// geometry.asy
// Copyright (C) 2007
// Author: Philippe IVALDI 2007/09/01
// http://www.piprime.fr/
// This program is free software ; you can redistribute it and/or modify
// it under the terms of the GNU Lesser General Public License as published by
// the Free Software Foundation ; either version 3 of the License, or
// (at your option) any later version.
// This program is distributed in the hope that it will be useful, but
// WITHOUT ANY WARRANTY ; without even the implied warranty of
// MERCHANTABILITY or FITNESS FOR A PARTICULAR PURPOSE. See the GNU
// Lesser General Public License for more details.
// You should have received a copy of the GNU Lesser General Public License
// along with this program ; if not, write to the Free Software
// Foundation, Inc., 59 Temple Place, Suite 330, Boston, MA 02111-1307 USA
// COMMENTARY:
// An Asymptote geometry module.
// THANKS:
// Special thanks to Olivier Guibé for his help in mathematical issues.
// BUGS:
// CODE:
import math;
import markers;
// *=======================================================*
// *........................HEADER.........................*
/*
*/
real epsgeo = 10 * sqrt(realEpsilon);/*Variable used in the approximate calculations.*/
/*
*/
void addMargins(picture pic = currentpicture,
real lmargin = 0, real bmargin = 0,
real rmargin = lmargin, real tmargin = bmargin,
bool rigid = true, bool allObject = true)
{/*Add margins to 'pic' with respect to
the current bounding box of 'pic'.
If 'rigid' is false, margins are added iff an infinite curve will
be prolonged on the margin.
If 'allObject' is false, fixed - size objects (such as labels and
arrowheads) will be ignored.*/
pair m = allObject ? truepoint(pic, SW) : point(pic, SW);
pair M = allObject ? truepoint(pic, NE) : point(pic, NE);
if(rigid) {
draw(m - inverse(pic.calculateTransform()) * (lmargin, bmargin), invisible);
draw(M + inverse(pic.calculateTransform()) * (rmargin, tmargin), invisible);
} else pic.addBox(m, M, -(lmargin, bmargin), (rmargin, tmargin));
}
real approximate(real t)
{
real ot = t;
if(abs(t - ceil(t)) < epsgeo) ot = ceil(t);
else if(abs(t - floor(t)) < epsgeo) ot = floor(t);
return ot;
}
real[] approximate(real[] T)
{
return map(approximate, T);
}
/*
*/
real binomial(real n, real k)
{/*Return n!/((n - k)!*k!)*/
return gamma(n + 1)/(gamma(n - k + 1) * gamma(k + 1));
}
/*
*/
real rf(real x, real y, real z)
{/*Computes Carlson's elliptic integral of the first kind.
x, y, and z must be non negative, and at most one can be zero.*/
real ERRTOL = 0.0025,
TINY = 1.5e-38,
BIG = 3e37,
THIRD = 1/3,
C1 = 1/24,
C2 = 0.1,
C3 = 3/44,
C4 = 1/14;
real alamb, ave, delx, dely, delz, e2, e3, sqrtx, sqrty, sqrtz, xt, yt, zt;
if(min(x, y, z) < 0 || min(x + y, x + z, y + z) < TINY ||
max(x, y, z) > BIG) abort("rf: invalid arguments.");
xt = x;
yt = y;
zt = z;
do {
sqrtx = sqrt(xt);
sqrty = sqrt(yt);
sqrtz = sqrt(zt);
alamb = sqrtx * (sqrty + sqrtz) + sqrty * sqrtz;
xt = 0.25 * (xt + alamb);
yt = 0.25 * (yt + alamb);
zt = 0.25 * (zt + alamb);
ave = THIRD * (xt + yt + zt);
delx = (ave - xt)/ave;
dely = (ave - yt)/ave;
delz = (ave - zt)/ave;
} while(max(fabs(delx), fabs(dely), fabs(delz)) > ERRTOL);
e2 = delx * dely - delz * delz;
e3 = delx * dely * delz;
return (1.0 + (C1 * e2 - C2 - C3 * e3) * e2 + C4 * e3)/sqrt(ave);
}
/*
*/
real rd(real x, real y, real z)
{/*Computes Carlson's elliptic integral of the second kind.
x and y must be positive, and at most one can be zero.
z must be non negative.*/
real ERRTOL = 0.0015,
TINY = 1e-25,
BIG = 4.5 * 10.0^21,
C1 = (3/14),
C2 = (1/6),
C3 = (9/22),
C4 = (3/26),
C5 = (0.25 * C3),
C6 = (1.5 * C4);
real alamb, ave, delx, dely, delz, ea, eb, ec, ed, ee, fac, sqrtx, sqrty,
sqrtz, sum, xt, yt, zt;
if (min(x, y) < 0 || min(x + y, z) < TINY || max(x, y, z) > BIG)
abort("rd: invalid arguments");
xt = x;
yt = y;
zt = z;
sum = 0;
fac = 1;
do {
sqrtx = sqrt(xt);
sqrty = sqrt(yt);
sqrtz = sqrt(zt);
alamb = sqrtx * (sqrty + sqrtz) + sqrty * sqrtz;
sum += fac/(sqrtz * (zt + alamb));
fac = 0.25 * fac;
xt = 0.25 * (xt + alamb);
yt = 0.25 * (yt + alamb);
zt = 0.25 * (zt + alamb);
ave = 0.2 * (xt + yt + 3.0 * zt);
delx = (ave - xt)/ave;
dely = (ave - yt)/ave;
delz = (ave - zt)/ave;
} while (max(fabs(delx), fabs(dely), fabs(delz)) > ERRTOL);
ea = delx * dely;
eb = delz * delz;
ec = ea - eb;
ed = ea - 6 * eb;
ee = ed + ec + ec;
return 3 * sum + fac * (1.0 + ed * (-C1 + C5 * ed - C6 * delz * ee)
+delz * (C2 * ee + delz * (-C3 * ec + delz * C4 * ea)))/(ave * sqrt(ave));
}
/*
*/
real elle(real phi, real k)
{/*Legendre elliptic integral of the 2nd kind,
evaluated using Carlson's functions RD and RF.
The argument ranges are -infinity < phi < +infinity, 0 <= k * sin(phi) <= 1.*/
real result;
if (phi >= 0 && phi <= pi/2) {
real cc, q, s;
s = sin(phi);
cc = cos(phi)^2;
q = (1 - s * k) * (1 + s * k);
result = s * (rf(cc, q, 1) - (s * k)^2 * rd(cc, q, 1)/3);
} else
if (phi <= pi && phi >= 0) {
result = 2 * elle(pi/2, k) - elle(pi - phi, k);
} else
if (phi <= 3 * pi/2 && phi >= 0) {
result = 2 * elle(pi/2, k) + elle(phi - pi, k);
} else
if (phi <= 2 * pi && phi >= 0) {
result = 4 * elle(pi/2, k) - elle(2 * pi - phi, k);
} else
if (phi >= 0) {
int nb = floor(0.5 * phi/pi);
result = nb * elle(2 * pi, k) + elle(phi%(2 * pi), k);
} else result = -elle(-phi, k);
return result;
}
/*
*/
pair[] intersectionpoints(pair A, pair B,
real a, real b, real c, real d, real f, real g)
{/*Intersection points with the line (AB) and the quadric curve
a * x^2 + b * x * y + c * y^2 + d * x + f * y + g = 0 given in the default coordinate system*/
pair[] op;
real ap = B.y - A.y,
bpp = A.x - B.x,
cp = A.y * B.x - A.x * B.y;
real sol[];
if (abs(ap) > epsgeo) {
real aa = ap * c + a * bpp^2/ap - b * bpp,
bb = ap * f - bpp * d + 2 * a * bpp * cp/ap - b * cp,
cc = ap * g - cp * d + a * cp^2/ap;
sol = quadraticroots(aa, bb, cc);
for (int i = 0; i < sol.length; ++i) {
op.push((-bpp * sol[i]/ap - cp/ap, sol[i]));
}
} else {
real aa = a * bpp,
bb = d * bpp - b * cp,
cc = g * bpp - cp * f + c * cp^2/bpp;
sol = quadraticroots(aa, bb, cc);
for (int i = 0; i < sol.length; ++i) {
op.push((sol[i], -cp/bpp));
}
}
return op;
}
/*
*/
pair[] intersectionpoints(pair A, pair B, real[] equation)
{/*Return the intersection points of the line AB with
the conic whose an equation is
equation[0] * x^2 + equation[1] * x * y + equation[2] * y^2 + equation[3] * x + equation[4] * y + equation[5] = 0*/
if(equation.length != 6) abort("intersectionpoints: bad length of array for a conic equation.");
return intersectionpoints(A, B, equation[0], equation[1], equation[2],
equation[3], equation[4], equation[5]);
}
// *........................HEADER.........................*
// *=======================================================*
// *=======================================================*
// *......................COORDINATES......................*
real EPS = sqrt(realEpsilon);
/*
*/
typedef pair convert(pair);/*Function type to convert pair in an other coordinate system.*/
/*
*/
typedef real abs(pair);/*Function type to calculate modulus of pair.*/
/*
*/
typedef real dot(pair, pair);/*Function type to calculate dot product.*/
/*
*/
typedef pair polar(real, real);/*Function type to calculate the coordinates from the polar coordinates.*/
/*
*/
struct coordsys
{/*This structure represents a coordinate system in the plane.*/
/*
*/
restricted convert relativetodefault = new pair(pair m){return m;};/*Convert a pair given relatively to this coordinate system to
the pair relatively to the default coordinate system.*/
/*
*/
restricted convert defaulttorelative = new pair(pair m){return m;};/*Convert a pair given relatively to the default coordinate system to
the pair relatively to this coordinate system.*/
/*
*/
restricted dot dot = new real(pair m, pair n){return dot(m, n);};/*Return the dot product of this coordinate system.*/
/*
*/
restricted abs abs = new real(pair m){return abs(m);};/*Return the modulus of a pair in this coordinate system.*/
/*
*/
restricted polar polar = new pair(real r, real a){return (r * cos(a), r * sin(a));};/*Polar coordinates routine of this coordinate system.*/
/*
*/
restricted pair O = (0, 0), i = (1, 0), j = (0, 1);/*Origin and units vector.*/
/*
*/
void init(convert rtd, convert dtr,
polar polar, dot dot)
{/*The default constructor of the coordinate system.*/
this.relativetodefault = rtd;
this.defaulttorelative = dtr;
this.polar = polar;
this.dot = dot;
this.abs = new real(pair m){return sqrt(dot(m, m));};;
this.O = rtd((0, 0));
this.i = rtd((1, 0)) - O;
this.j = rtd((0, 1)) - O;
}
}/**/
/*
*/
bool operator ==(coordsys c1, coordsys c2)
{/*Return true iff the coordinate system have the same origin and units vector.*/
return c1.O == c2.O && c1.i == c2.i && c1.j == c2.j;
}
/*
*/
coordsys cartesiansystem(pair O = (0, 0), pair i, pair j)
{/*Return the Cartesian coordinate system (O, i, j).*/
coordsys R;
real[][] P = {{0, 0}, {0, 0}};
real[][] iP;
P[0][0] = i.x;
P[0][1] = j.x;
P[1][0] = i.y;
P[1][1] = j.y;
iP = inverse(P);
real ni = abs(i);
real nj = abs(j);
real ij = angle(j) - angle(i);
pair rtd(pair m)
{
return O + (P[0][0] * m.x + P[0][1] * m.y, P[1][0] * m.x + P[1][1] * m.y);
}
pair dtr(pair m)
{
m-=O;
return (iP[0][0] * m.x + iP[0][1] * m.y, iP[1][0] * m.x + iP[1][1] * m.y);
}
pair polar(real r, real a)
{
real ca = sin(ij - a)/(ni * sin(ij));
real sa = sin(a)/(nj * sin(ij));
return r * (ca, sa);
}
real tdot(pair m, pair n)
{
return m.x * n.x * ni^2 + m.y * n.y * nj^2 + (m.x * n.y + n.x * m.y) * dot(i, j);
}
R.init(rtd, dtr, polar, tdot);
return R;
}
/*
*/
void show(picture pic = currentpicture, Label lo = "$O$",
Label li = "$\vec{\imath}$",
Label lj = "$\vec{\jmath}$",
coordsys R,
pen dotpen = currentpen, pen xpen = currentpen, pen ypen = xpen,
pen ipen = red,
pen jpen = ipen,
arrowbar arrow = Arrow)
{/*Draw the components (O, i, j, x - axis, y - axis) of 'R'.*/
unravel R;
dot(pic, O, dotpen);
drawline(pic, O, O + i, xpen);
drawline(pic, O, O + j, ypen);
draw(pic, li, O--(O + i), ipen, arrow);
Label lj = lj.copy();
lj.align(lj.align, unit(I * j));
draw(pic, lj, O--(O + j), jpen, arrow);
draw(pic, lj, O--(O + j), jpen, arrow);
Label lo = lo.copy();
lo.align(lo.align, -2 * dir(O--O + i, O--O + j));
lo.p(dotpen);
label(pic, lo, O);
}
/*
*/
pair operator /(pair p, coordsys R)
{/*Return the xy - coordinates of 'p' relatively to
the coordinate system 'R'.
For example, if R = cartesiansystem((1, 2), (1, 0), (0, 1)), (0, 0)/R is (-1, -2).*/
return R.defaulttorelative(p);
}
/*
*/
pair operator *(coordsys R, pair p)
{/*Return the coordinates of 'p' given in the
xy - coordinates 'R'.
For example, if R = cartesiansystem((1, 2), (1, 0), (0, 1)), R * (0, 0) is (1, 2).*/
return R.relativetodefault(p);
}
/*
*/
path operator *(coordsys R, path g)
{/*Return the reconstructed path applying R * pair to each node, pre and post control point of 'g'.*/
guide og = R * point(g, 0);
real l = length(g);
for(int i = 1; i <= l; ++i)
{
pair P = R * point(g, i);
pair post = R * postcontrol(g, i - 1);
pair pre = R * precontrol(g, i);
if(i == l && (cyclic(g)))
og = og..controls post and pre..cycle;
else
og = og..controls post and pre..P;
}
return og;
}
/*
*/
coordsys operator *(transform t, coordsys R)
{/*Provide transform * coordsys.
Note that shiftless(t) is applied to R.i and R.j.*/
coordsys oc;
oc = cartesiansystem(t * R.O, shiftless(t) * R.i, shiftless(t) * R.j);
return oc;
}
/*
*/
restricted coordsys defaultcoordsys = cartesiansystem(0, (1, 0), (0, 1));/*One can always refer to the default coordinate system using this constant.*/
/*
*/
coordsys currentcoordsys = defaultcoordsys;/*The coordinate system used by default.*/
/*
*/
struct point
{/*This structure replaces the pair to embed its coordinate system.
For example, if 'P = point(cartesiansystem((1, 2), i, j), (0, 0))',
P is equal to the pair (1, 2).*/
/*
*/
coordsys coordsys;/*The coordinate system of this point.
*/
restricted pair coordinates;/*The coordinates of this point relatively to the coordinate system 'coordsys'.
*/
restricted real x, y;/*The xpart and the ypart of 'coordinates'.*/
/*
*/
real m = 1;/*Used to cast mass<->point.*/
void init(coordsys R, pair coordinates, real mass)
{/*The constructor.*/
this.coordsys = R;
this.coordinates = coordinates;
this.x = coordinates.x;
this.y = coordinates.y;
this.m = mass;
}
}/**/
/*
*/
point point(coordsys R, pair p, real m = 1)
{/*Return the point which has the coodinates 'p' in the
coordinate system 'R' and the mass 'm'.*/
point op;
op.init(R, p, m);
return op;
}
/*
*/
point point(explicit pair p, real m)
{/*Return the point which has the coodinates 'p' in the current
coordinate system and the mass 'm'.*/
point op;
op.init(currentcoordsys, p, m);
return op;
}
/*
*/
point point(coordsys R, explicit point M, real m = M.m)
{/*Return the point of 'R' which has the coordinates of 'M' and the mass 'm'.
Do not confuse this routine with the further routine 'changecoordsys'.*/
point op;
op.init(R, M.coordinates, M.m);
return op;
}
/*
*/
point changecoordsys(coordsys R, point M)
{/*Return the point 'M' in the coordinate system 'coordsys'.
In other words, the returned point marks the same plot as 'M' does.*/
point op;
coordsys mco = M.coordsys;
op.init(R, R.defaulttorelative(mco.relativetodefault(M.coordinates)), M.m);
return op;
}
/*
*/
pair coordinates(point M)
{/*Return the coordinates of 'M' in its coordinate system.*/
return M.coordinates;
}
/*
*/
bool samecoordsys(bool warn = true ... point[] M)
{/*Return true iff all the points have the same coordinate system.
If 'warn' is true and the coordinate systems are different, a warning is sent.*/
bool ret = true;
coordsys t = M[0].coordsys;
for (int i = 1; i < M.length; ++i) {
ret = (t == M[i].coordsys);
if(!ret) break;
t = M[i].coordsys;
}
if(warn && !ret)
warning("coodinatesystem",
"the coordinate system of two objects are not the same.
The operation will be done relative to the default coordinate system.");
return ret;
}
/*
*/
point[] standardizecoordsys(coordsys R = currentcoordsys,
bool warn = true ... point[] M)
{/*Return the points with the same coordinate system 'R'.
If 'warn' is true and the coordinate systems are different, a warning is sent.*/
point[] op = new point[];
op = M;
if(!samecoordsys(warn ... M))
for (int i = 1; i < M.length; ++i)
op[i] = changecoordsys(R, M[i]);
return op;
}
/*
*/
pair operator cast(point P)
{/*Cast point to pair.*/
return P.coordsys.relativetodefault(P.coordinates);
}
/*
*/
pair[] operator cast(point[] P)
{/*Cast point[] to pair[].*/
pair[] op;
for (int i = 0; i < P.length; ++i) {
op.push((pair)P[i]);
}
return op;
}
/*
*/
point operator cast(pair p)
{/*Cast pair to point relatively to the current coordinate
system 'currentcoordsys'.*/
return point(currentcoordsys, p);
}
/*
*/
point[] operator cast(pair[] p)
{/*Cast pair[] to point[] relatively to the current coordinate
system 'currentcoordsys'.*/
pair[] op;
for (int i = 0; i < p.length; ++i) {
op.push((point)p[i]);
}
return op;
}
/*
*/
pair locate(point P)
{/*Return the coordinates of 'P' in the default coordinate system.*/
return P.coordsys * P.coordinates;
}
/*
*/
point locate(pair p)
{/*Return the point in the current coordinate system 'currentcoordsys'.*/
return p; //automatic casting 'pair to point'.
}
/*
*/
point operator *(real x, explicit point P)
{/*Multiply the coordinates (not the mass) of 'P' by 'x'.*/
return point(P.coordsys, x * P.coordinates, P.m);
}
/*
*/
point operator /(explicit point P, real x)
{/*Divide the coordinates (not the mass) of 'P' by 'x'.*/
return point(P.coordsys, P.coordinates/x, P.m);
}
/*
*/
point operator /(real x, explicit point P)
{/**/
return point(P.coordsys, x/P.coordinates, P.m);
}
/*
*/
point operator -(explicit point P)
{/*-P. The mass is inchanged.*/
return point(P.coordsys, -P.coordinates, P.m);
}
/*
*/
point operator +(explicit point P1, explicit point P2)
{/*Provide 'point + point'.
If the two points haven't the same coordinate system, a warning is sent and the
returned point has the default coordinate system 'defaultcoordsys'.
The masses are added.*/
point[] P = standardizecoordsys(P1, P2);
coordsys R = P[0].coordsys;
return point(R, P[0].coordinates + P[1].coordinates, P1.m + P2.m);
}
/*
*/
point operator +(explicit point P1, explicit pair p2)
{/*Provide 'point + pair'.
The pair 'p2' is supposed to be coordinates relatively to the coordinates system of 'P1'.
The mass is not changed.*/
coordsys R = currentcoordsys;
return point(R, P1.coordinates + point(R, p2).coordinates, P1.m);
}
point operator +(explicit pair p1, explicit point p2)
{
return p2 + p1;
}
/*
*/
point operator -(explicit point P1, explicit point P2)
{/*Provide 'point - point'.*/
return P1 + (-P2);
}
/*
*/
point operator -(explicit point P1, explicit pair p2)
{/*Provide 'point - pair'.
The pair 'p2' is supposed to be coordinates relatively to the coordinates system of 'P1'.*/
return P1 + (-p2);
}
point operator -(explicit pair p1, explicit point P2)
{
return p1 + (-P2);
}
/*
*/
point operator *(transform t, explicit point P)
{/*Provide 'transform * point'.
Note that the transforms scale, xscale, yscale and rotate are carried out relatively
the default coordinate system 'defaultcoordsys' which is not desired for point
defined in an other coordinate system.
On can use scale(real, point), xscale(real, point), yscale(real, point), rotate(real, point),
scaleO(real), xscaleO(real), yscaleO(real) and rotateO(real) (described further)
to change the coordinate system of reference.*/
coordsys R = P.coordsys;
return point(R, (t * locate(P))/R, P.m);
}
/*
*/
point operator *(explicit point P1, explicit point P2)
{/*Provide 'point * point'.
The resulted mass is the mass of P2*/
point[] P = standardizecoordsys(P1, P2);
coordsys R = P[0].coordsys;
return point(R, P[0].coordinates * P[1].coordinates, P2.m);
}
/*
*/
point operator *(explicit point P1, explicit pair p2)
{/*Provide 'point * pair'.
The pair 'p2' is supposed to be the coordinates of
the point in the coordinates system of 'P1'.
'pair * point' is also defined.*/
point P = point(P1.coordsys, p2, P1.m);
return P1 * P;
}
point operator *(explicit pair p1, explicit point p2)
{
return p2 * p1;
}
/*
*/
bool operator ==(explicit point M, explicit point N)
{/*Provide the test 'M == N' wish returns true iff MN < EPS*/
return abs(locate(M) - locate(N)) < EPS;
}
/*
*/
bool operator !=(explicit point M, explicit point N)
{/*Provide the test 'M != N' wish return true iff MN >= EPS*/
return !(M == N);
}
/*
*/
guide operator cast(point p)
{/*Cast point to guide.*/
return locate(p);
}
/*
*/
path operator cast(point p)
{/*Cast point to path.*/
return locate(p);
}
/*
*/
void dot(picture pic = currentpicture, Label L, explicit point Z,
align align = NoAlign,
string format = defaultformat, pen p = currentpen)
{/**/
Label L = L.copy();
L.position(locate(Z));
if(L.s == "") {
if(format == "") format = defaultformat;
L.s = "("+format(format, Z.x)+", "+format(format, Z.y)+")";
}
L.align(align, E);
L.p(p);
dot(pic, locate(Z), p);
add(pic, L);
}
/*
*/
real abs(coordsys R, pair m)
{/*Return the modulus |m| in the coordinate system 'R'.*/
return R.abs(m);
}
/*
*/
real abs(explicit point M)
{/*Return the modulus |M| in its coordinate system.*/
return M.coordsys.abs(M.coordinates);
}
/*
*/
real length(explicit point M)
{/*Return the modulus |M| in its coordinate system (same as 'abs').*/
return M.coordsys.abs(M.coordinates);
}
/*
*/
point conj(explicit point M)
{/*Conjugate.*/
return point(M.coordsys, conj(M.coordinates), M.m);
}
/*
*/
real degrees(explicit point M, coordsys R = M.coordsys, bool warn = true)
{/*Return the angle of M (in degrees) relatively to 'R'.*/
return (degrees(locate(M) - R.O, warn) - degrees(R.i))%360;
}
/*
*/
real angle(explicit point M, coordsys R = M.coordsys, bool warn = true)
{/*Return the angle of M (in radians) relatively to 'R'.*/
return radians(degrees(M, R, warn));
}
/*
*/
bool finite(explicit point p)
{/*Avoid to compute 'finite((pair)(infinite_point))'.*/
return finite(p.coordinates);
}
/*
*/
real dot(point A, point B)
{/*Return the dot product in the coordinate system of 'A'.*/
point[] P = standardizecoordsys(A.coordsys, A, B);
return P[0].coordsys.dot(P[0].coordinates, P[1].coordinates);
}
/*
*/
real dot(point A, explicit pair B)
{/*Return the dot product in the default coordinate system.
dot(explicit pair, point) is also defined.*/
return dot(locate(A), B);
}
real dot(explicit pair A, point B)
{
return dot(A, locate(B));
}
/*
*/
transform rotateO(real a)
{/*Rotation around the origin of the current coordinate system.*/
return rotate(a, currentcoordsys.O);
};
/*
*/
transform projection(point A, point B)
{/*Return the orthogonal projection on the line (AB).*/
pair dir = unit(locate(A) - locate(B));
pair a = locate(A);
real cof = dir.x * a.x + dir.y * a.y;
real tx = a.x - dir.x * cof;
real txx = dir.x^2;
real txy = dir.x * dir.y;
real ty = a.y - dir.y * cof;
real tyx = txy;
real tyy = dir.y^2;
transform t = (tx, ty, txx, txy, tyx, tyy);
return t;
}
/*
*/
transform projection(point A, point B, point C, point D, bool safe = false)
{/*Return the (CD) parallel projection on (AB).
If 'safe = true' and (AB)//(CD) return the identity.
If 'safe = false' and (AB)//(CD) return an infinity scaling.*/
pair a = locate(A);
pair u = unit(locate(B) - locate(A));
pair v = unit(locate(D) - locate(C));
real c = u.x * a.y - u.y * a.x;
real d = (conj(u) * v).y;
if (abs(d) < epsgeo) {
return safe ? identity() : scale(infinity);
}
real tx = c * v.x/d;
real ty = c * v.y/d;
real txx = u.x * v.y/d;
real txy = -u.x * v.x/d;
real tyx = u.y * v.y/d;
real tyy = -u.y * v.x/d;
transform t = (tx, ty, txx, txy, tyx, tyy);
return t;
}
/*
*/
transform scale(real k, point M)
{/*Homothety.*/
pair P = locate(M);
return shift(P) * scale(k) * shift(-P);
}
/*
*/
transform xscale(real k, point M)
{/*xscale from 'M' relatively to the x - axis of the coordinate system of 'M'.*/
pair P = locate(M);
real a = degrees(M.coordsys.i);
return (shift(P) * rotate(a)) * xscale(k) * (rotate(-a) * shift(-P));
}
/*
*/
transform yscale(real k, point M)
{/*yscale from 'M' relatively to the y - axis of the coordinate system of 'M'.*/
pair P = locate(M);
real a = degrees(M.coordsys.j) - 90;
return (shift(P) * rotate(a)) * yscale(k) * (rotate(-a) * shift(-P));
}
/*
*/
transform scale(real k, point A, point B, point C, point D, bool safe = false)
{/*
(help me for English translation...)
If 'safe = true' and (AB)//(CD) return the identity.
If 'safe = false' and (AB)//(CD) return a infinity scaling.*/
pair a = locate(A);
pair u = unit(locate(B) - locate(A));
pair v = unit(locate(D) - locate(C));
real c = u.x * a.y - u.y * a.x;
real d = (conj(u) * v).y;
real d = (conj(u) * v).y;
if (abs(d) < epsgeo) {
return safe ? identity() : scale(infinity);
}
real tx = (1 - k) * c * v.x/d;
real ty = (1 - k) * c * v.y/d;
real txx = (1 - k) * u.x * v.y/d + k;
real txy = (k - 1) * u.x * v.x/d;
real tyx = (1 - k) * u.y * v.y/d;
real tyy = (k - 1) * u.y * v.x/d + k;
transform t = (tx, ty, txx, txy, tyx, tyy);
return t;
}
/*
*/
transform scaleO(real x)
{/*Homothety from the origin of the current coordinate system.*/
return scale(x, (0, 0));
}
/*
*/
transform xscaleO(real x)
{/*xscale from the origin and relatively to the current coordinate system.*/
return scale(x, (0, 0), (0, 1), (0, 0), (1, 0));
}
/*
*/
transform yscaleO(real x)
{/*yscale from the origin and relatively to the current coordinate system.*/
return scale(x, (0, 0), (1, 0), (0, 0), (0, 1));
}
/*
*/
struct vector
{/*Like a point but casting to pair, adding etc does not take account
of the origin of the coordinate system.
*/
point v;/*Coordinates as a point (embed coordinate system and pair).*/
}/**/
/*
*/
point operator cast(vector v)
{/*Cast vector 'v' to point 'M' so that OM = v.*/
return v.v;
}
/*
*/
vector operator cast(pair v)
{/*Cast pair to vector relatively to the current coordinate
system 'currentcoordsys'.*/
vector ov;
ov.v = point(currentcoordsys, v);
return ov;
}
/*
*/
vector operator cast(explicit point v)
{/*A point can be interpreted like a vector using the code
'(vector)a_point'.*/
vector ov;
ov.v = v;
return ov;
}
/*
*/
pair operator cast(explicit vector v)
{/*Cast vector to pair (the coordinates of 'v' in the default coordinate system).*/
return locate(v.v) - v.v.coordsys.O;
}
/*
*/
align operator cast(vector v)
{/*Cast vector to align.*/
return (pair)v;
}
/*
*/
vector vector(coordsys R = currentcoordsys, pair v)
{/*Return the vector of 'R' which has the coordinates 'v'.*/
vector ov;
ov.v = point(R, v);
return ov;
}
/*
*/
vector vector(point M)
{/*Return the vector OM, where O is the origin of the coordinate system of 'M'.
Useful to write 'vector(P - M);' instead of '(vector)(P - M)'.*/
return M;
}
/*
*/
point point(explicit vector u)
{/*Return the point M so that OM = u, where O is the origin of the coordinate system of 'u'.*/
return u.v;
}
/*
*/
pair locate(explicit vector v)
{/*Return the coordinates of 'v' in the default coordinate system (like casting vector to pair).*/
return (pair)v;
}
/*
*/
void show(Label L, vector v, pen p = currentpen, arrowbar arrow = Arrow)
{/*Draw the vector v (from the origin of its coordinate system).*/
coordsys R = v.v.coordsys;
draw(L, R.O--v.v, p, arrow);
}
/*
*/
vector changecoordsys(coordsys R, vector v)
{/*Return the vector 'v' relatively to coordinate system 'R'.*/
vector ov;
ov.v = point(R, (locate(v) + R.O)/R);
return ov;
}
/*
*/
vector operator *(real x, explicit vector v)
{/*Provide real * vector.*/
return x * v.v;
}
/*
*/
vector operator /(explicit vector v, real x)
{/*Provide vector/real*/
return v.v/x;
}
/*
*/
vector operator *(transform t, explicit vector v)
{/*Provide transform * vector.*/
return t * v.v;
}
/*
*/
vector operator *(explicit point M, explicit vector v)
{/*Provide point * vector*/
return M * v.v;
}
/*
*/
point operator +(point M, explicit vector v)
{/*Return 'M' shifted by 'v'.*/
return shift(locate(v)) * M;
}
/*
*/
point operator -(point M, explicit vector v)
{/*Return 'M' shifted by '-v'.*/
return shift(-locate(v)) * M;
}
/*
*/
vector operator -(explicit vector v)
{/*Provide -v.*/
return -v.v;
}
/*
*/
point operator +(explicit pair m, explicit vector v)
{/*The pair 'm' is supposed to be the coordinates of
a point in the current coordinates system 'currentcoordsys'.
Return this point shifted by the vector 'v'.*/
return locate(m) + v;
}
/*
*/
point operator -(explicit pair m, explicit vector v)
{/*The pair 'm' is supposed to be the coordinates of
a point in the current coordinates system 'currentcoordsys'.
