

x METAFONT PART 1: INTRODUCTION 3

1. Introduction.METAFONT

x6 METAFONT PART 1: INTRODUCTION

x11 METAFONT PART 1: INTRODUCTION

x16 METAFONT

10 PART 2: THE CHARACTER SET METAFONT x17

17. The character set. In order to make

x21 METAFONT PART 2: THE CHARACTER SET 11

21. Since we are assuming that our Pascal system is able to read and write the visible characters of

x29 METAFONT PART 3: INPUT AND OUTPUT 15

18 PART 4: STRING HANDLING

20 PART 4: STRING HANDLING METAFONT x44

44. Once a sequence of characters has been appended to str pool , it o�cially becomes a string when the
function make string

x47 METAFONT PART 4: STRING HANDLING 21

47. The initial values of str

x53 METAFONT PART 4: STRING HANDLING

24 PART 5: ON-LINE AND OFF-LINE PRINTING METAFONT x54

54. On-line and o�-line printing. Messages that are sent to a user’s terminal and to the transcript-
log �le are produced by several ‘print ’ procedures. These procedures will direct their output to a variety of
places, based on the setting of the global variable selector , which has the following possible values:
term

26 PART 5: ON-LINE AND OFF-LINE PRINTING METAFONT x59

59. An entire string is output by calling print

x63 METAFONT PART 5: ON-LINE AND OFF-LINE PRINTING 27

63.

x67 METAFONT PART 6: REPORTING ERRORS 29

67. Reporting errors. When something anomalous is detected, METAFONT typically does something
like this:

print err ("Something anomalous has been detected");
help3 ("This is the first line of my offer to)("This is second line. I�m/F51 9.9626 Tf 5.23 0 Td (first)trying to")

("explain best way for you to);
error ;

30 PART 6: REPORTING ERRORS METAFONT x71

71.

34 PART 6: REPORTING ERRORS METAFONT x83

83. We allow deletion of up to 99 tokens at a time.
hDelete c� "0" tokens and

x86 METAFONT PART 6: REPORTING ERRORS

36

40

x108 METAFONT

42 PART 7: ARITHMETIC WITH SCALED NUMBERS METAFONT x111

111. The invariant relations in this case are (i) b(qf + p)=2

44 PART 7: ARITHMETIC WITH SCALED NUMBERS METAFONT x116

116.

x118 METAFONT PART 7: ARITHMETIC WITH SCALED NUMBERS 45

118. h

46 PART 7: ARITHMETIC WITH SCALED NUMBERS

x120 METAFONT

x127 METAFONT PART 8: ALGEBRAIC AND TRANSCENDENTAL FUNCTIONS 49

127.

50 PART 8: ALGEBRAIC AND TRANSCENDENTAL FUNCTIONS METAFONT x132

132. Here is the routine that calculates 28 times the natural logarithm of a scaled quantity; it is an integer
approximation to 224 ln(x=216), when x is a given positive integer.

The method is based on exercise 1.2.2{25 in The Art of Computer Programming : During the main iteration
we have 1 � 2�30x <

1=(1�21�k), and the logarithm of 230x remains to be added to an accumulator register
called y. Three auxiliary bits of accuracy are retained in y during the calculat.43, and sixteen auxiliary bits
to extend y are kept in z

52 PART 8: ALGEBRAIC AND TRANSCENDENTAL FUNCTIONS METAFONT x139

139. Given integers x and y

x141 METAFONT PART 8: ALGEBRAIC AND TRANSCENDENTAL FUNCTIONS 53

141. hReturn an appropriate answer based on

54 PART 8: ALGEBRAIC AND TRANSCENDENTAL FUNCTIONS METAFONT x144

144. Conversely, the n sin

x153 METAFONT PART 9: PACKED DATA 57

153. Packed data.

x

64 PART 10: DYNAMIC MEMORY ALLOCATION METAFONT x173

173. Just before INIMF writes out the memory, it sorts the doubly linked available space list. The list is
probably very short at such times, so a simple insertion sort is used. The smallest a

66

x180 METAFONT PART 11: MEMORY LAYOUT 67

180. Procedure check mem makes sure that the available space lists of

x186 METAFONT PART 12: THE COMMAND CODES 69

186. The command codes. Before we can go much further, we need to de�ne symbolic names for
the internal code numbers that represent the various commands obeyed by METAFONT. These codes are
somewhat arbitrary, but not completely so. For example, some codes have been made adjacent so that
case

