% tkz-tools-intersections.tex % Copyright 2020 by Alain Matthes % This file may be distributed and/or modified % 1. under the LaTeX Project Public License and/or % 2. under the GNU Public License. \def\fileversion{3.02c} \def\filedate{2020/01/24} \typeout{2020/01/24 3.02c tkz-tools-intersections.tex} \makeatletter %<--------------------------------------------------------------------------–> % intersection de deux lignes %<--------------------------------------------------------------------------–> \def\tkzInterLL(#1,#2)(#3,#4){% méthode avec xfp \tkz@InterLL(#1,#2)(#3,#4){tkzPointResult} } \def\tkz@InterLL(#1,#2)(#3,#4)#5{% %\path (intersection of #1--#2 and #3--#4) coordinate(#5); % méthode with tikz \pgfextractx{\pgf@x}{\pgfpointanchor{#1}{center}}% \pgfextracty{\pgf@y}{\pgfpointanchor{#1}{center}}% \tkz@ax\pgf@x% \tkz@ay\pgf@y% \pgfextractx{\pgf@x}{\pgfpointanchor{#2}{center}}% \pgfextracty{\pgf@y}{\pgfpointanchor{#2}{center}} \tkz@bx\pgf@x% \tkz@by\pgf@y% \pgfextractx{\pgf@x}{\pgfpointanchor{#3}{center}}% \pgfextracty{\pgf@y}{\pgfpointanchor{#3}{center}}% \tkz@cx\pgf@x% \tkz@cy\pgf@y% \pgfextractx{\pgf@x}{\pgfpointanchor{#4}{center}}% \pgfextracty{\pgf@y}{\pgfpointanchor{#4}{center}}% \tkz@dx\pgf@x% \tkz@dy\pgf@y% \edef\tkz@deltax{\fpeval{(\tkz@ax-\tkz@bx)/(28.45274)}} \edef\tkz@deltaxx{\fpeval{(\tkz@cx-\tkz@dx)/(28.45274)}} \edef\tkz@deltay{\fpeval{(\tkz@ay-\tkz@by)/(28.45274)}} \edef\tkz@deltayy{\fpeval{(\tkz@cy-\tkz@dy)/(28.45274)}} \edef\tkz@deltaxy{\fpeval{((\tkz@ax*\tkz@by)-(\tkz@ay*\tkz@bx))/(28.45274*28.45274)}} \edef\tkz@deltaxxyy{\fpeval{((\tkz@cx*\tkz@dy)-(\tkz@cy*\tkz@dx))/(28.45274*28.45274)}} \edef\tkz@div{\fpeval{(\tkz@deltax*\tkz@deltayy)-(\tkz@deltay*\tkz@deltaxx)}} \edef\tkz@numx{\fpeval{(\tkz@deltaxy*\tkz@deltaxx)-(\tkz@deltax*\tkz@deltaxxyy)}} \edef\tkz@numy{\fpeval{(\tkz@deltaxy*\tkz@deltayy)-(\tkz@deltay*\tkz@deltaxxyy)}} \edef\tkz@xs{\fpeval{round(\tkz@numx/\tkz@div,5)}} \edef\tkz@ys{\fpeval{round(\tkz@numy/\tkz@div,5)}} \path[coordinate](\tkz@xs,\tkz@ys) coordinate (#5); } % méthode with coordinates \def\tkzInterLLxy(#1,#2,#3,#4)(#5,#6,#7,#8){% %\path (intersection of #1--#2 and #3--#4) coordinate(#5);% \tkz@ax#1% \tkz@ay#2% \tkz@bx#3% \tkz@by#4% \tkz@cx#5% \tkz@cy#6% \tkz@dx#7% \tkz@dy#8% \edef\tkz@deltax{\fpeval{(\tkz@ax-\tkz@bx)/(28.45274)}} \edef\tkz@deltaxx{\fpeval{(\tkz@cx-\tkz@dx)/(28.45274)}} \edef\tkz@deltay{\fpeval{(\tkz@ay-\tkz@by)/(28.45274)}} \edef\tkz@deltayy{\fpeval{(\tkz@cy-\tkz@dy)/(28.45274)}} \edef\tkz@deltaxy{\fpeval{((\tkz@ax*\tkz@by)-(\tkz@ay*\tkz@bx))/(28.45274*28.45274)}} \edef\tkz@deltaxxyy{\fpeval{((\tkz@cx