Return this point shifted by the vector '-v'.*/
return m + (-v);
}
/*
*/
vector operator +(explicit vector v1, explicit vector v2)
{/*Provide vector + vector.
If the two vector haven't the same coordinate system, the returned
vector is relative to the default coordinate system (without warning).*/
coordsys R = v1.v.coordsys;
if(samecoordsys(false, v1, v2)){R = defaultcoordsys;}
return vector(R, (locate(v1) + locate(v2))/R);
}
/*
*/
vector operator -(explicit vector v1, explicit vector v2)
{/*Provide vector - vector.
If the two vector haven't the same coordinate system, the returned
vector is relative to the default coordinate system (without warning).*/
return v1 + (-v2);
}
/*
*/
bool operator ==(explicit vector u, explicit vector v)
{/*Return true iff |u - v|*/
return abs(u - v) < EPS;
}
/*
*/
bool collinear(vector u, vector v)
{/*Return 'true' iff the vectors 'u' and 'v' are collinear.*/
return abs(ypart((conj((pair)u) * (pair)v))) < EPS;
}
/*
*/
vector unit(point M)
{/*Return the unit vector according to the modulus of its coordinate system.*/
return M/abs(M);
}
/*
*/
vector unit(vector u)
{/*Return the unit vector according to the modulus of its coordinate system.*/
return u.v/abs(u.v);
}
/*
*/
real degrees(vector v,
coordsys R = v.v.coordsys,
bool warn = true)
{/*Return the angle of 'v' (in degrees) relatively to 'R'.*/
return (degrees(locate(v), warn) - degrees(R.i))%360;
}
/*
*/
real angle(explicit vector v,
coordsys R = v.v.coordsys,
bool warn = true)
{/*Return the angle of 'v' (in radians) relatively to 'R'.*/
return radians(degrees(v, R, warn));
}
/*
*/
vector conj(explicit vector u)
{/*Conjugate.*/
return conj(u.v);
}
/*
*/
transform rotate(explicit vector dir)
{/*A rotation in the direction 'dir' limited to [-90, 90]
This is useful for rotating text along a line in the direction dir.
rotate(explicit point dir) is also defined.
*/
return rotate(locate(dir));
}
transform rotate(explicit point dir){return rotate(locate(vector(dir)));}
// *......................COORDINATES......................*
// *=======================================================*
// *=======================================================*
// *.........................BASES.........................*
/*
*/
point origin = point(defaultcoordsys, (0, 0));/*The origin of the current coordinate system.*/
/*
*/
point origin(coordsys R = currentcoordsys)
{/*Return the origin of the coordinate system 'R'.*/
return point(R, (0, 0)); //use automatic casting;
}
/*
*/
real linemargin = 0;/*Margin used to draw lines.*/
/*
*/
real linemargin()
{/*Return the margin used to draw lines.*/
return linemargin;
}
/*
*/
pen addpenline = squarecap;/*Add this property to the drawing pen of "finish" lines.*/
pen addpenline(pen p) {
return addpenline + p;
}
/*
*/
pen addpenarc = squarecap;/*Add this property to the drawing pen of arcs.*/
pen addpenarc(pen p) {return addpenarc + p;}
/*
*/
string defaultmassformat = "$\left(%L;%.4g \ right)$";/*Format used to construct the default label of masses.*/
/*
*/
int sgnd(real x)
{/*Return the -1 if x < 0, 1 if x >= 0.*/
return (x == 0) ? 1 : sgn(x);
}
int sgnd(int x)
{
return (x == 0) ? 1 : sgn(x);
}
/*
*/
bool defined(point P)
{/*Return true iff the coordinates of 'P' are finite.*/
return finite(P.coordinates);
}
/*
*/
bool onpath(picture pic = currentpicture, path g, point M, pen p = currentpen)
{/*Return true iff 'M' is on the path drawn with the pen 'p' in 'pic'.*/
transform t = inverse(pic.calculateTransform());
return intersect(g, shift(locate(M)) * scale(linewidth(p)/2) * t * unitcircle).length > 0;
}
/*
*/
bool sameside(point M, point N, point O)
{/*Return 'true' iff 'M' and 'N' are same side of the point 'O'.*/
pair m = M, n = N, o = O;
return dot(m - o, n - o) >= -epsgeo;
}
/*
*/
bool between(point M, point O, point N)
{/*Return 'true' iff 'O' is between 'M' and 'N'.*/
return (!sameside(N, M, O) || M == O || N == O);
}
typedef path pathModifier(path);
pathModifier NoModifier = new path(path g){return g;};
private void Drawline(picture pic = currentpicture, Label L = "", pair P, bool dirP = true, pair Q, bool dirQ = true,
align align = NoAlign, pen p = currentpen,
arrowbar arrow = None,
Label legend = "", marker marker = nomarker,
pathModifier pathModifier = NoModifier)
{/* Add the two parameters 'dirP' and 'dirQ' to the native routine
'drawline' of the module 'math'.
Segment [PQ] will be prolonged in direction of P if 'dirP = true', in
direction of Q if 'dirQ = true'.
If 'dirP = dirQ = true', the behavior is that of the native 'drawline'.
Add all the other parameters of 'Draw'.*/
pic.add(new void (frame f, transform t, transform T, pair m, pair M) {
picture opic;
// Reduce the bounds by the size of the pen.
m -= min(p) - (linemargin(), linemargin()); M -= max(p) + (linemargin(), linemargin());
// Calculate the points and direction vector in the transformed space.
t = t * T;
pair z = t * P;
pair q = t * Q;
pair v = q - z;
// path g;
pair ptp, ptq;
real cp = dirP ? 1:0;
real cq = dirQ ? 1:0;
// Handle horizontal and vertical lines.
if(v.x == 0) {
if(m.x <= z.x && z.x <= M.x)
if (dot(v, m - z) < 0) {
ptp = (z.x, z.y + cp * (m.y - z.y));
ptq = (z.x, q.y + cq * (M.y - q.y));
} else {
ptq = (z.x, q.y + cq * (m.y - q.y));
ptp = (z.x, z.y + cp * (M.y - z.y));
}
} else if(v.y == 0) {
if (dot(v, m - z) < 0) {
ptp = (z.x + cp * (m.x - z.x), z.y);
ptq = (q.x + cq * (M.x - q.x), z.y);
} else {
ptq = (q.x + cq * (m.x - q.x), z.y);
ptp = (z.x + cp * (M.x - z.x), z.y);
}
} else {
// Calculate the maximum and minimum t values allowed for the
// parametric equation z + t * v
real mx = (m.x - z.x)/v.x, Mx = (M.x - z.x)/v.x;
real my = (m.y - z.y)/v.y, My = (M.y - z.y)/v.y;
real tmin = max(v.x > 0 ? mx : Mx, v.y > 0 ? my : My);
real tmax = min(v.x > 0 ? Mx : mx, v.y > 0 ? My : my);
pair pmin = z + tmin * v;
pair pmax = z + tmax * v;
if(tmin <= tmax) {
ptp = z + cp * tmin * v;
ptq = z + (cq == 0 ? v:tmax * v);
}
}
path g = ptp--ptq;
if (length(g)>0)
{
if(L.s != "") {
Label lL = L.copy();
if(L.defaultposition) lL.position(Relative(.9));
lL.p(p);
lL.out(opic, g);
}
g = pathModifier(g);
if(linetype(p).length == 0){
pair m = midpoint(g);
pen tp;
tp = dirP ? p : addpenline(p);
draw(opic, pathModifier(m--ptp), tp);
tp = dirQ ? p : addpenline(p);
draw(opic, pathModifier(m--ptq), tp);
} else {
draw(opic, g, p);
}
marker.markroutine(opic, marker.f, g);
arrow(opic, g, p, NoMargin);
add(f, opic.fit());
}
});
}
/*
*/
void clipdraw(picture pic = currentpicture, Label L = "", path g,
align align = NoAlign, pen p = currentpen,
arrowbar arrow = None, arrowbar bar = None,
real xmargin = 0, real ymargin = xmargin,
Label legend = "", marker marker = nomarker)
{/*Draw the path 'g' on 'pic' clipped to the bounding box of 'pic'.*/
if(L.s != "") {
picture tmp;
label(tmp, L, g, p);
add(pic, tmp);
}
pic.add(new void (frame f, transform t, transform T, pair m, pair M) {
// Reduce the bounds by the size of the pen and the margins.
m += min(p) + (xmargin, ymargin); M -= max(p) + (xmargin, ymargin);
path bound = box(m, M);
picture tmp;
draw(tmp, "", t * T * g, align, p, arrow, bar, NoMargin, legend, marker);
clip(tmp, bound);
add(f, tmp.fit());
});
}
/*
*/
void distance(picture pic = currentpicture, Label L = "", point A, point B,
bool rotated = true, real offset = 3mm,
pen p = currentpen, pen joinpen = invisible,
arrowbar arrow = Arrows(NoFill))
{/*Draw arrow between A and B (from FAQ).*/
pair A = A, B = B;
path g = A--B;
transform Tp = shift(-offset * unit(B - A) * I);
pic.add(new void(frame f, transform t) {
picture opic;
path G = Tp * t * g;
transform id = identity();
transform T = rotated ? rotate(B - A) : id;
Label L = L.copy();
L.align(L.align, Center);
if(abs(ypart((conj(A - B) * L.align.dir))) < epsgeo && L.filltype == NoFill)
L.filltype = UnFill(1);
draw(opic, T * L, G, p, arrow, Bars, PenMargins);
pair Ap = t * A, Bp = t * B;
draw(opic, (Ap--Tp * Ap)^^(Bp--Tp * Bp), joinpen);
add(f, opic.fit());
}, true);
pic.addBox(min(g), max(g), Tp * min(p), Tp * max(p));
}
/*
*/
real perpfactor = 1;/*Factor for drawing perpendicular symbol.*/
/*
*/
void perpendicularmark(picture pic = currentpicture, point z,
explicit pair align,
explicit pair dir = E, real size = 0,
pen p = currentpen,
margin margin = NoMargin,
filltype filltype = NoFill)
{/*Draw a perpendicular symbol at z aligned in the direction align
relative to the path z--z + dir.
dir(45 + n * 90), where n in N*, are common values for 'align'.*/
p = squarecap + p;
if(size == 0) size = perpfactor * 3mm + sqrt(1 + linewidth(p)) - 1;
frame apic;
pair d1 = size * align * unit(dir) * dir(-45);
pair d2 = I * d1;
path g = d1--d1 + d2--d2;
g = margin(g, p).g;
draw(apic, g, p);
if(filltype != NoFill) filltype.fill(apic, (relpoint(g, 0) - relpoint(g, 0.5)+
relpoint(g, 1))--g--cycle, p + solid);
add(pic, apic, locate(z));
}
/*
*/
void perpendicularmark(picture pic = currentpicture, point z,
vector align,
vector dir = E, real size = 0,
pen p = currentpen,
margin margin = NoMargin,
filltype filltype = NoFill)
{/*Draw a perpendicular symbol at z aligned in the direction align
relative to the path z--z + dir.
dir(45 + n * 90), where n in N, are common values for 'align'.*/
perpendicularmark(pic, z, (pair)align, (pair)dir, size,
p, margin, filltype);
}
/*
*/
void perpendicularmark(picture pic = currentpicture, point z, explicit pair align, path g,
real size = 0, pen p = currentpen,
margin margin = NoMargin,
filltype filltype = NoFill)
{/*Draw a perpendicular symbol at z aligned in the direction align
relative to the path z--z + dir(g, 0).
dir(45 + n * 90), where n in N, are common values for 'align'.*/
perpendicularmark(pic, z, align, dir(g, 0), size, p, margin, filltype);
}
/*
*/
void perpendicularmark(picture pic = currentpicture, point z, vector align, path g,
real size = 0, pen p = currentpen,
margin margin = NoMargin,
filltype filltype = NoFill)
{/*Draw a perpendicular symbol at z aligned in the direction align
relative to the path z--z + dir(g, 0).
dir(45 + n * 90), where n in N, are common values for 'align'.*/
perpendicularmark(pic, z, (pair)align, dir(g, 0), size, p, margin, filltype);
}
/*
*/
void markrightangle(picture pic = currentpicture, point A, point O,
point B, real size = 0, pen p = currentpen,
margin margin = NoMargin,
filltype filltype = NoFill)
{/*Mark the angle AOB with a perpendicular symbol.*/
pair Ap = A, Bp = B, Op = O;
pair dir = Ap - Op;
real a1 = degrees(dir);
pair align = rotate(-a1) * unit(dir(Op--Ap, Op--Bp));
if (margin == NoMargin)
margin = TrueMargin(linewidth(currentpen)/2, linewidth(currentpen)/2);
perpendicularmark(pic = pic, z = O, align = align,
dir = dir, size = size, p = p,
margin = margin, filltype = filltype);
}
/*
*/
bool simeq(point A, point B, real fuzz = epsgeo)
{/*Return true iff abs(A - B) < fuzz.
This routine is used internally to know if two points are equal, in particular by the operator == in 'point == point'.*/
return (abs(A - B) < fuzz);
}
bool simeq(point a, real b, real fuzz = epsgeo)
{
coordsys R = a.coordsys;
return (abs(a - point(R, ((pair)b)/R)) < fuzz);
}
/*
*/
pair attract(pair m, path g, real fuzz = 0)
{/*Return the nearest point (A PAIR) of 'm' which is on the path g.
'fuzz' is the argument 'fuzz' of 'intersect'.*/
if(intersect(m, g, fuzz).length > 0) return m;
pair p;
real step = 1, r = 0;
real[] t;
static real eps = sqrt(realEpsilon);
do {// Find a radius for intersection
r += step;
t = intersect(shift(m) * scale(r) * unitcircle, g);
} while(t.length <= 0);
p = point(g, t[1]);
real rm = 0, rM = r;
while(rM - rm > eps) {
r = (rm + rM)/2;
t = intersect(shift(m) * scale(r) * unitcircle, g, fuzz);
if(t.length <= 0) {
rm = r;
} else {
rM = r;
p = point(g, t[1]);
}
}
return p;
}
/*
*/
point attract(point M, path g, real fuzz = 0)
{/*Return the nearest point (A POINT) of 'M' which is on the path g.
'fuzz' is the argument 'fuzz' of 'intersect'.*/
return point(M.coordsys, attract(locate(M), g)/M.coordsys);
}
/*
*/
real[] intersect(path g, explicit pair p, real fuzz = 0)
{/**/
fuzz = fuzz <= 0 ? sqrt(realEpsilon) : fuzz;
real[] or;
real r = realEpsilon;
do{
or = intersect(g, shift(p) * scale(r) * unitcircle, fuzz);
r *= 2;
} while(or.length == 0);
return or;
}
/*
*/
real[] intersect(path g, explicit point P, real fuzz = epsgeo)
{/**/
return intersect(g, locate(P), fuzz);
}
// *.........................BASES.........................*
// *=======================================================*
// *=======================================================*
// *.........................LINES.........................*
/*
*/
struct line
{/*This structure provides the objects line, semi - line and segment oriented from A to B.
All the calculus with this structure will be as exact as Asymptote can do.
For a full precision, you must not cast 'line' to 'path' excepted for drawing routines.*/
/*
*/
restricted point A, B;/*Two line's points with same coordinate system.
*/
bool extendA, extendB;/*If true, extend 'l' in direction of A (resp. B).
*/
restricted vector u, v;/*u = unit(AB) = direction vector, v = normal vector.
*/
restricted real a, b, c;/*Coefficients of the equation ax + by + c = 0 in the coordinate system of 'A'.
*/
restricted real slope, origin;/*Slope and ordinate at the origin.*/
/*
*/
line copy()
{/*Copy a line in a new instance.*/
line l = new line;
l.A = A;
l.B = B;
l.a = a;
l.b = b;
l.c = c;
l.slope = slope;
l.origin = origin;
l.u = u;
l.v = v;
l.extendA = extendA;
l.extendB = extendB;
return l;
}
/*
*/
void init(point A, bool extendA = true, point B, bool extendB = true)
{/*Initialize line.
If 'extendA' is true, the "line" is infinite in the direction of A.*/
point[] P = standardizecoordsys(A, B);
this.A = P[0];
this.B = P[1];
this.a = B.y - A.y;
this.b = A.x - B.x;
this.c = A.y * B.x - A.x * B.y;
this.slope= (this.b == 0) ? infinity : -this.a/this.b;
this.origin = (this.b == 0) ? (this.c == 0) ? 0:infinity : -this.c/this.b;
this.u = unit(P[1]-P[0]);
// int tmp = sgnd(this.slope);
// this.u = (dot((pair)this.u, N) >= 0) ? tmp * this.u : -tmp * this.u;
this.v = rotate(90, point(P[0].coordsys, (0, 0))) * this.u;
this.extendA = extendA;
this.extendB = extendB;
}
}/**/
/*
*/
line line(point A, bool extendA = true, point B, bool extendB = true)
{/*Return the line passing through 'A' and 'B'.
If 'extendA' is true, the "line" is infinite in the direction of A.
A "line" can be half-line or segment.*/
if (A == B) abort("line: the points must be distinct.");
line l;
l.init(A, extendA, B, extendB);
return l;
}
/*
*/
struct segment
{/*.*/
restricted point A, B;// Extremity.
restricted vector u, v;// u = direction vector, v = normal vector.
restricted real a, b, c;// Coefficients of the équation ax + by + c = 0
restricted real slope, origin;
segment copy()
{
segment s = new segment;
s.A = A;
s.B = B;
s.a = a;
s.b = b;
s.c = c;
s.slope = slope;
s.origin = origin;
s.u = u;
s.v = v;
return s;
}
void init(point A, point B)
{
line l;
l.init(A, B);
this.A = l.A; this.B = l.B;
this.a = l.a; this.b = l.b; this.c = l.c;
this.slope = l.slope; this.origin = l.origin;
this.u = l.u; this.v = l.v;
}
}/**/
/*
*/
segment segment(point A, point B)
{/*Return the segment whose the extremities are A and B.*/
segment s;
s.init(A, B);
return s;
}
/*
*/
real length(segment s)
{/*Return the length of 's'.*/
return abs(s.A - s.B);
}
/*
*/
line operator cast(segment s)
{/*A segment is casted to a "finite line".*/
return line(s.A, false, s.B, false);
}
/*
*/
segment operator cast(line l)
{/*Cast line 'l' to segment [l.A l.B].*/
return segment(l.A, l.B);
}
/*
*/
line operator *(transform t, line l)
{/*Provide transform * line*/
return line(t * l.A, l.extendA, t * l.B, l.extendB);
}
/*
*/
line operator /(line l, real x)
{/*Provide l/x.
Return the line passing through l.A/x and l.B/x.*/
return line(l.A/x, l.extendA, l.B/x, l.extendB);
}
line operator /(line l, int x){return line(l.A/x, l.B/x);}
/*
*/
line operator *(real x, line l)
{/*Provide x * l.
Return the line passing through x * l.A and x * l.B.*/
return line(x * l.A, l.extendA, x * l.B, l.extendB);
}
line operator *(int x, line l){return line(x * l.A, l.extendA, x * l.B, l.extendB);}
/*
*/
line operator *(point M, line l)
{/*Provide point * line.
Return the line passing through unit(M) * l.A and unit(M) * l.B.*/
return line(unit(M) * l.A, l.extendA, unit(M) * l.B, l.extendB);
}
/*
*/
line operator +(line l, vector u)
{/*Provide line + vector (and so line + point).
Return the line 'l' shifted by 'u'.*/
return line(l.A + u, l.extendA, l.B + u, l.extendB);
}
/*
*/
line operator -(line l, vector u)
{/*Provide line - vector (and so line - point).
Return the line 'l' shifted by '-u'.*/
return line(l.A - u, l.extendA, l.B - u, l.extendB);
}
/*
*/
line[] operator ^^(line l1, line l2)
{/*Provide line^^line.
Return the line array {l1, l2}.*/
line[] ol;
ol.push(l1); ol.push(l2);
return ol;
}
/*
*/
line[] operator ^^(line l1, line[] l2)
{/*Provide line^^line[].
Return the line array {l1, l2[0], l2[1]...}.
line[]^^line is also defined.*/
line[] ol;
ol.push(l1);
for (int i = 0; i < l2.length; ++i) {
ol.push(l2[i]);
}
return ol;
}
line[] operator ^^(line[] l2, line l1)
{
line[] ol = l2;
ol.push(l1);
return ol;
}
/*
*/
line[] operator ^^(line l1[], line[] l2)
{/*Provide line[]^^line[].
Return the line array {l1[0], l1[1], ..., l2[0], l2[1], ...}.*/
line[] ol = l1;
for (int i = 0; i < l2.length; ++i) {
ol.push(l2[i]);
}
return ol;
}
/*
*/
bool sameside(point M, point P, line l)
{/*Return 'true' iff 'M' and 'N' are same side of the line (or on the line) 'l'.*/
pair A = l.A, B = l.B, m = M, p = P;
pair mil = (A + B)/2;
pair mA = rotate(90, mil) * A;
pair mB = rotate(-90, mil) * A;
return (abs(m - mA) <= abs(m - mB)) == (abs(p - mA) <= abs(p - mB));
// transform proj = projection(l.A, l.B);
// point Mp = proj * M;
// point Pp = proj * P;
// dot(Mp);dot(Pp);
// return dot(locate(Mp - M), locate(Pp - P)) >= 0;
}
/*
*/
line line(segment s)
{/*Return the line passing through 's.A'
and 's.B'.*/
return line(s.A, s.B);
}
/*
*/
segment segment(line l)
{/*Return the segment whose extremities
are 'l.A' and 'l.B'.*/
return segment(l.A, l.B);
}
/*
*/
point midpoint(segment s)
{/*Return the midpoint of 's'.*/
return 0.5 * (s.A + s.B);
}
/*
*/
void write(explicit line l)
{/*Write some informations about 'l'.*/
write("A = "+(string)((pair)l.A));
write("Extend A = "+(l.extendA ? "true" : "false"));
write("B = "+(string)((pair)l.B));
write("Extend B = "+(l.extendB ? "true" : "false"));
write("u = "+(string)((pair)l.u));
write("v = "+(string)((pair)l.v));
write("a = "+(string) l.a);
write("b = "+(string) l.b);
write("c = "+(string) l.c);
write("slope = "+(string) l.slope);
write("origin = "+(string) l.origin);
}
/*
*/
void write(explicit segment s)
{/*Write some informations about 's'.*/
write("A = "+(string)((pair)s.A));
write("B = "+(string)((pair)s.B));
write("u = "+(string)((pair)s.u));
write("v = "+(string)((pair)s.v));
write("a = "+(string) s.a);
write("b = "+(string) s.b);
write("c = "+(string) s.c);
write("slope = "+(string) s.slope);
write("origin = "+(string) s.origin);
}
/*
*/
bool operator ==(line l1, line l2)
{/*Provide the test 'line == line'.*/
return (collinear(l1.u, l2.u) &&
abs(ypart((locate(l1.A) - locate(l1.B))/(locate(l1.A) - locate(l2.B)))) < epsgeo &&
l1.extendA == l2.extendA && l1.extendB == l2.extendB);
}
/*
*/
bool operator !=(line l1, line l2)
{/*Provide the test 'line != line'.*/
return !(l1 == l2);
}
/*
*/
bool operator @(point m, line l)
{/*Provide the test 'point @ line'.
Return true iff 'm' is on the 'l'.*/
point M = changecoordsys(l.A.coordsys, m);
if (abs(l.a * M.x + l.b * M.y + l.c) >= epsgeo) return false;
if (l.extendA && l.extendB) return true;
if (!l.extendA && !l.extendB) return between(l.A, M, l.B);
if (l.extendA) return sameside(M, l.A, l.B);
return sameside(M, l.B, l.A);
}
/*
*/
coordsys coordsys(line l)
{/*Return the coordinate system in which 'l' is defined.*/
return l.A.coordsys;
}
/*
*/
line reverse(line l)
{/*Permute the points 'A' and 'B' of 'l' and so its orientation.*/
return line(l.B, l.extendB, l.A, l.extendA);
}
/*
*/
line extend(line l)
{/*Return the infinite line passing through 'l.A' and 'l.B'.*/
line ol = l.copy();
ol.extendA = true;
ol.extendB = true;
return ol;
}
/*
*/
line complementary(explicit line l)
{/*Return the complementary of a half-line with respect of
the full line 'l'.*/
if (l.extendA && l.extendB)
abort("complementary: the parameter is not a half-line.");
point origin = l.extendA ? l.B : l.A;
point ptdir = l.extendA ?
rotate(180, l.B) * l.A : rotate(180, l.A) * l.B;
return line(origin, false, ptdir);
}
/*
*/
line[] complementary(explicit segment s)
{/*Return the two half-lines of origin 's.A' and 's.B' respectively.*/
line[] ol = new line[2];
ol[0] = complementary(line(s.A, false, s.B));
ol[1] = complementary(line(s.A, s.B, false));
return ol;
}
/*
*/
line Ox(coordsys R = currentcoordsys)
{/*Return the x-axis of 'R'.*/
return line(point(R, (0, 0)), point(R, E));
}
/*
*/
restricted line Ox = Ox();/*the x-axis of
the default coordinate system.*/
/*
*/
line Oy(coordsys R = currentcoordsys)
{/*Return the y-axis of 'R'.*/
return line(point(R, (0, 0)), point(R, N));
}
/*
*/
restricted line Oy = Oy();/*the y-axis of
the default coordinate system.*/
/*
*/
line line(real a, point A = point(currentcoordsys, (0, 0)))
{/*Return the line passing through 'A' with an
angle (in the coordinate system of A) 'a' in degrees.
line(point, real) is also defined.*/
return line(A, A + point(A.coordsys, A.coordsys.polar(1, radians(a))));
}
line line(point A = point(currentcoordsys, (0, 0)), real a)
{
return line(a, A);
}
line line(int a, point A = point(currentcoordsys, (0, 0)))
{
return line((real)a, A);
}
/*
*/
line line(coordsys R = currentcoordsys, real slope, real origin)
{/*Return the line defined by slope and y-intercept relative to 'R'.*/
if (slope == infinity || slope == -infinity)
abort("The slope is infinite. Please, use the routine 'vline'.");
return line(point(R, (0, origin)), point(R, (1, origin + slope)));
}
/*
*/
line line(coordsys R = currentcoordsys, real a, real b, real c)
{/*Retrun the line defined by equation relative to 'R'.*/
if (a == 0 && b == 0) abort("line: inconsistent equation...");
pair M;
M = (a == 0) ? (0, -c/b) : (-c/a, 0);
return line(point(R, M), point(R, M + (-b, a)));
}
/*
*/
line vline(coordsys R = currentcoordsys)
{/*Return a vertical line in 'R' passing through the origin of 'R'.*/
point P = point(R, (0, 0));
point PP = point(R, (R.O + N)/R);
return line(P, PP);
}
/*
*/
restricted line vline = vline();/*The vertical line in the current coordinate system passing
through the origin of this system.*/
/*
*/
line hline(coordsys R = currentcoordsys)
{/*Return a horizontal line in 'R' passing through the origin of 'R'.*/
point P = point(R, (0, 0));
point PP = point(R, (R.O + E)/R);
return line(P, PP);
}
/*
*/
line hline = hline();/*The horizontal line in the current coordinate system passing
through the origin of this system.*/
/*
*/
line changecoordsys(coordsys R, line l)
{/*Return the line 'l' in the coordinate system 'R'.*/
point A = changecoordsys(R, l.A);
point B = changecoordsys(R, l.B);
return line(A, B);
}
/*
*/
transform scale(real k, line l1, line l2, bool safe = false)
{/*Return the dilatation with respect to
'l1' in the direction of 'l2'.*/
return scale(k, l1.A, l1.B, l2.A, l2.B, safe);
}
/*
*/
transform reflect(line l)
{/*Return the reflect about the line 'l'.*/
return reflect((pair)l.A, (pair)l.B);
}
/*
*/
transform reflect(line l1, line l2, bool safe = false)
{/*Return the reflect about the line
'l1' in the direction of 'l2'.*/
return scale(-1.0, l1, l2, safe);
}
/*
*/
point[] intersectionpoints(line l, path g)
{/*Return all points of intersection of the line 'l' with the path 'g'.*/
// TODO utiliser la version 1.44 de intersections(path g, pair p, pair q)
// real [] t = intersections(g, l.A, l.B);
// coordsys R = coordsys(l);
// return sequence(new point(int n){return point(R, point(g, t[n])/R);}, t.length);
real [] t;
pair[] op;
pair A = l.A;
pair B = l.B;
real dy = B.y - A.y,
dx = A.x - B.x,
lg = length(g);
for (int i = 0; i < lg; ++i)
{
pair z0 = point(g, i),
z1 = point(g, i + 1),
c0 = postcontrol(g, i),
c1 = precontrol(g, i + 1),
t3 = z1 - z0 - 3 * c1 + 3 * c0,
t2 = 3 * z0 + 3 * c1 - 6 * c0,
t1 = 3 * c0 - 3z0;
real a = dy * t3.x + dx * t3.y,
b = dy * t2.x + dx * t2.y,
c = dy * t1.x + dx * t1.y,
d = dy * z0.x + dx * z0.y + A.y * B.x - A.x * B.y;
t = cubicroots(a, b, c, d);
for (int j = 0; j < t.length; ++j)
if (
t[j]>=0
&& (
t[j]<1
|| (
t[j] == 1
&& (i == lg - 1)
&& !cyclic(g)
)
)
) {
op.push(point(g, i + t[j]));
}
}
point[] opp;
for (int i = 0; i < op.length; ++i)
opp.push(point(coordsys(l), op[i]/coordsys(l)));
return opp;
}
/*
*/
point intersectionpoint(line l1, line l2)
{/*Return the point of intersection of line 'l1' with 'l2'.
If 'l1' and 'l2' have an infinity or none point of intersection,
this routine return (infinity, infinity).*/
point[] P = standardizecoordsys(l1.A, l1.B, l2.A, l2.B);
coordsys R = P[0].coordsys;
pair p = extension(P[0], P[1], P[2], P[3]);
if(finite(p)){
point p = point(R, p/R);
if (p @ l1 && p @ l2) return p;
}
return point(R, (infinity, infinity));
}
/*
*/
line parallel(point M, line l)
{/*Return the line parallel to 'l' passing through 'M'.*/
point A, B;
if (M.coordsys != coordsys(l))
{
A = changecoordsys(M.coordsys, l.A);
B = changecoordsys(M.coordsys, l.B);
} else {A = l.A;B = l.B;}
return line(M, M - A + B);
}
/*
*/
line parallel(point M, explicit vector dir)
{/*Return the line of direction 'dir' and passing through 'M'.*/
return line(M, M + locate(dir));
}
/*
*/
line parallel(point M, explicit pair dir)
{/*Return the line of direction 'dir' and passing through 'M'.*/
return line(M, M + vector(currentcoordsys, dir));
}
/*
*/
bool parallel(line l1, line l2, bool strictly = false)
{/*Return 'true' if 'l1' and 'l2' are (strictly ?) parallel.*/
bool coll = collinear(l1.u, l2.u);
return strictly ? coll && (l1 != l2) : coll;
}
/*
*/
bool concurrent(... line[] l)
{/*Returns true if all the lines 'l' are concurrent.*/
if (l.length < 3) abort("'concurrent' needs at least for three lines ...");
pair point = intersectionpoint(l[0], l[1]);
bool conc;
for (int i = 2; i < l.length; ++i) {
pair pt = intersectionpoint(l[i - 1], l[i]);
conc = simeq(pt, point);
if (!conc) break;
}
return conc;
}
/*
*/
transform projection(line l)
{/*Return the orthogonal projection on 'l'.*/
return projection(l.A, l.B);
}
/*
*/
transform projection(line l1, line l2, bool safe = false)
{/*Return the projection on (AB) in parallel of (CD).