70 PART 12: THE COMMAND CODES METAFONT x186

de�ne internal quantity = 40 f internal numeric parameter (e.g., pausing) g
de�ne min su�x token = internal quantity
de�ne tag token = 41 f

x187 METAFONT PART 12: THE COMMAND CODES

74 PART 12: THE COMMAND CODES METAFONT x189

189. Primitive operations that produce values have a secondary identi�cation code in addition to their com-

x190 METAFONT

x193 METAFONT PART 12: THE COMMAND CODES 79

193. Well, we do have to list the names one more time, for use in symbolic printouts.
h Initialize table entries (done by INIMF only) 176 i +�

int name [tracing titles]

80 PART 12: THE COMMAND CODES METAFONT x196

196.

82 PART 13: THE HASH TABLE METAFONT x200

200. The hash table.

x

84 PART 13: THE HASH TABLE

x213 METAFONT PART 13: THE HASH TABLE 87

213.

x216 METAFONT PART 14: TOKEN LISTS 89

90

92

x228 METAFONT PART 15: DATA STRUCTURES FOR VARIABLES 93

228. Data structures for variables. The variables of METAFONT

x229 METAFONT PART 15: DATA STRUCTURES FOR VARIABLES 95

96 PART 15: DATA STRUCTURES FOR VARIABLES METAFONT x233

233. The id

x237 METAFONT PART 15: DATA STRUCTURES FOR VARIABLES 97

237. hPreface the output with a part speci�er; return in the case of a capsule 237 i �
begin case name type (p) of
x

x242 METAFONT PART 15: DATA STRUCTURES FOR VARIABLES 99

242. The �nd �nd

100

x246 METAFONT PART 15: DATA STRUCTURES FOR VARIABLES 101

246.

x250 METAFONT PART 16: SAVING AND RESTORING EQUIVALENTS 103

250. Saving and restoring equivalents. The nested structure provided by begingroup and endgroup
allows eqtb

104

x255 METAFONT

106 PART 17: DATA STRUCTURES FOR PATHS METAFONT x256

x257 METAFONT

108 PART 17: DATA STRUCTURES FOR PATHS

110 PART 18: CHOOSING CONTROL POINTS METAFONT x269

x276 METAFONT PART 18: CHOOSING CONTROL POINTS 113

276.

120

x

122 PART 18: CHOOSING CONTROL POINTS

x303 METAFONT PART 19: GENERATING DISCRETE MOVES 123

303. Generating discrete moves.

124 PART 19: GENERATING DISCRETE MOVES METAFONT x304

304. We will later reduce the problem of digitizing a complex cubic z(t) =

x305 METAFONT PART 19: GENERATING DISCRETE MOVES 125

x309

128 PART 19: GENERATING DISCRETE MOVES METAFONT x311

x314 METAFONT PART 19: GENERATING DISCRETE MOVES 129

314. hMake moves for current subinterval; if bisection is necessary, push the second subinterval onto the
stack, and goto

x

132 PART 20: EDGE STRUCTURES METAFONT x323

323. Edge structures.

136 PART 20: EDGE STRUCTURES METAFONT x330

330. h Insert exactly n min (cur edges)�

x340 METAFONT PAkq(T)-354(20:)-472(EDGE)-354(STR)29(UCTURESNT)]TJ
/F1 9.9626 T143.25528 0 Td139403.(x) Tj
/F1 9.9626 Tf 312592 0 Td Now let’s multiply all theNTx

140

x345 METAFONT PART 20: EDGE STRUCTURES 141

345.

