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1. Introduction.METAFONT
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17. The character set. In order to make
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21. Since we are assuming that our Pascal system is able to read and write the visible characters of









x29 METAFONT PART 3: INPUT AND OUTPUT 15







18 PART 4: STRING HANDLING





20 PART 4: STRING HANDLING METAFONT x44

44. Once a sequence of characters has been appended to str pool , it o�cially becomes a string when the
function make string
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47. The initial values of str
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54. On-line and o�-line printing. Messages that are sent to a user’s terminal and to the transcript-
log �le are produced by several ‘print ’ procedures. These procedures will direct their output to a variety of
places, based on the setting of the global variable selector , which has the following possible values:
term
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59. An entire string is output by calling print
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63.
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67. Reporting errors. When something anomalous is detected, METAFONT typically does something
like this:

print err ("Something anomalous has been detected");
help3 ("This is the first line of my offer to )("This is  second line. I�m/F51 9.9626 Tf 5.23 0 Td (first)trying to")

("explain best way for you to );
error ;
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71.
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83. We allow deletion of up to 99 tokens at a time.
hDelete c� "0" tokens and
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111. The invariant relations in this case are (i) b(qf + p)=2
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116.
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118. h
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127.
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132. Here is the routine that calculates 28 times the natural logarithm of a scaled quantity; it is an integer
approximation to 224 ln(x=216), when x is a given positive integer.

The method is based on exercise 1.2.2{25 in The Art of Computer Programming : During the main iteration
we have 1 � 2�30x <

1=(1�21�k), and the logarithm of 230x remains to be added to an accumulator register
called y. Three auxiliary bits of accuracy are retained in y during the calculat.43, and sixteen auxiliary bits
to extend y are kept in z
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139. Given integers x and y
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141. hReturn an appropriate answer based on
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144. Conversely, the n sin
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153. Packed data.
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173. Just before INIMF writes out the memory, it sorts the doubly linked available space list. The list is
probably very short at such times, so a simple insertion sort is used. The smallest a
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180. Procedure check mem makes sure that the available space lists of
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186. The command codes. Before we can go much further, we need to de�ne symbolic names for
the internal code numbers that represent the various commands obeyed by METAFONT. These codes are
somewhat arbitrary, but not completely so. For example, some codes have been made adjacent so that
case
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de�ne internal quantity = 40 f internal numeric parameter (e.g., pausing) g
de�ne min su�x token = internal quantity
de�ne tag token = 41 f







x187 METAFONT PART 12: THE COMMAND CODES



74 PART 12: THE COMMAND CODES METAFONT x189

189. Primitive operations that produce values have a secondary identi�cation code in addition to their com-
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193. Well, we do have to list the names one more time, for use in symbolic printouts.
h Initialize table entries (done by INIMF only) 176 i +�

int name [tracing titles ]
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196.
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200. The hash table.
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213.
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228. Data structures for variables. The variables of METAFONT
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233. The id



x237 METAFONT PART 15: DATA STRUCTURES FOR VARIABLES 97

237. hPreface the output with a part speci�er; return in the case of a capsule 237 i �
begin case name type (p) of
x
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242. The �nd �nd
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246.
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250. Saving and restoring equivalents. The nested structure provided by begingroup and endgroup
allows eqtb
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276.
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303. Generating discrete moves.
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304. We will later reduce the problem of digitizing a complex cubic z(t) =
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314. hMake moves for current subinterval; if bisection is necessary, push the second subinterval onto the
stack, and goto
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323. Edge structures.
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330. h Insert exactly n min (cur edges )�
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/F1 9.9626 T143.25528 0 Td139403.(x) Tj
/F1 9.9626 Tf 312592 0 Td Now let’s multiply all theNTx
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345.