If 'safe = true' and (l1)//(l2) return the identity.
If 'safe = false' and (l1)//(l2) return a infinity scaling.*/
return projection(l1.A, l1.B, l2.A, l2.B, safe);
}
/*
*/
transform vprojection(line l, bool safe = false)
{/*Return the projection on 'l' in parallel of N--S.
If 'safe' is 'true' the projected point keeps the same place if 'l'
is vertical.*/
coordsys R = defaultcoordsys;
return projection(l, line(point(R, N), point(R, S)), safe);
}
/*
*/
transform hprojection(line l, bool safe = false)
{/*Return the projection on 'l' in parallel of E--W.
If 'safe' is 'true' the projected point keeps the same place if 'l'
is horizontal.*/
coordsys R = defaultcoordsys;
return projection(l, line(point(R, E), point(R, W)), safe);
}
/*
*/
line perpendicular(point M, line l)
{/*Return the perpendicular line of 'l' passing through 'M'.*/
point Mp = projection(l) * M;
point A = Mp == l.A ? l.B : l.A;
return line(Mp, rotate(90, Mp) * A);
}
/*
*/
line perpendicular(point M, explicit vector normal)
{/*Return the line passing through 'M'
whose normal is \param{normal}.*/
return perpendicular(M, line(M, M + locate(normal)));
}
/*
*/
line perpendicular(point M, explicit pair normal)
{/*Return the line passing through 'M'
whose normal is \param{normal} (given in the currentcoordsys).*/
return perpendicular(M, line(M, M + vector(currentcoordsys, normal)));
}
/*
*/
bool perpendicular(line l1, line l2)
{/*Return 'true' if 'l1' and 'l2' are perpendicular.*/
return abs(dot(locate(l1.u), locate(l2.u))) < epsgeo ;
}
/*
*/
real angle(line l, coordsys R = coordsys(l))
{/*Return the angle of the oriented line 'l',
in radian, in the interval ]-pi, pi] and relatively to 'R'.*/
return angle(l.u, R, false);
}
/*
*/
real degrees(line l, coordsys R = coordsys(l))
{/*Returns the angle of the oriented line 'l' in degrees,
in the interval [0, 360[ and relatively to 'R'.*/
return degrees(angle(l, R));
}
/*
*/
real sharpangle(line l1, line l2)
{/*Return the measure in radians of the sharp angle formed by 'l1' and 'l2'.*/
vector u1 = l1.u;
vector u2 = (dot(l1.u, l2.u) < 0) ? -l2.u : l2.u;
real a12 = angle(locate(u2)) - angle(locate(u1));
a12 = a12%(sgnd(a12) * pi);
if (a12 <= -pi/2) {
a12 += pi;
} else if (a12 > pi/2) {
a12 -= pi;
}
return a12;
}
/*
*/
real angle(line l1, line l2)
{/*Return the measure in radians of oriented angle (l1.u, l2.u).*/
return angle(locate(l2.u)) - angle(locate(l1.u));
}
/*
*/
real degrees(line l1, line l2)
{/*Return the measure in degrees of the
angle formed by the oriented lines 'l1' and 'l2'.*/
return degrees(angle(l1, l2));
}
/*
*/
real sharpdegrees(line l1, line l2)
{/*Return the measure in degrees of the sharp angle formed by 'l1' and 'l2'.*/
return degrees(sharpangle(l1, l2));
}
/*
*/
line bisector(line l1, line l2, real angle = 0, bool sharp = true)
{/*Return the bisector of the angle formed by 'l1' and 'l2'
rotated by the angle 'angle' (in degrees) around intersection point of 'l1' with 'l2'.
If 'sharp' is true (the default), this routine returns the bisector of the sharp angle.
Note that the returned line inherit of coordinate system of 'l1'.*/
line ol;
if (l1 == l2) return l1;
point A = intersectionpoint(l1, l2);
if (finite(A)) {
if(sharp) ol = rotate(sharpdegrees(l1, l2)/2 + angle, A) * l1;
else {
coordsys R = coordsys(l1);
pair a = A, b = A + l1.u, c = A + l2.u;
pair pp = extension(a, a + dir(a--b, a--c), b, b + dir(b--a, b--c));
return rotate(angle, A) * line(A, point(R, pp/R));
}
} else {
ol = l1;
}
return ol;
}
/*
*/
line sector(int n = 2, int p = 1, line l1, line l2, real angle = 0, bool sharp = true)
{/*Return the p-th nth-sector of the angle
formed by the oriented line 'l1' and 'l2'
rotated by the angle 'angle' (in degrees) around the intersection point of 'l1' with 'l2'.
If 'sharp' is true (the default), this routine returns the bisector of the sharp angle.
Note that the returned line inherit of coordinate system of 'l1'.*/
line ol;
if (l1 == l2) return l1;
point A = intersectionpoint(l1, l2);
if (finite(A)) {
if(sharp) ol = rotate(p * sharpdegrees(l1, l2)/n + angle, A) * l1;
else {
ol = rotate(p * degrees(l1, l2)/n + angle, A) * l1;
}
} else {
ol = l1;
}
return ol;
}
/*
*/
line bisector(point A, point B, point C, point D, real angle = 0, bool sharp = true)
{/*Return the bisector of the angle formed by the lines (AB) and (CD).
.*/
point[] P = standardizecoordsys(A, B, C, D);
return bisector(line(P[0], P[1]), line(P[2], P[3]), angle, sharp);
}
/*
*/
line bisector(segment s, real angle = 0)
{/*Return the bisector of the segment line 's' rotated by 'angle' (in degrees) around the
midpoint of 's'.*/
coordsys R = coordsys(s);
point m = midpoint(s);
vector dir = rotateO(90) * unit(s.A - m);
return rotate(angle, m) * line(m + dir, m - dir);
}
/*
*/
line bisector(point A, point B, real angle = 0)
{/*Return the bisector of the segment line [AB] rotated by 'angle' (in degrees) around the
midpoint of [AB].*/
point[] P = standardizecoordsys(A, B);
return bisector(segment(P[0], P[1]), angle);
}
/*
*/
real distance(point M, line l)
{/*Return the distance from 'M' to 'l'.
distance(line, point) is also defined.*/
point A = changecoordsys(defaultcoordsys, l.A);
point B = changecoordsys(defaultcoordsys, l.B);
line ll = line(A, B);
pair m = locate(M);
return abs(ll.a * m.x + ll.b * m.y + ll.c)/sqrt(ll.a^2 + ll.b^2);
}
real distance(line l, point M)
{
return distance(M, l);
}
/*
*/
void draw(picture pic = currentpicture, Label L = "",
line l, bool dirA = l.extendA, bool dirB = l.extendB,
align align = NoAlign, pen p = currentpen,
arrowbar arrow = None,
Label legend = "", marker marker = nomarker,
pathModifier pathModifier = NoModifier)
{/*Draw the line 'l' without altering the size of picture pic.
The boolean parameters control the infinite section.
The global variable 'linemargin' (default value is 0) allows to modify
the bounding box in which the line must be drawn.*/
if(!(dirA || dirB)) draw(l.A--l.B, invisible);// l is a segment.
Drawline(pic, L, l.A, dirP = dirA, l.B, dirQ = dirB,
align, p, arrow,
legend, marker, pathModifier);
}
/*
*/
void draw(picture pic = currentpicture, Label[] L = new Label[], line[] l,
align align = NoAlign, pen[] p = new pen[],
arrowbar arrow = None,
Label[] legend = new Label[], marker marker = nomarker,
pathModifier pathModifier = NoModifier)
{/*Draw each lines with the corresponding pen.*/
for (int i = 0; i < l.length; ++i) {
draw(pic, L.length>0 ? L[i] : "", l[i],
align, p = p.length>0 ? p[i] : currentpen,
arrow, legend.length>0 ? legend[i] : "", marker,
pathModifier);
}
}
/*
*/
void draw(picture pic = currentpicture, Label[] L = new Label[], line[] l,
align align = NoAlign, pen p,
arrowbar arrow = None,
Label[] legend = new Label[], marker marker = nomarker,
pathModifier pathModifier = NoModifier)
{/*Draw each lines with the same pen 'p'.*/
pen[] tp = sequence(new pen(int i){return p;}, l.length);
draw(pic, L, l, align, tp, arrow, legend, marker, pathModifier);
}
/*
*/
void show(picture pic = currentpicture, line l, pen p = red)
{/*Draw some informations of 'l'.*/
dot("$A$", (pair)l.A, align = -locate(l.v), p);
dot("$B$", (pair)l.B, align = -locate(l.v), p);
draw(l, dotted);
draw("$\vec{u}$", locate(l.A)--locate(l.A + l.u), p, Arrow);
draw("$\vec{v}$", locate(l.A)--locate(l.A + l.v), p, Arrow);
}
/*
*/
point[] sameside(point M, line l1, line l2)
{/*Return two points on 'l1' and 'l2' respectively.
The first point is from the same side of M relatively to 'l2',
the second point is from the same side of M relatively to 'l1'.*/
point[] op;
coordsys R1 = coordsys(l1);
coordsys R2 = coordsys(l2);
if (parallel(l1, l2)) {
op.push(projection(l1) * M);
op.push(projection(l2) * M);
} else {
point O = intersectionpoint(l1, l2);
if (M @ l2) op.push((sameside(M, O + l1.u, l2)) ? O + l1.u : rotate(180, O) * (O + l1.u));
else op.push(projection(l1, l2) * M);
if (M @ l1) op.push((sameside(M, O + l2.u, l1)) ? O + l2.u : rotate(180, O) * (O + l2.u));
else {op.push(projection(l2, l1) * M);}
}
return op;
}
// /*
*/
// void markangle(picture pic = currentpicture,
// Label L = "", int n = 1, real radius = 0, real space = 0,
// line l1, line l2, explicit pair align = dir(1),
// arrowbar arrow = None, pen p = currentpen,
// filltype filltype = NoFill,
// margin margin = NoMargin, marker marker = nomarker)
// {/*Mark the angle (l1, l2) aligned in the direction 'align' relative to 'l1'.
// Commune values for 'align' are dir(real).*/
// if (parallel(l1, l2, true)) return;
// real al = degrees(l1, defaultcoordsys);
// pair O, A, B;
// if (radius == 0) radius = markangleradius(p);
// real d = degrees(locate(l1.u));
// align = rotate(d) * align;
// if (l1 == l2) {
// O = midpoint(segment(l1.A, l1.B));
// A = l1.A;B = l1.B;
// if (sameside(rotate(sgn(angle(B-A)) * 45, O) * A, O + align, l1)) {radius = -radius;}
// } else {
// O = intersectionpoint(extend(l1), extend(l2));
// pair R = O + align;
// point [] ss = sameside(point(coordsys(l1), R/coordsys(l1)), l1, l2);
// A = ss[0];
// B = ss[1];
// }
// markangle(pic = pic, L = L, n = n, radius = radius, space = space,
// O = O, A = A, B = B,
// arrow = arrow, p = p, filltype = filltype,
// margin = margin, marker = marker);
// }
// /*
*/
// void markangle(picture pic = currentpicture,
// Label L = "", int n = 1, real radius = 0, real space = 0,
// line l1, line l2, explicit vector align,
// arrowbar arrow = None, pen p = currentpen,
// filltype filltype = NoFill,
// margin margin = NoMargin, marker marker = nomarker)
// {/*Mark the angle (l1, l2) in the direction 'dir' given relatively to 'l1'.*/
// markangle(pic, L, n, radius, space, l1, l2, (pair)align, arrow,
// p, filltype, margin, marker);
// }
/*
*/
void markangle(picture pic = currentpicture,
Label L = "", int n = 1, real radius = 0, real space = 0,
line l1, line l2,
arrowbar arrow = None, pen p = currentpen,
filltype filltype = NoFill,
margin margin = NoMargin, marker marker = nomarker)
{/*Mark the oriented angle (l1, l2).*/
if (parallel(l1, l2, true)) return;
real al = degrees(l1, defaultcoordsys);
pair O, A, B;
if (radius == 0) radius = markangleradius(p);
real d = degrees(locate(l1.u));
if (l1 == l2) {
O = midpoint(segment(l1.A, l1.B));
} else {
O = intersectionpoint(extend(l1), extend(l2));
}
A = O + locate(l1.u);
B = O + locate(l2.u);
markangle(pic = pic, L = L, n = n, radius = radius, space = space,
O = O, A = A, B = B,
arrow = arrow, p = p, filltype = filltype,
margin = margin, marker = marker);
}
/*
*/
void perpendicularmark(picture pic = currentpicture, line l1, line l2,
real size = 0, pen p = currentpen, int quarter = 1,
margin margin = NoMargin, filltype filltype = NoFill)
{/*Draw a right angle at the intersection point of lines and
aligned in the 'quarter' nth quarter of circle formed by 'l1.u' and
'l2.u'.*/
point P = intersectionpoint(l1, l2);
pair align = rotate(90 * (quarter - 1)) * dir(45);
perpendicularmark(P, align, locate(l1.u), size, p, margin, filltype);
}
// *.........................LINES.........................*
// *=======================================================*
// *=======================================================*
// *........................CONICS.........................*
/*
*/
struct bqe
{/*Bivariate Quadratic Equation.*/
/*
*/
real[] a;/*a[0] * x^2 + a[1] * x * y + a[2] * y^2 + a[3] * x + a[4] * y + a[5] = 0
*/
coordsys coordsys;/**/
}/**/
/*
*/
bqe bqe(coordsys R = currentcoordsys,
real a, real b, real c, real d, real e, real f)
{/*Return the bivariate quadratic equation
a[0] * x^2 + a[1] * x * y + a[2] * y^2 + a[3] * x + a[4] * y + a[5] = 0
relatively to the coordinate system R.*/
bqe obqe;
obqe.coordsys = R;
obqe.a = new real[] {a, b, c, d, e, f};
return obqe;
}
/*
*/
bqe changecoordsys(coordsys R, bqe bqe)
{/*Returns the bivariate quadratic equation relatively to 'R'.*/
pair i = coordinates(changecoordsys(R, vector(defaultcoordsys,
bqe.coordsys.i)));
pair j = coordinates(changecoordsys(R, vector(defaultcoordsys,
bqe.coordsys.j)));
pair O = coordinates(changecoordsys(R, point(defaultcoordsys,
bqe.coordsys.O)));
real a = bqe.a[0], b = bqe.a[1], c = bqe.a[2], d = bqe.a[3], f = bqe.a[4], g = bqe.a[5];
real ux = i.x, uy = i.y;
real vx = j.x, vy = j.y;
real ox = O.x, oy = O.y;
real D = ux * vy - uy * vx;
real ap = (a * vy^2 - b * uy * vy + c * uy^2)/D^2;
real bpp = (-2 * a * vx * vy + b * ux * vy + b * uy * vx - 2 * c * ux * uy)/D^2;
real cp = (a * vx^2 - b * ux * vx + c * ux^2)/D^2;
real dp = (-2a * ox * vy^2 + 2a * oy * vx * vy + 2b * ox * uy * vy-
b * oy * ux * vy - b * oy * uy * vx - 2c * ox * uy^2 + 2c * oy * uy * ux)/D^2+
(d * vy - f * uy)/D;
real fp = (2a * ox * vx * vy - b * ox * ux * vy - 2a * oy * vx^2-
b * ox * uy * vx + 2 * b * oy * ux * vx + 2c * ox * ux * uy - 2c * oy * ux^2)/D^2+
(f * ux - d * vx)/D;
g = (a * ox^2 * vy^2 - 2a * ox * oy * vx * vy - b * ox^2 * uy * vy + b * ox * oy * ux * vy+
a * oy^2 * vx^2 + b * ox * oy * uy * vx - b * oy^2 * ux * vx + c * ox^2 * uy^2-
2 * c * ox * oy * ux * uy + c * oy^2 * ux^2)/D^2+
(d * oy * vx + f * ox * uy - d * ox * vy - f * oy * ux)/D + g;
bqe obqe;
obqe.a = approximate(new real[] {ap, bpp, cp, dp, fp, g});
obqe.coordsys = R;
return obqe;
}
/*
*/
bqe bqe(point M1, point M2, point M3, point M4, point M5)
{/*Return the bqe of conic passing through the five points (if possible).*/
coordsys R;
pair[] pts;
if (samecoordsys(M1, M2, M3, M4, M5)) {
R = M1.coordsys;
pts= new pair[] {M1.coordinates, M2.coordinates, M3.coordinates, M4.coordinates, M5.coordinates};
} else {
R = defaultcoordsys;
pts= new pair[] {M1, M2, M3, M4, M5};
}
real[][] M;
real[] x;
bqe bqe;
bqe.coordsys = R;
for (int i = 0; i < 5; ++i) {// Try a = -1
M[i] = new real[] {pts[i].x * pts[i].y, pts[i].y^2, pts[i].x, pts[i].y, 1};
x[i] = pts[i].x^2;
}
if(abs(determinant(M)) < 1e-5) {// Try c = -1
for (int i = 0; i < 5; ++i) {
M[i] = new real[] {pts[i].x^2, pts[i].x * pts[i].y, pts[i].x, pts[i].y, 1};
x[i] = pts[i].y^2;
}
real[] coef = solve(M, x);
bqe.a = new real[] {coef[0], coef[1], -1, coef[2], coef[3], coef[4]};
} else {
real[] coef = solve(M, x);
bqe.a = new real[] {-1, coef[0], coef[1], coef[2], coef[3], coef[4]};
}
bqe.a = approximate(bqe.a);
return bqe;
}
/*
*/
bool samecoordsys(bool warn = true ... bqe[] bqes)
{/*Return true if all the bivariate quadratic equations have the same coordinate system.*/
bool ret = true;
coordsys t = bqes[0].coordsys;
for (int i = 1; i < bqes.length; ++i) {
ret = (t == bqes[i].coordsys);
if(!ret) break;
t = bqes[i].coordsys;
}
if(warn && !ret)
warning("coodinatesystem",
"the coordinate system of two bivariate quadratic equations are not
the same. The operation will be done relatively to the default coordinate
system.");
return ret;
}
/*
*/
real[] realquarticroots(real a, real b, real c, real d, real e)
{/*Return the real roots of the quartic equation ax^4 + b^x3 + cx^2 + dx = 0.*/
static real Fuzz = sqrt(realEpsilon);
pair[] zroots = quarticroots(a, b, c, d, e);
real[] roots;
real p(real x){return a * x^4 + b * x^3 + c * x^2 + d * x + e;}
real prime(real x){return 4 * a * x^3 + 3 * b * x^2 + 2 * c * x + d;}
real x;
bool search = true;
int n;
void addroot(real x)
{
bool exist = false;
for (int i = 0; i < roots.length; ++i) {
if(abs(roots[i]-x) < 1e-5) {exist = true; break;}
}
if(!exist) roots.push(x);
}
for(int i = 0; i < zroots.length; ++i) {
if(zroots[i].y == 0 || abs(p(zroots[i].x)) < Fuzz) addroot(zroots[i].x);
else {
if(abs(zroots[i].y) < 1e-3) {
x = zroots[i].x;
search = true;
n = 200;
while(search) {
real tx = abs(p(x)) < Fuzz ? x : newton(iterations = n, p, prime, x);
if(tx < realMax) {
if(abs(p(tx)) < Fuzz) {
addroot(tx);
search = false;
} else if(n < 200) n *=2;
else {
search = false;
}
} else search = false; //It's not a real root.
}
}
}
}
return roots;
}
/*
*/
point[] intersectionpoints(bqe bqe1, bqe bqe2)
{/*Return the interscetion of the two conic sections whose equations are 'bqe1' and 'bqe2'.*/
coordsys R = bqe1.coordsys;
bqe lbqe1, lbqe2;
real[] a, b;
if(R != bqe2.coordsys) {
R = currentcoordsys;
a = changecoordsys(R, bqe1).a;
b = changecoordsys(R, bqe2).a;
} else {
a = bqe1.a;
b = bqe2.a;
}
static real e = 100 * sqrt(realEpsilon);
real[] x, y, c;
point[] P;
if(abs(a[0]-b[0]) > e || abs(a[1]-b[1]) > e || abs(a[2]-b[2]) > e) {
c = new real[] {-2 * a[0]*a[2]*b[0]*b[2]+a[0]*a[2]*b[1]^2 - a[0]*a[1]*b[2]*b[1]+a[1]^2 * b[0]*b[2]-
a[2]*a[1]*b[0]*b[1]+a[0]^2 * b[2]^2 + a[2]^2 * b[0]^2,
-a[2]*a[1]*b[0]*b[4]-a[2]*a[4]*b[0]*b[1]-a[1]*a[3]*b[2]*b[1]+2 * a[0]*a[2]*b[1]*b[4]-
a[0]*a[1]*b[2]*b[4]+a[1]^2 * b[2]*b[3]-2 * a[2]*a[3]*b[0]*b[2]-2 * a[0]*a[2]*b[2]*b[3]+
a[2]*a[3]*b[1]^2 - a[2]*a[1]*b[1]*b[3]+2 * a[1]*a[4]*b[0]*b[2]+2 * a[2]^2 * b[0]*b[3]-
a[0]*a[4]*b[2]*b[1]+2 * a[0]*a[3]*b[2]^2,
-a[3]*a[4]*b[2]*b[1]+a[2]*a[5]*b[1]^2 - a[1]*a[5]*b[2]*b[1]-a[1]*a[3]*b[2]*b[4]+
a[1]^2 * b[2]*b[5]-2 * a[2]*a[3]*b[2]*b[3]+2 * a[2]^2 * b[0]*b[5]+2 * a[0]*a[5]*b[2]^2 + a[3]^2 * b[2]^2-
2 * a[2]*a[5]*b[0]*b[2]+2 * a[1]*a[4]*b[2]*b[3]-a[2]*a[4]*b[1]*b[3]-2 * a[0]*a[2]*b[2]*b[5]+
a[2]^2 * b[3]^2 + 2 * a[2]*a[3]*b[1]*b[4]-a[2]*a[4]*b[0]*b[4]+a[4]^2 * b[0]*b[2]-a[2]*a[1]*b[3]*b[4]-
a[2]*a[1]*b[1]*b[5]-a[0]*a[4]*b[2]*b[4]+a[0]*a[2]*b[4]^2,
-a[4]*a[5]*b[2]*b[1]+a[2]*a[3]*b[4]^2 + 2 * a[3]*a[5]*b[2]^2 - a[2]*a[1]*b[4]*b[5]-
a[2]*a[4]*b[3]*b[4]+2 * a[2]^2 * b[3]*b[5]-2 * a[2]*a[3]*b[2]*b[5]-a[3]*a[4]*b[2]*b[4]-
2 * a[2]*a[5]*b[2]*b[3]-a[2]*a[4]*b[1]*b[5]+2 * a[1]*a[4]*b[2]*b[5]-a[1]*a[5]*b[2]*b[4]+
a[4]^2 * b[2]*b[3]+2 * a[2]*a[5]*b[1]*b[4],
-2 * a[2]*a[5]*b[2]*b[5]+a[4]^2 * b[2]*b[5]+a[5]^2 * b[2]^2 - a[4]*a[5]*b[2]*b[4]+a[2]*a[5]*b[4]^2+
a[2]^2 * b[5]^2 - a[2]*a[4]*b[4]*b[5]};
x = realquarticroots(c[0], c[1], c[2], c[3], c[4]);
} else {
if(abs(b[4]-a[4]) > e){
real D = (b[4]-a[4])^2;
c = new real[] {(a[0]*b[4]^2 + (-a[1]*b[3]-2 * a[0]*a[4]+a[1]*a[3]) * b[4]+a[2]*b[3]^2+
(a[1]*a[4]-2 * a[2]*a[3]) * b[3]+a[0]*a[4]^2 - a[1]*a[3]*a[4]+a[2]*a[3]^2)/D,
-((a[1]*b[4]-2 * a[2]*b[3]-a[1]*a[4]+2 * a[2]*a[3]) * b[5]-a[3]*b[4]^2 + (a[4]*b[3]-a[1]*a[5]+a[3]*a[4]) * b[4]+(2 * a[2]*a[5]-a[4]^2) * b[3]+(a[1]*a[4]-2 * a[2]*a[3]) * a[5])/D,
a[2]*(a[5]-b[5])^2/D + a[4]*(a[5]-b[5])/(b[4]-a[4]) + a[5]};
x = quadraticroots(c[0], c[1], c[2]);
} else {
if(abs(a[3]-b[3]) > e) {
real D = b[3]-a[3];
c = new real[] {a[2], (-a[1]*b[5] + a[4]*b[3] + a[1]*a[5] - a[3]*a[4])/D,
a[0]*(a[5]-b[5])^2/D^2 + a[3]*(a[5]-b[5])/D + a[5]};
y = quadraticroots(c[0], c[1], c[2]);
for (int i = 0; i < y.length; ++i) {
c = new real[] {a[0], a[1]*y[i]+a[3], a[2]*y[i]^2 + a[4]*y[i]+a[5]};
x = quadraticroots(c[0], c[1], c[2]);
for (int j = 0; j < x.length; ++j) {
if(abs(b[0]*x[j]^2 + b[1]*x[j]*y[i]+b[2]*y[i]^2 + b[3]*x[j]+b[4]*y[i]+b[5]) < 1e-5)
P.push(point(R, (x[j], y[i])));
}
}
return P;
} else {
if(abs(a[5]-b[5]) < e) abort("intersectionpoints: intersection of identical conics.");
}
}
}
for (int i = 0; i < x.length; ++i) {
c = new real[] {a[2], a[1]*x[i]+a[4], a[0]*x[i]^2 + a[3]*x[i]+a[5]};
y = quadraticroots(c[0], c[1], c[2]);
for (int j = 0; j < y.length; ++j) {
if(abs(b[0]*x[i]^2 + b[1]*x[i]*y[j]+b[2]*y[j]^2 + b[3]*x[i]+b[4]*y[j]+b[5]) < 1e-5)
P.push(point(R, (x[i], y[j])));
}
}
return P;
}
/*
*/
struct conic
{/*
*/
real e, p, h;/*BE CAREFUL: h = distance(F, D) and p = h * e (http://en.wikipedia.org/wiki/Ellipse)
While http://mathworld.wolfram.com/ takes p = distance(F, D).
*/
point F;/*Focus.
*/
line D;/*Directrix.
*/
line[] l;/*Case of degenerated conic (not yet implemented !).*/
}/**/
bool degenerate(conic c)
{
return !finite(c.p) || !finite(c.h);
}
/*ANCconic conic(point, line, real)ANC*/
conic conic(point F, line l, real e)
{/*DOC
The conic section define by the eccentricity 'e', the focus 'F'
and the directrix 'l'.
Note that an eccentricity equal to 0 defines a circle centered at F,
with a radius equal at the distance from 'F' to 'l'.
If the coordinate system of 'F' and 'l' are not identical, the conic is
attached to 'defaultcoordsys'.
DOC*/
if(e < 0) abort("conic: 'e' can't be negative.");
conic oc;
point[] P = standardizecoordsys(F, l.A, l.B);
line ll;
ll = line(P[1], P[2]);
oc.e = e < epsgeo ? 0 : e; // Handle case of circle.
oc.F = P[0];
oc.D = ll;
oc.h = distance(P[0], ll);
oc.p = abs(e) < epsgeo ? oc.h : e * oc.h;
return oc;
}
/*
*/
struct circle
{/*All the calculus with this structure will be as exact as Asymptote can do.
For a full precision, you must not cast 'circle' to 'path' excepted for drawing routines.*/
/*
*/
point C;/*Center
*/
real r;/*Radius
*/
line l;/*If the radius is infinite, this line is used instead of circle.*/
}/**/
bool degenerate(circle c)
{
return !finite(c.r);
}
line line(circle c){
if(finite(c.r)) abort("Circle can not be casted to line here.");
return c.l;
}
/*
*/
struct ellipse
{/*Look at http://mathworld.wolfram.com/Ellipse.html*/
/*
*/
restricted point F1, F2, C;/*Foci and center.
*/
restricted real a, b, c, e, p;/*
*/
restricted real angle;/*Value is degrees(F1 - F2).
*/
restricted line D1, D2;/*Directrices.
*/
line l;/*If one axis is infinite, this line is used instead of ellipse.*/
/*
*/
void init(point f1, point f2, real a)
{/*Ellipse given by foci and semimajor axis*/
point[] P = standardizecoordsys(f1, f2);
this.F1 = P[0];
this.F2 = P[1];
this.angle = abs(P[1]-P[0]) < 10 * epsgeo ? 0 : degrees(P[1]-P[0]);
this.C = (P[0] + P[1])/2;
this.a = a;
if(!finite(a)) {
this.l = line(P[0], P[1]);
this.b = infinity;
this.e = 0;
this.c = 0;
} else {
this.c = abs(C - P[0]);
this.b = this.c < epsgeo ? a : sqrt(a^2 - c^2); // Handle case of circle.
this.e = this.c < epsgeo ? 0 : this.c/a; // Handle case of circle.
if(this.e >= 1) abort("ellipse.init: wrong parameter: e >= 1.");
this.p = a * (1 - this.e^2);
if (this.c != 0) {// directrix is not set for a circle.
point A = this.C + (a^2/this.c) * unit(P[0]-this.C);
this.D1 = line(A, A + rotateO(90) * unit(A - this.C));
this.D2 = reverse(rotate(180, C) * D1);
}
}
}
}/**/
bool degenerate(ellipse el)
{
return (!finite(el.a) || !finite(el.b));
}
/*
*/
struct parabola
{/*Look at http://mathworld.wolfram.com/Parabola.html
*/
restricted point F, V;/*Focus and vertex
*/
restricted real a, p, e = 1;/*
*/
restricted real angle;/*Angle, in degrees, of the line (FV).
*/
restricted line D;/*Directrix
*/
pair bmin, bmax;/*The (left, bottom) and (right, top) coordinates of region bounding box for drawing the parabola.
If unset the current picture bounding box is used instead.*/
/*
*/
void init(point F, line directrix)
{/*Parabola given by focus and directrix.*/
point[] P = standardizecoordsys(F, directrix.A, directrix.B);
line l = line(P[1], P[2]);
this.F = P[0];
this.D = l;
this.a = distance(P[0], l)/2;
this.p = 2 * a;
this.V = 0.5 * (F + projection(D) * P[0]);
this.angle = degrees(F - V);
}
}/**/
/*
*/
struct hyperbola
{/*Look at http://mathworld.wolfram.com/Hyperbola.html
*/
restricted point F1, F2;/*Foci.
*/
restricted point C, V1, V2;/*Center and vertices.
*/
restricted real a, b, c, e, p;/*
*/
restricted real angle;/*Angle, in degrees, of the line (F1F2).
*/
restricted line D1, D2, A1, A2;/*Directrices and asymptotes.
*/
pair bmin, bmax; /*The (left, bottom) and (right, top) coordinates of region bounding box for drawing the hyperbola.