METAFONT

142 PART 20: EDGE STRUCTURES METAFONT

x349 METAFONT PART 20: EDGE STRUCTURES 143

349. The entire sorted list is returned to available memory in this step; a new list is built starting
(temporarily) at temp head

144

x354 METAFONT PART 20: EDGE STRUCTURES 145

354. The last and most di�cult routine for transforming an edge structure|and the most interesting
one!|is xy

x368

150 PART 20: EDGE STRUCTURES METAFONT x370

370. It’s not necessary to add the o�sets to the x coordinates, because an entire edge structure can be
shifted without a�ecting its total weight. Similarly, we don’t need to subtract zero �eld .
hAdd the contribution of node q to the total weight, and set q link (

x373 METAFONT PART 20: EDGE STRUCTURES 151

373. Just after a new edge weight has been put into the info �eld of node r, in row n

152 PART 20: EDGE STRUCTURES METAFONT x374

374. One way to put new edge weights into an edge structure is to use the following routine, which simply
draws a straight line from (x0 ; y0) to (x1 ; y1). More precisely, it introduces weights for the edges of the
discrete path

�
bt[x0; x1] + 1

2 + �c; bt[y0; y1

x380 METAFONT

156

158

x392 METAFONT PART 21: SUBDIVISION INTO OCTANTS 159

392. The general bisection method is quite simple when n = 2�n9(henceNT

x401

164 PART 21: SUBDIVISION INTO OCTANTS METAFONT x403

403. The make spec routine has an interesting side e�ect, namely to set the global variable turning number

x405 METAFONT

166 PART 21: SUBDIVISION INTO OCTANTS METAFONT x407

407.

x415 METAFONT

170

x418 METAFONT

172 PART 21: SUBDIVISION INTO OCTANTS METAFONT x422

422. The swapping here doesn’t simply interchange x an-

174 PART 21: SUBDIVISION INTO OCTANTS METAFONT x425

425. hSubdivide the cubic a second time with respect to x0 � y0 425 i �
begin split

x426

x433 METAFONT PART 21: SUBDIVISION INTO OCTANTS 177

433. Here, then, is the procedure that rounds x

178 PART 21: SUBDIVISION INTO OCTANTS

x437 METAFONT PART 21: SUBDIVISION INTO OCTANTS 179

437. When y has been negated, the octant codes are > negate y . Otherwise these routines are essentially
identical to the routines for x coordinates that we have just seen.
h If node q is a transition point for y coordinates, compute and save its before-and-after coordinates 437

x442 METAFONT PART 21: SUBDIVISION INTO OCTANTS 181

442. In octants whose code number is even, x has been negated; we want to round ambiguous cases

182 PART 21: SUBDIVISION INTO OCTANTS METAFONT x445

445. In node p, the coordinates (b; d

x447 METAFONT

184 PART 21: SUBDIVISION INTO OCTANTS METAFONT x451

451. The new boundary

x

186

188 PART 22: FILLING A CONTOUR

190 PART 22: FILLING A CONTOUR

192 PART 23: POLYGONAL PENS METAFONT x470

470.

x471 METAFONT PART 23: POLYGONAL PENS 193

471.

194 PART 23: POLYGONAL PENS METAFONT x473

473. The print pen

x477 METAFONT

196 PART 23: POLYGONAL PENS METAFONT x479

479.

198 PART 23: POLYGONAL PENS METAFONT x484

484. Conversely, make

x490 METAFONT PART 24: FILLING AN ENVELOPE 201

490. Filling an envelope.

202

204 PART 24: FILLING AN ENVELOPE METAFONT x497

497. Let us �rst solve a special case of the problem: Suppose we know an index k such that either
(i) s(t) � sk�1 for all t and s(0) < sk, 6.s81or (ii)s(t) � sk for all t and s(0) > sk

x499 METAFONT

x517 METAFONT

212 PART 24: FILLING AN ENVELOPE METAFONT x520

214 PART 25: ELLIPTICAL PENS METAFONT x524

524. Elliptical pens. To get the envelope of a cyclic path with respect to an ellipse, METAFONT

calculates the envelope with respect to a polygonal approximation to the ellipse, using an approach due
to John Hobby (Ph.D. thesis, Stanford University, 1985). This has two important advantages over trying to
obtain the \exact" envelope:

x526 METAFONT PART 25: ELLIPTICAL PENS 215

526.