*\tkz@dy)-(\tkz@cy*\tkz@dx))/(28.45274*28.45274)}} \edef\tkz@div{\fpeval{(\tkz@deltax*\tkz@deltayy)-(\tkz@deltay*\tkz@deltaxx)}} \edef\tkz@numx{\fpeval{(\tkz@deltaxy*\tkz@deltaxx)-(\tkz@deltax*\tkz@deltaxxyy)}} \edef\tkz@numy{\fpeval{(\tkz@deltaxy*\tkz@deltayy)-(\tkz@deltay*\tkz@deltaxxyy)}} \edef\tkz@xs{\fpeval{round(\tkz@numx/\tkz@div,5)}} \edef\tkz@ys{\fpeval{round(\tkz@numy/\tkz@div,5)}} \path[coordinate](\tkz@xs,\tkz@ys) coordinate (tkzPointResult); } %<--------------------------------------------------------------------------–> % intersection de Ligne Cercle rayon connu %<--------------------------------------------------------------------------–> % /* % Calculate the intersection of a ray and a sphere % The line segment is defined from p1 to p2 % The sphere is of radius r and centered at sc % There are potentially two points of intersection given by % p = p1 + mu1 (p2 - p1) % p = p1 + mu2 (p2 - p1) % Return FALSE if the ray doesn't intersect the sphere. % */ % int RaySphere(XYZ p1,XYZ p2,XYZ sc,double r,double *mu1,double *mu2) % { % double a,b,c; % double bb4ac; % XYZ dp; % % dp.x = p2.x - p1.x; % dp.y = p2.y - p1.y; % dp.z = p2.z - p1.z; % a = dp.x * dp.x + dp.y * dp.y + dp.z * dp.z; % b = 2 * (dp.x * (p1.x - sc.x) + dp.y * (p1.y - sc.y) + dp.z * (p1.z - sc.z)); % c = sc.x * sc.x + sc.y * sc.y + sc.z * sc.z; % c += p1.x * p1.x + p1.y * p1.y + p1.z * p1.z; % c -= 2 * (sc.x * p1.x + sc.y * p1.y + sc.z * p1.z); % c -= r * r; % bb4ac = b * b - 4 * a * c; % if (ABS(a) < EPS || bb4ac < 0) { % *mu1 = 0; % *mu2 = 0; % return(FALSE); % } % % *mu1 = (-b + sqrt(bb4ac)) / (2 * a); % *mu2 = (-b - sqrt(bb4ac)) / (2 * a); % % return(TRUE); % } %<---------- test ------------------------------------------------------–> \def\tkzTestInterLC(#1,#2)(#3,#4){% \tkz@Projection(#1,#2)(#3){tkz@pth}% distance centre à la ligne \tkz@@CalcLength(#3,tkz@pth){tkz@mathLen}% \tkzCalcLength(#3,#4) \ifdim\tkz@mathLen pt>\tkzLengthResult pt\relax% \def\tkzflagLC{-1} \else \def\tkzflagLC{1} \fi } %<--------------------------------------------------------------------------–> \def\tkz@numlc{0} \pgfkeys{/linecircle/.cd, node/.code = \def\tkz@numlc{0}, R/.code = \def\tkz@numlc{1}, with nodes/.code = \def\tkz@numlc{2}, node } %<--------------------------------------------------------------------------–> \def\tkzInterLC{\pgfutil@ifnextchar[{\tkz@InterLC}{\tkz@InterLC[]}} \def\tkz@InterLC[#1](#2,#3)(#4,#5){% \begingroup \pgfqkeys{/linecircle}{#1} \pgfinterruptboundingbox \ifcase\tkz@numlc% % first case 0 \tkzCalcLength(#4,#5) \tkzInterLCR(#2,#3)(#4,\tkzLengthResult pt){tkzFirstPointResult}% {tkzSecondPointResult} \or% 