If unset the current picture bounding box is used instead.*/
/*
*/
void init(point f1, point f2, real a)
{/*Hyperbola given by foci and semimajor axis.*/
point[] P = standardizecoordsys(f1, f2);
this.F1 = P[0];
this.F2 = P[1];
this.angle = degrees(F2 - F1);
this.a = a;
this.C = (P[0] + P[1])/2;
this.c = abs(C - P[0]);
this.e = this.c/a;
if(this.e <= 1) abort("hyperbola.init: wrong parameter: e <= 1.");
this.b = a * sqrt(this.e^2 - 1);
this.p = a * (this.e^2 - 1);
point A = this.C + (a^2/this.c) * unit(P[0]-this.C);
this.D1 = line(A, A + rotateO(90) * unit(A - this.C));
this.D2 = reverse(rotate(180, C) * D1);
this.V1 = C + a * unit(F1 - C);
this.V2 = C + a * unit(F2 - C);
this.A1 = line(C, V1 + b * unit(rotateO(-90) * (C - V1)));
this.A2 = line(C, V1 + b * unit(rotateO(90) * (C - V1)));
}
}/**/
/*
*/
int conicnodesfactor = 1;/*Factor for the node number of all conics.*/
/*
*/
int circlenodesnumberfactor = 100;/*Factor for the node number of circles.*/
/*
*/
int circlenodesnumber(real r)
{/*Return the number of nodes for drawing a circle of radius 'r'.*/
if (circlenodesnumberfactor < 100)
warning("circlenodesnumberfactor",
"variable 'circlenodesnumberfactor' may be too small.");
int oi = ceil(circlenodesnumberfactor * abs(r)^0.1);
oi = 45 * floor(oi/45);
return oi == 0 ? 4 : conicnodesfactor * oi;
}
/*
*/
int circlenodesnumber(real r, real angle1, real angle2)
{/*Return the number of nodes to draw a circle arc.*/
return (r > 0) ?
ceil(circlenodesnumber(r) * abs(angle1 - angle2)/360) :
ceil(circlenodesnumber(r) * abs((1 - abs(angle1 - angle2)/360)));
}
/*
*/
int ellipsenodesnumberfactor = 250;/*Factor for the node number of ellispe (non-circle).*/
/*
*/
int ellipsenodesnumber(real a, real b)
{/*Return the number of nodes to draw a ellipse of axis 'a' and 'b'.*/
if (ellipsenodesnumberfactor < 250)
write("ellipsenodesnumberfactor",
"variable 'ellipsenodesnumberfactor' maybe too small.");
int tmp = circlenodesnumberfactor;
circlenodesnumberfactor = ellipsenodesnumberfactor;
int oi = circlenodesnumber(max(abs(a), abs(b))/min(abs(a), abs(b)));
circlenodesnumberfactor = tmp;
return conicnodesfactor * oi;
}
/*
*/
int ellipsenodesnumber(real a, real b, real angle1, real angle2, bool dir)
{/*Return the number of nodes to draw an ellipse arc.*/
real d;
real da = angle2 - angle1;
if(dir) {
d = angle1 < angle2 ? da : 360 + da;
} else {
d = angle1 < angle2 ? -360 + da : da;
}
int n = floor(ellipsenodesnumber(a, b) * abs(d)/360);
return n < 5 ? 5 : n;
}
/*
*/
int parabolanodesnumberfactor = 100;/*Factor for the number of nodes of parabolas.*/
/*
*/
int parabolanodesnumber(parabola p, real angle1, real angle2)
{/*Return the number of nodes for drawing a parabola.*/
return conicnodesfactor * floor(0.01 * parabolanodesnumberfactor * abs(angle1 - angle2));
}
/*
*/
int hyperbolanodesnumberfactor = 100;/*Factor for the number of nodes of hyperbolas.*/
/*
*/
int hyperbolanodesnumber(hyperbola h, real angle1, real angle2)
{/*Return the number of nodes for drawing an hyperbola.*/
return conicnodesfactor * floor(0.01 * hyperbolanodesnumberfactor * abs(angle1 - angle2)/h.e);
}
/*
*/
conic operator +(conic c, explicit point M)
{/**/
return conic(c.F + M, c.D + M, c.e);
}
/*
*/
conic operator -(conic c, explicit point M)
{/**/
return conic(c.F - M, c.D - M, c.e);
}
/*
*/
conic operator +(conic c, explicit pair m)
{/**/
point M = point(c.F.coordsys, m);
return conic(c.F + M, c.D + M, c.e);
}
/*
*/
conic operator -(conic c, explicit pair m)
{/**/
point M = point(c.F.coordsys, m);
return conic(c.F - M, c.D - M, c.e);
}
/*
*/
conic operator +(conic c, vector v)
{/**/
return conic(c.F + v, c.D + v, c.e);
}
/*
*/
conic operator -(conic c, vector v)
{/**/
return conic(c.F - v, c.D - v, c.e);
}
/*
*/
coordsys coordsys(conic co)
{/*Return the coordinate system of 'co'.*/
return co.F.coordsys;
}
/*
*/
conic changecoordsys(coordsys R, conic co)
{/*Change the coordinate system of 'co' to 'R'*/
line l = changecoordsys(R, co.D);
point F = changecoordsys(R, co.F);
return conic(F, l, co.e);
}
/*
*/
typedef path polarconicroutine(conic co, real angle1, real angle2, int n, bool direction);/*Routine type used to draw conics from 'angle1' to 'angle2'*/
/*
*/
path arcfromfocus(conic co, real angle1, real angle2, int n = 400, bool direction = CCW)
{/*Return the path of the conic section 'co' from angle1 to angle2 in degrees,
drawing in the given direction, with n nodes.*/
guide op;
if (n < 1) return op;
if (angle1 > angle2) {
path g = arcfromfocus(co, angle2, angle1, n, !direction);
return g == nullpath ? g : reverse(g);
}
point O = projection(co.D) * co.F;
pair i = unit(locate(co.F) - locate(O));
pair j = rotate(90) * i;
coordsys Rp = cartesiansystem(co.F, i, j);
real a1 = direction ? radians(angle1) : radians(angle2);
real a2 = direction ? radians(angle2) : radians(angle1) + 2 * pi;
real step = n == 1 ? 0 : (a2 - a1)/(n - 1);
real a, r;
for (int i = 0; i < n; ++i) {
a = a1 + i * step;
if(co.e >= 1) {
r = 1 - co.e * cos(a);
if(r > epsgeo) {
r = co.p/r;
op = op--Rp * Rp.polar(r, a);
}
} else {
r = co.p/(1 - co.e * cos(a));
op = op..Rp * Rp.polar(r, a);
}
}
if(co.e < 1 && abs(abs(a2 - a1) - 2 * pi) < epsgeo) op = (path)op..cycle;
return (direction ? op : op == nullpath ? op :reverse(op));
}
/*
*/
polarconicroutine currentpolarconicroutine = arcfromfocus;/*Default routine used to cast conic section to path.*/
/*
*/
point angpoint(conic co, real angle)
{/*Return the point of 'co' whose the angular (in degrees)
coordinate is 'angle' (mesured from the focus of 'co', relatively
to its 'natural coordinate system').*/
coordsys R = coordsys(co);
return point(R, point(arcfromfocus(co, angle, angle, 1, CCW), 0)/R);
}
/*
*/
bool operator @(point M, conic co)
{/*Return true iff 'M' on 'co'.*/
if(co.e == 0) return abs(abs(co.F - M) - co.p) < 10 * epsgeo;
return abs(co.e * distance(M, co.D) - abs(co.F - M)) < 10 * epsgeo;
}
/*
*/
coordsys coordsys(ellipse el)
{/*Return the coordinate system of 'el'.*/
return el.F1.coordsys;
}
/*
*/
coordsys canonicalcartesiansystem(ellipse el)
{/*Return the canonical cartesian system of the ellipse 'el'.*/
if(degenerate(el)) return cartesiansystem(el.l.A, el.l.u, el.l.v);
pair O = locate(el.C);
pair i = el.e == 0 ? el.C.coordsys.i : unit(locate(el.F1) - O);
pair j = rotate(90) * i;
return cartesiansystem(O, i, j);
}
/*
*/
coordsys canonicalcartesiansystem(parabola p)
{/*Return the canonical cartesian system of a parabola,
so that Origin = vertex of 'p' and directrix: x = -a.*/
point A = projection(p.D) * p.F;
pair O = locate((A + p.F)/2);
pair i = unit(locate(p.F) - O);
pair j = rotate(90) * i;
return cartesiansystem(O, i, j);
}
/*
*/
coordsys canonicalcartesiansystem(hyperbola h)
{/*Return the canonical cartesian system of an hyperbola.*/
pair O = locate(h.C);
pair i = unit(locate(h.F2) - O);
pair j = rotate(90) * i;
return cartesiansystem(O, i, j);
}
/*
*/
ellipse ellipse(point F1, point F2, real a)
{/*Return the ellipse whose the foci are 'F1' and 'F2'
and the semimajor axis is 'a'.*/
ellipse oe;
oe.init(F1, F2, a);
return oe;
}
/*
*/
restricted bool byfoci = true, byvertices = false;/*Constants useful for the routine 'hyperbola(point P1, point P2, real ae, bool byfoci = byfoci)'*/
/*
*/
hyperbola hyperbola(point P1, point P2, real ae, bool byfoci = byfoci)
{/*if 'byfoci = true':
return the hyperbola whose the foci are 'P1' and 'P2'
and the semimajor axis is 'ae'.
else return the hyperbola whose vertexes are 'P1' and 'P2' with eccentricity 'ae'.*/
hyperbola oh;
point[] P = standardizecoordsys(P1, P2);
if(byfoci) {
oh.init(P[0], P[1], ae);
} else {
real a = abs(P[0]-P[1])/2;
vector V = unit(P[0]-P[1]);
point F1 = P[0] + a * (ae - 1) * V;
point F2 = P[1]-a * (ae - 1) * V;
oh.init(F1, F2, a);
}
return oh;
}
/*
*/
ellipse ellipse(point F1, point F2, point M)
{/*Return the ellipse passing through 'M' whose the foci are 'F1' and 'F2'.*/
point P[] = standardizecoordsys(false, F1, F2, M);
real a = abs(F1 - M) + abs(F2 - M);
return ellipse(F1, F2, finite(a) ? a/2 : a);
}
/*
*/
ellipse ellipse(point C, real a, real b, real angle = 0)
{/*Return the ellipse centered at 'C' with semimajor axis 'a' along C--C + dir(angle),
semiminor axis 'b' along the perpendicular.*/
ellipse oe;
coordsys R = C.coordsys;
angle += degrees(R.i);
if(a < b) {angle += 90; real tmp = a; a = b; b = tmp;}
if(finite(a) && finite(b)) {
real c = sqrt(abs(a^2 - b^2));
point f1, f2;
if(abs(a - b) < epsgeo) {
f1 = C; f2 = C;
} else {
f1 = point(R, (locate(C) + rotate(angle) * (-c, 0))/R);
f2 = point(R, (locate(C) + rotate(angle) * (c, 0))/R);
}
oe.init(f1, f2, a);
} else {
if(finite(b) || !finite(a)) oe.init(C, C + R.polar(1, angle), infinity);
else oe.init(C, C + R.polar(1, 90 + angle), infinity);
}
return oe;
}
/*
*/
ellipse ellipse(bqe bqe)
{/*Return the ellipse a[0] * x^2 + a[1] * xy + a[2] * y^2 + a[3] * x + a[4] * y + a[5] = 0
given in the coordinate system of 'bqe' with a[i] = bque.a[i].
.*/
bqe lbqe = changecoordsys(defaultcoordsys, bqe);
real a = lbqe.a[0], b = lbqe.a[1]/2, c = lbqe.a[2], d = lbqe.a[3]/2, f = lbqe.a[4]/2, g = lbqe.a[5];
coordsys R = bqe.coordsys;
string message = "ellipse: the given equation is not an equation of an ellipse.";
real u = b^2 * g + d^2 * c + f^2 * a;
real delta = a * c * g + b * f * d + d * b * f - u;
if(abs(delta) < epsgeo) abort(message);
real j = b^2 - a * c;
real i = a + c;
real dd = j * (sgnd(c - a) * sqrt((a - c)^2 + 4 * (b^2)) - c-a);
real ddd = j * (-sgnd(c - a) * sqrt((a - c)^2 + 4 * (b^2)) - c-a);
if(abs(ddd) < epsgeo || abs(dd) < epsgeo ||
j >= -epsgeo || delta/sgnd(i) > 0) abort(message);
real x = (c * d - b * f)/j, y = (a * f - b * d)/j;
// real dir = abs(b) < epsgeo ? 0 : pi/2-0.5 * acot(0.5 * (c-a)/b);
real dir = abs(b) < epsgeo ? 0 : 0.5 * acot(0.5 * (c - a)/b);
if(dir * (c - a) * b < 0) dir = dir < 0 ? dir + pi/2 : dir - pi/2;
real cd = cos(dir), sd = sin(dir);
real t = a * cd^2 - 2 * b * cd * sd + c * sd^2;
real tt = a * sd^2 + 2 * b * cd * sd + c * cd^2;
real gg = -g + ((d * cd - f * sd)^2)/t + ((d * sd + f * cd)^2)/tt;
t = t/gg; tt = tt/gg;
// The equation of the ellipse is t * (x - center.x)^2 + tt * (y - center.y)^2 = 1;
real aa, bb;
aa = sqrt(2 * (u - 2 * b * d * f - a * c * g)/dd);
bb = sqrt(2 * (u - 2 * b * d * f - a * c * g)/ddd);
a = t > tt ? max(aa, bb) : min(aa, bb);
b = t > tt ? min(aa, bb) : max(aa, bb);
return ellipse(point(R, (x, y)/R),
a, b, degrees(pi/2 - dir - angle(R.i)));
}
/*
*/
ellipse ellipse(point M1, point M2, point M3, point M4, point M5)
{/*Return the ellipse passing through the five points (if possible)*/
return ellipse(bqe(M1, M2, M3, M4, M5));
}
/*
*/
bool inside(ellipse el, point M)
{/*Return 'true' iff 'M' is inside 'el'.*/
return abs(el.F1 - M) + abs(el.F2 - M) - 2 * el.a < -epsgeo;
}
/*
*/
bool inside(parabola p, point M)
{/*Return 'true' if 'M' is inside 'p'.*/
return distance(p.D, M) - abs(p.F - M) > epsgeo;
}
/*
*/
parabola parabola(point F, line l)
{/*Return the parabola whose focus is 'F' and directrix is 'l'.*/
parabola op;
op.init(F, l);
return op;
}
/*
*/
parabola parabola(point F, point vertex)
{/*Return the parabola whose focus is 'F' and vertex is 'vertex'.*/
parabola op;
point[] P = standardizecoordsys(F, vertex);
point A = rotate(180, P[1]) * P[0];
point B = A + rotateO(90) * unit(P[1]-A);
op.init(P[0], line(A, B));
return op;
}
/*
*/
parabola parabola(point F, real a, real angle)
{/*Return the parabola whose focus is F, latus rectum is 4a and
the angle of the axis of symmetry (in the coordinate system of F) is 'angle'.*/
parabola op;
coordsys R = F.coordsys;
point A = F - point(R, R.polar(2a, radians(angle)));
point B = A + point(R, R.polar(1, radians(90 + angle)));
op.init(F, line(A, B));
return op;
}
/*
*/
bool isparabola(bqe bqe)
{/*Return true iff 'bqe' is the equation of a parabola.*/
bqe lbqe = changecoordsys(defaultcoordsys, bqe);
real a = lbqe.a[0], b = lbqe.a[1]/2, c = lbqe.a[2], d = lbqe.a[3]/2, f = lbqe.a[4]/2, g = lbqe.a[5];
real delta = a * c * g + b * f * d + d * b * f - (b^2 * g + d^2 * c + f^2 * a);
return (abs(delta) > epsgeo && abs(b^2 - a * c) < epsgeo);
}
/*
*/
parabola parabola(bqe bqe)
{/*Return the parabola a[0]x^2 + a[1]xy + a[2]y^2 + a[3]x + a[4]y + a[5]] = 0 (a[n] means bqe.a[n]).
*/
bqe lbqe = changecoordsys(defaultcoordsys, bqe);
real a = lbqe.a[0], b = lbqe.a[1]/2, c = lbqe.a[2], d = lbqe.a[3]/2, f = lbqe.a[4]/2, g = lbqe.a[5];
string message = "parabola: the given equation is not an equation of a parabola.";
real delta = a * c * g + b * f * d + d * b * f - (b^2 * g + d^2 * c + f^2 * a);
if(abs(delta) < 10 * epsgeo || abs(b^2 - a * c) > 10 * epsgeo) abort(message);
real dir = abs(b) < epsgeo ? 0 : 0.5 * acot(0.5 * (c - a)/b);
if(dir * (c - a) * b < 0) dir = dir < 0 ? dir + pi/2 : dir - pi/2;
real cd = cos(dir), sd = sin(dir);
real ap = a * cd^2 - 2 * b * cd * sd + c * sd^2;
real cp = a * sd^2 + 2 * b * cd * sd + c * cd^2;
real dp = d * cd - f * sd;
real fp = d * sd + f * cd;
real gp = g;
parabola op;
coordsys R = bqe.coordsys;
// The equation of the parabola is ap * x'^2 + cp * y'^2 + 2dp * x'+2fp * y'+gp = 0
if (abs(ap) < epsgeo) {/* directrix parallel to the rotated(dir) y-axis
equation: (y-vertex.y)^2 = 4 * a * (x-vertex)
*/
pair pvertex = rotate(degrees(-dir)) * (0.5(-gp + fp^2/cp)/dp, -fp/cp);
real a = -0.5 * dp/cp;
point vertex = point(R, pvertex/R);
point focus = point(R, (pvertex + a * expi(-dir))/R);
op = parabola(focus, vertex);
} else {/* directrix parallel to the rotated(dir) x-axis
equation: (x-vertex)^2 = 4 * a * (y-vertex.y)
*/
pair pvertex = rotate(degrees(-dir)) * (-dp/ap, 0.5 * (-gp + dp^2/ap)/fp);
real a = -0.5 * fp/ap;
point vertex = point(R, pvertex/R);
point focus = point(R, (pvertex + a * expi(pi/2 - dir))/R);
op = parabola(focus, vertex);
}
return op;
}
/*
*/
parabola parabola(point M1, point M2, point M3, line l)
{/*Return the parabola passing through the three points with its directix
parallel to the line 'l'.*/
coordsys R;
pair[] pts;
if (samecoordsys(M1, M2, M3)) {
R = M1.coordsys;
} else {
R = defaultcoordsys;
}
real gle = degrees(l);
coordsys Rp = cartesiansystem(R.O, rotate(gle) * R.i, rotate(gle) * R.j);
pts = new pair[] {coordinates(changecoordsys(Rp, M1)),
coordinates(changecoordsys(Rp, M2)),
coordinates(changecoordsys(Rp, M3))};
real[][] M;
real[] x;
for (int i = 0; i < 3; ++i) {
M[i] = new real[] {pts[i].x, pts[i].y, 1};
x[i] = -pts[i].x^2;
}
real[] coef = solve(M, x);
return parabola(changecoordsys(R, bqe(Rp, 1, 0, 0, coef[0], coef[1], coef[2])));
}
/*
*/
parabola parabola(point M1, point M2, point M3, point M4, point M5)
{/*Return the parabola passing through the five points.*/
return parabola(bqe(M1, M2, M3, M4, M5));
}
/*
*/
hyperbola hyperbola(point C, real a, real b, real angle = 0)
{/*Return the hyperbola centered at 'C' with semimajor axis 'a' along C--C + dir(angle),
semiminor axis 'b' along the perpendicular.*/
hyperbola oh;
coordsys R = C.coordsys;
angle += degrees(R.i);
real c = sqrt(a^2 + b^2);
point f1 = point(R, (locate(C) + rotate(angle) * (-c, 0))/R);
point f2 = point(R, (locate(C) + rotate(angle) * (c, 0))/R);
oh.init(f1, f2, a);
return oh;
}
/*
*/
hyperbola hyperbola(bqe bqe)
{/*Return the hyperbola a[0]x^2 + a[1]xy + a[2]y^2 + a[3]x + a[4]y + a[5]] = 0 (a[n] means bqe.a[n]).
*/
bqe lbqe = changecoordsys(defaultcoordsys, bqe);
real a = lbqe.a[0], b = lbqe.a[1]/2, c = lbqe.a[2], d = lbqe.a[3]/2, f = lbqe.a[4]/2, g = lbqe.a[5];
string message = "hyperbola: the given equation is not an equation of a hyperbola.";
real delta = a * c * g + b * f * d + d * b * f - (b^2 * g + d^2 * c + f^2 * a);
if(abs(delta) < 10 * epsgeo || abs(b^2 - a * c) < 0) abort(message);
real dir = abs(b) < epsgeo ? 0 : 0.5 * acot(0.5 * (c - a)/b);
real cd = cos(dir), sd = sin(dir);
real ap = a * cd^2 - 2 * b * cd * sd + c * sd^2;
real cp = a * sd^2 + 2 * b * cd * sd + c * cd^2;
real dp = d * cd - f * sd;
real fp = d * sd + f * cd;
real gp = -g + dp^2/ap + fp^2/cp;
hyperbola op;
coordsys R = bqe.coordsys;
real j = b^2 - a * c;
point C = point(R, ((c * d - b * f)/j, (a * f - b * d)/j)/R);
real aa = gp/ap, bb = gp/cp;
real a = sqrt(abs(aa)), b = sqrt(abs(bb));
if(aa < 0) {dir -= pi/2; aa = a; a = b; b = aa;}
return hyperbola(C, a, b, degrees(-dir - angle(R.i)));
}
/*
*/
hyperbola hyperbola(point M1, point M2, point M3, point M4, point M5)
{/*Return the hyperbola passing through the five points (if possible).*/
return hyperbola(bqe(M1, M2, M3, M4, M5));
}
/*
*/
hyperbola conj(hyperbola h)
{/*Conjugate.*/
return hyperbola(h.C, h.b, h.a, 90 + h.angle);
}
/*
*/
circle circle(explicit point C, real r)
{/*Circle given by center and radius.*/
circle oc = new circle;
oc.C = C;
oc.r = r;
if(!finite(r)) oc.l = line(C, C + vector(C.coordsys, (1, 0)));
return oc;
}
/*
*/
circle circle(point A, point B)
{/*Return the circle of diameter AB.*/
real r;
circle oc;
real a = abs(A), b = abs(B);
if(finite(a) && finite(b)) {
oc = circle((A + B)/2, abs(A - B)/2);
} else {
oc.r = infinity;
if(finite(abs(A))) oc.l = line(A, A + unit(B));
else {
if(finite(abs(B))) oc.l = line(B, B + unit(A));
else if(finite(abs(A - B)/2)) oc = circle((A + B)/2, abs(A - B)/2); else
oc.l = line(A, B);
}
}
return oc;
}
/*
*/
circle circle(segment s)
{/*Return the circle of diameter 's'.*/
return circle(s.A, s.B);
}
/*
*/
point circumcenter(point A, point B, point C)
{/*Return the circumcenter of triangle ABC.*/
point[] P = standardizecoordsys(A, B, C);
coordsys R = P[0].coordsys;
pair a = A, b = B, c = C;
pair mAB = (a + b)/2;
pair mAC = (a + c)/2;
pair pp = extension(mAB, rotate(90, mAB) * a, mAC, rotate(90, mAC) * c);
return point(R, pp/R);
}
/*
*/
circle circle(point A, point B, point C)
{/*Return the circumcircle of the triangle ABC.*/
if(collinear(A - B, A - C)) {
circle oc;
oc.r = infinity;
oc.C = (A + B + C)/3;
oc.l = line(oc.C, oc.C == A ? B : A);
return oc;
}
point c = circumcenter(A, B, C);
return circle(c, abs(c - A));
}
/*
*/
circle circumcircle(point A, point B, point C)
{/*Return the circumcircle of the triangle ABC.*/
return circle(A, B, C);
}
/*
*/
circle operator *(real x, explicit circle c)
{/*Multiply the radius of 'c'.*/
return finite(c.r) ? circle(c.C, x * c.r) : c;
}
circle operator *(int x, explicit circle c)
{
return finite(c.r) ? circle(c.C, x * c.r) : c;
}
/*
*/
circle operator /(explicit circle c, real x)
{/*Divide the radius of 'c'*/
return finite(c.r) ? circle(c.C, c.r/x) : c;
}
circle operator /(explicit circle c, int x)
{
return finite(c.r) ? circle(c.C, c.r/x) : c;
}
/*
*/
circle operator +(explicit circle c, explicit point M)
{/*Translation of 'c'.*/
return circle(c.C + M, c.r);
}
/*
*/
circle operator -(explicit circle c, explicit point M)
{/*Translation of 'c'.*/
return circle(c.C - M, c.r);
}
/*
*/
circle operator +(explicit circle c, pair m)
{/*Translation of 'c'.
'm' represent coordinates in the coordinate system where 'c' is defined.*/
return circle(c.C + m, c.r);
}
/*
*/
circle operator -(explicit circle c, pair m)
{/*Translation of 'c'.
'm' represent coordinates in the coordinate system where 'c' is defined.*/
return circle(c.C - m, c.r);
}
/*
*/
circle operator +(explicit circle c, vector m)
{/*Translation of 'c'.*/
return circle(c.C + m, c.r);
}
/*
*/
circle operator -(explicit circle c, vector m)
{/*Translation of 'c'.*/
return circle(c.C - m, c.r);
}
/*
*/
real operator ^(point M, explicit circle c)
{/*The power of 'M' with respect to the circle 'c'*/
return xpart((abs(locate(M) - locate(c.C)), c.r)^2);
}
/*
*/
bool operator @(point M, explicit circle c)
{/*Return true iff 'M' is on the circle 'c'.*/
return finite(c.r) ?
abs(abs(locate(M) - locate(c.C)) - abs(c.r)) <= 10 * epsgeo :
M @ c.l;
}
/*
*/
ellipse operator cast(circle c)
{/**/
return finite(c.r) ? ellipse(c.C, c.r, c.r, 0) : ellipse(c.l.A, c.l.B, infinity);
}
/*
*/
circle operator cast(ellipse el)
{/**/
circle oc;
bool infb = (!finite(el.a) || !finite(el.b));
if(!infb && abs(el.a - el.b) > epsgeo)
abort("Can not cast ellipse with different axis values to circle");
oc = circle(el.C, infb ? infinity : el.a);
oc.l = el.l.copy();
return oc;
}
/*
*/
ellipse operator cast(conic co)
{/*Cast a conic to an ellipse (can be a circle).*/
if(degenerate(co) && co.e < 1) return ellipse(co.l[0].A, co.l[0].B, infinity);
ellipse oe;
if(co.e < 1) {
real a = co.p/(1 - co.e^2);
real c = co.e * a;
vector v = co.D.v;
if(!sameside(co.D.A + v, co.F, co.D)) v = -v;
point f2 = co.F + 2 * c * v;
f2 = changecoordsys(co.F.coordsys, f2);
oe = a == 0 ? ellipse(co.F, co.p, co.p, 0) : ellipse(co.F, f2, a);
} else
abort("casting: The conic section is not an ellipse.");
return oe;
}
/*
*/
parabola operator cast(conic co)
{/*Cast a conic to a parabola.*/
parabola op;
if(abs(co.e - 1) > epsgeo) abort("casting: The conic section is not a parabola.");
op.init(co.F, co.D);
return op;
}
/*
*/
conic operator cast(parabola p)
{/*Cast a parabola to a conic section.*/
return conic(p.F, p.D, 1);
}
/*
*/
hyperbola operator cast(conic co)
{/*Cast a conic section to an hyperbola.*/
hyperbola oh;
if(co.e > 1) {
real a = co.p/(co.e^2 - 1);
real c = co.e * a;
vector v = co.D.v;
if(sameside(co.D.A + v, co.F, co.D)) v = -v;
point f2 = co.F + 2 * c * v;
f2 = changecoordsys(co.F.coordsys, f2);
oh = hyperbola(co.F, f2, a);
} else
abort("casting: The conic section is not an hyperbola.");
return oh;
}
/*
*/
conic operator cast(hyperbola h)
{/*Hyperbola to conic section.*/
return conic(h.F1, h.D1, h.e);
}
/*
*/
conic operator cast(ellipse el)
{/*Ellipse to conic section.*/
conic oc;
if(abs(el.c) > epsgeo) {
real x = el.a^2/el.c;
point O = (el.F1 + el.F2)/2;
point A = O + x * unit(el.F1 - el.F2);
oc = conic(el.F1, perpendicular(A, line(el.F1, el.F2)), el.e);
} else {//The ellipse is a circle
coordsys R = coordsys(el);
point M = el.F1 + point(R, R.polar(el.a, 0));
line l = line(rotate(90, M) * el.F1, M);
oc = conic(el.F1, l, 0);
}
if(degenerate(el)) {
oc.p = infinity;
oc.h = infinity;
oc.l = new line[]{el.l};
}
return oc;
}
/*
*/
conic operator cast(circle c)
{/*Circle to conic section.*/
return (conic)((ellipse)c);
}
/*
*/
circle operator cast(conic c)
{/*Conic section to circle.*/
ellipse el = (ellipse)c;
circle oc;
if(abs(el.a - el.b) < epsgeo) {
oc = circle(el.C, el.a);
if(degenerate(c)) oc.l = c.l[0];
}
else abort("Can not cast this conic to a circle");
return oc;
}
/*
*/
ellipse operator *(transform t, ellipse el)
{/*Provide transform * ellipse.*/
if(!degenerate(el)) {
point[] ep;
for (int i = 0; i < 360; i += 72) {
ep.push(t * angpoint(el, i));
}
ellipse oe = ellipse(ep[0], ep[1], ep[2], ep[3], ep[4]);
if(angpoint(oe, 0) != ep[0]) return ellipse(oe.F2, oe.F1, oe.a);
return oe;
}
return ellipse(t * el.l.A, t * el.l.B, infinity);
}
/*
*/
parabola operator *(transform t, parabola p)
{/*Provide transform * parabola.*/
point[] P;
P.push(t * angpoint(p, 45));
P.push(t * angpoint(p, -45));
P.push(t * angpoint(p, 180));
parabola op = parabola(P[0], P[1], P[2], t * p.D);
op.bmin = p.bmin;
op.bmax = p.bmax;
return op;
}
/*
*/
ellipse operator *(transform t, circle c)
{/*Provide transform * circle.
For example, 'circle C = scale(2) * circle' and 'ellipse E = xscale(2) * circle' are valid
but 'circle C = xscale(2) * circle' is invalid.*/
return t * ((ellipse)c);
}
/*
*/
hyperbola operator *(transform t, hyperbola h)
{/*Provide transform * hyperbola.*/
if (t == identity()) {
return h;
}
point[] ep;
for (int i = 90; i <= 270; i += 45) {
ep.push(t * angpoint(h, i));
}
hyperbola oe = hyperbola(ep[0], ep[1], ep[2], ep[3], ep[4]);
if(angpoint(oe, 90) != ep[0]) {
oe = hyperbola(oe.F2, oe.F1, oe.a);
}
oe.bmin = h.bmin;
oe.bmax = h.bmax;
return oe;
}
/*
*/
conic operator *(transform t, conic co)
{/*Provide transform * conic.*/
if(co.e < 1) return (t * ((ellipse)co));
if(co.e == 1) return (t * ((parabola)co));
return (t * ((hyperbola)co));
}
/*
*/
ellipse operator *(real x, ellipse el)
{/*Identical but more efficient (rapid) than 'scale(x, el.C) * el'.*/
return degenerate(el) ? el : ellipse(el.C, x * el.a, x * el.b, el.angle);
}
/*
*/
ellipse operator /(ellipse el, real x)
{/*Identical but more efficient (rapid) than 'scale(1/x, el.C) * el'.*/
return degenerate(el) ? el : ellipse(el.C, el.a/x, el.b/x, el.angle);
}
/*
*/
path arcfromcenter(ellipse el, real angle1, real angle2,
bool direction = CCW,
int n = ellipsenodesnumber(el.a, el.b, angle1, angle2, direction))
{/*Return the path of the ellipse 'el' from angle1 to angle2 in degrees,
drawing in the given direction, with n nodes.
