutput=1
\fi
\fi
\scrollmode
\input latex.ltx
\endinput

Figure 3 File pdflatex.ini for LTEX format with pdf output.

When properly set up, one can also use the ConTgXt command line interface TpXexec to generate one or more
formats, like:

texexec --make en
for an English format, or

texexec --make en de
for an English and German one. Most users will simply say:

texexec --make --all [--alone]

and so generate the TgX and METAPOST related formats that ConTgXt needs. Whatever macro package used,
the formats should be placed in the TEXFORMATS path.

Testing the installation

When everything is set up, you can test the installation. In the distribution there is a plain TgX test file
samplepdf . tex in the manual/samplepdf/ directory. Process this file by typing:

pdftex samplepdf

If the installation is ok, this run should produce a file called samplepdf . pdf. The file samplepdf.tex is
also a good place to look for how to use pdfTEX’s primitives.

3.8

The pdfTgX user manual

Common problems

The most common problem with installations is that pdfTEX complains that something cannot be found. In
such cases make sure that TEXMFCNF is set correctly, so pdfIEX can find texmf . cnf. The next best place
to look/edit is the file texmf . cnf. When still in deep trouble, set KPATHSEA_DEBUG=255 before running
pdfTEX or run pdfTEX with option -k 255. This will cause pdfTgX to write a lot of debugging information
that can be useful to trace problems. More options can be found in the Web2c documentation.

Variables in texmf . cnf can be overwritten by environment variables. Here are some of the most common
problems you can encounter when getting started:

e T can’t read pdftex.pool; bad path?

TEXMFCNF is not set correctly and so pdfTgX cannot find texmf . cnf, or TEXPOOL in texmf . cnf doesn’t
contain a path to the pool file pdftex.pool.

e You have to increase POOLSIZE.

pdfTEX cannot find texmf . cnf, or the value of pool_size specified in texmf . cnf is not large enough
and must be increased. If pool_size is not specified in texmf . cnf then you can add something like

pool_size=500000

e I can’t find the format file ‘pdftex.fmt’!
I can’t find the format file ‘pdflatex.fmt’!

The format file is not created (see above how to do that) or is not properly placed. Make sure that
TEXFORMATS in texmf . cnf contains the path to pdftex.fmt or pdflatex.fmt.

e ——! xx.fmt was written by tex
Fatal format file error; I’m stymied

This appears e. g. if you forgot to regenerate the . fmt files after installing a new version of the pdfTgX
binary and pdftex.pool. The first line tells by which engine the offending format was generated.

e TEX.POOL doesn’t match; TANGLE me again!
TEX.POOL doesn’t match; TANGLE me again (or fix the path).

This might appear if you forgot to install the proper pdftex.pool when installing a new version of the
pdfTEX binary. E. g. under TgX Live then run texconfig-sys init as root.

e pdfTEX cannot find one or more map files (*.map), encoding vectors (*.enc), virtual fonts, Type 1 fonts,
TrueType or OpenType fonts, or some image file.

Make sure that the required file exists and the corresponding variable in texmf . cnf contains a path to
the file. See above which variables pdfTgX needs apart from the ones TgX uses.

When you have installed new fonts, and your pdf viewer complains about missing fonts, you should take
a look at the log file produced by pdfTgX. Missing fonts, map files, encoding vectors as well as missing
characters (glyphs) are reported there.

Normally the page content takes one object. This means that one seldomly finds more than a few hundred ob-
jects in a simple file. This pdfTEX manual for instance uses approx. 750 objects. In more complex applications
this number can grow quite rapidly, especially when one uses a lot of widget annotations, shared annotations
or other shared things. In any case pdfTgX’s internal object table size will automatically grow to the required
size (the parameter obj_tab_size for manual control of the object table size is now obsolete and ignored).

The pdfTgX user manual

4 Macro packages supporting PDFTEX

As pdfTEX generates the final pdf output without help of a postprocessor, macro packages that take care of
these pdf features have to be set up properly. Typical tasks are handling color, graphics, hyperlink support,
threading, font-inclusion, as well as page imposition and manipulation. All these pdf-specific tasks can be
commanded by pdfTEX’s own primitives (a few also by a pdfTgX-specific \special{pdf: ...} primitive).
Any other \special{} commands, like the ones defined for various dvi postprocessors, are simply ignored
by pdfTgX when in pdf output mode; a warning is given only for non-empty \special{} commands.

When a macro package already written for classical TgX with dvi output is to be modified for use with pdfTgX,
it is very helpful to get some insight to what extent pdfTgX-specific support is needed. This info can be
gathered e. g. by outputting the various \special commands as \message. Simply type

\pdfoutput=1 \let\special\message
or, if this leads to confusion,
\pdfoutput=1 \def\special#i{\writel6{special: #1}}

and see what happens. As soon as one ‘special’ message turns up, one knows for sure that some kind of
pdfTEX specific support is needed, and often the message itself gives a indication of what is needed.

Currently all mainstream macro packages offer pdfTEX support, with automatic detection of pdfTgX as engine.
So there is normally no need to turn on pdfTEX support explicitly.

e For IXTEX users, Sebastian Rahtz’ and Heiko Oberdiek’s hyperref package has substantial support for
pdfTEX and provides access to most of its features. In the simplest and most common case, the user merely
needs to load hyperref, and all cross-references will be converted to pdf hypertext links. pdf output is
automatically selected, compression is turned on, and the page size is set up correctly. Bookmarks are
created to match the table of contents.

e The standard IX“TEX graphic