216 PART 25: ELLIPTICAL PENS METAFONT x527

527. The make ellipse subroutine produces a pointer to a cyclic path whose vertices de�ne a polygon
suitable for envelopes. The control points on this path will be ignored; in fact, the �elds in knot nodes

220

x

222 PART 26: DIRECTION AND INTERSECTION TIMES METAFONT x538

x541 METAFONT PART 26: DIRECTION AND INTERSECTION TIMES 223

541. Since we’re interested in the tangent directions, we work with the derivative

1
3
B0(x0; x1; x2; x3; t) = B(x1 � x0; x2 � x1; x3 � x2; t)instead ofB(x0; x1; x2; x3; t) itself. The derived coe�cients are also scaled up in order to achieve better

accuracy.
The given path may turn abruptly at a knot, and it might pass the critical tangent direction at such a

time. Therefore we remember the direction phi in which the previous rotated cubic was traveling. (The
value of phi will be unde�ned on the �rst cubic, i.e., when n = 0.)
h

x547 METAFONT PART 26: DIRECTION AND INTERSECTION TIMES 225

547. The quadratic polynomial B(y
1

; y
2

; y
3

; t) begins �

226 PART 26: DIRECTION AND INTERSECTION TIMES METAFONT x550

550.

x553 METAFONT

228

METAFONT PART 26: DIRECTION AND INTERSECTION TIMES

The given cubics ; w ; w ;w) and ; z ; z

x561 METAFONT

x

234 PART 27: ONLINE GRAPHIC OUTPUT METAFONT x570

570. de�ne start screen �
begin if :screen started then

begin screen OK init

x574 METAFONT PART 27: ONLINE GRAPHIC OUTPUT 235

574.

236 PART 27: ONLINE GRAPHIC OUTPUT METAFONT x577

577. Now here comes METAFONT’s most complicated operation related to window display: Given the
number k of an open window, the pixels of positive weight in cur edges will be shown as black in the
window; all other pixels will be shown as white .
procedure disp edges (k : window number);

label done ; found ;

238 PART 27: ONLINE GRAPHIC OUTPUT METAFONT x583

583. Now m is a screen column < right col [k].
hRecord a possible transition in column m 583 i �

if w � 0 then

240

x589 METAFONT PART 28: DYNAMIC LINEAR EQUATIONS 241

589. Here is a procedure that prints a dependency list in symbolic form. The second parameter should be

242 PART 28: DYNAMIC LINEAR EQUATIONS METAFONT x592

592. One of tbe main operations needed on dependency lists is to add a multiple of one list to tbe otber;
we call tbis p plus fq , wbere p and q point to dependency lists and f is a fraction.

x594 METAFONT PART 28: DYNAMIC LINEAR EQUATIONS 243

594. The p plus fq

244 PART 28: DYNAMIC LINEAR EQUATIONS METAFONT x596

596. hContribute a term from q, multiplied by f 596 i �
begin if tt = dependent then v take

x

246 PART 28: DYNAMIC LINEAR EQUATIONS METAFONT x600

x602 METAFONT PART 28: DYNAMIC LINEAR EQUATIONS 247

602. Here’s a simple procedure that reports an error when a variable has just received a known value that’s

248

x607 METAFONT PART 28: DYNAMIC LINEAR EQUATIONS 249

607.

250 PART 28: DYNAMIC LINEAR EQUATIONS METAFONT x610

252 PART 28: DYNAMIC LINEAR EQUATIONS METAFONT

x618 METAFONT PART 29: DYNAMIC NONLINEAR EQUATIONS 253

618. Dynamic nonlinear equations. Variables of numeric type are maintained by the general scheme
of independent, dependent, and known values that we have just studied; and the components of pair and
transform variables are handled in the same way. But METAFONT also has �ve other types of values:
boolean, string, pen, path, and picture; what about them?

254 PART 29: DYNAMIC NONLINEAR EQUATIONS METAFONT x621

621. Eventually there might be an equation that assigns values to all of the variables in a ring. The
nonlinear

258

x635 METAFONT PART 31: INPUT STACKS AND STATES 259

635.

x647 METAFONT PART 32: MAINTAINING THE INPUT STACKS 263

647. Maintaining the input stacks. The following subroutines change the input status in commonly

264 PART 32: MAINTAINING THE INPUT STACKS METAFONT x651

651. The contents of cur cmd ; cur mod ; cur sym are placed into an equivalent token bb the cur

x

x

268 PART 33: GETTING THE NEXT TOKEN METAFONT x665

665. The runaway procedure displays the �rst part of the text that occurred when METAFONT began its
special scanner status , if that text has been saved.
h