The angles are mesured relatively to the axis (C, x-axis) where C is
the center of the ellipse.*/
if(degenerate(el)) abort("arcfromcenter: can not convert degenerated ellipse to path.");
if (angle1 > angle2)
return reverse(arcfromcenter(el, angle2, angle1, !direction, n));
path op;
coordsys Rp = coordsys(el);
if (n < 1) return op;
interpolate join = operator ..;
real stretch = max(el.a/el.b, el.b/el.a);
if (stretch > 10) {
n *= floor(stretch/5);
join = operator --;
}
real a1 = direction ? radians(angle1) : radians(angle2);
real a2 = direction ? radians(angle2) : radians(angle1) + 2 * pi;
real step = (a2 - a1)/(n != 1 ? n - 1 : 1);
real a, r;
real da = radians(el.angle);
real a3 = angle((cos(a1)/el.a, sin(a1)/el.b));
real a3 = (a3>=0) ? a3 : a3 + 2pi;
real a4 = angle((cos(a2)/el.a, sin(a2)/el.b));
real a4 = (a4>=0) ? a4 : a4 + 2pi;
real step = (a4 - a3)/(n != 1 ? n - 1 : 1);
for (int i = 0; i < n; ++i) {
a = a3 + i * step;
a = angle((el.a * cos(a), el.b * sin(a)));
r = el.b/sqrt(1 - (el.e * cos(a))^2);
op = op..Rp * Rp.polar(r, a + da);
}
return shift(el.C.x * Rp.i + el.C.y * Rp.j) * (direction ? op : reverse(op));
}
/*
*/
path arcfromcenter(hyperbola h, real angle1, real angle2,
int n = hyperbolanodesnumber(h, angle1, angle2),
bool direction = CCW)
{/*Return the path of the hyperbola 'h' from angle1 to angle2 in degrees,
drawing in the given direction, with n nodes.
The angles are mesured relatively to the axis (C, x-axis) where C is
the center of the hyperbola.*/
guide op;
coordsys Rp = coordsys(h);
if (n < 1) return op;
if (angle1 > angle2) {
path g = reverse(arcfromcenter(h, angle2, angle1, n, !direction));
return g == nullpath ? g : reverse(g);
}
real a1 = direction ? radians(angle1) : radians(angle2);
real a2 = direction ? radians(angle2) : radians(angle1) + 2 * pi;
real step = (a2 - a1)/(n != 1 ? n - 1 : 1);
real a, r;
typedef guide interpolate(... guide[]);
interpolate join = operator ..;
real da = radians(h.angle);
for (int i = 0; i < n; ++i) {
a = a1 + i * step;
r = (h.b * cos(a))^2 - (h.a * sin(a))^2;
if(r > epsgeo) {
r = sqrt(h.a^2 * h.b^2/r);
op = join(op, Rp * Rp.polar(r, a + da));
join = operator ..;
} else join = operator --;
}
return shift(h.C.x * Rp.i + h.C.y * Rp.j)*
(direction ? op : op == nullpath ? op : reverse(op));
}
/*
*/
path arcfromcenter(explicit conic co, real angle1, real angle2,
int n, bool direction = CCW)
{/*Use arcfromcenter(ellipse, ...) or arcfromcenter(hyperbola, ...) depending of
the eccentricity of 'co'.*/
path g;
if(co.e < 1)
g = arcfromcenter((ellipse)co, angle1,
angle2, direction, n);
else if(co.e > 1)
g = arcfromcenter((hyperbola)co, angle1,
angle2, n, direction);
else abort("arcfromcenter: does not exist for a parabola.");
return g;
}
/*
*/
restricted polarconicroutine fromCenter = arcfromcenter;/**/
/*
*/
restricted polarconicroutine fromFocus = arcfromfocus;/**/
/*
*/
bqe equation(ellipse el)
{/*Return the coefficients of the equation of the ellipse in its coordinate system:
bqe.a[0] * x^2 + bqe.a[1] * x * y + bqe.a[2] * y^2 + bqe.a[3] * x + bqe.a[4] * y + bqe.a[5] = 0.
One can change the coordinate system of 'bqe' using the routine 'changecoordsys'.*/
pair[] pts;
for (int i = 0; i < 360; i += 72)
pts.push(locate(angpoint(el, i)));
real[][] M;
real[] x;
for (int i = 0; i < 5; ++i) {
M[i] = new real[] {pts[i].x * pts[i].y, pts[i].y^2, pts[i].x, pts[i].y, 1};
x[i] = -pts[i].x^2;
}
real[] coef = solve(M, x);
bqe bqe = changecoordsys(coordsys(el),
bqe(defaultcoordsys,
1, coef[0], coef[1], coef[2], coef[3], coef[4]));
bqe.a = approximate(bqe.a);
return bqe;
}
/*
*/
bqe equation(parabola p)
{/*Return the coefficients of the equation of the parabola in its coordinate system.
bqe.a[0] * x^2 + bqe.a[1] * x * y + bqe.a[2] * y^2 + bqe.a[3] * x + bqe.a[4] * y + bqe.a[5] = 0
One can change the coordinate system of 'bqe' using the routine 'changecoordsys'.*/
coordsys R = canonicalcartesiansystem(p);
parabola tp = changecoordsys(R, p);
point A = projection(tp.D) * point(R, (0, 0));
real a = abs(A);
return changecoordsys(coordsys(p),
bqe(R, 0, 0, 1, -4 * a, 0, 0));
}
/*
*/
bqe equation(hyperbola h)
{/*Return the coefficients of the equation of the hyperbola in its coordinate system.
bqe.a[0] * x^2 + bqe.a[1] * x * y + bqe.a[2] * y^2 + bqe.a[3] * x + bqe.a[4] * y + bqe.a[5] = 0
One can change the coordinate system of 'bqe' using the routine 'changecoordsys'.*/
coordsys R = canonicalcartesiansystem(h);
return changecoordsys(coordsys(h),
bqe(R, 1/h.a^2, 0, -1/h.b^2, 0, 0, -1));
}
/*
*/
path operator cast(ellipse el)
{/*Cast ellipse to path.*/
if(degenerate(el))
abort("Casting degenerated ellipse to path is not possible.");
int n = el.e == 0 ? circlenodesnumber(el.a) : ellipsenodesnumber(el.a, el.b);
return arcfromcenter(el, 0.0, 360, CCW, n)&cycle;
}
/*
*/
path operator cast(circle c)
{/*Cast circle to path.*/
return (path)((ellipse)c);
}
/*
*/
real[] bangles(picture pic = currentpicture, parabola p)
{/*Return the array {ma, Ma} where 'ma' and 'Ma' are respectively
the smaller and the larger angles for which the parabola 'p' is included
in the bounding box of the picture 'pic'.*/
pair bmin, bmax;
pair[] b;
if (p.bmin == p.bmax) {
bmin = pic.userMin();
bmax = pic.userMax();
} else {
bmin = p.bmin;bmax = p.bmax;
}
if(bmin.x == bmax.x || bmin.y == bmax.y || !finite(abs(bmin)) || !finite(abs(bmax)))
return new real[] {0, 0};
b[0] = bmin;
b[1] = (bmax.x, bmin.y);
b[2] = bmax;
b[3] = (bmin.x, bmax.y);
real[] eq = changecoordsys(defaultcoordsys, equation(p)).a;
pair[] inter;
for (int i = 0; i < 4; ++i) {
pair[] tmp = intersectionpoints(b[i], b[(i + 1)%4], eq);
for (int j = 0; j < tmp.length; ++j) {
if(dot(b[i]-tmp[j], b[(i + 1)%4]-tmp[j]) <= epsgeo)
inter.push(tmp[j]);
}
}
pair F = p.F, V = p.V;
real d = degrees(F - V);
real[] a = sequence(new real(int n){
return (360 - d + degrees(inter[n]-F))%360;
}, inter.length);
real ma = a.length != 0 ? min(a) : 0, Ma= a.length != 0 ? max(a) : 0;
return new real[] {ma, Ma};
}
/*
*/
real[][] bangles(picture pic = currentpicture, hyperbola h)
{/*Return the array {{ma1, Ma1}, {ma2, Ma2}} where 'maX' and 'MaX' are respectively
the smaller and the bigger angles (from h.FX) for which the hyperbola 'h' is included
in the bounding box of the picture 'pic'.*/
pair bmin, bmax;
pair[] b;
if (h.bmin == h.bmax) {
bmin = pic.userMin();
bmax = pic.userMax();
} else {
bmin = h.bmin;bmax = h.bmax;
}
if(bmin.x == bmax.x || bmin.y == bmax.y || !finite(abs(bmin)) || !finite(abs(bmax)))
return new real[][] {{0, 0}, {0, 0}};
b[0] = bmin;
b[1] = (bmax.x, bmin.y);
b[2] = bmax;
b[3] = (bmin.x, bmax.y);
real[] eq = changecoordsys(defaultcoordsys, equation(h)).a;
pair[] inter0, inter1;
pair C = locate(h.C);
pair F1 = h.F1;
for (int i = 0; i < 4; ++i) {
pair[] tmp = intersectionpoints(b[i], b[(i + 1)%4], eq);
for (int j = 0; j < tmp.length; ++j) {
if(dot(b[i]-tmp[j], b[(i + 1)%4]-tmp[j]) <= epsgeo) {
if(dot(F1 - C, tmp[j]-C) > 0) inter0.push(tmp[j]);
else inter1.push(tmp[j]);
}
}
}
real d = degrees(F1 - C);
real[] ma, Ma;
pair[][] inter = new pair[][] {inter0, inter1};
for (int i = 0; i < 2; ++i) {
real[] a = sequence(new real(int n){
return (360 - d + degrees(inter[i][n]-F1))%360;
}, inter[i].length);
ma[i] = a.length != 0 ? min(a) : 0;
Ma[i] = a.length != 0 ? max(a) : 0;
}
return new real[][] {{ma[0], Ma[0]}, {ma[1], Ma[1]}};
}
/*
*/
path operator cast(parabola p)
{/*Cast parabola to path.
If possible, the returned path is restricted to the actual bounding box
of the current picture if the variables 'p.bmin' and 'p.bmax' are not set else
the bounding box of box(p.bmin, p.bmax) is used instead.*/
real[] bangles = bangles(p);
int n = parabolanodesnumber(p, bangles[0], bangles[1]);
return arcfromfocus(p, bangles[0], bangles[1], n, CCW);
}
/*
*/
void draw(picture pic = currentpicture, Label L = "", circle c,
align align = NoAlign, pen p = currentpen,
arrowbar arrow = None, arrowbar bar = None,
margin margin = NoMargin, Label legend = "", marker marker = nomarker)
{/**/
if(degenerate(c)) draw(pic, L, c.l, align, p, arrow, legend, marker);
else draw(pic, L, (path)c, align, p, arrow, bar, margin, legend, marker);
}
/*
*/
void draw(picture pic = currentpicture, Label L = "", ellipse el,
align align = NoAlign, pen p = currentpen,
arrowbar arrow = None, arrowbar bar = None,
margin margin = NoMargin, Label legend = "", marker marker = nomarker)
{/*Draw the ellipse 'el' if it is not degenerated else draw 'el.l'.*/
if(degenerate(el)) draw(pic, L, el.l, align, p, arrow, legend, marker);
else draw(pic, L, (path)el, align, p, arrow, bar, margin, legend, marker);
}
/*
*/
void draw(picture pic = currentpicture, Label L = "", parabola parabola,
align align = NoAlign, pen p = currentpen,
arrowbar arrow = None, arrowbar bar = None,
margin margin = NoMargin, Label legend = "", marker marker = nomarker)
{/*Draw the parabola 'p' on 'pic' without (if possible) altering the
size of picture pic.*/
pic.add(new void (frame f, transform t, transform T, pair m, pair M) {
// Reduce the bounds by the size of the pen and the margins.
m -= min(p); M -= max(p);
parabola.bmin = inverse(t) * m;
parabola.bmax = inverse(t) * M;
picture tmp;
draw(tmp, L, t * ((path) (T * parabola)), align, p, arrow, bar, NoMargin, legend, marker);
add(f, tmp.fit());
}, true);
pair m = pic.userMin(), M = pic.userMax();
if(m != M) {
pic.addBox(truepoint(SW), truepoint(NE));
}
}
/*
*/
path operator cast(hyperbola h)
{/*Cast hyperbola to path.
If possible, the returned path is restricted to the actual bounding box
of the current picture unless the variables 'h.bmin' and 'h.bmax'
are set; in this case the bounding box of box(h.bmin, h.bmax) is used instead.
Only the branch on the side of 'h.F1' is considered.*/
real[][] bangles = bangles(h);
int n = hyperbolanodesnumber(h, bangles[0][0], bangles[0][1]);
return arcfromfocus(h, bangles[0][0], bangles[0][1], n, CCW);
}
/*
*/
void draw(picture pic = currentpicture, Label L = "", hyperbola h,
align align = NoAlign, pen p = currentpen,
arrowbar arrow = None, arrowbar bar = None,
margin margin = NoMargin, Label legend = "", marker marker = nomarker)
{/*Draw the hyperbola 'h' on 'pic' without (if possible) altering the
size of the picture pic.*/
pic.add(new void (frame f, transform t, transform T, pair m, pair M) {
// Reduce the bounds by the size of the pen and the margins.
m -= min(p); M -= max(p);
h.bmin = inverse(t) * m;
h.bmax = inverse(t) * M;
picture tmp;
draw(tmp, L, t * ((path) (T * h)), align, p, arrow, bar, NoMargin, legend, marker);
hyperbola ht = hyperbola(h.F2, h.F1, h.a);
ht.bmin = h.bmin;
ht.bmax = h.bmax;
draw(tmp, "", t * ((path) (T * ht)), align, p, arrow, bar, NoMargin, marker);
add(f, tmp.fit());
}, true);
pair m = pic.userMin(), M = pic.userMax();
if(m != M)
pic.addBox(truepoint(SW), truepoint(NE));
}
/*
*/
void draw(picture pic = currentpicture, Label L = "", explicit conic co,
align align = NoAlign, pen p = currentpen,
arrowbar arrow = None, arrowbar bar = None,
margin margin = NoMargin, Label legend = "", marker marker = nomarker)
{/*Use one of the routine 'draw(ellipse, ...)',
'draw(parabola, ...)' or 'draw(hyperbola, ...)' depending of the value of eccentricity of 'co'.*/
if(co.e == 0)
draw(pic, L, (circle)co, align, p, arrow, bar, margin, legend, marker);
else
if(co.e < 1) draw(pic, L, (ellipse)co, align, p, arrow, bar, margin, legend, marker);
else
if(co.e == 1) draw(pic, L, (parabola)co, align, p, arrow, bar, margin, legend, marker);
else
if(co.e > 1) draw(pic, L, (hyperbola)co, align, p, arrow, bar, margin, legend, marker);
else abort("draw: unknown conic.");
}
/*
*/
int conicnodesnumber(conic co, real angle1, real angle2, bool dir = CCW)
{/*Return the number of node to draw a conic arc.*/
int oi;
if(co.e == 0) {
circle c = (circle)co;
oi = circlenodesnumber(c.r, angle1, angle2);
} else if(co.e < 1) {
ellipse el = (ellipse)co;
oi = ellipsenodesnumber(el.a, el.b, angle1, angle2, dir);
} else if(co.e == 1) {
parabola p = (parabola)co;
oi = parabolanodesnumber(p, angle1, angle2);
} else {
hyperbola h = (hyperbola)co;
oi = hyperbolanodesnumber(h, angle1, angle2);
}
return oi;
}
/*
*/
path operator cast(conic co)
{/*Cast conic section to path.*/
if(co.e < 1) return (path)((ellipse)co);
if(co.e == 1) return (path)((parabola)co);
return (path)((hyperbola)co);
}
/*
*/
bqe equation(explicit conic co)
{/*Return the coefficients of the equation of conic section in its coordinate system:
bqe.a[0] * x^2 + bqe.a[1] * x * y + bqe.a[2] * y^2 + bqe.a[3] * x + bqe.a[4] * y + bqe.a[5] = 0.
One can change the coordinate system of 'bqe' using the routine 'changecoordsys'.*/
bqe obqe;
if(co.e == 0)
obqe = equation((circle)co);
else
if(co.e < 1) obqe = equation((ellipse)co);
else
if(co.e == 1) obqe = equation((parabola)co);
else
if(co.e > 1) obqe = equation((hyperbola)co);
else abort("draw: unknown conic.");
return obqe;
}
/*
*/
string conictype(bqe bqe)
{/*Returned values are "ellipse" or "parabola" or "hyperbola"
depending of the conic section represented by 'bqe'.*/
bqe lbqe = changecoordsys(defaultcoordsys, bqe);
string os = "degenerated";
real a = lbqe.a[0], b = lbqe.a[1]/2, c = lbqe.a[2], d = lbqe.a[3]/2, f = lbqe.a[4]/2, g = lbqe.a[5];
real delta = a * c * g + b * f * d + d * b * f - (b^2 * g + d^2 * c + f^2 * a);
if(abs(delta) < 10 * epsgeo) return os;
real J = a * c - b^2;
real I = a + c;
if(J > epsgeo) {
if(delta/I < -epsgeo);
os = "ellipse";
} else {
if(abs(J) < epsgeo) os = "parabola"; else os = "hyperbola";
}
return os;
}
/*
*/
conic conic(point M1, point M2, point M3, point M4, point M5)
{/*Return the conic passing through 'M1', 'M2', 'M3', 'M4' and 'M5' if the conic is not degenerated.*/
bqe bqe = bqe(M1, M2, M3, M4, M5);
string ct = conictype(bqe);
if(ct == "degenerated") abort("conic: degenerated conic passing through five points.");
if(ct == "ellipse") return ellipse(bqe);
if(ct == "parabola") return parabola(bqe);
return hyperbola(bqe);
}
/*
*/
coordsys canonicalcartesiansystem(explicit conic co)
{/*Return the canonical cartesian system of the conic 'co'.*/
if(co.e < 1) return canonicalcartesiansystem((ellipse)co);
else if(co.e == 1) return canonicalcartesiansystem((parabola)co);
return canonicalcartesiansystem((hyperbola)co);
}
/*
*/
bqe canonical(bqe bqe)
{/*Return the bivariate quadratic equation relative to the
canonical coordinate system of the conic section represented by 'bqe'.*/
string type = conictype(bqe);
if(type == "") abort("canonical: the equation can not be performed.");
bqe obqe;
if(type == "ellipse") {
ellipse el = ellipse(bqe);
obqe = changecoordsys(canonicalcartesiansystem(el), equation(el));
} else {
if(type == "parabola") {
parabola p = parabola(bqe);
obqe = changecoordsys(canonicalcartesiansystem(p), equation(p));
} else {
hyperbola h = hyperbola(bqe);
obqe = changecoordsys(canonicalcartesiansystem(h), equation(h));
}
}
return obqe;
}
/*
*/
conic conic(bqe bqe)
{/*Return the conic section represented by the bivariate quartic equation 'bqe'.*/
string type = conictype(bqe);
if(type == "") abort("canonical: the equation can not be performed.");
conic oc;
if(type == "ellipse") {
oc = ellipse(bqe);
} else {
if(type == "parabola") oc = parabola(bqe); else oc = hyperbola(bqe);
}
return oc;
}
/*
*/
real arclength(circle c)
{/**/
return c.r * 2 * pi;
}
/*
*/
real focusToCenter(ellipse el, real a)
{/*Return the angle relatively to the center of 'el' for the angle 'a'
given relatively to the focus of 'el'.*/
pair p = point(fromFocus(el, a, a, 1, CCW), 0);
pair c = locate(el.C);
real d = degrees(p - c) - el.angle;
d = abs(d) < epsgeo ? 0 : d; // Avoid -1e-15
return d%(sgnd(a) * 360);
}
/*
*/
real centerToFocus(ellipse el, real a)
{/*Return the angle relatively to the focus of 'el' for the angle 'a'
given relatively to the center of 'el'.*/
pair P = point(fromCenter(el, a, a, 1, CCW), 0);
pair F1 = locate(el.F1);
pair F2 = locate(el.F2);
real d = degrees(P - F1) - degrees(F2 - F1);
d = abs(d) < epsgeo ? 0 : d; // Avoid -1e-15
return d%(sgnd(a) * 360);
}
/*
*/
real arclength(ellipse el)
{/**/
return degenerate(el) ? infinity : 4 * el.a * elle(pi/2, el.e);
}
/*
*/
real arclength(ellipse el, real angle1, real angle2,
bool direction = CCW,
polarconicroutine polarconicroutine = currentpolarconicroutine)
{/*Return the length of the arc of the ellipse between 'angle1'
and 'angle2'.
'angle1' and 'angle2' must be in the interval ]-360;+oo[ if polarconicroutine = fromFocus,
]-oo;+oo[ if polarconicroutine = fromCenter.*/
if(degenerate(el)) return infinity;
if(angle1 > angle2) return arclength(el, angle2, angle1, !direction, polarconicroutine);
// path g;int n = 1000;
// if(el.e == 0) g = arcfromcenter(el, angle1, angle2, n, direction);
// if(el.e != 1) g = polarconicroutine(el, angle1, angle2, n, direction);
// write("with path = ", arclength(g));
if(polarconicroutine == fromFocus) {
// dot(point(fromFocus(el, angle1, angle1, 1, CCW), 0), 2mm + blue);
// dot(point(fromFocus(el, angle2, angle2, 1, CCW), 0), 2mm + blue);
// write("fromfocus1 = ", angle1);
// write("fromfocus2 = ", angle2);
real gle1 = focusToCenter(el, angle1);
real gle2 = focusToCenter(el, angle2);
if((gle1 - gle2) * (angle1 - angle2) > 0) {
angle1 = gle1; angle2 = gle2;
} else {
angle1 = gle2; angle2 = gle1;
}
// dot(point(fromCenter(el, angle1, angle1, 1, CCW), 0), 1mm + red);
// dot(point(fromCenter(el, angle2, angle2, 1, CCW), 0), 1mm + red);
// write("fromcenter1 = ", angle1);
// write("fromcenter2 = ", angle2);
}
if(angle1 < 0 || angle2 < 0) return arclength(el, 180 + angle1, 180 + angle2, direction, fromCenter);
real a1 = direction ? angle1 : angle2;
real a2 = direction ? angle2 : angle1 + 360;
real elleq = el.a * elle(pi/2, el.e);
real S(real a)
{//Return the arclength from 0 to the angle 'a' (in degrees)
// given form the center of the ellipse.
real gle = atan(el.a * Tan(a)/el.b)+
pi * (((a%90 == 0 && a != 0) ? floor(a/90) - 1 : floor(a/90)) -
((a%180 == 0) ? 0 : floor(a/180)) -
(a%360 == 0 ? floor(a/(360)) : 0));
/* // Uncomment to visualize the used branches
unitsize(2cm, 1cm);
import graph;
real xmin = 0, xmax = 3pi;
xlimits( xmin, xmax);
ylimits( 0, 10);
yaxis( "y" , LeftRight(), RightTicks(pTick=.8red, ptick = lightgrey, extend = true));
xaxis( "x - value", BottomTop(), Ticks(Label("$%.2f$", red), Step = pi/2, step = pi/4, pTick=.8red, ptick = lightgrey, extend = true));
real p2 = pi/2;
real f(real t)
{
return atan(0.6 * tan(t))+
pi * ((t%p2 == 0 && t != 0) ? floor(t/p2) - 1 : floor(t/p2)) -
((t%pi == 0) ? 0 : pi * floor(t/pi)) - (t%(2pi) == 0 ? pi * floor(t/(2 * pi)) : 0);
}
draw(graph(f, xmin, xmax, 100));
write(degrees(f(pi/2)));
write(degrees(f(pi)));
write(degrees(f(3pi/2)));
write(degrees(f(2pi)));
draw(graph(new real(real t){return t;}, xmin, xmax, 3));
*/
return elleq - el.a * elle(pi/2 - gle, el.e);
}
return S(a2) - S(a1);
}
/*
*/
real arclength(parabola p, real angle)
{/*Return the arclength from 180 to 'angle' given from focus in the
canonical coordinate system of 'p'.*/
real a = p.a; /* In canonicalcartesiansystem(p) the equation of p
is x = y^2/(4a) */
// integrate(sqrt(1 + (x/(2 * a))^2), x);
real S(real t){return 0.5 * t * sqrt(1 + t^2/(4 * a^2)) + a * asinh(t/(2 * a));}
real R(real gle){return 2 * a/(1 - Cos(gle));}
real t = Sin(angle) * R(angle);
return S(t);
}
/*
*/
real arclength(parabola p, real angle1, real angle2)
{/*Return the arclength from 'angle1' to 'angle2' given from
focus in the canonical coordinate system of 'p'*/
return arclength(p, angle1) - arclength(p, angle2);
}
/*
*/
real arclength(parabola p)
{/*Return the length of the arc of the parabola bounded to the bounding
box of the current picture.*/
real[] b = bangles(p);
return arclength(p, b[0], b[1]);
}
// *........................CONICS.........................*
// *=======================================================*
// *=======================================================*
// *.......................ABSCISSA........................*
/*
*/
struct abscissa
{/*Provide abscissa structure on a curve used in the routine-like 'point(object, abscissa)'
where object can be 'line', 'segment', 'ellipse', 'circle', 'conic'...
*/
real x;/*The abscissa value.
*/
int system;/*0 = relativesystem; 1 = curvilinearsystem; 2 = angularsystem; 3 = nodesystem
*/
polarconicroutine polarconicroutine = fromCenter;/*The routine used with angular system and two foci conic section.
Possible values are 'formCenter' and 'formFocus'.*/
/*
*/
abscissa copy()
{/*Return a copy of this abscissa.*/
abscissa oa = new abscissa;
oa.x = this.x;
oa.system = this.system;
oa.polarconicroutine = this.polarconicroutine;
return oa;
}
}/**/
/*
*/
restricted int relativesystem = 0, curvilinearsystem = 1, angularsystem = 2, nodesystem = 3;/*Constant used to set the abscissa system.*/
/*
*/
abscissa operator cast(explicit position position)
{/*Cast position to abscissa.
If 'position' is relative, the abscissa is relative else it's a curvilinear abscissa.*/
abscissa oarcc;
oarcc.x = position.position.x;
oarcc.system = position.relative ? relativesystem : curvilinearsystem;
return oarcc;
}
/*
*/
abscissa operator +(real x, explicit abscissa a)
{/*Provide 'real + abscissa'.
Return abscissa b so that b.x = a.x + x.
+(explicit abscissa, real), -(real, explicit abscissa) and -(explicit abscissa, real) are also defined.*/
abscissa oa = a.copy();
oa.x = a.x + x;
return oa;
}
abscissa operator +(explicit abscissa a, real x)
{
return x + a;
}
abscissa operator +(int x, explicit abscissa a)
{
return ((real)x) + a;
}
/*
*/
abscissa operator -(explicit abscissa a)
{/*Return the abscissa b so that b.x = -a.x.*/
abscissa oa;
oa.system = a.system;
oa.x = -a.x;
return oa;
}
abscissa operator -(real x, explicit abscissa a)
{
abscissa oa;
oa.system = a.system;
oa.x = x - a.x;
return oa;
}
abscissa operator -(explicit abscissa a, real x)
{
abscissa oa;
oa.system = a.system;
oa.x = a.x - x;
return oa;
}
abscissa operator -(int x, explicit abscissa a)
{
return ((real)x) - a;
}
/*
*/
abscissa operator *(real x, explicit abscissa a)
{/*Provide 'real * abscissa'.
Return abscissa b so that b.x = x * a.x.
*(explicit abscissa, real), /(real, explicit abscissa) and /(explicit abscissa, real) are also defined.*/
abscissa oa;
oa.system = a.system;
oa.x = a.x * x;
return oa;
}
abscissa operator *(explicit abscissa a, real x)
{
return x * a;
}
abscissa operator /(real x, explicit abscissa a)
{
abscissa oa;
oa.system = a.system;
oa.x = x/a.x;
return oa;
}
abscissa operator /(explicit abscissa a, real x)
{
abscissa oa;
oa.system = a.system;
oa.x = a.x/x;
return oa;
}
abscissa operator /(int x, explicit abscissa a)
{
return ((real)x)/a;
}
/*
*/
abscissa relabscissa(real x)
{/*Return a relative abscissa.*/
return (abscissa)(Relative(x));
}
abscissa relabscissa(int x)
{
return (abscissa)(Relative(x));
}
/*
*/
abscissa curabscissa(real x)
{/*Return a curvilinear abscissa.*/
return (abscissa)((position)x);
}
abscissa curabscissa(int x)
{
return (abscissa)((position)x);
}
/*
*/
abscissa angabscissa(real x, polarconicroutine polarconicroutine = currentpolarconicroutine)
{/*Return a angular abscissa.*/
abscissa oarcc;
oarcc.x = x;
oarcc.polarconicroutine = polarconicroutine;
oarcc.system = angularsystem;
return oarcc;
}
abscissa angabscissa(int x, polarconicroutine polarconicroutine = currentpolarconicroutine)
{
return angabscissa((real)x, polarconicroutine);
}
/*
*/
abscissa nodabscissa(real x)
{/*Return an abscissa as time on the path.*/
abscissa oarcc;
oarcc.x = x;
oarcc.system = nodesystem;
return oarcc;
}
abscissa nodabscissa(int x)
{
return nodabscissa((real)x);
}
/*
*/
abscissa operator cast(real x)
{/*Cast real to abscissa, precisely 'nodabscissa'.*/
return nodabscissa(x);
}
abscissa operator cast(int x)
{
return nodabscissa((real)x);
}
/*
*/
point point(circle c, abscissa l)
{/*Return the point of 'c' which has the abscissa 'l.x'
according to the abscissa system 'l.system'.*/
coordsys R = c.C.coordsys;
if (l.system == nodesystem)
return point(R, point((path)c, l.x)/R);
if (l.system == relativesystem)
return c.C + point(R, R.polar(c.r, 2 * pi * l.x));
if (l.system == curvilinearsystem)
return c.C + point(R, R.polar(c.r, l.x/c.r));
if (l.system == angularsystem)
return c.C + point(R, R.polar(c.r, radians(l.x)));
abort("point: bad abscissa system.");
return (0, 0);
}
/*
*/
point point(ellipse el, abscissa l)
{/*Return the point of 'el' which has the abscissa 'l.x'
according to the abscissa system 'l.system'.*/
if(el.e == 0) return point((circle)el, l);
coordsys R = coordsys(el);
if (l.system == nodesystem)
return point(R, point((path)el, l.x)/R);
if (l.system == relativesystem) {
return point(el, curabscissa((l.x%1) * arclength(el)));
}
if (l.system == curvilinearsystem) {
real a1 = 0, a2 = 360, cx = 0;
real aout = a1;
real x = abs(l.x)%arclength(el);
while (abs(cx - x) > epsgeo) {
aout = (a1 + a2)/2;
cx = arclength(el, 0, aout, CCW, fromCenter); //fromCenter is speeder
if(cx > x) a2 = (a1 + a2)/2; else a1 = (a1 + a2)/2;
}
path pel = fromCenter(el, sgn(l.x) * aout, sgn(l.x) * aout, 1, CCW);
return point(R, point(pel, 0)/R);
}
if (l.system == angularsystem) {
return point(R, point(l.polarconicroutine(el, l.x, l.x, 1, CCW), 0)/R);
}
abort("point: bad abscissa system.");
return (0, 0);
}
/*
*/
point point(parabola p, abscissa l)
{/*Return the point of 'p' which has the abscissa 'l.x'
according to the abscissa system 'l.system'.*/
coordsys R = coordsys(p);
if (l.system == nodesystem)
return point(R, point((path)p, l.x)/R);
if (l.system == relativesystem) {
real[] b = bangles(p);
real al = sgn(l.x) > 0 ? arclength(p, 180, b[1]) : arclength(p, 180, b[0]);
return point(p, curabscissa(abs(l.x) * al));
}
if (l.system == curvilinearsystem) {
real a1 = 1e-3, a2 = 360 - 1e-3, cx = infinity;
while (abs(cx - l.x) > epsgeo) {
cx = arclength(p, 180, (a1 + a2)/2);
if(cx > l.x) a2 = (a1 + a2)/2; else a1 = (a1 + a2)/2;
}
path pp = fromFocus(p, a1, a1, 1, CCW);
return point(R, point(pp, 0)/R);
}
if (l.system == angularsystem) {
return point(R, point(fromFocus(p, l.x, l.x, 1, CCW), 0)/R);
}
abort("point: bad abscissa system.");
return (0, 0);
}
/*
*/
point point(hyperbola h, abscissa l)
{/*Return the point of 'h' which has the abscissa 'l.x'
according to the abscissa system 'l.system'.*/
coordsys R = coordsys(h);
if (l.system == nodesystem)
return point(R, point((path)h, l.x)/R);
if (l.system == relativesystem) {
abort("point(hyperbola, relativeSystem) is not implemented...