1 \tkzInterLCR(#2,#3)(#4,#5){tkzFirstPointResult} {tkzSecondPointResult}% \or% 2 \tkzInterLCWithNodes(#2,#3)(#4,#5){tkzFirstPointResult}% {tkzSecondPointResult}% \fi \endpgfinterruptboundingbox \endgroup } %<--------------------------------------------------------------------------–> %<--------------------------------------------------------------------------–> \def\tkzInterLCR(#1,#2)(#3,#4)#5#6{% \begingroup \tkz@radi=#4% \tkz@@extractxy{#3} \tkz@bx =\pgf@x\relax% \tkz@by =\pgf@y\relax% \tkz@Projection(#1,#2)(#3){tkz@pth} \tkz@@CalcLength(#3,tkz@pth){tkz@mathLen} \ifdim\tkz@mathLen pt<0.05pt\relax% \pgfpointdiff{\pgfpointanchor{#1}{center}}% {\pgfpointanchor{#2}{center}}% \tkz@ax=\pgf@x% \tkz@ay=\pgf@y% \pgfpointborderellipse{\pgfpoint{\tkz@ax}{\tkz@ay}}% {\pgfpoint{\tkz@radi}{\tkz@radi}} \tkz@ax=\pgf@x\relax% \tkz@ay=\pgf@y\relax% \advance\tkz@bx by\tkz@ax\relax% \advance\tkz@by by\tkz@ay\relax% \pgfcoordinate{#6}{\pgfqpoint{\tkz@bx}{\tkz@by}} \tkzCSym(#3)(#6){#5} \else \edef\pgfmathresult{\fpeval{\tkz@mathLen/\tkz@radi}} % \edef\tkz@angle{\fpeval{acosd(\pgfmathresult)}} \pgfmathacos@{\pgfmathresult}% \let\tkz@angle\pgfmathresult% \pgfpointdiff{\pgfpointanchor{#3}{center}}% {\pgfpointanchor{tkz@pth}{center}}% \tkz@ax=\pgf@x% \tkz@ay=\pgf@y% \pgfpointborderellipse{\pgfpoint{\tkz@ax}{\tkz@ay}}% {\pgfpoint{\tkz@radi}{\tkz@radi}} \tkz@ax =\pgf@x\relax% \tkz@ay =\pgf@y\relax% \advance\tkz@bx by\tkz@ax\relax% \advance\tkz@by by\tkz@ay\relax% \tkz@@extractxy{#3} \tkz@ax =\pgf@x\relax% \tkz@ay =\pgf@y\relax% \tkz@@extractxy{tkz@pth} \pgfmathrotatepointaround{\pgfpoint{\tkz@bx}{\tkz@by}}% {\pgfpoint{\tkz@ax}{\tkz@ay}}% {\tkz@angle} \pgfcoordinate{#5}{\pgfqpoint{\pgf@x}{\pgf@y}} \pgfmathrotatepointaround{\pgfpoint{\tkz@bx}{\tkz@by}}% {\pgfpoint{\tkz@ax}{\tkz@ay}}% {-\tkz@angle} \pgfcoordinate{#6}{\pgfqpoint{\pgf@x}{\pgf@y}} \fi \endgroup } %<--------------------------------------------------------------------------–> % intersection de Ligne Cercle % #4 center #5 point sur le cercle %<--------------------------------------------------------------------------–> % \def\tkzInterLC(#1,#2)(#3,#4)#5#6{% % \begingroup % \tkzCalcLength(#3,#4)\tkzGetLength{tkz@rad} % \tkzInterLCR(#1,#2)(#3,\tkz@rad pt){#5}{#6} % \endgroup % } %<--------------------------------------------------------------------------–> % intersection de Ligne Cercle rayon inconnu %<--------------------------------------------------------------------------–> \def\tkzInterLCWithNodes(#1,#2)(#3,#4,#5)#6#7{% \begingroup \tkzCalcLength(#4,#5)\tkzGetLength{tkz@radius} \tkzInterLCR(#1,#2)(#3,\tkz@radius