\[ \begin{gathered} f( \in ,\delta s) = \frac{1}{\xi }\phi _{v} (\lambda _{v} ,k,\beta ^{2} ) \hfill \\ \phi _{v} (\lambda _{v} ,k,\beta ^{2} ) = \frac{1}{{2\pi i}}\int_{{c - i\infty }}^{{c + i\infty }} {\phi (s)e^{{\lambda s}} ds} \hfill \\ \phi (s) = \text{exp }[\kappa(1 + \beta ^{2} \gamma )]\text{ exp }[\psi (s)] \hfill \\ \lambda _{u} = k\left[ {\frac{{ \in - \bar \in }}{\xi } - \gamma ' - \beta ^{2} } \right] \hfill \\ \end{gathered} \]