Try relpoint((path)your_hyperbola, x);");
}
if (l.system == curvilinearsystem) {
abort("point(hyperbola, curvilinearSystem) is not implemented...");
}
if (l.system == angularsystem) {
return point(R, point(l.polarconicroutine(h, l.x, l.x, 1, CCW), 0)/R);
}
abort("point: bad abscissa system.");
return (0, 0);
}
/*
*/
point point(explicit conic co, abscissa l)
{/*Return the curvilinear abscissa of 'M' on the conic 'co'.*/
if(co.e == 0) return point((circle)co, l);
if(co.e < 1) return point((ellipse)co, l);
if(co.e == 1) return point((parabola)co, l);
return point((hyperbola)co, l);
}
/*
*/
point point(line l, abscissa x)
{/*Return the point of 'l' which has the abscissa 'l.x' according to the abscissa system 'l.system'.
Note that the origin is l.A, and point(l, relabscissa(x)) returns l.A + x.x * vector(l.B - l.A).*/
coordsys R = l.A.coordsys;
if (x.system == nodesystem)
return l.A + (x.x < 0 ? 0 : x.x > 1 ? 1 : x.x) * vector(l.B - l.A);
if (x.system == relativesystem)
return l.A + x.x * vector(l.B - l.A);
if (x.system == curvilinearsystem)
return l.A + x.x * l.u;
if (x.system == angularsystem)
abort("point: what the meaning of angular abscissa on line ?.");
abort("point: bad abscissa system.");
return (0, 0);
}
/*
*/
point point(line l, explicit real x)
{/*Return the point between node l.A and l.B (x <= 0 means l.A, x >=1 means l.B).*/
return point(l, nodabscissa(x));
}
point point(line l, explicit int x)
{
return point(l, nodabscissa(x));
}
/*
*/
point point(explicit circle c, explicit real x)
{/*Return the point between node floor(x) and floor(x) + 1.*/
return point(c, nodabscissa(x));
}
point point(explicit circle c, explicit int x)
{
return point(c, nodabscissa(x));
}
/*
*/
point point(explicit ellipse el, explicit real x)
{/*Return the point between node floor(x) and floor(x) + 1.*/
return point(el, nodabscissa(x));
}
point point(explicit ellipse el, explicit int x)
{
return point(el, nodabscissa(x));
}
/*
*/
point point(explicit parabola p, explicit real x)
{/*Return the point between node floor(x) and floor(x) + 1.*/
return point(p, nodabscissa(x));
}
point point(explicit parabola p, explicit int x)
{
return point(p, nodabscissa(x));
}
/*
*/
point point(explicit hyperbola h, explicit real x)
{/*Return the point between node floor(x) and floor(x) + 1.*/
return point(h, nodabscissa(x));
}
point point(explicit hyperbola h, explicit int x)
{
return point(h, nodabscissa(x));
}
/*
*/
point point(explicit conic co, explicit real x)
{/*Return the point between node floor(x) and floor(x) + 1.*/
point op;
if(co.e == 0) op = point((circle)co, nodabscissa(x));
else if(co.e < 1) op = point((ellipse)co, nodabscissa(x));
else if(co.e == 1) op = point((parabola)co, nodabscissa(x));
else op = point((hyperbola)co, nodabscissa(x));
return op;
}
point point(explicit conic co, explicit int x)
{
return point(co, (real)x);
}
/*
*/
point relpoint(line l, real x)
{/*Return the relative point of 'l' (0 means l.A,
1 means l.B, x means l.A + x * vector(l.B - l.A) ).*/
return point(l, Relative(x));
}
/*
*/
point relpoint(explicit circle c, real x)
{/*Return the relative point of 'c' (0 means origin, 1 means end).
Origin is c.center + c.r * (1, 0).*/
return point(c, Relative(x));
}
/*
*/
point relpoint(explicit ellipse el, real x)
{/*Return the relative point of 'el' (0 means origin, 1 means end).*/
return point(el, Relative(x));
}
/*
*/
point relpoint(explicit parabola p, real x)
{/*Return the relative point of the path of the parabola
bounded by the bounding box of the current picture.
0 means origin, 1 means end, where the origin is the vertex of 'p'.*/
return point(p, Relative(x));
}
/*
*/
point relpoint(explicit hyperbola h, real x)
{/*Not yet implemented... */
return point(h, Relative(x));
}
/*
*/
point relpoint(explicit conic co, explicit real x)
{/*Return the relative point of 'co' (0 means origin, 1 means end).*/
point op;
if(co.e == 0) op = point((circle)co, Relative(x));
else if(co.e < 1) op = point((ellipse)co, Relative(x));
else if(co.e == 1) op = point((parabola)co, Relative(x));
else op = point((hyperbola)co, Relative(x));
return op;
}
point relpoint(explicit conic co, explicit int x)
{
return relpoint(co, (real)x);
}
/*
*/
point angpoint(explicit circle c, real x)
{/*Return the point of 'c' in the direction 'x' measured in degrees.*/
return point(c, angabscissa(x));
}
/*
*/
point angpoint(explicit ellipse el, real x,
polarconicroutine polarconicroutine = currentpolarconicroutine)
{/*Return the point of 'el' in the direction 'x'
measured in degrees according to 'polarconicroutine'.*/
return el.e == 0 ? angpoint((circle) el, x) : point(el, angabscissa(x, polarconicroutine));
}
/*
*/
point angpoint(explicit parabola p, real x)
{/*Return the point of 'p' in the direction 'x' measured in degrees.*/
return point(p, angabscissa(x));
}
/*
*/
point angpoint(explicit hyperbola h, real x,
polarconicroutine polarconicroutine = currentpolarconicroutine)
{/*Return the point of 'h' in the direction 'x'
measured in degrees according to 'polarconicroutine'.*/
return point(h, angabscissa(x, polarconicroutine));
}
/*
*/
point curpoint(line l, real x)
{/*Return the point of 'l' which has the curvilinear abscissa 'x'.
Origin is l.A.*/
return point(l, curabscissa(x));
}
/*
*/
point curpoint(explicit circle c, real x)
{/*Return the point of 'c' which has the curvilinear abscissa 'x'.
Origin is c.center + c.r * (1, 0).*/
return point(c, curabscissa(x));
}
/*
*/
point curpoint(explicit ellipse el, real x)
{/*Return the point of 'el' which has the curvilinear abscissa 'el'.*/
return point(el, curabscissa(x));
}
/*
*/
point curpoint(explicit parabola p, real x)
{/*Return the point of 'p' which has the curvilinear abscissa 'x'.
Origin is the vertex of 'p'.*/
return point(p, curabscissa(x));
}
/*
*/
point curpoint(conic co, real x)
{/*Return the point of 'co' which has the curvilinear abscissa 'x'.*/
point op;
if(co.e == 0) op = point((circle)co, curabscissa(x));
else if(co.e < 1) op = point((ellipse)co, curabscissa(x));
else if(co.e == 1) op = point((parabola)co, curabscissa(x));
else op = point((hyperbola)co, curabscissa(x));
return op;
}
/*
*/
abscissa angabscissa(circle c, point M)
{/*Return the angular abscissa of 'M' on the circle 'c'.*/
if(!(M @ c)) abort("angabscissa: the point is not on the circle.");
abscissa oa;
oa.system = angularsystem;
oa.x = degrees(M - c.C);
if(oa.x < 0) oa.x+=360;
return oa;
}
/*
*/
abscissa angabscissa(ellipse el, point M,
polarconicroutine polarconicroutine = currentpolarconicroutine)
{/*Return the angular abscissa of 'M' on the ellipse 'el' according to 'polarconicroutine'.*/
if(!(M @ el)) abort("angabscissa: the point is not on the ellipse.");
abscissa oa;
oa.system = angularsystem;
oa.polarconicroutine = polarconicroutine;
oa.x = polarconicroutine == fromCenter ? degrees(M - el.C) : degrees(M - el.F1);
oa.x -= el.angle;
if(oa.x < 0) oa.x += 360;
return oa;
}
/*
*/
abscissa angabscissa(hyperbola h, point M,
polarconicroutine polarconicroutine = currentpolarconicroutine)
{/*Return the angular abscissa of 'M' on the hyperbola 'h' according to 'polarconicroutine'.*/
if(!(M @ h)) abort("angabscissa: the point is not on the hyperbola.");
abscissa oa;
oa.system = angularsystem;
oa.polarconicroutine = polarconicroutine;
oa.x = polarconicroutine == fromCenter ? degrees(M - h.C) : degrees(M - h.F1) + 180;
oa.x -= h.angle;
if(oa.x < 0) oa.x += 360;
return oa;
}
/*
*/
abscissa angabscissa(parabola p, point M)
{/*Return the angular abscissa of 'M' on the parabola 'p'.*/
if(!(M @ p)) abort("angabscissa: the point is not on the parabola.");
abscissa oa;
oa.system = angularsystem;
oa.polarconicroutine = fromFocus;// Not used
oa.x = degrees(M - p.F);
oa.x -= p.angle;
if(oa.x < 0) oa.x += 360;
return oa;
}
/*
*/
abscissa angabscissa(explicit conic co, point M)
{/*Return the angular abscissa of 'M' on the conic 'co'.*/
if(co.e == 0) return angabscissa((circle)co, M);
if(co.e < 1) return angabscissa((ellipse)co, M);
if(co.e == 1) return angabscissa((parabola)co, M);
return angabscissa((hyperbola)co, M);
}
/*
*/
abscissa curabscissa(line l, point M)
{/*Return the curvilinear abscissa of 'M' on the line 'l'.*/
if(!(M @ extend(l))) abort("curabscissa: the point is not on the line.");
abscissa oa;
oa.system = curvilinearsystem;
oa.x = sgn(dot(M - l.A, l.B - l.A)) * abs(M - l.A);
return oa;
}
/*
*/
abscissa curabscissa(circle c, point M)
{/*Return the curvilinear abscissa of 'M' on the circle 'c'.*/
if(!(M @ c)) abort("curabscissa: the point is not on the circle.");
abscissa oa;
oa.system = curvilinearsystem;
oa.x = pi * angabscissa(c, M).x * c.r/180;
return oa;
}
/*
*/
abscissa curabscissa(ellipse el, point M)
{/*Return the curvilinear abscissa of 'M' on the ellipse 'el'.*/
if(!(M @ el)) abort("curabscissa: the point is not on the ellipse.");
abscissa oa;
oa.system = curvilinearsystem;
real a = angabscissa(el, M, fromCenter).x;
oa.x = arclength(el, 0, a, fromCenter);
oa.polarconicroutine = fromCenter;
return oa;
}
/*
*/
abscissa curabscissa(parabola p, point M)
{/*Return the curvilinear abscissa of 'M' on the parabola 'p'.*/
if(!(M @ p)) abort("curabscissa: the point is not on the parabola.");
abscissa oa;
oa.system = curvilinearsystem;
real a = angabscissa(p, M).x;
oa.x = arclength(p, 180, a);
oa.polarconicroutine = fromFocus; // Not used.
return oa;
}
/*
*/
abscissa curabscissa(conic co, point M)
{/*Return the curvilinear abscissa of 'M' on the conic 'co'.*/
if(co.e > 1) abort("curabscissa: not implemented for this hyperbola.");
if(co.e == 0) return curabscissa((circle)co, M);
if(co.e < 1) return curabscissa((ellipse)co, M);
return curabscissa((parabola)co, M);
}
/*
*/
abscissa nodabscissa(line l, point M)
{/*Return the node abscissa of 'M' on the line 'l'.*/
if(!(M @ (segment)l)) abort("nodabscissa: the point is not on the segment.");
abscissa oa;
oa.system = nodesystem;
oa.x = abs(M - l.A)/abs(l.A - l.B);
return oa;
}
/*
*/
abscissa nodabscissa(circle c, point M)
{/*Return the node abscissa of 'M' on the circle 'c'.*/
if(!(M @ c)) abort("nodabscissa: the point is not on the circle.");
abscissa oa;
oa.system = nodesystem;
oa.x = intersect((path)c, locate(M))[0];
return oa;
}
/*
*/
abscissa nodabscissa(ellipse el, point M)
{/*Return the node abscissa of 'M' on the ellipse 'el'.*/
if(!(M @ el)) abort("nodabscissa: the point is not on the ellipse.");
abscissa oa;
oa.system = nodesystem;
oa.x = intersect((path)el, M)[0];
return oa;
}
/*
*/
abscissa nodabscissa(parabola p, point M)
{/*Return the node abscissa OF 'M' on the parabola 'p'.*/
if(!(M @ p)) abort("nodabscissa: the point is not on the parabola.");
abscissa oa;
oa.system = nodesystem;
path pg = p;
real[] t = intersect(pg, M, 1e-5);
if(t.length == 0) abort("nodabscissa: the point is not on the path of the parabola.");
oa.x = t[0];
return oa;
}
/*
*/
abscissa nodabscissa(conic co, point M)
{/*Return the node abscissa of 'M' on the conic 'co'.*/
if(co.e > 1) abort("nodabscissa: not implemented for hyperbola.");
if(co.e == 0) return nodabscissa((circle)co, M);
if(co.e < 1) return nodabscissa((ellipse)co, M);
return nodabscissa((parabola)co, M);
}
/*
*/
abscissa relabscissa(line l, point M)
{/*Return the relative abscissa of 'M' on the line 'l'.*/
if(!(M @ extend(l))) abort("relabscissa: the point is not on the line.");
abscissa oa;
oa.system = relativesystem;
oa.x = sgn(dot(M - l.A, l.B - l.A)) * abs(M - l.A)/abs(l.A - l.B);
return oa;
}
/*
*/
abscissa relabscissa(circle c, point M)
{/*Return the relative abscissa of 'M' on the circle 'c'.*/
if(!(M @ c)) abort("relabscissa: the point is not on the circle.");
abscissa oa;
oa.system = relativesystem;
oa.x = angabscissa(c, M).x/360;
return oa;
}
/*
*/
abscissa relabscissa(ellipse el, point M)
{/*Return the relative abscissa of 'M' on the ellipse 'el'.*/
if(!(M @ el)) abort("relabscissa: the point is not on the ellipse.");
abscissa oa;
oa.system = relativesystem;
oa.x = curabscissa(el, M).x/arclength(el);
oa.polarconicroutine = fromFocus;
return oa;
}
/*
*/
abscissa relabscissa(conic co, point M)
{/*Return the relative abscissa of 'M'
on the conic 'co'.*/
write("PASS");
if(co.e > 1) abort("relabscissa: not implemented for hyperbola and parabola.");
if(co.e == 1) return relabscissa((parabola)co, M);
if(co.e == 0) return relabscissa((circle)co, M);
return relabscissa((ellipse)co, M);
}
// *.......................ABSCISSA........................*
// *=======================================================*
// *=======================================================*
// *.........................ARCS..........................*
/*
*/
struct arc {
/*Implement oriented ellipse (included circle) arcs.
All the calculus with this structure will be as exact as Asymptote can do.
For a full precision, you must not cast 'arc' to 'path' excepted for drawing routines.
*/
ellipse el;/*The support of the arc.
*/
restricted real angle0 = 0;/*Internal use: rotating a circle does not modify the origin point, this variable stocks the eventual angle rotation. This value is not used for ellipses which are not circles.
*/
restricted real angle1, angle2;/*Values (in degrees) in ]-360, 360[.
*/
bool direction = CCW;/*The arc will be drawn from 'angle1' to 'angle2' rotating in the direction 'direction'.
*/
polarconicroutine polarconicroutine = currentpolarconicroutine;/*The routine to which the angles refer.
If 'el' is a circle 'fromCenter' is always used.*/
/*
*/
void setangles(real a0, real a1, real a2)
{/*Set the angles.*/
if (a1 < 0 && a2 < 0) {
a1 += 360;
a2 += 360;
}
this.angle0 = a0%(sgnd(a0) * 360);
this.angle1 = a1%(sgnd(a1) * 360);
this.angle2 = a2%(sgnd(2) * 360);
}
/*
*/
void init(ellipse el, real angle0 = 0, real angle1, real angle2,
polarconicroutine polarconicroutine,
bool direction = CCW)
{/*Constructor.*/
if(abs(angle1 - angle2) > 360) abort("arc: |angle1 - angle2| > 360.");
this.el = el;
this.setangles(angle0, angle1, angle2);
this.polarconicroutine = polarconicroutine;
this.direction = direction;
}
/*
*/
arc copy()
{/*Copy the arc.*/
arc oa = new arc;
oa.el = this.el;
oa.direction = this.direction;
oa.polarconicroutine = this.polarconicroutine;
oa.angle1 = this.angle1;
oa.angle2 = this.angle2;
oa.angle0 = this.angle0;
return oa;
}
}/**/
/*
*/
polarconicroutine polarconicroutine(conic co)
{/*Return the default routine used to draw a conic.*/
if(co.e == 0) return fromCenter;
if(co.e == 1) return fromFocus;
return currentpolarconicroutine;
}
/*
*/
arc arc(ellipse el, real angle1, real angle2,
polarconicroutine polarconicroutine = polarconicroutine(el),
bool direction = CCW)
{/*Return the ellipse arc from 'angle1' to 'angle2' with respect to 'polarconicroutine' and rotating in the direction 'direction'.*/
arc oa;
oa.init(el, 0, angle1, angle2, polarconicroutine, direction);
return oa;
}
/*
*/
arc complementary(arc a)
{/*Return the complementary of 'a'.*/
arc oa;
oa.init(a.el, a.angle0, a.angle2, a.angle1, a.polarconicroutine, a.direction);
return oa;
}
/*
*/
arc reverse(arc a)
{/*Return arc 'a' oriented in reverse direction.*/
arc oa;
oa.init(a.el, a.angle0, a.angle2, a.angle1, a.polarconicroutine, !a.direction);
return oa;
}
/*
*/
real degrees(arc a)
{/*Return the measure in degrees of the oriented arc 'a'.*/
real or;
real da = a.angle2 - a.angle1;
if(a.direction) {
or = a.angle1 < a.angle2 ? da : 360 + da;
} else {
or = a.angle1 < a.angle2 ? -360 + da : da;
}
return or;
}
/*
*/
real angle(arc a)
{/*Return the measure in radians of the oriented arc 'a'.*/
return radians(degrees(a));
}
/*
*/
int arcnodesnumber(explicit arc a)
{/*Return the number of nodes to draw the arc 'a'.*/
return ellipsenodesnumber(a.el.a, a.el.b, a.angle1, a.angle2, a.direction);
}
private path arctopath(arc a, int n)
{
if(a.el.e == 0) return arcfromcenter(a.el, a.angle0 + a.angle1, a.angle0 + a.angle2, a.direction, n);
if(a.el.e != 1) return a.polarconicroutine(a.el, a.angle1, a.angle2, n, a.direction);
return arcfromfocus(a.el, a.angle1, a.angle2, n, a.direction);
}
/*
*/
point angpoint(arc a, real angle)
{/*Return the point given by its angular position (in degrees) relative to the arc 'a'.
If 'angle > degrees(a)' or 'angle < 0' the returned point is on the extended arc.*/
pair p;
if(a.el.e == 0) {
real gle = a.angle0 + a.angle1 + (a.direction ? angle : -angle);
p = point(arcfromcenter(a.el, gle, gle, CCW, 1), 0);
}
else {
real gle = a.angle1 + (a.direction ? angle : -angle);
p = point(a.polarconicroutine(a.el, gle, gle, 1, CCW), 0);
}
return point(coordsys(a.el), p/coordsys(a.el));
}
/*
*/
path operator cast(explicit arc a)
{/*Cast arc to path.*/
return arctopath(a, arcnodesnumber(a));
}
/*
*/
guide operator cast(explicit arc a)
{/*Cast arc to guide.*/
return arctopath(a, arcnodesnumber(a));
}
/*
*/
arc operator *(transform t, explicit arc a)
{/*Provide transform * arc.*/
pair[] P, PP;
path g = arctopath(a, 3);
real a0, a1 = a.angle1, a2 = a.angle2, ap1, ap2;
bool dir = a.direction;
P[0] = t * point(g, 0);
P[1] = t * point(g, 2);
ellipse el = t * a.el;
arc oa;
a0 = (a.angle0 + angle(shiftless(t)))%360;
pair C;
if(a.polarconicroutine == fromCenter) C = el.C; else C = el.F1;
real d = abs(locate(el.F2 - el.F1)) > epsgeo ?
degrees(locate(el.F2 - el.F1)) : a0 + degrees(el.C.coordsys.i);
ap1 = (degrees(P[0]-C, false) - d)%360;
ap2 = (degrees(P[1]-C, false) - d)%360;
oa.init(el, a0, ap1, ap2, a.polarconicroutine, dir);
g = arctopath(oa, 3);
PP[0] = point(g, 0);
PP[1] = point(g, 2);
if((a1 - a2) * (ap1 - ap2) < 0) {// Handle reflection.
dir=!a.direction;
oa.init(el, a0, ap1, ap2, a.polarconicroutine, dir);
}
return oa;
}
/*
*/
arc operator *(real x, explicit arc a)
{/*Provide real * arc.
Return the arc subtracting and adding '(x - 1) * degrees(a)/2' to 'a.angle1' and 'a.angle2' respectively.*/
real a1, a2, gle;
gle = (x - 1) * degrees(a)/2;
a1 = a.angle1 - gle;
a2 = a.angle2 + gle;
arc oa;
oa.init(a.el, a.angle0, a1, a2, a.polarconicroutine, a.direction);
return oa;
}
arc operator *(int x, explicit arc a){return (real)x * a;}
/*
*/
arc operator /(explicit arc a, real x)
{/*Provide arc/real.
Return the arc subtracting and adding '(1/x - 1) * degrees(a)/2' to 'a.angle1' and 'a.angle2' respectively.*/
return (1/x) * a;
}
/*
*/
arc operator +(explicit arc a, point M)
{/*Provide arc + point.
Return shifted arc.
'operator +(explicit arc, point)', 'operator +(explicit arc, vector)' and 'operator -(explicit arc, vector)' are also defined.*/
return shift(M) * a;
}
arc operator -(explicit arc a, point M){return a + (-M);}
arc operator +(explicit arc a, vector v){return shift(locate(v)) * a;}
arc operator -(explicit arc a, vector v){return a + (-v);}
/*
*/
bool operator @(point M, arc a)
{/*Return true iff 'M' is on the arc 'a'.*/
if (!(M @ a.el)) return false;
coordsys R = defaultcoordsys;
path ap = arctopath(a, 3);
line l = line(point(R, point(ap, 0)), point(R, point(ap, 2)));
return sameside(M, point(R, point(ap, 1)), l);
}
/*
*/
void draw(picture pic = currentpicture, Label L = "", arc a,
align align = NoAlign, pen p = currentpen,
arrowbar arrow = None, arrowbar bar = None, margin margin = NoMargin,
Label legend = "", marker marker = nomarker)
{/*Draw 'arc' adding the pen returned by 'addpenarc(p)' to the pen 'p'.
*/
draw(pic, L, (path)a, align, addpenarc(p), arrow, bar, margin, legend, marker);
}
/*
*/
real arclength(arc a)
{/*The arc length of 'a'.*/
return arclength(a.el, a.angle1, a.angle2, a.direction, a.polarconicroutine);
}
private point ppoint(arc a, real x)
{// Return the point of the arc proportionally to its length.
point oP;
if(a.el.e == 0) { // Case of circle.
oP = angpoint(a, x * abs(degrees(a)));
} else { // Ellipse and not circle.
if(!a.direction) {
transform t = reflect(line(a.el.F1, a.el.F2));
return t * ppoint(t * a, x);
}
real angle1 = a.angle1, angle2 = a.angle2;
if(a.polarconicroutine == fromFocus) {
// dot(point(fromFocus(a.el, angle1, angle1, 1, CCW), 0), 2mm + blue);
// dot(point(fromFocus(a.el, angle2, angle2, 1, CCW), 0), 2mm + blue);
// write("fromfocus1 = ", angle1);
// write("fromfocus2 = ", angle2);
real gle1 = focusToCenter(a.el, angle1);
real gle2 = focusToCenter(a.el, angle2);
if((gle1 - gle2) * (angle1 - angle2) > 0) {
angle1 = gle1; angle2 = gle2;
} else {
angle1 = gle2; angle2 = gle1;
}
// write("fromcenter1 = ", angle1);
// write("fromcenter2 = ", angle2);
// dot(point(fromCenter(a.el, angle1, angle1, 1, CCW), 0), 1mm + red);
// dot(point(fromCenter(a.el, angle2, angle2, 1, CCW), 0), 1mm + red);
}
if(angle1 > angle2) {
arc ta = a.copy();
ta.polarconicroutine = fromCenter;
ta.setangles(a0 = a.angle0, a1 = angle1 - 360, a2 = angle2);
return ppoint(ta, x);
}
ellipse co = a.el;
real gle, a1, a2, cx = 0;
bool direction;
if(x >= 0) {
a1 = angle1;
a2 = a1 + 360;
direction = CCW;
} else {
a1 = angle1 - 360;
a2 = a1 - 360;
direction = CW;
}
gle = a1;
real L = arclength(co, angle1, angle2, a.direction, fromCenter);
real tx = L * abs(x)%arclength(co);
real aout = a1;
while(abs(cx - tx) > epsgeo) {
aout = (a1 + a2)/2;
cx = abs(arclength(co, gle, aout, direction, fromCenter));
if(cx > tx) a2 = (a1 + a2)/2 ; else a1 = (a1 + a2)/2;
}
pair p = point(arcfromcenter(co, aout, aout, CCW, 1), 0);
oP = point(coordsys(co), p/coordsys(co));
}
return oP;
}
/*
*/
point point(arc a, abscissa l)
{/*Return the point of 'a' which has the abscissa 'l.x'
according to the abscissa system 'l.system'.
Note that 'a.polarconicroutine' is used instead of 'l.polarconicroutine'.
*/
real posx;
arc ta = a.copy();
ellipse co = a.el;
if (l.system == relativesystem) {
posx = l.x;
} else
if (l.system == curvilinearsystem) {
real tl;
if(co.e == 0) {
tl = curabscissa(a.el, angpoint(a.el, a.angle0 + a.angle1)).x;
return curpoint(a.el, tl + (a.direction ? l.x : -l.x));
} else {
tl = curabscissa(a.el, angpoint(a.el, a.angle1, a.polarconicroutine)).x;
return curpoint(a.el, tl + (a.direction ? l.x : -l.x));
}
} else
if (l.system == nodesystem) {
coordsys R = coordsys(co);
return point(R, point((path)a, l.x)/R);
} else
if (l.system == angularsystem) {
return angpoint(a, l.x);
} else abort("point: bad abscissa system.");
return ppoint(ta, posx);
}
/*
*/
point point(arc a, real x)
{/*Return the point between node floor(t) and floor(t) + 1.*/
return point(a, nodabscissa(x));
}
pair point(explicit arc a, int x)
{
return point(a, nodabscissa(x));
}
/*
*/
point relpoint(arc a, real x)
{/*Return the relative point of 'a'.
If x > 1 or x < 0, the returned point is on the extended arc.*/
return point(a, relabscissa(x));
}
/*
*/
point curpoint(arc a, real x)
{/*Return the point of 'a' which has the curvilinear abscissa 'x'.
If x < 0 or x > arclength(a), the returned point is on the extended arc.*/
return point(a, curabscissa(x));
}
/*
*/
abscissa angabscissa(arc a, point M)
{/*Return the angular abscissa of 'M' according to the arc 'a'.*/
if(!(M @ a.el))
abort("angabscissa: the point is not on the extended arc.");
abscissa oa;
oa.system = angularsystem;
oa.polarconicroutine = a.polarconicroutine;
real am = angabscissa(a.el, M, a.polarconicroutine).x;
oa.x = (am - a.angle1 - (a.el.e == 0 ? a.angle0 : 0))%360;
oa.x = a.direction ? oa.x : 360 - oa.x;
return oa;
}
/*
*/
abscissa curabscissa(arc a, point M)
{/*Return the curvilinear abscissa according to the arc 'a'.*/
ellipse el = a.el;
if(!(M @ el))
abort("angabscissa: the point is not on the extended arc.");
abscissa oa;
oa.system = curvilinearsystem;
real xm = curabscissa(el, M).x;
real a0 = el.e == 0 ? a.angle0 : 0;
real am = curabscissa(el, angpoint(el, a.angle1 + a0, a.polarconicroutine)).x;
real l = arclength(el);
oa.x = (xm - am)%l;
oa.x = a.direction ? oa.x : l - oa.x;
return oa;
}
/*
*/
abscissa nodabscissa(arc a, point M)
{/*Return the node abscissa according to the arc 'a'.*/
if(!(M @ a))
abort("nodabscissa: the point is not on the arc.");
abscissa oa;
oa.system = nodesystem;
oa.x = intersect((path)a, M)[0];
return oa;
}
/*
*/
abscissa relabscissa(arc a, point M)
{/*Return the relative abscissa according to the arc 'a'.*/
ellipse el = a.el;
if(!( M @ el))
abort("relabscissa: the point is not on the prolonged arc.");
abscissa oa;
oa.system = relativesystem;
oa.x = curabscissa(a, M).x/arclength(a);
return oa;
}
/*
*/
void markarc(picture pic = currentpicture,
Label L = "",
int n = 1, real radius = 0, real space = 0,
arc a,
pen sectorpen = currentpen,
pen markpen = sectorpen,
margin margin = NoMargin,
arrowbar arrow = None,
marker marker = nomarker)
{/**/
real Da = degrees(a);
pair p1 = point(a, 0);
pair p2 = relpoint(a, 1);
pair c = a.polarconicroutine == fromCenter ? locate(a.el.C) : locate(a.el.F1);
if(radius == 0) radius = markangleradius(markpen);
if(abs(Da) > 180) radius = -radius;
radius = (a.direction ? 1 : -1) * sgnd(Da) * radius;
draw(c--p1^^c--p2, sectorpen);
markangle(pic = pic, L = L, n = n, radius = radius, space = space,
A = p1, O = c, B = p2,
arrow = arrow, p = markpen, margin = margin,
marker = marker);
}
// *.........................ARCS..........................*
// *=======================================================*
// *=======================================================*
// *........................MASSES.........................*
/*
*/
struct mass {/*
*/
point M;/*
*/
real m;/**/
}/**/
/*
*/
mass mass(point M, real m)
{/*Constructor of mass point.*/
mass om;
om.M = M;
om.m = m;
return om;
}
/*
*/
point operator cast(mass m)
{/*Cast mass point to point.*/
point op;
op = m.M;
op.m = m.m;
return op;
}
/*
*/
point point(explicit mass m){return m;}/*Cast
'm' to point*/
/*
*/
mass operator cast(point M)
{/*Cast point to mass point.*/
mass om;
om.M = M;
om.m = M.m;
return om;
}
/*
*/
mass mass(explicit point P)
{/*Cast 'P' to mass.*/
return mass(P, P.m);
}
/*
*/
point[] operator cast(mass[] m)
{/*Cast mass[] to point[].*/
point[] op;
for(mass am : m) op.push(point(am));
return op;
}
/*
*/
mass[] operator cast(point[] P)
{/*Cast point[] to mass[].*/
mass[] om;
for(point op : P) om.push(mass(op));
return om;
}
/*
*/
mass mass(coordsys R, explicit pair p, real m)
{/*Return the mass which has coordinates
'p' with respect to 'R' and weight 'm'.*/
return point(R, p, m);// Using casting.