METAFONT
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349. The entire sorted list is returned to available memory in this step; a new list is built starting
(temporarily) at temp head
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354. The last and most di�cult routine for transforming an edge structure|and the most interesting
one!|is xy
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370. It’s not necessary to add the o�sets to the x coordinates, because an entire edge structure can be
shifted without a�ecting its total weight. Similarly, we don’t need to subtract zero �eld .
hAdd the contribution of node q to the total weight, and set q  link (
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373. Just after a new edge weight has been put into the info �eld of node r, in row n
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374. One way to put new edge weights into an edge structure is to use the following routine, which simply
draws a straight line from (x0 ; y0 ) to (x1 ; y1 ). More precisely, it introduces weights for the edges of the
discrete path

�
bt[x0; x1] + 1

2 + �c; bt[y0; y1
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392. The general bisection method is quite simple when n = 2�n9(henceNT
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403. The make spec routine has an interesting side e�ect, namely to set the global variable turning number
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407.
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422. The swapping here doesn’t simply interchange x an-
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425. hSubdivide the cubic a second time with respect to x0 � y0 425 i �
begin split



x426
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433. Here, then, is the procedure that rounds x
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437. When y has been negated, the octant codes are > negate y . Otherwise these routines are essentially
identical to the routines for x coordinates that we have just seen.
h If node q is a transition point for y coordinates, compute and save its before-and-after coordinates 437
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442. In octants whose code number is even, x has been negated; we want to round ambiguous cases
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445. In node p, the coordinates (b; d
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451. The new boundary
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470.
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471.
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473. The print pen
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479.
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484. Conversely, make
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490. Filling an envelope.
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497. Let us �rst solve a special case of the problem: Suppose we know an index k such that either
(i) s(t) � sk�1 for all t and s(0) < sk, 6.s81or (ii)s(t) � sk for all t and s(0) > sk
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524. Elliptical pens. To get the envelope of a cyclic path with respect to an ellipse, METAFONT

calculates the envelope with respect to a polygonal approximation to the ellipse, using an approach due
to John Hobby (Ph.D. thesis, Stanford University, 1985). This has two important advantages over trying to
obtain the \exact" envelope:
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526.
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527. The make ellipse subroutine produces a pointer to a cyclic path whose vertices de�ne a polygon
suitable for envelopes. The control points on this path will be ignored; in fact, the �elds in knot nodes
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541. Since we’re interested in the tangent directions, we work with the derivative

1
3
B0(x0; x1; x2; x3; t) = B(x1 � x0; x2 � x1; x3 � x2; t)instead ofB(x0; x1; x2; x3; t) itself. The derived coe�cients are also scaled up in order to achieve better

accuracy.
The given path may turn abruptly at a knot, and it might pass the critical tangent direction at such a

time. Therefore we remember the direction phi in which the previous rotated cubic was traveling. (The
value of phi will be unde�ned on the �rst cubic, i.e., when n = 0.)
h
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547. The quadratic polynomial B(y
1

; y
2

; y
3

; t) begins �
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550.
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The given cubics ; w ; w ;w ) and ; z ; z
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570. de�ne start screen �
begin if :screen started then

begin screen OK  init
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574.
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577. Now here comes METAFONT’s most complicated operation related to window display: Given the
number k of an open window, the pixels of positive weight in cur edges will be shown as black in the
window; all other pixels will be shown as white .
procedure disp edges (k : window number );

label done ; found ;
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583. Now m is a screen column < right col [k].
hRecord a possible transition in column m 583 i �

if w � 0 then
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589. Here is a procedure that prints a dependency list in symbolic form. The second parameter should be



242 PART 28: DYNAMIC LINEAR EQUATIONS METAFONT x592

592. One of tbe main operations needed on dependency lists is to add a multiple of one list to tbe otber;
we call tbis p plus fq , wbere p and q point to dependency lists and f is a fraction.
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594. The p plus fq
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596. hContribute a term from q, multiplied by f 596 i �
begin if tt = dependent then v  take



x
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602. Here’s a simple procedure that reports an error when a variable has just received a known value that’s