pt){#6}{#7} \endgroup } %<--------------------------------------------------------------------------–> % Intersection de deux cercles %<--------------------------------------------------------------------------–> \def\tkz@numcc{0} \pgfkeys{ /circlecircle/.cd, node/.code = {\global\def\tkz@numcc{0}}, R/.code = {\global\def\tkz@numcc{1}}, with nodes/.code = {\global\def\tkz@numcc{2}} } %<--------------------------------------------------------------------------–> \def\tkzInterCC{\pgfutil@ifnextchar[{\tkz@InterCC}{\tkz@InterCC[]}} \def\tkz@InterCC[#1](#2,#3)(#4,#5){% \begingroup \pgfkeys{/circlecircle/.cd,node} \pgfqkeys{/circlecircle}{#1} \ifcase\tkz@numcc% % first case 0 \tkz@save@length \tkzCalcLength(#2,#3) \tkzGetLength{tkz@rayA} \tkzCalcLength(#4,#5) \tkzGetLength{tkz@rayB} \tkz@restore@length \tkzInterCCR(#2,\tkz@rayA pt)(#4,\tkz@rayB pt){tkzFirstPointResult}{% tkzSecondPointResult} \or% 1 \tkzInterCCR(#2,#3)(#4,#5){tkzFirstPointResult}{tkzSecondPointResult}% \or%2 \tkzInterCCWithNodes(#2,#3)(#4,#5){tkzFirstPointResult}{tkzSecondPointResult} \fi \endgroup } %<--------------------------------------------------------------------------–> %<--------------------------------------------------------------------------–> % méthode % /* circle_circle_intersection() * % * Determine the points where 2 circles in a common plane intersect. % * % * int circle_circle_intersection( % * // center and radius of 1st circle % * double x0, double y0, double r0, % * // center and radius of 2nd circle % * double x1, double y1, double r1, % * // 1st intersection point % * // 2nd intersection point % * % * This is a public domain work. 3/26/2005 Tim Voght % * % int circle_circle_intersection(double x0, double y0, double r0, % double x1, double y1, double r1, % double *xi, double *yi, % double *xi_prime, double *yi_prime) % { % double a, dx, dy, d, h, rx, ry; % double x2, y2; % % /* dx and dy are the vertical and horizontal distances between % * the circle centers. % */ % dx = x1 - x0; % dy = y1 - y0; % % /* Determine the straight-line distance between the centers. */ % //d = sqrt((dy*dy) + (dx*dx)); % d = hypot(dx,dy); // Suggested by Keith Briggs % % /* Check for solvability. */ % if (d > (r0 + r1)) % { % /* no solution. circles do not intersect. */ % return 0; % } % if (d < fabs(r0 - r1)) % { % /* no solution. one circle is contained in the other */ % return 0; % } % % /* 'point 2' is the point where the line through the circle % * intersection points crosses the line between the circle % * centers. % */ % % /* Determine the distance from point 0 to point 2. */ % a = ((r0*r0) - (r1*r1) + (d*d)) / (2.0 * d) ; % % /* Determine the coordinates of point 2. */ % x2 = x0 + (dx * a/d); % y2 = y0 + (dy * a/d); % % /* Determine the distance from point 2 to either of the % * intersection points. % */ % h = sqrt((r0*r0) - (a*a)); % % /* Now determine the offsets of the intersection points from % * point 2. % */ % rx = -dy * (h/d); % ry = dx * (h/d); % % /* Determine the absolute intersection points. */ % *xi = x2 + rx; % *xi_prime = x2 - rx; % *yi = y2 + ry; % *yi_prime = y2 - ry; % % return 1; % } \def\tkzInterCCR(#1,#2)(#3,#4)#5#6{% \begingroup \pgfinterruptboundingbox \tkz@save@length \tkzCalcLength(#1,#3)\tkzGetLength{tkz@dd} \tkz@restore@length \pgfextractx{\pgf@x}{\pgfpointanchor{#1}{center}} \pgfextracty{\pgf@y}{\pgfpointanchor{#1}{center}} \tkz@ax\pgf@x % \tkz@ay\pgf@y % \pgfextractx{\pgf@x}{\pgfpointanchor{#3}{center}} \pgfextracty{\pgf@y}{\pgfpointanchor{#3}{center}} \tkz@bx\pgf@x % \tkz@by\pgf@y % \tkz@cx#2 % \tkz@cy#4 % \edef\tkz@aa{\fpeval{((\tkz@cx+\tkz@cy)/(2*\tkz@dd))*(\tkz@cx-\tkz@cy)+\tkz@dd/2}} \edef\tkz@xx{\fpeval{\tkz@ax+\tkz@aa/\tkz@dd*(\tkz@bx - \tkz@ax)}} \edef\tkz@yy{\fpeval{\tkz@ay+\tkz@aa/\tkz@dd*(\tkz@by - \tkz@ay)}} \path[coordinate](\tkz@xx pt,\tkz@yy pt) coordinate (tkzRadialCenter); \edef\tkz@hh{\fpeval{sqrt((\tkz@cx+\tkz@aa)*(\tkz@cx-\tkz@aa))}} \edef\tkz@rx{\fpeval{\tkz@hh / \tkz@dd * (\tkz@ay - \tkz@by)}} \edef\tkz@ry{\fpeval{\tkz@hh / \tkz@dd * (\tkz@bx - \tkz@ax)}} \edef\tkz@xs{\fpeval{\tkz@xx + \tkz@rx}} \edef\tkz@ys{\fpeval{\tkz@yy + \tkz@ry}} \path[coordinate](\tkz@xs pt,\tkz@ys pt) coordinate (#5); \edef\tkz@xss{\fpeval{\tkz@xx - \tkz@rx}} \edef\tkz@yss{\fpeval{\tkz@yy - \tkz@ry}} \path[coordinate](\tkz@xss pt,\tkz@yss pt) coordinate (#6); \endpgfinterruptboundingbox \endgroup } %<--------------------------------------------------------------------------–> % #2 node #3 node #4 node #5 node % \def\tkzInterCC(#1,#2)(#3,#4)#5#6{% % \begingroup % \tkzCalcLength(#1,#2)\tkzGetLength{tkz@rayA} % \tkzCalcLength(#3,#4)\tkzGetLength{tkz@rayB} % \tkzInterCCR(#1,\tkz@rayA pt)(#3,\tkz@rayB pt){#5}{#6} % \endgroup % } %<--------------------------------------------------------------------------–> % Intersection de deux cercles Avec deux points %<--------------------------------------------------------------------------–> % la première variante devrait être #2 #3 avec #4 #5 \def\tkzInterCCWithNodes(#1,#2,#3)(#4,#5,#6)#7#8{% \begingroup \tkzCalcLength(#2,#3)\tkzGetLength{tkz@rayA} \tkzCalcLength(#5,#6)\tkzGetLength{tkz@rayB} \tkzInterCCR(#1,\tkz@rayA pt)(#4,\tkz@rayB pt){#7}{#8} \endgroup } \makeatother \endinput