}
/*
*/
mass operator cast(pair m){return mass((point)m, 1);}/*Cast pair to mass point.*/
/*
*/
path operator cast(mass M){return M.M;}/*Cast mass point to path.*/
/*
*/
guide operator cast(mass M){return M.M;}/*Cast mass to guide.*/
/*
*/
mass operator +(mass M1, mass M2)
{/*Provide mass + mass.
mass - mass is also defined.*/
return mass(M1.M + M2.M, M1.m + M2.m);
}
mass operator -(mass M1, mass M2)
{
return mass(M1.M - M2.M, M1.m - M2.m);
}
/*
*/
mass operator *(real x, explicit mass M)
{/*Provide real * mass.
The resulted mass is the mass of 'M' multiplied by 'x' .
mass/real, mass + real and mass - real are also defined.*/
return mass(M.M, x * M.m);
}
mass operator *(int x, explicit mass M){return mass(M.M, x * M.m);}
mass operator /(explicit mass M, real x){return mass(M.M, M.m/x);}
mass operator /(explicit mass M, int x){return mass(M.M, M.m/x);}
mass operator +(explicit mass M, real x){return mass(M.M, M.m + x);}
mass operator +(explicit mass M, int x){return mass(M.M, M.m + x);}
mass operator -(explicit mass M, real x){return mass(M.M, M.m - x);}
mass operator -(explicit mass M, int x){return mass(M.M, M.m - x);}
/*
*/
mass operator *(transform t, mass M)
{/*Provide transform * mass.*/
return mass(t * M.M, M.m);
}
/*
*/
mass masscenter(... mass[] M)
{/*Return the center of the masses 'M'.*/
point[] P;
for (int i = 0; i < M.length; ++i)
P.push(M[i].M);
P = standardizecoordsys(currentcoordsys, true ... P);
real m = M[0].m;
point oM = M[0].m * P[0];
for (int i = 1; i < M.length; ++i) {
oM += M[i].m * P[i];
m += M[i].m;
}
if (m == 0) abort("masscenter: the sum of masses is null.");
return mass(oM/m, m);
}
/*
*/
string massformat(string format = defaultmassformat,
string s, mass M)
{/*Return the string formated by 'format' with the mass value.
In the parameter 'format', %L will be replaced by 's'.
.*/
return format == "" ? s :
format(replace(format, "%L", replace(s, "$", "")), M.m);
}
/*
*/
void label(picture pic = currentpicture, Label L, explicit mass M,
align align = NoAlign, string format = defaultmassformat,
pen p = nullpen, filltype filltype = NoFill)
{/*Draw label returned by massformat(format, L, M) at coordinates of M.
.*/
Label lL = L.copy();
lL.s = massformat(format, lL.s, M);
Label L = Label(lL, M.M, align, p, filltype);
add(pic, L);
}
/*
*/
void dot(picture pic = currentpicture, Label L, explicit mass M, align align = NoAlign,
string format = defaultmassformat, pen p = currentpen)
{/*Draw a dot with label 'L' as
label(picture, Label, explicit mass, align, string, pen, filltype) does.
.*/
Label lL = L.copy();
lL.s = massformat(format, lL.s, M);
lL.position(locate(M.M));
lL.align(align, E);
lL.p(p);
dot(pic, M.M, p);
add(pic, lL);
}
// *........................MASSES.........................*
// *=======================================================*
// *=======================================================*
// *.......................TRIANGLES.......................*
/*
*/
point orthocentercenter(point A, point B, point C)
{/*Return the orthocenter of the triangle ABC.*/
point[] P = standardizecoordsys(A, B, C);
coordsys R = P[0].coordsys;
pair pp = extension(A, projection(P[1], P[2]) * P[0], B, projection(P[0], P[2]) * P[1]);
return point(R, pp/R);
}
/*
*/
point centroid(point A, point B, point C)
{/*Return the centroid of the triangle ABC.*/
return (A + B + C)/3;
}
/*
*/
point incenter(point A, point B, point C)
{/*Return the center of the incircle of the triangle ABC.*/
point[] P = standardizecoordsys(A, B, C);
coordsys R = P[0].coordsys;
pair a = A, b = B, c = C;
pair pp = extension(a, a + dir(a--b, a--c), b, b + dir(b--a, b--c));
return point(R, pp/R);
}
/*
*/
real inradius(point A, point B, point C)
{/*Return the radius of the incircle of the triangle ABC.*/
point IC = incenter(A, B, C);
return abs(IC - projection(A, B) * IC);
}
/*
*/
circle incircle(point A, point B, point C)
{/*Return the incircle of the triangle ABC.*/
point IC = incenter(A, B, C);
return circle(IC, abs(IC - projection(A, B) * IC));
}
/*
*/
point excenter(point A, point B, point C)
{/*Return the center of the excircle of the triangle tangent with (AB).*/
point[] P = standardizecoordsys(A, B, C);
coordsys R = P[0].coordsys;
pair a = A, b = B, c = C;
pair pp = extension(a, a + rotate(90) * dir(a--b, a--c), b, b + rotate(90) * dir(b--a, b--c));
return point(R, pp/R);
}
/*
*/
real exradius(point A, point B, point C)
{/*Return the radius of the excircle of the triangle ABC with (AB).*/
point EC = excenter(A, B, C);
return abs(EC - projection(A, B) * EC);
}
/*
*/
circle excircle(point A, point B, point C)
{/*Return the excircle of the triangle ABC tangent with (AB).*/
point center = excenter(A, B, C);
real radius = abs(center - projection(B, C) * center);
return circle(center, radius);
}
private int[] numarray = {1, 2, 3};
numarray.cyclic = true;
/*
*/
struct triangle {/**/
/*
*/
struct vertex {/*Structure used to communicate the vertex of a triangle.
*/
int n;/*1 means VA, 2 means VB, 3 means VC, 4 means VA etc...
*/
triangle t;/*The triangle to which the vertex refers.*/
}/**/
/*
*/
restricted point A, B, C;/*The vertices of the triangle (as point).
*/
restricted vertex VA, VB, VC;/*The vertices of the triangle (as vertex).
Note that the vertex structure contains the triangle to wish it refers.*/
VA.n = 1;VB.n = 2;VC.n = 3;
/*
*/
vertex vertex(int n)
{/*Return numbered vertex.
'n' is 1 means VA, 2 means VB, 3 means VC, 4 means VA etc...*/
n = numarray[n - 1];
if(n == 1) return VA;
else if(n == 2) return VB;
return VC;
}
/*
*/
point point(int n)
{/*Return numbered point.
n is 1 means A, 2 means B, 3 means C, 4 means A etc...*/
n = numarray[n - 1];
if(n == 1) return A;
else if(n == 2) return B;
return C;
}
/*
*/
void init(point A, point B, point C)
{/*Constructor.*/
point[] P = standardizecoordsys(A, B, C);
this.A = P[0];
this.B = P[1];
this.C = P[2];
VA.t = this; VB.t = this; VC.t = this;
}
/*
*/
void operator init(point A, point B, point C)
{/*For backward compatibility.
Provide the routine 'triangle(point A, point B, point C)'.*/
this.init(A, B, C);
}
/*
*/
void operator init(real b, real alpha, real c, real angle = 0, point A = (0, 0))
{/*For backward compatibility.
Provide the routine 'triangle(real b, real alpha, real c, real angle = 0, point A = (0, 0))
which returns the triangle ABC rotated by 'angle' (in degrees) and where b = AC, degrees(A) = alpha, AB = c.*/
coordsys R = A.coordsys;
this.init(A, A + R.polar(c, radians(angle)), A + R.polar(b, radians(angle + alpha)));
}
/*
*/
real a()
{/*Return the length BC.
b() and c() are also defined and return the length AC and AB respectively.*/
return length(C - B);
}
real b() {return length(A - C);}
real c() {return length(B - A);}
private real det(pair a, pair b) {return a.x * b.y - a.y * b.x;}
/*
*/
real area()
{/**/
pair a = locate(A), b = locate(B), c = locate(C);
return 0.5 * abs(det(a, b) + det(b, c) + det(c, a));
}
/*
*/
real alpha()
{/*Return the measure (in degrees) of the angle A.
beta() and gamma() are also defined and return the measure of the angles B and C respectively.*/
return degrees(acos((b()^2 + c()^2 - a()^2)/(2b() * c())));
}
real beta() {return degrees(acos((c()^2 + a()^2 - b()^2)/(2c() * a())));}
real gamma() {return degrees(acos((a()^2 + b()^2 - c()^2)/(2a() * b())));}
/*
*/
path Path()
{/*The path of the triangle.*/
return A--C--B--cycle;
}
/*
*/
struct side
{/*Structure used to communicate the side of a triangle.
*/
int n;/*1 or 0 means [AB], -1 means [BA], 2 means [BC], -2 means [CB] etc.
*/
triangle t;/*The triangle to which the side refers.*/
}/**/
/*
*/
side AB;/*For the routines using the structure 'side', triangle.AB means 'side AB'.
BA, AC, CA etc are also defined.*/
AB.n = 1; AB.t = this;
side BA; BA.n = -1; BA.t = this;
side BC; BC.n = 2; BC.t = this;
side CB; CB.n = -2; CB.t = this;
side CA; CA.n = 3; CA.t = this;
side AC; AC.n = -3; AC.t = this;
/*
*/
side side(int n)
{/*Return numbered side.
n is 1 means AB, -1 means BA, 2 means BC, -2 means CB, etc.*/
if(n == 0) abort('Invalid side number.');
int an = numarray[abs(n)-1];
if(an == 1) return n > 0 ? AB : BA;
else if(an == 2) return n > 0 ? BC : CB;
return n > 0 ? CA : AC;
}
/*
*/
line line(int n)
{/*Return the numbered line.*/
if(n == 0) abort('Invalid line number.');
int an = numarray[abs(n)-1];
if(an == 1) return n > 0 ? line(A, B) : line(B, A);
else if(an == 2) return n > 0 ? line(B, C) : line(C, B);
return n > 0 ? line(C, A) : line(A, C);
}
}/**/
from triangle unravel side; // The structure 'side' is now available outside the triangle structure.
from triangle unravel vertex; // The structure 'vertex' is now available outside the triangle structure.
triangle[] operator ^^(triangle[] t1, triangle t2)
{
triangle[] T;
for (int i = 0; i < t1.length; ++i) T.push(t1[i]);
T.push(t2);
return T;
}
triangle[] operator ^^(... triangle[] t)
{
triangle[] T;
for (int i = 0; i < t.length; ++i) {
T.push(t[i]);
}
return T;
}
/*
*/
line operator cast(side side)
{/*Cast side to (infinite) line.
Most routine with line parameters works with side parameters.
One can use the code 'segment(a_side)' to obtain a line segment.*/
triangle t = side.t;
return t.line(side.n);
}
/*
*/
line line(explicit side side)
{/*Return 'side' as line.*/
return (line)side;
}
/*
*/
segment segment(explicit side side)
{/*Return 'side' as segment.*/
return (segment)(line)side;
}
/*
*/
point operator cast(vertex V)
{/*Cast vertex to point.
Most routine with point parameters works with vertex parameters.*/
return V.t.point(V.n);
}
/*
*/
point point(explicit vertex V)
{/*Return the point corresponding to the vertex 'V'.*/
return (point)V;
}
/*
*/
side opposite(vertex V)
{/*Return the opposite side of vertex 'V'.*/
return V.t.side(numarray[abs(V.n)]);
}
/*
*/
vertex opposite(side side)
{/*Return the opposite vertex of side 'side'.*/
return side.t.vertex(numarray[abs(side.n) + 1]);
}
/*
*/
point midpoint(side side)
{/**/
return midpoint(segment(side));
}
/*
*/
triangle operator *(transform T, triangle t)
{/*Provide transform * triangle.*/
return triangle(T * t.A, T * t.B, T * t.C);
}
/*
*/
triangle triangleAbc(real alpha, real b, real c, real angle = 0, point A = (0, 0))
{/*Return the triangle ABC rotated by 'angle' with BAC = alpha, AC = b and AB = c.*/
triangle T;
coordsys R = A.coordsys;
T.init(A, A + R.polar(c, radians(angle)), A + R.polar(b, radians(angle + alpha)));
return T;
}
/*
*/
triangle triangleabc(real a, real b, real c, real angle = 0, point A = (0, 0))
{/*Return the triangle ABC rotated by 'angle' with BC = a, AC = b and AB = c.*/
triangle T;
coordsys R = A.coordsys;
T.init(A, A + R.polar(c, radians(angle)), A + R.polar(b, radians(angle) + acos((b^2 + c^2 - a^2)/(2 * b * c))));
return T;
}
/*
*/
triangle triangle(line l1, line l2, line l3)
{/*Return the triangle defined by three line.*/
point P1, P2, P3;
P1 = intersectionpoint(l1, l2);
P2 = intersectionpoint(l1, l3);
P3 = intersectionpoint(l2, l3);
if(!(defined(P1) && defined(P2) && defined(P3))) abort("triangle: two lines are parallel.");
return triangle(P1, P2, P3);
}
/*
*/
point foot(vertex V)
{/*Return the endpoint of the altitude from V.*/
return projection((line)opposite(V)) * ((point)V);
}
/*
*/
point foot(side side)
{/*Return the endpoint of the altitude on 'side'.*/
return projection((line)side) * point(opposite(side));
}
/*
*/
line altitude(vertex V)
{/*Return the altitude passing through 'V'.*/
return line(point(V), foot(V));
}
/*
*/
line altitude(side side)
{/*Return the altitude cutting 'side'.*/
return altitude(opposite(side));
}
/*
*/
point orthocentercenter(triangle t)
{/*Return the orthocenter of the triangle t.*/
return orthocentercenter(t.A, t.B, t.C);
}
/*
*/
point centroid(triangle t)
{/*Return the centroid of the triangle 't'.*/
return (t.A + t.B + t.C)/3;
}
/*
*/
point circumcenter(triangle t)
{/*Return the circumcenter of the triangle 't'.*/
return circumcenter(t.A, t.B, t.C);
}
/*
*/
circle circle(triangle t)
{/*Return the circumcircle of the triangle 't'.*/
return circle(t.A, t.B, t.C);
}
/*
*/
circle circumcircle(triangle t)
{/*Return the circumcircle of the triangle 't'.*/
return circle(t.A, t.B, t.C);
}
/*
*/
point incenter(triangle t)
{/*Return the center of the incircle of the triangle 't'.*/
return incenter(t.A, t.B, t.C);
}
/*
*/
real inradius(triangle t)
{/*Return the radius of the incircle of the triangle 't'.*/
return inradius(t.A, t.B, t.C);
}
/*
*/
circle incircle(triangle t)
{/*Return the the incircle of the triangle 't'.*/
return incircle(t.A, t.B, t.C);
}
/*
*/
point excenter(side side)
{/*Return the center of the excircle tangent with the side 'side' of its triangle.
side = 0 means AB, 1 means AC, other means BC.
One must use the predefined sides t.AB, t.AC where 't' is a triangle....*/
point op;
triangle t = side.t;
int n = numarray[abs(side.n) - 1];
if(n == 1) op = excenter(t.A, t.B, t.C);
else if(n == 2) op = excenter(t.B, t.C, t.A);
else op = excenter(t.C, t.A, t.B);
return op;
}
/*
*/
real exradius(side side)
{/*Return radius of the excircle tangent with the side 'side' of its triangle.
side = 0 means AB, 1 means BC, other means CA.
One must use the predefined sides t.AB, t.AC where 't' is a triangle....*/
real or;
triangle t = side.t;
int n = numarray[abs(side.n) - 1];
if(n == 1) or = exradius(t.A, t.B, t.C);
else if(n == 2) or = exradius(t.B, t.C, t.A);
else or = exradius(t.A, t.C, t.B);
return or;
}
/*
*/
circle excircle(side side)
{/*Return the excircle tangent with the side 'side' of its triangle.
side = 0 means AB, 1 means AC, other means BC.
One must use the predefined sides t.AB, t.AC where 't' is a triangle....*/
circle oc;
int n = numarray[abs(side.n) - 1];
triangle t = side.t;
if(n == 1) oc = excircle(t.A, t.B, t.C);
else if(n == 2) oc = excircle(t.B, t.C, t.A);
else oc = excircle(t.A, t.C, t.B);
return oc;
}
/*
*/
struct trilinear
{/*Trilinear coordinates 'a:b:c' relative to triangle 't'.
*/
real a, b, c;/*The trilinear coordinates.
*/
triangle t;/*The reference triangle.*/
}/**/
/*
*/
trilinear trilinear(triangle t, real a, real b, real c)
{/*Return the trilinear coordinates relative to 't'.
*/
trilinear ot;
ot.a = a; ot.b = b; ot.c = c;
ot.t = t;
return ot;
}
/*
*/
trilinear trilinear(triangle t, point M)
{/*Return the trilinear coordinates of 'M' relative to 't'.
*/
trilinear ot;
pair m = locate(M);
int sameside(pair A, pair B, pair m, pair p)
{// Return 1 if 'm' and 'p' are same side of line (AB) else return -1.
pair mil = (A + B)/2;
pair mA = rotate(90, mil) * A;
pair mB = rotate(-90, mil) * A;
return (abs(m - mA) <= abs(m - mB)) == (abs(p - mA) <= abs(p - mB)) ? 1 : -1;
}
real det(pair a, pair b) {return a.x * b.y - a.y * b.x;}
real area(pair a, pair b, pair c){return 0.5 * abs(det(a, b) + det(b, c) + det(c, a));}
pair A = t.A, B = t.B, C = t.C;
real t1 = area(B, C, m), t2 = area(C, A, m), t3 = area(A, B, m);
ot.a = sameside(B, C, A, m) * t1/t.a();
ot.b = sameside(A, C, B, m) * t2/t.b();
ot.c = sameside(A, B, C, m) * t3/t.c();
ot.t = t;
return ot;
}
/*
*/
void write(trilinear tri)
{/**/
write(format("%f : ", tri.a) + format("%f : ", tri.b) + format("%f", tri.c));
}
/*
*/
point point(trilinear tri)
{/*Return the trilinear coordinates relative to 't'.
*/
triangle t = tri.t;
return masscenter(0.5 * t.a() * mass(t.A, tri.a),
0.5 * t.b() * mass(t.B, tri.b),
0.5 * t.c() * mass(t.C, tri.c));
}
/*
*/
int[] tricoef(side side)
{/*Return an array of integer (values are 0 or 1) which represents 'side'.
For example, side = t.BC will be represented by {0, 1, 1}.*/
int[] oi;
int n = numarray[abs(side.n) - 1];
oi.push((n == 1 || n == 3) ? 1 : 0);
oi.push((n == 1 || n == 2) ? 1 : 0);
oi.push((n == 2 || n == 3) ? 1 : 0);
return oi;
}
/*
*/
point operator cast(trilinear tri)
{/*Cast trilinear to point.
One may use the routine 'point(trilinear)' to force the casting.*/
return point(tri);
}
/*
*/
typedef real centerfunction(real, real, real);/**/
/*
*/
trilinear trilinear(triangle t, centerfunction f, real a = t.a(), real b = t.b(), real c = t.c())
{/**/
return trilinear(t, f(a, b, c), f(b, c, a), f(c, a, b));
}
/*
*/
point symmedian(triangle t)
{/*Return the symmedian point of 't'.*/
point A, B, C;
real a = t.a(), b = t.b(), c = t.c();
A = trilinear(t, 0, b, c);
B = trilinear(t, a, 0, c);
return intersectionpoint(line(t.A, A), line(t.B, B));
}
/*
*/
point symmedian(side side)
{/*The symmedian point on the side 'side'.*/
triangle t = side.t;
int n = numarray[abs(side.n) - 1];
if(n == 1) return trilinear(t, t.a(), t.b(), 0);
if(n == 2) return trilinear(t, 0, t.b(), t.c());
return trilinear(t, t.a(), 0, t.c());
}
/*
*/
line symmedian(vertex V)
{/*Return the symmedian passing through 'V'.*/
return line(point(V), symmedian(V.t));
}
/*
*/
triangle cevian(triangle t, point P)
{/*Return the Cevian triangle with respect of 'P'
.*/
trilinear tri = trilinear(t, locate(P));
point A = point(trilinear(t, 0, tri.b, tri.c));
point B = point(trilinear(t, tri.a, 0, tri.c));
point C = point(trilinear(t, tri.a, tri.b, 0));
return triangle(A, B, C);
}
/*
*/
point cevian(side side, point P)
{/*Return the Cevian point on 'side' with respect of 'P'.*/
triangle t = side.t;
trilinear tri = trilinear(t, locate(P));
int[] s = tricoef(side);
return point(trilinear(t, s[0] * tri.a, s[1] * tri.b, s[2] * tri.c));
}
/*
*/
line cevian(vertex V, point P)
{/*Return line passing through 'V' and its Cevian image with respect of 'P'.*/
return line(point(V), cevian(opposite(V), P));
}
/*
*/
point gergonne(triangle t)
{/*Return the Gergonne point of 't'.*/
real f(real a, real b, real c){return 1/(a * (b + c - a));}
return point(trilinear(t, f));
}
/*
*/
point[] fermat(triangle t)
{/*Return the Fermat points of 't'.*/
point[] P;
real A = t.alpha(), B = t.beta(), C = t.gamma();
P.push(point(trilinear(t, 1/Sin(A + 60), 1/Sin(B + 60), 1/Sin(C + 60))));
P.push(point(trilinear(t, 1/Sin(A - 60), 1/Sin(B - 60), 1/Sin(C - 60))));
return P;
}
/*
*/
point isotomicconjugate(triangle t, point M)
{/**/
if(!inside(t.Path(), locate(M))) abort("isotomic: the point must be inside the triangle.");
trilinear tr = trilinear(t, M);
return point(trilinear(t, 1/(t.a()^2 * tr.a), 1/(t.b()^2 * tr.b), 1/(t.c()^2 * tr.c)));
}
/*
*/
line isotomic(vertex V, point M)
{/*.*/
side op = opposite(V);
return line(V, rotate(180, midpoint(op)) * cevian(op, M));
}
/*
*/
point isotomic(side side, point M)
{/**/
return intersectionpoint(isotomic(opposite(side), M), side);
}
/*
*/
triangle isotomic(triangle t, point M)
{/**/
return triangle(isotomic(t.BC, M), isotomic(t.CA, M), isotomic(t.AB, M));
}
/*
*/
point isogonalconjugate(triangle t, point M)
{/**/
trilinear tr = trilinear(t, M);
return point(trilinear(t, 1/tr.a, 1/tr.b, 1/tr.c));
}
/*
*/
point isogonal(side side, point M)
{/**/
return cevian(side, isogonalconjugate(side.t, M));
}
/*
*/
line isogonal(vertex V, point M)
{/**/
return line(V, isogonal(opposite(V), M));
}
/*
*/
triangle isogonal(triangle t, point M)
{/**/
return triangle(isogonal(t.BC, M), isogonal(t.CA, M), isogonal(t.AB, M));
}
/*
*/
triangle pedal(triangle t, point M)
{/*Return the pedal triangle of 'M' in 't'.
*/
return triangle(projection(t.BC) * M, projection(t.AC) * M, projection(t.AB) * M);
}
/*
*/
line pedal(side side, point M)
{/*Return the pedal line of 'M' cutting 'side'.
*/
return line(M, projection(side) * M);
}
/*
*/
triangle antipedal(triangle t, point M)
{/**/
trilinear Tm = trilinear(t, M);
real a = Tm.a, b = Tm.b, c = Tm.c;
real CA = Cos(t.alpha()), CB = Cos(t.beta()), CC = Cos(t.gamma());
point A = trilinear(t, -(b + a * CC) * (c + a * CB), (c + a * CB) * (a + b * CC), (b + a * CC) * (a + c * CB));
point B = trilinear(t, (c + b * CA) * (b + a * CC), -(c + b * CA) * (a + b * CC), (a + b * CC) * (b + c * CA));
point C = trilinear(t, (b + c * CA) * (c + a * CB), (a + c * CB) * (c + b * CA), -(a + c * CB) * (b + c * CA));
return triangle(A, B, C);
}
/*
*/
triangle extouch(triangle t)
{/*Return the extouch triangle of the triangle 't'.
The extouch triangle of 't' is the triangle formed by the points
of tangency of a triangle 't' with its excircles.*/
point A, B, C;
real a = t.a(), b = t.b(), c = t.c();
A = trilinear(t, 0, (a - b + c)/b, (a + b - c)/c);
B = trilinear(t, (-a + b + c)/a, 0, (a + b - c)/c);
C = trilinear(t, (-a + b + c)/a, (a - b + c)/b, 0);
return triangle(A, B, C);
}
/*
*/
triangle incentral(triangle t)
{/*Return the incentral triangle of the triangle 't'.
It is the triangle whose vertices are determined by the intersections of the
reference triangle's angle bisectors with the respective opposite sides.*/
point A, B, C;
// real a = t.a(), b = t.b(), c = t.c();
A = trilinear(t, 0, 1, 1);
B = trilinear(t, 1, 0, 1);
C = trilinear(t, 1, 1, 0);
return triangle(A, B, C);
}
/*
*/
triangle extouch(side side)
{/*Return the triangle formed by the points of tangency of the triangle referenced by 'side' with its excircles.
One vertex of the returned triangle is on the segment 'side'.*/
triangle t = side.t;
transform p1 = projection((line)t.AB);
transform p2 = projection((line)t.AC);
transform p3 = projection((line)t.BC);
point EP = excenter(side);
return triangle(p3 * EP, p2 * EP, p1 * EP);
}
/*
*/
point bisectorpoint(side side)
{/*The intersection point of the angle bisector from the
opposite point of 'side' with the side 'side'.*/
triangle t = side.t;
int n = numarray[abs(side.n) - 1];
if(n == 1) return trilinear(t, 1, 1, 0);
if(n == 2) return trilinear(t, 0, 1, 1);
return trilinear(t, 1, 0, 1);
}
/*
*/
line bisector(vertex V, real angle = 0)
{/*Return the interior bisector passing through 'V' rotated by angle (in degrees)
around 'V'.*/
return rotate(angle, point(V)) * line(point(V), incenter(V.t));
}
/*
*/
line bisector(side side)
{/*Return the bisector of the line segment 'side'.*/
return bisector(segment(side));
}
/*
*/
point intouch(side side)
{/*The point of tangency on the side 'side' of its incircle.*/
triangle t = side.t;
real a = t.a(), b = t.b(), c = t.c();
int n = numarray[abs(side.n) - 1];
if(n == 1) return trilinear(t, b * c/(-a + b + c), a * c/(a - b + c), 0);
if(n == 2) return trilinear(t, 0, a * c/(a - b + c), a * b/(a + b - c));
return trilinear(t, b * c/(-a + b + c), 0, a * b/(a + b - c));
}
/*
*/
triangle intouch(triangle t)
{/*Return the intouch triangle of the triangle 't'.
The intouch triangle of 't' is the triangle formed by the points
of tangency of a triangle 't' with its incircles.*/
point A, B, C;
real a = t.a(), b = t.b(), c = t.c();
A = trilinear(t, 0, a * c/(a - b + c), a * b/(a + b - c));
B = trilinear(t, b * c/(-a + b + c), 0, a * b/(a + b - c));
C = trilinear(t, b * c/(-a + b + c), a * c/(a - b + c), 0);
return triangle(A, B, C);
}
/*
*/
triangle tangential(triangle t)
{/*Return the tangential triangle of the triangle 't'.
The tangential triangle of 't' is the triangle formed by the lines
tangent to the circumcircle of the given triangle 't' at its vertices.*/
point A, B, C;
real a = t.a(), b = t.b(), c = t.c();
A = trilinear(t, -a, b, c);
B = trilinear(t, a, -b, c);
C = trilinear(t, a, b, -c);
return triangle(A, B, C);
}
/*
*/
triangle medial(triangle t)
{/*Return the triangle whose vertices are midpoints of the sides of 't'.*/
return triangle(midpoint(t.BC), midpoint(t.AC), midpoint(t.AB));
}
/*
*/
line median(vertex V)
{/*Return median from 'V'.*/
return line(point(V), midpoint(segment(opposite(V))));
}
/*
*/
line median(side side)
{/*Return median from the opposite vertex of 'side'.*/
return median(opposite(side));
}
/*
*/
triangle orthic(triangle t)
{/*Return the triangle whose vertices are endpoints of the altitudes from each of the vertices of 't'.*/
return triangle(foot(t.BC), foot(t.AC), foot(t.AB));
}
/*
*/
triangle symmedial(triangle t)
{/*Return the symmedial triangle of 't'.*/
point A, B, C;
real a = t.a(), b = t.b(), c = t.c();
A = trilinear(t, 0, b, c);
B = trilinear(t, a, 0, c);
C = trilinear(t, a, b, 0);
return triangle(A, B, C);
}
/*
*/
triangle anticomplementary(triangle t)
{/*Return the triangle which has the given triangle 't' as its medial triangle.*/
real a = t.a(), b = t.b(), c = t.c();
real ab = a * b, bc = b * c, ca = c * a;
point A = trilinear(t, -bc, ca, ab);
point B = trilinear(t, bc, -ca, ab);
point C = trilinear(t, bc, ca, -ab);
return triangle(A, B, C);
}
/*
*/
point[] intersectionpoints(triangle t, line l, bool extended = false)
{/*Return the intersection points.
