
AFM2PL(1) afm2pl AFM2PL(1)

NAME
afm2pl − convert AFM font metrics to TeX pl font metrics

SYNOPSIS
afm2pl [−p encoding_file] [−o] [−eextension_factor] [−sslant_factor] [−f font_dimensions] [−k]

[−m letter_spacing] [−l ligkern_spec] [−L ligkern_spec] { input_file[.afm]}
[output_file[.pl]]

afm2pl { −−help | −−version}

DESCRIPTION
afm2pl converts an afm (Adobe Font Metric) file into a pl (Property List) file, which in its turn
can be converted to a tfm (TeX Font Metric) file. It preserves kerns and ligatures.

afm2pl is meant to be a replacement for afm2tfm, on which it is based. With afm2tfm, preserving
kerns and ligatures is possible only in a roundabout way.

For text fonts, Y&Y’s texnansi is the recommended encoding to be used with afm2pl. This gives
you a good character set with all the more important accented characters and many typographic
symbols available as single characters, without a need for either virtual fonts or a separate text
companion font.

Full LaTeX support for this encoding is available in the form of the texnansi package, which is
already part of TeX Live and teTeX. These distributions also contain the encoding file texnan-
si.enc.

The distribution contains uppercased and lowercased versions of texnansi, viz. texnanuc.enc and
texnanlc.enc, to allow font−based rather than macro−based uppercasing and lowercasing, and the
familiar old ot1 encoding plus some variations in PostScript .enc format (I included these because
they seem to be absent from teTeX/TeX Live).

Return value: 0 if no error; a negative number indicating the number of missing glyphs if conver-
sion was successfull but glyphs are missing, and 1 in case of error.

OPTIONS
−p encoding_file

The default is the encoding specified in the afm file, which had better match the encod-
ing in the fontfile (pfa or pfb). The generated mapfile entry (see below) instructs pdftex
or the dvi driver to reencode the font on the fly. On−the−fly reencoding does not require
virtual fonts.

−o Use octal for all character codes in the pl file.

−eextend_factor
Widen or narrow characters byextend_factor. Default is 1.0 (natural width). Not recom-
mended, except that arguably a narrowed Courier is less jarring than a full−width Couri-

February 2004 1

AFM2PL(1) afm2pl AFM2PL(1)

er, when used in combination with a normal proportional font. For Courier, choose .833
to match the width of cmtt.

−sslant_factor
Oblique (slant) characters byslant_factor. Not recommended.

−f font_dimensions
The value is either the keyword afm2tfm or a comma−separated list of up to five inte-
gers. The parameters are listed below, with their defaults and their value when the
afm2tfm keyword is specified. ’Space’ means the width of a space in the target font, ex-
cept of course in the last row. Keep in mind that the design size is 1000, and that all
numbers must be nonnegative integers.

Font dimension Default value Afm2tfmvalue

stretch space div 2 300 xextend_factor
shrink space div 3 100 xextend_factor
extra space space div 3 missing
quad 2 x width of ’0’ 1000 xextend_factor
space (space source font) xextend_factor (space source font) xextend_factor
For fixed−pitch fonts, different values apply:

Font dimension Default value Afm2tfmvalue

stretch 0 0
shrink 0 0
extra space space missing
quad 2 x character width 1000 xextend_factor
space character width character width
Specify just a non−default stretch and shrink with e.g. 150,70 and just a non−default extra space
with ,,10.

−k Keep original ligatures. This option only has effect in combination with positive let-
terspacing; see the section on letterspacing and extra ligkern info.

−m letter_spacing
Letterspace byletter_spacing/1000 em (integer). This is useful for making all−caps
typesetting look better. Try a value of e.g. 50 or 100. But see the section on letterspacing
and extra ligkern info for details.

−l ligkern_spec, −L ligkern_spec
See the section on extra ligkern info for details.

−V Verbose. If turned on, it reports the number of missing glyphs to stderr and their names
to stdout. This is not particularly logical, but this way the glyph names can be captured
ev en under Windows.

February 2004 2

AFM2PL(1) afm2pl AFM2PL(1)

−−help Display a short usage message.

−−version
Display the version number of afm2pl.

MAPFILE ENTRIES
afm2pl writes a mapfile entry to a file with the same basename as the pl output file, but with ex-
tension .map. It can be used for the dvips mapfile and for the pdftex mapfile, although, in case of
a geometrically transformed font, it may be better to remove the PostScript name for a pdftex
mapfile entry. It is assumed that the pfb file has the same basename as the afm file and must be
downloaded. You may have to hand−edit this entry.

You can configure dvips and pdftex to read this additional mapfile or otherwise add the entry to
an existing mapfile. It appears that pdftex automatically will consult a mapfile xxx.map for a font
xxx.

EXTRA LIGKERN INFO
Most users are well−advised to leave this mess alone and to accept the default behavior.

The ligatures and kerns present in the afm file can be modified in various ways. Default, the en-
coding file is scanned for extra ligkern specifications, whose format will be described below. If
there are no ligkern specifications in the encoding file, then extra ligkern specifications will be
read from a file default.lig. A value of 0 forligkern_specmeans that the ligatures and kerns from
the afm file won’t be tampered with and a value of 1 specifies default behavior. One can also
specify a comma−separated list of files with extra ligkerns specs.

If afm2pl is compiled with the kpathsea library, then these files will be searched for under
$TEXMF/fonts/lig.

Note that ligatures and kerns are hints for the typesetting application; there is no need to down-
load this information to the printer or to make it available to a dvi driver.