x669 METAFONT PART 33: GETTING THE NEXT TOKEN 269

669. A percent sign appears in bu�er [limit

x674 METAFONT PART 33: GETTING THE NEXT TOKEN 271

674. hGet the fraction part f of a numeric token

x682 METAFONT PART 33: GETTING THE NEXT TOKEN

274 PART 34: SCANNING MACRO DEFINITIONS METAFONT x683

x685 METAFONT

276 PART 34: SCANNING MACRO DEFINITIONS METAFONT x688

688. Four commands are intended to be used only within macro texts: quote, #@, @, and, @

x700 METAFONT PART 34: SCANNING MACRO DEFINITIONS 279

700. hScan the token or variable to be de�ned; set

x706 METAFONT PART 35: EXPANDING THE NEXT TOKEN 281

706. Expanding the next token. Only a few command codes < min

282 PART 35: EXPANDING THE NEXT TOKEN METAFONT x708

x714

284

x726 METAFONT PART 35: EXPANDING THE NEXT TOKEN 287

726. At this point, the reader will �nd it advisable to review the explanation of token list format that was
presented earlier, paying special attention to the conventions that apply only at the beginning of a macro’s
token list.

On the other hand, the reader will have to take the expression-parsing aspects of the following program
on faith; we will explain cur type and cur exp later. (Several things in this program depend on each other,
and it’s necessary to jump into the circle somewhere.)
hScan the delimited argument represented by info(r) 726 i �

x726

288

x731

290

x737 METAFONT

292

x742METAFONTPART 36: CONDITIONAL PROCESSING293742.

294 PART 36: CONDITIONAL PROCESSING

x

296 PART 37: ITERATIONS METAFONT x752

752. Iterations.

298 PART 37: ITERATIONS METAFONT x760

760. The loop text is inserted into

x

300 PART 37: ITERATIONS METAFONT

x766 METAFONT PART 38: FILE NAMES 301

766. File names. It’s time now to fret about �le names. Besides the fact that di�erent operating systems

302

x774 METAFONT PART 38: FILE NAMES 303

774.

x780 METAFONT PART 38: FILE NAMES 305

780. Operating systems often make it possible to determine the exact name (and possible version number)

306 PART 38: FILE NAMES METAFONT x783

783. Initially job name

x788 METAFONT

308 PART 38: FILE NAMES METAFONT x791

791. Here’s an example of how these �le-name-parsing routines work in practice. We shall use the macro
set output �le name when it is time to crank up the output �le.

de�ne

x794

310 PART 39: INTRODUCTION TO THE PARSING ROUTINES

x800 METAFONT PART 39: INTRODUCTION TO THE PARSING ROUTINES 313

314

x810 METAFONT PART 39: INTRODUCTION TO THE PARSING ROUTINES 317

810. hRecycle a big node 810

x815 METAFONT PART 39: INTRODUCTION TO THE PARSING ROUTINES 319

815. h

x821 METAFONT PART 39: INTRODUCTION TO THE PARSING ROUTINES 321

821. A global variable called

x825 METAFONT

324

x834 METAFONT PART 40: PARSING PRIMARY EXPRESSIONS 325

834. Late6 we’ll come to p6ocedures that perform actual operations like addition, square 6oot, and so on;

326 PART 40: PARSING PRIMARY EXPRESSIONS METAFONT x838

838. hProtest division by zero 838

x843 METAFONT PART 40: PARSING PRIMARY EXPRESSIONS 327

843. hOther local variables for

328 PART 40: PARSING PRIMARY EXPRESSIONS METAFONT x848

848. Here’s a routine that puts the current expression back to34(bac)e read again.

330

x861 METAFONT

336

x

338 PART 41: PARSING SECONDARY AND HIGHER EXPRESSIONS METAFONT x866

x872 METAFONT

340

x877 METAFONT PART 41: PAFONT

344

x893 METAFONT

348 PART 42: DOING THE OPERATIONS METAFONT x895

895.