If 'extended' is true, the sides are lines else the sides are segments.
intersectionpoints(line, triangle, bool) is also defined.*/
point[] OP;
void addpoint(point P)
{
if(defined(P)) {
bool exist = false;
for (int i = 0; i < OP.length; ++i) {
if(P == OP[i]) {exist = true; break;}
}
if(!exist) OP.push(P);
}
}
if(extended) {
for (int i = 1; i <= 3; ++i) {
addpoint(intersectionpoint(t.line(i), l));
}
} else {
for (int i = 1; i <= 3; ++i) {
addpoint(intersectionpoint((segment)t.line(i), l));
}
}
return OP;
}
point[] intersectionpoints(line l, triangle t, bool extended = false)
{
return intersectionpoints(t, l, extended);
}
/*
*/
vector dir(vertex V)
{/*The direction (towards the outside of the triangle) of the interior angle bisector of 'V'.*/
triangle t = V.t;
if(V.n == 1) return vector(defaultcoordsys, (-dir(t.A--t.B, t.A--t.C)));
if(V.n == 2) return vector(defaultcoordsys, (-dir(t.B--t.A, t.B--t.C)));
return vector(defaultcoordsys, (-dir(t.C--t.A, t.C--t.B)));
}
/*
*/
void label(picture pic = currentpicture, Label L, vertex V,
pair align = dir(V),
real alignFactor = 1,
pen p = nullpen, filltype filltype = NoFill)
{/*Draw 'L' on picture 'pic' at vertex 'V' aligned by 'alignFactor * align'.*/
label(pic, L, locate(point(V)), alignFactor * align, p, filltype);
}
/*
*/
void label(picture pic = currentpicture, Label LA = "$A$",
Label LB = "$B$", Label LC = "$C$",
triangle t,
real alignAngle = 0,
real alignFactor = 1,
pen p = nullpen, filltype filltype = NoFill)
{/*Draw labels LA, LB and LC aligned in the rotated (by 'alignAngle' in degrees) direction
(towards the outside of the triangle) of the interior angle bisector of vertices.
One can individually modify the alignment by setting the Label parameter 'align'.*/
Label lla = LA.copy();
lla.align(lla.align, rotate(alignAngle) * locate(dir(t.VA)));
label(pic, LA, t.VA, align = lla.align.dir, alignFactor = alignFactor, p, filltype);
Label llb = LB.copy();
llb.align(llb.align, rotate(alignAngle) * locate(dir(t.VB)));
label(pic, llb, t.VB, align = llb.align.dir, alignFactor = alignFactor, p, filltype);
Label llc = LC.copy();
llc.align(llc.align, rotate(alignAngle) * locate(dir(t.VC)));
label(pic, llc, t.VC, align = llc.align.dir, alignFactor = alignFactor, p, filltype);
}
/*
*/
void show(picture pic = currentpicture,
Label LA = "$A$", Label LB = "$B$", Label LC = "$C$",
Label La = "$a$", Label Lb = "$b$", Label Lc = "$c$",
triangle t, pen p = currentpen, filltype filltype = NoFill)
{/*Draw triangle and labels of sides and vertices.*/
pair a = locate(t.A), b = locate(t.B), c = locate(t.C);
draw(pic, a--b--c--cycle, p);
label(pic, LA, a, -dir(a--b, a--c), p, filltype);
label(pic, LB, b, -dir(b--a, b--c), p, filltype);
label(pic, LC, c, -dir(c--a, c--b), p, filltype);
pair aligna = I * unit(c - b), alignb = I * unit(c - a), alignc = I * unit(b - a);
pair mAB = locate(midpoint(t.AB)), mAC = locate(midpoint(t.AC)), mBC = locate(midpoint(t.BC));
draw(pic, La, b--c, align = rotate(dot(a - mBC, aligna) > 0 ? 180 :0) * aligna, p);
draw(pic, Lb, a--c, align = rotate(dot(b - mAC, alignb) > 0 ? 180 :0) * alignb, p);
draw(pic, Lc, a--b, align = rotate(dot(c - mAB, alignc) > 0 ? 180 :0) * alignc, p);
}
/*
*/
void draw(picture pic = currentpicture, triangle t, pen p = currentpen, marker marker = nomarker)
{/*Draw sides of the triangle 't' on picture 'pic' using pen 'p'.*/
draw(pic, t.Path(), p, marker);
}
/*
*/
void draw(picture pic = currentpicture, triangle[] t, pen p = currentpen, marker marker = nomarker)
{/*Draw sides of the triangles 't' on picture 'pic' using pen 'p'.*/
for(int i = 0; i < t.length; ++i) draw(pic, t[i], p, marker);
}
/*
*/
void drawline(picture pic = currentpicture, triangle t, pen p = currentpen)
{/*Draw lines of the triangle 't' on picture 'pic' using pen 'p'.*/
draw(t, p);
draw(pic, line(t.A, t.B), p);
draw(pic, line(t.A, t.C), p);
draw(pic, line(t.B, t.C), p);
}
/*
*/
void dot(picture pic = currentpicture, triangle t, pen p = currentpen)
{/*Draw a dot at each vertex of 't'.*/
dot(pic, t.A^^t.B^^t.C, p);
}
// *.......................TRIANGLES.......................*
// *=======================================================*
// *=======================================================*
// *.......................INVERSIONS......................*
/*
*/
point inverse(real k, point A, point M)
{/*Return the inverse point of 'M' with respect to point A and inversion radius 'k'.*/
return A + k/conj(M - A);
}
/*
*/
point radicalcenter(circle c1, circle c2)
{/**/
point[] P = standardizecoordsys(c1.C, c2.C);
real k = c1.r^2 - c2.r^2;
pair C1 = locate(c1.C);
pair C2 = locate(c2.C);
pair oop = C2 - C1;
pair K = (abs(oop) == 0) ?
(infinity, infinity) :
midpoint(C1--C2) + 0.5 * k * oop/dot(oop, oop);
return point(P[0].coordsys, K/P[0].coordsys);
}
/*
*/
line radicalline(circle c1, circle c2)
{/**/
if (c1.C == c2.C) abort("radicalline: the centers must be distinct");
return perpendicular(radicalcenter(c1, c2), line(c1.C, c2.C));
}
/*
*/
point radicalcenter(circle c1, circle c2, circle c3)
{/**/
return intersectionpoint(radicalline(c1, c2), radicalline(c1, c3));
}
/*
*/
struct inversion
{/*http://mathworld.wolfram.com/Inversion.html*/
point C;
real k;
}/**/
/*
*/
inversion inversion(real k, point C)
{/*Return the inversion with respect to 'C' having inversion radius 'k'.*/
inversion oi;
oi.k = k;
oi.C = C;
return oi;
}
/*
*/
inversion inversion(point C, real k)
{/*Return the inversion with respect to 'C' having inversion radius 'k'.*/
return inversion(k, C);
}
/*
*/
inversion inversion(circle c1, circle c2, real sgn = 1)
{/*Return the inversion which transforms 'c1' to
. 'c2' and positive inversion radius if 'sgn > 0';
. 'c2' and negative inversion radius if 'sgn < 0';
. 'c1' and 'c2' to 'c2' if 'sgn = 0'.*/
if(sgn == 0) {
point O = radicalcenter(c1, c2);
return inversion(O^c1, O);
}
real a = abs(c1.r/c2.r);
if(sgn > 0) {
point O = c1.C + a/abs(1 - a) * (c2.C - c1.C);
return inversion(a * abs(abs(O - c2.C)^2 - c2.r^2), O);
}
point O = c1.C + a/abs(1 + a) * (c2.C - c1.C);
return inversion(-a * abs(abs(O - c2.C)^2 - c2.r^2), O);
}
/*
*/
inversion inversion(circle c1, circle c2, circle c3)
{/*Return the inversion which transform 'c1' to 'c1', 'c2' to 'c2' and 'c3' to 'c3'.*/
point Rc = radicalcenter(c1, c2, c3);
return inversion(Rc, Rc^c1);
}
circle operator cast(inversion i){return circle(i.C, sgn(i.k) * sqrt(abs(i.k)));}
/*
*/
circle circle(inversion i)
{/*Return the inversion circle of 'i'.*/
return i;
}
inversion operator cast(circle c)
{
return inversion(sgn(c.r) * c.r^2, c.C);
}
/*
*/
inversion inversion(circle c)
{/*Return the inversion represented by the circle of 'c'.*/
return c;
}
/*
*/
point operator *(inversion i, point P)
{/*Provide inversion * point.*/
return inverse(i.k, i.C, P);
}
void lineinversion()
{
warning("lineinversion", "the inversion of the line is not a circle.
The returned circle has an infinite radius, circle.l has been set.");
}
/*
*/
circle inverse(real k, point A, line l)
{/*Return the inverse circle of 'l' with
respect to point 'A' and inversion radius 'k'.*/
if(A @ l) {
lineinversion();
circle C = circle(A, infinity);
C.l = l;
return C;
}
point Ap = inverse(k, A, l.A), Bp = inverse(k, A, l.B);
return circle(A, Ap, Bp);
}
/*
*/
circle operator *(inversion i, line l)
{/*Provide inversion * line for lines that don't pass through the inversion center.*/
return inverse(i.k, i.C, l);
}
/*
*/
circle inverse(real k, point A, circle c)
{/*Return the inverse circle of 'c' with
respect to point A and inversion radius 'k'.*/
if(degenerate(c)) return inverse(k, A, c.l);
if(A @ c) {
lineinversion();
point M = rotate(180, c.C) * A, Mp = rotate(90, c.C) * A;
circle oc = circle(A, infinity);
oc.l = line(inverse(k, A, M), inverse(k, A, Mp));
return oc;
}
point[] P = standardizecoordsys(A, c.C);
real s = k/((P[1].x - P[0].x)^2 + (P[1].y - P[0].y)^2 - c.r^2);
return circle(P[0] + s * (P[1]-P[0]), abs(s) * c.r);
}
/*
*/
circle operator *(inversion i, circle c)
{/*Provide inversion * circle.*/
return inverse(i.k, i.C, c);
}
// *.......................INVERSIONS......................*
// *=======================================================*
// *=======================================================*
// *........................FOOTER.........................*
/*
*/
point[] intersectionpoints(line l, circle c)
{/*Note that the line 'l' may be a segment by casting.
intersectionpoints(circle, line) is also defined.*/
if(degenerate(c)) return new point[]{intersectionpoint(l, c.l)};
point[] op;
coordsys R = samecoordsys(l.A, c.C) ?
l.A.coordsys : defaultcoordsys;
coordsys Rp = defaultcoordsys;
circle cc = circle(changecoordsys(Rp, c.C), c.r);
point proj = projection(l) * c.C;
if(proj @ cc) { // The line is a tangente of the circle.
if(proj @ l) op.push(proj);// line may be a segement...
} else {
coordsys Rc = cartesiansystem(c.C, (1, 0), (0, 1));
line ll = changecoordsys(Rc, l);
pair[] P = intersectionpoints(ll.A.coordinates, ll.B.coordinates,
1, 0, 1, 0, 0, -c.r^2);
for (int i = 0; i < P.length; ++i) {
point inter = changecoordsys(R, point(Rc, P[i]));
if(inter @ l) op.push(inter);
}
}
return op;
}
point[] intersectionpoints(circle c, line l)
{
return intersectionpoints(l, c);
}
/*
*/
point[] intersectionpoints(line l, ellipse el)
{/*Note that the line 'l' may be a segment by casting.
intersectionpoints(ellipse, line) is also defined.*/
if(el.e == 0) return intersectionpoints(l, (circle)el);
if(degenerate(el)) return new point[]{intersectionpoint(l, el.l)};
point[] op;
coordsys R = samecoordsys(l.A, el.C) ? l.A.coordsys : defaultcoordsys;
coordsys Rp = defaultcoordsys;
line ll = changecoordsys(Rp, l);
ellipse ell = changecoordsys(Rp, el);
circle C = circle(ell.C, ell.a);
point[] Ip = intersectionpoints(ll, C);
if (Ip.length > 0 &&
(perpendicular(ll, line(ell.F1, Ip[0])) ||
perpendicular(ll, line(ell.F2, Ip[0])))) {
// http://www.mathcurve.com/courbes2d/ellipse/ellipse.shtml
// Définition tangentielle par antipodaire de cercle.
// 'l' is a tangent of 'el'
transform t = scale(el.a/el.b, el.F1, el.F2, el.C, rotate(90, el.C) * el.F1);
point inter = inverse(t) * intersectionpoints(C, t * ll)[0];
if(inter @ l) op.push(inter);
} else {
coordsys Rc = canonicalcartesiansystem(el);
line ll = changecoordsys(Rc, l);
pair[] P = intersectionpoints(ll.A.coordinates, ll.B.coordinates,
1/el.a^2, 0, 1/el.b^2, 0, 0, -1);
for (int i = 0; i < P.length; ++i) {
point inter = changecoordsys(R, point(Rc, P[i]));
if(inter @ l) op.push(inter);
}
}
return op;
}
point[] intersectionpoints(ellipse el, line l)
{
return intersectionpoints(l, el);
}
/*
*/
point[] intersectionpoints(line l, parabola p)
{/*Note that the line 'l' may be a segment by casting.
intersectionpoints(parabola, line) is also defined.*/
point[] op;
coordsys R = coordsys(p);
bool tgt = false;
line ll = changecoordsys(R, l),
lv = parallel(p.V, p.D);
point M = intersectionpoint(lv, ll), tgtp;
if(finite(M)) {// Test if 'l' is tangent to 'p'
line l1 = bisector(line(M, p.F));
line l2 = rotate(90, M) * lv;
point P = intersectionpoint(l1, l2);
tgtp = rotate(180, P) * p.F;
tgt = (tgtp @ l);
}
if(tgt) {
if(tgtp @ l) op.push(tgtp);
} else {
real[] eq = changecoordsys(defaultcoordsys, equation(p)).a;
pair[] tp = intersectionpoints(locate(l.A), locate(l.B), eq);
point inter;
for (int i = 0; i < tp.length; ++i) {
inter = point(R, tp[i]/R);
if(inter @ l) op.push(inter);
}
}
return op;
}
point[] intersectionpoints(parabola p, line l)
{
return intersectionpoints(l, p);
}
/*
*/
point[] intersectionpoints(line l, hyperbola h)
{/*Note that the line 'l' may be a segment by casting.
intersectionpoints(hyperbola, line) is also defined.*/
point[] op;
coordsys R = coordsys(h);
point A = intersectionpoint(l, h.A1), B = intersectionpoint(l, h.A2);
point M = midpoint(segment(A, B));
bool tgt = M @ h;
if(tgt) {
if(M @ l) op.push(M);
} else {
real[] eq = changecoordsys(defaultcoordsys, equation(h)).a;
pair[] tp = intersectionpoints(locate(l.A), locate(l.B), eq);
point inter;
for (int i = 0; i < tp.length; ++i) {
inter = point(R, tp[i]/R);
if(inter @ l) op.push(inter);
}
}
return op;
}
point[] intersectionpoints(hyperbola h, line l)
{
return intersectionpoints(l, h);
}
/*
*/
point[] intersectionpoints(line l, conic co)
{/*Note that the line 'l' may be a segment by casting.
intersectionpoints(conic, line) is also defined.*/
point[] op;
if(co.e < 1) op = intersectionpoints((ellipse)co, l);
else
if(co.e == 1) op = intersectionpoints((parabola)co, l);
else op = intersectionpoints((hyperbola)co, l);
return op;
}
point[] intersectionpoints(conic co, line l)
{
return intersectionpoints(l, co);
}
/*
*/
point[] intersectionpoints(conic co1, conic co2)
{/*Return the intersection points of the two conics.*/
if(degenerate(co1)) return intersectionpoints(co1.l[0], co2);
if(degenerate(co2)) return intersectionpoints(co1, co2.l[0]);
return intersectionpoints(equation(co1), equation(co2));
}
/*
*/
point[] intersectionpoints(triangle t, conic co, bool extended = false)
{/*Return the intersection points.
If 'extended' is true, the sides are lines else the sides are segments.
intersectionpoints(conic, triangle, bool) is also defined.*/
if(degenerate(co)) return intersectionpoints(t, co.l[0], extended);
point[] OP;
void addpoint(point P[])
{
for (int i = 0; i < P.length; ++i) {
if(defined(P[i])) {
bool exist = false;
for (int j = 0; j < OP.length; ++j) {
if(P[i] == OP[j]) {exist = true; break;}
}
if(!exist) OP.push(P[i]);
}}}
if(extended) {
for (int i = 1; i <= 3; ++i) {
addpoint(intersectionpoints(t.line(i), co));
}
} else {
for (int i = 1; i <= 3; ++i) {
addpoint(intersectionpoints((segment)t.line(i), co));
}
}
return OP;
}
point[] intersectionpoints(conic co, triangle t, bool extended = false)
{
return intersectionpoints(t, co, extended);
}
/*
*/
point[] intersectionpoints(ellipse a, ellipse b)
{/**/
// if(degenerate(a)) return intersectionpoints(a.l, b);
// if(degenerate(b)) return intersectionpoints(a, b.l);;
return intersectionpoints((conic)a, (conic)b);
}
/*
*/
point[] intersectionpoints(ellipse a, circle b)
{/**/
// if(degenerate(a)) return intersectionpoints(a.l, b);
// if(degenerate(b)) return intersectionpoints(a, b.l);;
return intersectionpoints((conic)a, (conic)b);
}
/*
*/
point[] intersectionpoints(circle a, ellipse b)
{/**/
return intersectionpoints(b, a);
}
/*
*/
point[] intersectionpoints(ellipse a, parabola b)
{/**/
// if(degenerate(a)) return intersectionpoints(a.l, b);
return intersectionpoints((conic)a, (conic)b);
}
/*
*/
point[] intersectionpoints(parabola a, ellipse b)
{/**/
return intersectionpoints(b, a);
}
/*
*/
point[] intersectionpoints(ellipse a, hyperbola b)
{/**/
// if(degenerate(a)) return intersectionpoints(a.l, b);
return intersectionpoints((conic)a, (conic)b);
}
/*
*/
point[] intersectionpoints(hyperbola a, ellipse b)
{/**/
return intersectionpoints(b, a);
}
/*
*/
point[] intersectionpoints(circle a, parabola b)
{/**/
return intersectionpoints((conic)a, (conic)b);
}
/*
*/
point[] intersectionpoints(parabola a, circle b)
{/**/
return intersectionpoints((conic)a, (conic)b);
}
/*
*/
point[] intersectionpoints(circle a, hyperbola b)
{/**/
return intersectionpoints((conic)a, (conic)b);
}
/*
*/
point[] intersectionpoints(hyperbola a, circle b)
{/**/
return intersectionpoints((conic)a, (conic)b);
}
/*
*/
point[] intersectionpoints(parabola a, parabola b)
{/**/
return intersectionpoints((conic)a, (conic)b);
}
/*
*/
point[] intersectionpoints(parabola a, hyperbola b)
{/**/
return intersectionpoints((conic)a, (conic)b);
}
/*
*/
point[] intersectionpoints(hyperbola a, parabola b)
{/**/
return intersectionpoints((conic)a, (conic)b);
}
/*
*/
point[] intersectionpoints(hyperbola a, hyperbola b)
{/**/
return intersectionpoints((conic)a, (conic)b);
}
/*
*/
point[] intersectionpoints(circle c1, circle c2)
{/**/
if(degenerate(c1))
return degenerate(c2) ?
new point[]{intersectionpoint(c1.l, c2.l)} : intersectionpoints(c1.l, c2);
if(degenerate(c2)) return intersectionpoints(c1, c2.l);
return (c1.C == c2.C) ?
new point[] :
intersectionpoints(radicalline(c1, c2), c1);
}
/*
*/
line tangent(circle c, abscissa x)
{/*Return the tangent of 'c' at 'point(c, x)'.*/
if(c.r == 0) abort("tangent: a circle with a radius equals zero has no tangent.");
point M = point(c, x);
return line(rotate(90, M) * c.C, M);
}
/*
*/
line[] tangents(circle c, point M)
{/*Return the tangents of 'c' passing through 'M'.*/
line[] ol;
if(inside(c, M)) return ol;
if(M @ c) {
ol.push(tangent(c, relabscissa(c, M)));
} else {
circle cc = circle(c.C, M);
point[] inter = intersectionpoints(c, cc);
for (int i = 0; i < inter.length; ++i)
ol.push(tangents(c, inter[i])[0]);
}
return ol;
}
/*
*/
point point(circle c, point M)
{/*Return the intersection point of 'c'
with the half-line '[c.C M)'.*/
return intersectionpoints(c, line(c.C, false, M))[0];
}
/*
*/
line tangent(circle c, point M)
{/*Return the tangent of 'c' at the
intersection point of the half-line'[c.C M)'.*/
return tangents(c, point(c, M))[0];
}
/*
*/
point point(circle c, explicit vector v)
{/*Return the intersection point of 'c'
with the half-line '[c.C v)'.*/
return point(c, c.C + v);
}
/*
*/
line tangent(circle c, explicit vector v)
{/*Return the tangent of 'c' at the
point M so that vec(c.C M) is collinear to 'v' with the same sense.*/
line ol = tangent(c, c.C + v);
return dot(ol.v, v) > 0 ? ol : reverse(ol);
}
/*
*/
line tangent(ellipse el, abscissa x)
{/*Return the tangent of 'el' at 'point(el, x)'.*/
point M = point(el, x);
line l1 = line(el.F1, M);
line l2 = line(el.F2, M);
line ol = (l1 == l2) ? perpendicular(M, l1) : bisector(l1, l2, 90, false);
return ol;
}
/*
*/
line[] tangents(ellipse el, point M)
{/*Return the tangents of 'el' passing through 'M'.*/
line[] ol;
if(inside(el, M)) return ol;
if(M @ el) {
ol.push(tangent(el, relabscissa(el, M)));
} else {
point Mp = samecoordsys(M, el.F2) ?
M : changecoordsys(el.F2.coordsys, M);
circle c = circle(Mp, abs(el.F1 - Mp));
circle cc = circle(el.F2, 2 * el.a);
point[] inter = intersectionpoints(c, cc);
for (int i = 0; i < inter.length; ++i) {
line tl = line(inter[i], el.F2, false);
point[] P = intersectionpoints(tl, el);
ol.push(line(Mp, P[0]));
}
}
return ol;
}
/*
*/
line tangent(parabola p, abscissa x)
{/*Return the tangent of 'p' at 'point(p, x)' (use the Wells method).*/
line lt = rotate(90, p.V) * line(p.V, p.F);
point P = point(p, x);
if(P == p.V) return lt;
point M = midpoint(segment(P, p.F));
line l = rotate(90, M) * line(P, p.F);
return line(P, projection(lt) * M);
}
/*
*/
line[] tangents(parabola p, point M)
{/*Return the tangent of 'p' at 'M' (use the Wells method).*/
line[] ol;
if(inside(p, M)) return ol;
if(M @ p) {
ol.push(tangent(p, angabscissa(p, M)));
}
else {
point Mt = changecoordsys(coordsys(p), M);
circle c = circle(Mt, p.F);
line l = rotate(90, p.V) * line(p.V, p.F);
point[] R = intersectionpoints(l, c);
for (int i = 0; i < R.length; ++i) {
ol.push(line(Mt, R[i]));
}
// An other method: http://www.du.edu/~jcalvert/math/parabola.htm
// point[] R = intersectionpoints(p.directrix, c);
// for (int i = 0; i < R.length; ++i) {
// ol.push(bisector(segment(p.F, R[i])));
// }
}
return ol;
}
/*
*/
line tangent(hyperbola h, abscissa x)
{/*Return the tangent of 'h' at 'point(p, x)'.*/
point M = point(h, x);
line ol = bisector(line(M, h.F1), line(M, h.F2));
if(sameside(h.F1, h.F2, ol) || ol == line(h.F1, h.F2)) ol = rotate(90, M) * ol;
return ol;
}
/*
*/
line[] tangents(hyperbola h, point M)
{/*Return the tangent of 'h' at 'M'.*/
line[] ol;
if(M @ h) {
ol.push(tangent(h, angabscissa(h, M, fromCenter)));
} else {
coordsys cano = canonicalcartesiansystem(h);
bqe bqe = changecoordsys(cano, equation(h));
real a = abs(1/(bqe.a[5] * bqe.a[0])), b = abs(1/(bqe.a[5] * bqe.a[2]));
point Mp = changecoordsys(cano, M);
real x0 = Mp.x, y0 = Mp.y;
if(abs(x0) > epsgeo) {
real c0 = a * y0^2/(b * x0)^2 - 1/b,
c1 = 2 * a * y0/(b * x0^2), c2 = a/x0^2 - 1;
real[] sol = quadraticroots(c0, c1, c2);
for (real y:sol) {
point tmp = changecoordsys(coordsys(h), point(cano, (a * (1 + y * y0/b)/x0, y)));
ol.push(line(M, tmp));
}
} else if(abs(y0) > epsgeo) {
real y = -b/y0, x = sqrt(a * (1 + b/y0^2));
ol.push(line(M, changecoordsys(coordsys(h), point(cano, (x, y)))));
ol.push(line(M, changecoordsys(coordsys(h), point(cano, (-x, y)))));
}}
return ol;
}
/*
*/
point[] intersectionpoints(conic co, arc a)
{/*intersectionpoints(arc, circle) is also defined.*/
point[] op;
point[] tp = intersectionpoints(co, (conic)a.el);
for (int i = 0; i < tp.length; ++i)
if(tp[i] @ a) op.push(tp[i]);
return op;
}
point[] intersectionpoints(arc a, conic co)
{
return intersectionpoints(co, a);
}
/*
*/
point[] intersectionpoints(arc a1, arc a2)
{/**/
point[] op;
point[] tp = intersectionpoints(a1.el, a2.el);
for (int i = 0; i < tp.length; ++i)
if(tp[i] @ a1 && tp[i] @ a2) op.push(tp[i]);
return op;
}
/*
*/
point[] intersectionpoints(line l, arc a)
{/*intersectionpoints(arc, line) is also defined.*/
point[] op;
point[] tp = intersectionpoints(a.el, l);
for (int i = 0; i < tp.length; ++i)
if(tp[i] @ a && tp[i] @ l) op.push(tp[i]);
return op;
}
point[] intersectionpoints(arc a, line l)
{
return intersectionpoints(l, a);
}
/*
*/
point arcsubtendedcenter(point A, point B, real angle)
{/*Return the center of the arc retuned
by the 'arcsubtended' routine.*/
point OM;
point[] P = standardizecoordsys(A, B);
angle = angle%(sgnd(angle) * 180);
line bis = bisector(P[0], P[1]);
line AB = line(P[0], P[1]);
return intersectionpoint(bis, rotate(90 - angle, A) * AB);
}
/*
*/
arc arcsubtended(point A, point B, real angle)
{/*Return the arc circle from which the segment AB is saw with
the angle 'angle'.
If the point 'M' is on this arc, the oriented angle (MA, MB) is
equal to 'angle'.*/
point[] P = standardizecoordsys(A, B);
line AB = line(P[0], P[1]);
angle = angle%(sgnd(angle) * 180);
point C = arcsubtendedcenter(P[0], P[1], angle);
real BC = degrees(B - C)%360;
real AC = degrees(A - C)%360;
return arc(circle(C, abs(B - C)), BC, AC, angle > 0 ? CCW : CW);
}
/*
*/
arc arccircle(point A, point M, point B)
{/*Return the CCW arc circle 'AB' passing through 'M'.*/
circle tc = circle(A, M, B);
real a = degrees(A - tc.C);
real b = degrees(B - tc.C);
arc oa = arc(tc, a, b);
if(!(M @ oa)) oa.direction=!oa.direction;
return oa;
}
/*
*/
arc arc(ellipse el, explicit abscissa x1, explicit abscissa x2, bool direction = CCW)
{/*Return the arc from 'point(c, x1)' to 'point(c, x2)' in the direction 'direction'.*/
real a = degrees(point(el, x1) - el.C);
real b = degrees(point(el, x2) - el.C);
arc oa = arc(el, a - el.angle, b - el.angle, fromCenter, direction);
return oa;
}
/*
*/
arc arc(ellipse el, point M, point N, bool direction = CCW)
{/*Return the arc from 'M' to 'N' in the direction 'direction'.
The points 'M' and 'N' must belong to the ellipse 'el'.*/
return arc(el, relabscissa(el, M), relabscissa(el, N), direction);
}
/*
*/
arc arccircle(point A, point B, real angle, bool direction = CCW)
{/*Return the arc circle centered on A
from B to rotate(angle, A) * B in the direction 'direction'.*/
point M = rotate(angle, A) * B;
return arc(circle(A, abs(A - B)), B, M, direction);
}
/*
*/
arc arc(explicit arc a, abscissa x1, abscissa x2)
{/*Return the arc from 'point(a, x1)' to 'point(a, x2)' traversed in the direction of the arc direction.*/
real a1 = angabscissa(a.el, point(a, x1), a.polarconicroutine).x;
real a2 = angabscissa(a.el, point(a, x2), a.polarconicroutine).x;
return arc(a.el, a1, a2, a.polarconicroutine, a.direction);
}
/*
*/
arc arc(explicit arc a, point M, point N)
{/*Return the arc from 'M' to 'N'.
The points 'M' and 'N' must belong to the arc 'a'.*/
return arc(a, relabscissa(a, M), relabscissa(a, N));
}
/*
*/
arc inverse(real k, point A, segment s)
{/*Return the inverse arc circle of 's'
with respect to point A and inversion radius 'k'.*/
point Ap = inverse(k, A, s.A), Bp = inverse(k, A, s.B),
M = inverse(k, A, midpoint(s));
return arccircle(Ap, M, Bp);
}
/*
*/
arc operator *(inversion i, segment s)
{/*Provide
inversion * segment.*/
return inverse(i.k, i.C, s);
}
/*
*/
path operator *(inversion i, triangle t)
{/*Provide inversion * triangle.*/
return (path)(i * segment(t.AB))--
(path)(i * segment(t.BC))--
(path)(i * segment(t.CA))--cycle;
}
/*
*/
path compassmark(pair O, pair A, real position, real angle = 10)
{/*Return an arc centered on O with the angle 'angle' so that the position
of 'A' on this arc makes an angle 'position * angle'.*/
real a = degrees(A - O);
real pa = (a - position * angle)%360,
pb = (a - (position - 1) * angle)%360;
real t1 = intersect(unitcircle, (0, 0)--2 * dir(pa))[0];
real t2 = intersect(unitcircle, (0, 0)--2 * dir(pb))[0];
int n = length(unitcircle);
if(t1 >= t2) t1 -= n;
return shift(O) * scale(abs(O - A)) * subpath(unitcircle, t1, t2);
}
/*
*/
line tangent(explicit arc a, abscissa x)
{/*Return the tangent of 'a' at 'point(a, x)'.*/
abscissa ag = angabscissa(a, point(a, x));
return tangent(a.el, ag + a.angle1 + (a.el.e == 0 ? a.angle0 : 0));
}
/*
*/
line tangent(explicit arc a, point M)
{/*Return the tangent of 'a' at 'M'.
The points 'M' must belong to the arc 'a'.*/
return tangent(a, angabscissa(a, M));
}
// *=======================================================*
// *.......Routines for compatibility with original geometry module........*
path square(pair z1, pair z2)
{
pair v = z2 - z1;
pair z3 = z2 + I * v;
pair z4 = z3 - v;
return z1--z2--z3--z4--cycle;
}
// Draw a perpendicular symbol at z aligned in the direction align
// relative to the path z--z + dir.
void perpendicular(picture pic = currentpicture, pair z, pair align,
pair dir = E, real size = 0, pen p = currentpen,
margin margin = NoMargin, filltype filltype = NoFill)
{
perpendicularmark(pic, (point) z, align, dir, size, p, margin, filltype);
}
// Draw a perpendicular symbol at z aligned in the direction align
// relative to the path z--z + dir(g, 0)
void perpendicular(picture pic = currentpicture, pair z, pair align, path g,
real size = 0, pen p = currentpen, margin margin = NoMargin,
filltype filltype = NoFill)
{
perpendicularmark(pic, (point) z, align, dir(g, 0), size, p, margin, filltype);
}
// Return an interior arc BAC of triangle ABC, given a radius r > 0.
// If r < 0, return the corresponding exterior arc of radius |r|.
path arc(explicit pair B, explicit pair A, explicit pair C, real r)
{
return arc(A, r, degrees(B - A), degrees(C - A));
}
// *.......End of compatibility routines........*
// *=======================================================*
// *........................FOOTER.........................*
// *=======================================================*