The parser for ligkern info has been inherited from afm2tfm virtually without change. A ligkern
specification can have one of the following forms:

glyph_name1 glyph_name2 lig_op glyph_name3;

This specifies a ligature. Possible values forlig_op are =:, |=:, |=:>, =:|, =:|>, |=:|, |=:|> and |=:|>>.
These correspond to LIG, /LIG, /LIG>, LIG/, LIG/>, /LIG/, /LIG/>, /LIG/>> in .pl syntax; see
the pltotf documentation and the .lig files in the distribution.

glyph_name1<> glyph_name2;

February 2004 3

AFM2PL(1) afm2pl AFM2PL(1)

Kern glyph_name1asglyph_name2.

glyph_name1{} glyph_name2;

Remove the kern betweenglyph_name1andglyph_name2. A value of * for either glyph name is
interpreted as a wildcard.

|| =glyph;

Set the (right) boundary character toglyph. glyphmay be either a glyphname or a slot in the en-
coding vector. Choosing a glyph which doesn’t occur in the output encoding is equivalent to not
specifying a boundarychar at all. It is ok to pick an encoded glyphname which does not occur in
the afm. In fact, this is what default.lig does: || = cwm ;.

You can copy the kerns of an unencoded character to the boundarychar:

|| <> space ;

This ligkern specification should occur before the one that deletes space kerns.

A l igkern specification should be contained within one line. One line may contain several ligkern
specifications, separated by spaces. Note that ; (space followed by semicolon) is considered part
of the ligkern specification. See the lig files included in this distribution. Example:

one {} * ; * {} one ; two {} * ; * {} t wo ;

Lines with ligkern specifications inside an encoding file should start with % LIGKERN. Ligkern
specifications in a lig file may optionally start this way.

LETTERSPACING AND EXTRA LIGKERN INFO
Letterspacing has various side−effects for ligkern info. Instead of simply applying the extra ligk-
ern info (see previous section), the following is done:

1. In case of positive letterspacing, native ligatures are removed, unless the −k option is speci-
fied.

2. Extraligkern info is applied as usual, except that in case of positive letterspacing different de-
faults apply: −l 0 is quietly ignored, ligkern comments in the encoding file are ignored, and
defpre.lig is read instead of default.lig.

February 2004 4

AFM2PL(1) afm2pl AFM2PL(1)

3. Letterspacingis applied. This adds a lot of kerns, and modifies existing kerns.

4. Theextra ligkern info specified with −L is applied. The only ligkern specs which are allowed
here, are removals of kerning pairs (with the {} operator). Values 0 and 1 have a similar
meaning as for the −l parameter. The tfm format has room for only about 180x180 ligatures
and kerning pairs. This is enough for OT1 encoding, but for texnansi encoding quite a few
ligkern specifications have to be removed. The pltotf program will remove all ligkern info if
too many ligatures and kerns remain. The default lig file is defpost.lig. This file throws out
kerning pairs which are unlikely to be involved in letterspacing, such as kerns involving ac-
cents or kerns with a punctuation character or right bracket at the left. It does not add let-
terspacing kerns involving boundarychars. Instead, fontspace is increased by twice the let-
terspacing. defpost.lig throws out enough kerns in case of texnansi encoding. With other en-
codings, you may have to throw out additional kerning pairs.

FONT-BASED UPPER- AND LOWERCASING
The distribution includes encoding vectors texnanuc.enc and texnanlc.enc which produce all−up-
percase and all−lowercase fonts. The distribution contains an example ucshape.tex on how to use
such fonts with LaTeX font selection.

The principal uses for an all−uppercase font are page headers and section heads. If these contain
math, then macro−based uppercasing would create unpleasant complications.

The sz ligature
Note that the texnanuc encoding provides no glyph for the sz ligature; you’ll either have to substi-
tute ss or provide a macro−based solution. The following code uses either the usual glyph or sub-
stitutes the letters ss, depending on whether the glyph exists in the current font:

\def\ss{%
\setbox0\hbox{\char25}%
\ifnum\wd0=0 ss\else\box0\fi

}

In LaTeX, this code appears to work well enough, although on occasion you may need to insert
\protect. A better solution might involve the sixth parameter of the \DeclareFontShape macro, but
I failed to get that to work.

AFM2PL, FONTINST AND ARTIFICIAL SMALLCAPS
Afm2pl currently doesn’t do virtual fonts. That means that for things such as artificial smallcaps
you have to turn elsewhere, e.g. to the fontinst package, which is part of any mainstream TeX dis-
tribution.

Look under texmf/tex/fontinst for fontinst support files, which allow you to generate a smallcaps

February 2004 5

AFM2PL(1) afm2pl AFM2PL(1)

font (tfm and vf files) from an afm2pl−generated tfm file. This package only supports texnansi
encoding.

There should be no real problem in doing the same for OT1 encoding. However, there are several
variations of the OT1 encoding to take care of. Also, there are as far as I know no officially sanc-
tioned PostScript names for all the variations of the OT1 encoding; the fontinst names contain
spaces and are therefore not useable as PostScript names.

FUTURE PLANS
I am considering a revision which makes afm2pl a more complete replacement for afm2tfm. In
that version, afm2pl can optionally create a second, virtual font, possibly with a different encod-
ing and possibly letterspaced. The current option of non−virtual letterspacing via kerns will be
dropped. If the encodings differ then it is assumed that the virtual font is intended as a
small−caps version of the main font, and a scaling parameter can be specified for non−matching
glyphs.

COPYRIGHT
The afm2pl distribution is subject to the GNU General Public Licence (GPL). Please refer to the
file COPYING for details.

The afm2pl homepage is http://www.ntg.nl/afm2pl.html:http://www.ntg.nl/afm2pl.html.

AUTHOR
Siep Kroonenberg <ntg−afm2pl@ntg.nl>.

February 2004 6