248



x607 METAFONT PART 28: DYNAMIC LINEAR EQUATIONS 249

607.
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618. Dynamic nonlinear equations. Variables of numeric type are maintained by the general scheme
of independent, dependent, and known values that we have just studied; and the components of pair and
transform variables are handled in the same way. But METAFONT also has �ve other types of values:
boolean, string, pen, path, and picture; what about them?
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621. Eventually there might be an equation that assigns values to all of the variables in a ring. The
nonlinear
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635.
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647. Maintaining the input stacks. The following subroutines change the input status in commonly
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651. The contents of cur cmd ; cur mod ; cur sym are placed into an equivalent token bb the cur
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665. The runaway procedure displays the �rst part of the text that occurred when METAFONT began its
special scanner status , if that text has been saved.
h
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669. A percent sign appears in bu�er [limit
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674. hGet the fraction part f of a numeric token
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688. Four commands are intended to be used only within macro texts: quote, #@, @, and, @
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700. hScan the token or variable to be de�ned; set
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706. Expanding the next token. Only a few command codes < min
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726. At this point, the reader will �nd it advisable to review the explanation of token list format that was
presented earlier, paying special attention to the conventions that apply only at the beginning of a macro’s
token list.

On the other hand, the reader will have to take the expression-parsing aspects of the following program
on faith; we will explain cur type and cur exp later. (Several things in this program depend on each other,
and it’s necessary to jump into the circle somewhere.)
hScan the delimited argument represented by info(r) 726 i �

x726
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752. Iterations.
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760. The loop text is inserted into
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766. File names. It’s time now to fret about �le names. Besides the fact that di�erent operating systems
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774.
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780. Operating systems often make it possible to determine the exact name (and possible version number)
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783. Initially job name
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791. Here’s an example of how these �le-name-parsing routines work in practice. We shall use the macro
set output �le name when it is time to crank up the output �le.

de�ne
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810. hRecycle a big node 810
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815. h
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821. A global variable called
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834. Late6 we’ll come to p6ocedures that perform actual operations like addition, square 6oot, and so on;
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838. hProtest division by zero 838
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843. hOther local variables for
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848. Here’s a routine that puts the current expression back to34(bac)e read again.
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895.
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902. hTrace the current unary operation 902 i �
begin begin diagnostic ; print nl ("{"); print op(c); print char ("(");
print exp(null
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906. de�ne three sixty units � 23592960 f that’s 360 � unity g
de�ne boolean reset (#) �

if # then cur exp  true code else cur exp  false code
h
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918. de�ne type
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924. hTrace the current binary operation 924 i �
begin begin diagnostic ; print nl ("{("); print exp(p; 0); f show the operand, but not verbosely g
print char (")"); print op(c); print
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930. The �rst argument to add
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932. We prefer dependent lists to proto dependent ones, because it is nice to retain the extra accuracy of
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936. Let’s turn now to the six basic relations of comparison.
hAdditional cases of binary operators
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950. hSqueal about division by zero 950 i �
begin exp err ("Division by zero");
help2 ("You�re trying to divide the quantity shown above the error")
("message by zero. I�m going to divide it by one instead."); put get error ;
end

This code is used in section 948.

9501 h



x955 METAFONT





x963 METAFONT PART 42: DOING THE OPERATIONS 367

963. The next simplest transformation procedure applies to edges. It is simple primarily because
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x
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984. hDeclare binary action procedures 923 i +�
procedure set
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1000. hAssign the current expression to the variable lhs 1000 i �
begin p �nd variable (lhs );
if p 6= null then

begin q  stash
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x
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1018. hPut each of METAFONT’s primitives into the hash table 192 im253 0 Td+92

1918. h
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1020. Commands. Let’s turn now to statements that are classi�ed as \commands" because of their
imperative nature. We’ll begin with simple ones, so that it will be clear how to hook command processing
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1025. hCases of print cmd
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1035. The following procedure is careful not to unde�ne the left-hand symbol too soon, lest commands
like ‘let x=x’ have a surprising e�ect.
hDeclare action procedures for use by do statement 995 i +�
procedure do let ;

var l: pointer ; fhash location of the left-hand symbol�let
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1053. hCases of print
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1082. hDeclare action procedures for use by do statement 995 i +
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1089. The rest of the TFM �le may be regarded as a sequence of ten data arrays having the informal
speci�cation

header : array [0 : : lh � 1] of stu�
char info : array [bc : :
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1098. h
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1103. hDeclare action procedures for use by do
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1107. hStore a list of ligature/kern steps 1107 i �
begin lk
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1115. hStore a list of font dimensions 1115 i �
repeat if j > max font dimen then
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1128. Bytes 5{8 of the header are set to the design size, unless the user has some crazy reason for specifying
them di�erently.
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1139.
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xxx4 242 k[4] x
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x1162 METAFONT PART 47: SHIPPING CHARACTERS OUT 433

1162. Two of the parameters to gf boc are global.
h
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1165. With those preliminaries out of the way, ship out is not especially di�cult.
hDeclare generic font outp5 0 l 0.procedures1154 i +�
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1182. At the end of the program we must �nish things o� by writing the postamble. The TFM information
should have been computed �rst.