350 PART 42: DOING THE OPERATIONS METAFONT x902

902. hTrace the current unary operation 902 i �
begin begin diagnostic ; print nl ("{"); print op(c); print char ("(");
print exp(null

x906 METAFONT PART 42: DOING THE OPERATIONS 351

906. de�ne three sixty units � 23592960 f that’s 360 � unity g
de�ne boolean reset (#) �

if # then cur exp true code else cur exp false code
h

x

354 PART 42: DOING THE OPERATIONS METAFONT x918

918. de�ne type

356 PART 42: DOING THE OPERATIONS METAFONT x924

924. hTrace the current binary operation 924 i �
begin begin diagnostic ; print nl ("{("); print exp(p; 0); f show the operand, but not verbosely g
print char (")"); print op(c); print

x928 METAFONT PART 42: DOING THE OPERATIONS 357

358 PART 42: DOING THE OPERATIONS METAFONT x930

930. The �rst argument to add

x932 METAFONT PART 42: DOING THE OPERATIONS 359

932. We prefer dependent lists to proto dependent ones, because it is nice to retain the extra accuracy of

360 PART 42: DOING THE OPERATIONS METAFONT x936

936. Let’s turn now to the six basic relations of comparison.
hAdditional cases of binary operators

x

362 PART 42: DOING THE OPERATIONS

x946 METAFONT

364 PART 42: DOING THE OPERATIONS METAFONT x950

950. hSqueal about division by zero 950 i �
begin exp err ("Division by zero");
help2 ("You�re trying to divide the quantity shown above the error")
("message by zero. I�m going to divide it by one instead."); put get error ;
end

This code is used in section 948.

9501 h

x955 METAFONT

x963 METAFONT PART 42: DOING THE OPERATIONS 367

963. The next simplest transformation procedure applies to edges. It is simple primarily because

368

x968 METAFONT

x975 METAFONT PART 42:TTHE(T)-35OPERA(P)8TIONSNT

372

x

374 PART 42: DOING THE OPERATIONS METAFONT x984

984. hDeclare binary action procedures 923 i +�
procedure set

x988 METAFONT

376 PART 43: STATEMENTS AND COMMANDS METAFONT x989

x991 METAFONT

380 PART 43: STATEMENTS AND COMMANDS METAFONT x1000

1000. hAssign the current expression to the variable lhs 1000 i �
begin p �nd variable (lhs);
if p 6= null then

begin q stash

382 PART 43: STATEMENTS AND COMMANDS METAFONT x1006

x

384

x1015

386 PART 43: STATEMENTS AND COMMANDS METAFONT x1018

1018. hPut each of METAFONT’s primitives into the hash table 192 im253 0 Td+92

1918. h

x1020 METAFONT PART 44: COMMANDS 387

1020. Commands. Let’s turn now to statements that are classi�ed as \commands" because of their
imperative nature. We’ll begin with simple ones, so that it will be clear how to hook command processing

388 PART 44: COMMANDS METAFONT x1025

1025. hCases of print cmd

390 PART 44: COMMANDS METAFONT x1035

1035. The following procedure is careful not to unde�ne the left-hand symbol too soon, lest commands
like ‘let x=x’ have a surprising e�ect.
hDeclare action procedures for use by do statement 995 i +�
procedure do let ;

var l: pointer ; fhash location of the left-hand symbol�let

392

394

x1053 METAFONT PART 44: COMMANDS 395

1053. hCases of print

396 PART 44: COMMANDS

396

x1061 METAFONT

398 PART 44: COMMANDS

x1082 METAFONT PART 44: COMMANDS 403

1082. hDeclare action procedures for use by do statement 995 i +

x1089 METAFONT PART 45: FONT METRIC DATA 405

1089. The rest of the TFM �le may be regarded as a sequence of ten data arrays having the informal
speci�cation

header : array [0 : : lh � 1] of stu�
char info : array [bc : :

406

x1093 METAFONT

408 PART 45: FONT METRIC DATA

x1096 METAFONT PART 45: FONT METRIC DATA 409

410 PART 45: FONT METRIC DATA METAFONT x1098

1098. h

x1103 METAFONT PART 45: FONT METRIC DATA 411

1103. hDeclare action procedures for use by do

x1107 METAFONT PART 45: FONT METRIC DATA 413

1107. hStore a list of ligature/kern steps 1107 i �
begin lk

414 PART 45: FONT METRIC DATA METAFONT x1110

x

416 PART 45: FONT METRIC DATA METAFONT x1115

1115. hStore a list of font dimensions 1115 i �
repeat if j > max font dimen then

418 PART 45: FONT METRIC DATA METAFONT x

420 PART 45: FONT METRIC DATA METAFONT x1128

1128. Bytes 5{8 of the header are set to the design size, unless the user has some crazy reason for specifying
them di�erently.