An integer variable k and a scaled variable x will be declared for use by this routine.
hFinish th33(use)-333(b)27(y)-33by this routine.



x1183
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1195. hUndump the dynamic memory 1195 i �
undump(
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1204. Now this is really it: METAFONT starts and ends here.
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1208. The present section goes directly to the log �le instead of using print commands, because there’s
no need for these strings to take up str pool memory when a non-stat version of METAFONT is being used.
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1209. We get to the �nal cleanup routine when end or dump has been scanned.
hLast-minute procedures 1205 i +�
procedure �nal cleanup ;

label exit ;
var c: small number ; f 0 for end, 1 for dump g
begin c cur mod ;
if job name = 0 then open log �le ;
while input ptr > 0 do

if token state then end token list end

lis
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1215. Index. Here is where you can �nd all uses of each identi�er in the program, with underlined
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pythag add :



x1215

x
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b close : 27, 1134, 1182
y coord : 255, 256, 258, 265, 266, 271, 281, 282,
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eqtb : 158, 200, 201, 202, 210, 211,
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rm : 357, 358, 359
ampersand : 186, 868, 869, 874, 886, 887, 891,

893, 894
Improper type : 1055
An expression... : 868
end attr : 175, 229, 239,
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get avail : 163, 165, 235, 236, 250, 335, 350, 362,
375, 376, 605, 662, 694, 697, 698, 704, 728, 734,
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yr packet : 553, 558, 559
tracing macros : 190, 192, 193, 720, 728, 734
print : 54, 59, 60, 62, 66, 68,
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�rst :
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Improper ‘openwindow’ : 1073
Improper font parameter : 1115
Improper kern : 1112
Improper location : 1106
Incomplete string token... : 672
end
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r delim : 697, 703, 720, 725, 726,
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233, 239, 242, 244, 246, 250, 253, 254, 585, 587,
589, 590, 591, 594, 595, 596, 597, 598, 599, 600,
601, 603, 604, 605, 607, 608, 609, 610, 611, 612,
615, 616, 617, 619, 620, 621, 622, 651, 678, 685,
686, 694, 698, 700, 704, 705, 752, 755, 760, 765,
798, 799, 800, 801, 803, 806, 809, 812, 814, 816,
817, 818, 819, 827, 829, 830, 845, 853, 855, 857,
858, 872, 873, 899, 903, 904, 907, 910, 915, 919,
928, 929, 930, 931, 933, 935, 936, 938, 939, 940,
942, 943, 944, 946, 948, 949, 951, 955, 956, 957,
958, 959, 966, 967, 968, 969, 970, 971, 972,
973, 974, 975, 976, 977, 978, 982, 983, 984,
988, 1000, 1001, 1005, 1006, 1007, 1008, 1009,
1010,
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step primitive: 211
iteration : 186, 683, 684, 685, 706, 707, 758
stop
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980, 985, 1010, 1068,
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hAbandon edges command because there’s no variable 1060 i Used in sections 1059, 1070, 1071, and 1074.

h
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hCompute the incoming and outgoing directions 457 i Used in section 454.

hCompute the ligature/kern program o�set and implant the left boundary label 1137 1137 454

hthe Used in section454





490 NAMES OF THE SECTIONS METAFONT x1215

hDisplay a numeric token 220 i Used in section 219.
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hLog the sub�le sizes of the TFM �le 1141 i Used in section 1134.

hMake a special knot node forsp32(encircleNT)]TJ
/F3 7.9701 T42695229 0 Td 1 0 0 rg89641i
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hPack the numeric and fraction parts of a numeric token and return 675675675675
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hRead the �rst line of the new �le
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h
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hSkip down
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