x1131

422

x1137

424 PART 45: FONT METRIC DATA METAFONT x1139

1139.

x1142 METAFONT

426

x1144 METAFONT PART 46: GENERIC FONT FILE FORMAT 427

xxx4 242 k[4] x

x1148 METAFONT

430

x1154

x1162 METAFONT PART 47: SHIPPING CHARACTERS OUT 433

1162. Two of the parameters to gf boc are global.
h

434 PART 47: SHIPPING CHARACTERS OUT METAFONT x1165

1165. With those preliminaries out of the way, ship out is not especially di�cult.
hDeclare generic font outp5 0 l 0.procedures1154 i +�

438 PART 47: SHIPPING CHARACTERS OUT METAFONT x1182

1182. At the end of the program we must �nish things o� by writing the postamble. The TFM information
should have been computed �rst.

An integer variable k and a scaled variable x will be declared for use by this routine.
hFinish th33(use)-333(b)27(y)-33by this routine.

x1183

440 PART 48: DUMPING AND UNDUMPING THE TABLES METAFONT x1187

442 PART 48: DUMPING AND UNDUMPING THE TABLES METAFONT

x1195 METAFONT PART 48: DUMPING AND UNDUMPING THE TABLES 443

1195. hUndump the dynamic memory 1195 i �
undump(

x1202 METAFONT

446 PART 49: THE MAIN PROGRAM METAFONT x1204

1204. Now this is really it: METAFONT starts and ends here.

448 PART 49: THE MAIN PROGRAM METAFONT x1208

1208. The present section goes directly to the log �le instead of using print commands, because there’s
no need for these strings to take up str pool memory when a non-stat version of METAFONT is being used.

x1209 METAFONT PART 49: THE MAIN PROGRAM 449

1209. We get to the �nal cleanup routine when end or dump has been scanned.
hLast-minute procedures 1205 i +�
procedure �nal cleanup ;

label exit ;
var c: small number ; f 0 for end, 1 for dump g
begin c cur mod ;
if job name = 0 then open log �le ;
while input ptr > 0 do

if token state then end token list end

lis

450

x1212 METAFONT

452

x1215 METAFONT PART 52: INDEX 453

1215. Index. Here is where you can �nd all uses of each identi�er in the program, with underlined

454 PART 52: INDEX METAFONT x1215

pythag add :

x1215

x

456 PART 52: INDEX

x1215 METAFONT PART 52: INDEX 459

b close : 27, 1134, 1182
y coord : 255, 256, 258, 265, 266, 271, 281, 282,

460 PART 52: INDEX METAFONT x

x1215 METAFONT PART 52: INDEX 461

eqtb : 158, 200, 201, 202, 210, 211,

x1215 METAFONT PART 52: INDEX

464 PART 52: INDEX METAFONT x1215

rm : 357, 358, 359
ampersand : 186, 868, 869, 874, 886, 887, 891,

893, 894
Improper type : 1055
An expression... : 868
end attr : 175, 229, 239,

x1215 METAFONT PART 52: INDEX 465

get avail : 163, 165, 235, 236, 250, 335, 350, 362,
375, 376, 605, 662, 694, 697, 698, 704, 728, 734,

466 PART 52: INDEX METAFONT x1215

yr packet : 553, 558, 559
tracing macros : 190, 192, 193, 720, 728, 734
print : 54, 59, 60, 62, 66, 68,

x1215 METAFONT PART 52: INDEX 467

�rst :

468 PART 52: INDEX METAFONT x1215

Improper ‘openwindow’ : 1073
Improper font parameter : 1115
Improper kern : 1112
Improper location : 1106
Incomplete string token... : 672
end

x1215 METAFONT PART 52: INDEX 469

r delim : 697, 703, 720, 725, 726,

470 PART 52: INDEX METAFONT x

472 PART 52: INDEX METAFONT xx

x1215 METAFONT PART 52: INDEX 473

474 PART 52: INDEX METAFONT w

476 PART 52: INDEX METAFONT x1215

233, 239, 242, 244, 246, 250, 253, 254, 585, 587,
589, 590, 591, 594, 595, 596, 597, 598, 599, 600,
601, 603, 604, 605, 607, 608, 609, 610, 611, 612,
615, 616, 617, 619, 620, 621, 622, 651, 678, 685,
686, 694, 698, 700, 704, 705, 752, 755, 760, 765,
798, 799, 800, 801, 803, 806, 809, 812, 814, 816,
817, 818, 819, 827, 829, 830, 845, 853, 855, 857,
858, 872, 873, 899, 903, 904, 907, 910, 915, 919,
928, 929, 930, 931, 933, 935, 936, 938, 939, 940,
942, 943, 944, 946, 948, 949, 951, 955, 956, 957,
958, 959, 966, 967, 968, 969, 970, 971, 972,
973, 974, 975, 976, 977, 978, 982, 983, 984,
988, 1000, 1001, 1005, 1006, 1007, 1008, 1009,
1010,

480 PART 52: INDEX METAFONT x1215

step primitive: 211
iteration : 186, 683, 684, 685, 706, 707, 758
stop

x1215

482 PART 52: INDEX METAFONT x

x1215

484 PART 52: INDEX METAFONT x1215

980, 985, 1010, 1068,

x1215

486 NAMES OF THE SECTIONS METAFONT x1215

hAbandon edges command because there’s no variable 1060 i Used in sections 1059, 1070, 1071, and 1074.

h

x1215 METAFONT

488 NAMES OF THE SECTIONS METAFONT x1215

hCompute the incoming and outgoing directions 457 i Used in section 454.

hCompute the ligature/kern program o�set and implant the left boundary label 1137 1137 454

hthe Used in section454

490 NAMES OF THE SECTIONS METAFONT x1215

hDisplay a numeric token 220 i Used in section 219.

x1215 METAFONT NAMES OF THE SECTIONS

492

x1215 METAFONT NAMES OF THE SECTIONS 49.

hLog the sub�le sizes of the TFM �le 1141 i Used in section 1134.

hMake a special knot node forsp32(encircleNT)]TJ
/F3 7.9701 T42695229 0 Td 1 0 0 rg89641i

494 NAMES OF THE SECTIONS METAFONT x1215

hPack the numeric and fraction parts of a numeric token and return 675675675675

x1215 METAFONT NAMES OF THE SECTIONS 495

hRead the �rst line of the new �le

496 NAMES OF THE SECTIONS METAFONT x1215

h

x1215 METAFONT NAMES OF THE SECTIONS 497

hSkip down

	1. Introduction
	17. The character set
	24. Input and output
	37. String handling
	54. On-line and off-line printing
	67. Reporting errors
	95. Arithmetic with scaled numbers
	120. Algebraic and transcendental functions
	153. Packed data
	158. Dynamic memory allocation
	175. Memory layout
	186. The command codes
	200. The hash table
	214. Token lists
	228. Data structures for variables
	250. Saving and restoring equivalents
	255. Data structures for paths
	269. Choosing control points
	303. Generating discrete moves
	323. Edge structures
	386. Subdivision into octants
	460. Filling a contour
	469. Polygonal pens
	490. Filling an envelope
	524. Elliptical pens
	538. Direction and intersection times
	564. Online graphic output
	585. Dynamic linear equations
	618. Dynamic nonlinear equations
	624. Introduction to the syntactic routines
	627. Input stacks and states
	647. Maintaining the input stacks
	658. Getting the next token
	683. Scanning macro definitions
	706. Expanding the next token
	738. Conditional processing
	752. Iterations
	766. File names
	796. Introduction to the parsing routines
	823. Parsing primary expressions
	862. Parsing secondary and higher expressions
	893. Doing the operations
	989. Statements and commands
	1020. Commands
	1087. Font metric data
	1142. Generic font file format
	1149. Shipping characters out
	1183. Dumping and undumping the tables
	1202. The main program
	1212. Debugging
	1214. System-dependent changes
	1215. Index
	Names of the sections
	[tex/tex]
	[tex/tripman]
	[tex/glue]
	[texware/pooltype]
	[texware/tftopl]
	[texware/pltotf]
	[texware/dvitype]
	[mf/mf]
	[mf/trapman]
	[mfware/gftype]
	[mfware/gftopk]
	[mfware/gftodvi]
	[mfware/mft]
	[etc/vftovp]
	[etc/vptovf]
	[web/weave]
	[web/tangle]
	[web/webman]

