% tkz-tools-lua-math.tex % Copyright 2024 Alain Matthes % This work may be distributed and/or modified under the % conditions of the LaTeX Project Public License, either version 1.3 % of this license or (at your option) any later version. % The latest version of this license is in % http://www.latex-project.org/lppl.txt % and version 1.3 or later is part of all distributions of LaTeX % version 2005/12/01 or later. % This work has the LPPL maintenance status “maintained”. % The Current Maintainer of this work is Alain Matthes. \def\fileversion{5.06c} \def\filedate{2024/02/04} \typeout{2024/02/04 5.06c tkz-tools-lua-math.tex} \makeatletter %<--------------------------------------------------------------------------> %<--------------------------------------------------------------------------> % Lengths %<--------------------------------------------------------------------------> %<--------------------------------------------------------------------------> \begin{luacode*} function normalize(angleA,angleB) if angleA > 0 then if angleA > angleB then angleA = angleA - 360 end else if angleA > angleB then angleB = angleB + 360 end end return angleA, angleB end function math.angle(x1, y1, x2, y2) local a = math.deg(math.atan(y2 - y1, x2 - x1)) if a < 0 then return a + 360 else return a end end function tkzop(...) inf = math.huge return ... end function tkzround(nb, ND) local p = 10^(ND or 0) return math.floor(nb * p + 0.5) / p end \end{luacode*} \def\tkz@Dec#1{% \directlua{tex.print(string.format('\@percentchar.6f',#1))} } \def\tkz@Op#1{\directlua{tex.sprint(tostring(tkzop(#1)))}} \def\tkz@Log#1{\directlua{tex.sprint(math.log(#1))}} \def\tkz@Exp#1{\directlua{tex.sprint(math.exp(#1))}} \def\tkz@Sqrt#1{\directlua{tex.sprint(math.sqrt(#1))}} \def\tkz@Abs#1{\directlua{tex.sprint(math.abs(#1))}} \def\tkz@Pi{\directlua{tex.sprint(math.pi)}} \def\tkz@Cos#1{\directlua{tex.sprint(math.cos(#1))}} \def\tkz@Sin#1{\directlua{tex.sprint(tostring(math.sin(#1)))}} \def\tkz@Tan#1{\directlua{tex.sprint(math.tan(#1))}} \def\tkz@Rad#1{\directlua{tex.sprint(math.rad(#1))}} \def\tkz@Acos#1{\directlua{tex.sprint(math.acos(#1))}} \def\tkz@Asin#1{\directlua{tex.sprint(math.asin(#1))}} \def\tkz@Atan#1{\directlua{tex.sprint(math.atan(#1))}} \def\tkz@Round#1#2{\directlua{tex.sprint(tostring(tkzround(#1,#2)))}} \def\tkz@Angle#1#2#3#4{\directlua{tex.sprint(math.angle(#1,#2,#3,#4))}} \def\tkz@Ceil#1{\directlua{tex.sprint(math.ceil(#1))}} \def\tkz@Floor#1{\directlua{tex.sprint(math.floor(#1))}} \def\tkz@Huge{\directlua{tex.sprint(math.huge)}} \def\tkz@Max#1{\directlua{tex.sprint(math.max(#1))}} \def\tkz@Min#1{\directlua{tex.sprint(math.min(#1))}} \def\tkz@Random#1{\directlua{tex.sprint(math.random(#1))}} \def\tkz@veclen#1#2{% \directlua{% tex.print(string.format('\@percentchar.6f',math.sqrt((#1)^2+(#2)^2)))% }% } \let\tkzSqrt\tkz@Sqrt \let\tkzPi\tkz@Pi \let\tkzExp\tkz@Exp \let\tkzLog\tkz@Log \let\tkzSin\tkz@Sin \let\tkzCos\tkz@Cos % \tkzpointnormalised normalise un point A-->A' tq ||v(OA')=1|| % example % \tkzpointnormalised{% % \pgfpointdiff{\pgfpointanchor{A}{center}} % {\pgfpointanchor{B}{center}}} % or % \pgf@x=1 cm % \pgf@y=12 cm % \tkzpointnormalised{} %<-------------------------------------------------------------------------- \def\tkzpointnormalised#1{% \pgf@process{#1}% \pgf@xa=\pgf@x% \pgf@ya=\pgf@y% \edef\tkz@temp@xa{\strip@pt\pgf@xa}% \edef\tkz@temp@ya{\strip@pt\pgf@ya}% \edef\tkz@den{\tkz@veclen{\tkz@temp@xa}{\tkz@temp@ya}} \edef\tkz@coordx{\tkz@Op{\tkz@temp@xa/\tkz@den}} \edef\tkz@coordx{\tkz@Dec{\tkz@Round{\tkz@coordx}{5}}} \edef\tkz@coordy{\tkz@Op{\tkz@temp@ya/\tkz@den}} \edef\tkz@coordy{\tkz@Dec{\tkz@Round{\tkz@coordy}{5}}} \pgf@x = \tkz@coordx pt \pgf@y = \tkz@coordy pt } %\def\tkz@Dec#1{\directlua{tex.print(string.format('\@percentchar.12f',#1))}} %<--------------------------------------------------------------------------> % restaure and save length \def\tkz@save@length{\global\let\tkz@temp@length\tkzLengthResult}% \def\tkz@restore@length{\global\let\tkzLengthResult\tkz@temp@length }% %<--------------------------------------------------------------------------> % \tkzCalcLength Distance entre deux points en pt ou en cm avec xfp % \veclen mais avec fp % option cm le résultat est en cm sinon en pt with cm=false %<--------------------------------------------------------------------------> \pgfkeys{tkzcalclen/.cd, cm/.is if = tkzLengthIncm, cm/.default = true, cm = true} \def\tkzCalcLength{\pgfutil@ifnextchar[{\tkz@CalcLength}{\tkz@CalcLength[]}} \def\tkz@CalcLength[#1](#2,#3){% \pgfqkeys{/tkzcalclen}{#1}% \begingroup \tkz@@CalcLength(#2,#3){tkzLengthResult} \iftkzLengthIncm \edef\tkz@xfpMathLen{\tkz@Dec{\tkz@Round{\tkzLengthResult/28.45274}{6}}} \global\let\tkzLengthResult\tkz@xfpMathLen \fi \endgroup }% \def\tkz@@CalcLength(#1,#2)#3{% \pgfpointdiff{\pgfpointanchor{#1}{center}}% {\pgfpointanchor{#2}{center}}% \edef\tkz@xa{\strip@pt\pgf@x}% \edef\tkz@ya{\strip@pt\pgf@y}% \edef\tkz@xfpMathLen{\tkz@veclen{\tkz@xa}{\tkz@ya}} \global\expandafter\edef\csname #3\endcsname{\tkz@xfpMathLen} } \def\tkz@@CalcLengthcm(#1,#2)#3{% \pgfpointdiff{\pgfpointanchor{#1}{center}}% {\pgfpointanchor{#2}{center}}% \edef\tkz@xa{\strip@pt\pgf@x}% \edef\tkz@ya{\strip@pt\pgf@y}% \edef\tkz@xfpMathLen{\tkz@veclen{\tkz@xa}{\tkz@ya}} \edef\tkz@xfpMathLen{\tkz@Dec{\tkz@Round{\tkz@xfpMathLen/28.45274}{6}}} \global\expandafter\edef\csname #3\endcsname{\tkz@xfpMathLen} } \def\tkz@@CalcLengthb(#1,#2)#3{% \pgfpointdiff{\pgfpointanchor{#1}{center}}% {\pgfpointanchor{#2}{center}}% \edef\tkz@xfpMathLen{\fpeval{sqrt((\pgf@x)^2+(\pgf@y)^2)}} \edef\tkz@xfpMathLen{\fpeval{round(\tkz@xfpMathLen,6)}} \global\expandafter\edef\csname #3\endcsname{\tkz@xfpMathLen} } %<--------------------------------------------------------------------------> \def\tkzGetLength#1{% \global\expandafter\edef\csname #1\endcsname{\tkzLengthResult}} %<--------------------------------------------------------------------------> % \tkzpttocm passage de pt   cm div par 28.45274 %<--------------------------------------------------------------------------> \def\tkzpttocm(#1)#2{% \begingroup \edef\tkz@mathresult{\tkz@Round{#1/28.45274}{6}} \global\expandafter\edef\csname #2\endcsname{\tkz@mathresult}% \endgroup }% %<--------------------------------------------------------------------------> % \tkzcmtopt passage de cm   pt mul par 28.45274 %<-------------------------------------------------------------------------- \def\tkzcmtopt(#1)#2{% \begingroup \edef\tkz@mathresult{\tkz@Round{#1*28.45274}{6}} \global\expandafter\edef\csname #2\endcsname{\tkz@mathresult}% \endgroup }% %<---------------------------------------------------------–> \def\tkzGetResult#1{% \global\expandafter\edef\csname #1\endcsname{\tkzMathResult}} %<---------------------------------------------------------–> % Schrodinger's cat idea 03/01/20 \tikzset{veclen/.code={% \pgfmathdeclarefunction*{veclen}{2}{% \begingroup% \pgfmath@x##1pt\relax% \pgfmath@y##2pt\relax% \pgf@xa=\pgf@x% \pgf@ya=\pgf@y% \edef\tkz@temp@xa{\strip@pt\pgf@xa}% \edef\tkz@temp@ya{\strip@pt\pgf@ya}% \edef\tkz@xfpMathLen{\tkz@veclen{\tkz@temp@xa}{\tkz@temp@ya}}% \pgfmath@returnone\tkz@xfpMathLen pt% \endgroup% }}}% %<---------------------------------------------------------–> \def\tkzSwapPoints(#1,#2){ \pgfnodealias{tkzPointTmp}{#2} \pgfnodealias{#2}{#1} \pgfnodealias{#1}{tkzPointTmp}} %<---------------------------------------------------------–> \def\tkzPermute(#1,#2,#3){ \tkzURotateWithNodes(#1,#3,#2)(#3) \tkzGetPoint{tkzpt} \tkzURotateWithNodes(#1,#2,#3)(#2) \tkzGetPoint{#2} \tkzSwapPoints(tkzpt,#3) } %<---------------------------------------------------------–> \def\tkzDotProduct(#1,#2,#3){% \begingroup \pgfextractx{\pgf@x}{\pgfpointanchor{#1}{center}}% \pgfextracty{\pgf@y}{\pgfpointanchor{#1}{center}}% \edef\tkzax{\strip@pt\pgf@x}% \edef\tkzay{\strip@pt\pgf@y}% \pgfextractx{\pgf@x}{\pgfpointanchor{#2}{center}}% \pgfextracty{\pgf@y}{\pgfpointanchor{#2}{center}}% \edef\tkzbx{\strip@pt\pgf@x}% \edef\tkzby{\strip@pt\pgf@y}% \pgfextractx{\pgf@x}{\pgfpointanchor{#3}{center}}% \pgfextracty{\pgf@y}{\pgfpointanchor{#3}{center}}% \edef\tkzcx{\strip@pt\pgf@x}% \edef\tkzcy{\strip@pt\pgf@y}% \edef\tkz@tmp{\tkz@Dec{\tkz@Round{((\tkzbx-(\tkzax))*(\tkzcx-(\tkzax))+(\tkzby-(\tkzay))*(\tkzcy-(\tkzay)))/809.55841}{6}}} \global\let\tkzMathResult\tkz@tmp \endgroup } % #1,#2 and #3 aligned \def\tkzIsLinear(#1,#2,#3){% \begingroup \tkz@@CalcLengthcm(#1,#2){tkz@la} \tkz@@CalcLengthcm(#1,#3){tkz@lb} \tkzDotProduct(#1,#2,#3) \edef\tkzResult{\tkz@Dec{\tkz@Abs{\tkzMathResult}-(\tkz@la)*(\tkz@lb)}} \ifdim \tkzResult pt < 0.01 pt\relax% \global\tkzLineartrue \else \global\tkzLinearfalse \fi \endgroup } %<---------------------------------------------------------–> % syntax : vec(#2,#1) ortho vec(#3,#1) \def\tkzIsOrtho(#1,#2,#3){% \begingroup \tkzDotProduct(#1,#2,#3) \edef\tkzResult{\tkz@Dec{\tkz@Abs{\tkzMathResult}}} \ifdim \tkzResult pt < 1 pt\relax% \global\tkzOrthotrue \else \global\tkzOrthofalse \fi \endgroup } %<---------------------------------------------------------–> % \tkzPowerCircle(M)(O,A) --> OM^2-OA^2 \def\tkzPowerCircle(#1)(#2,#3){% \begingroup \tkz@@CalcLengthcm(#2,#3){tkz@ra} \tkz@@CalcLengthcm(#1,#2){tkz@om} \gdef\tkzMathResult{\tkz@Dec{(\tkz@om)^2-(\tkz@ra)^2}} \endgroup } %<---------------------------------------------------------–> \def\tkzDefRadicalAxis(#1,#2)(#3,#4){% \begingroup \tkz@@CalcLengthcm(#1,#3){tkz@d} \tkz@@CalcLengthcm(#1,#2){tkz@ra} \tkz@@CalcLengthcm(#3,#4){tkz@rb} \edef\tkzMathResult{\tkz@Dec{\tkz@d-(\tkz@ra+\tkz@rb)}} \edef\tkzMathResultb{\tkz@Dec{\tkz@Abs{(\tkz@d-(\tkz@ra+\tkz@rb))}}} \edef\tkzMathResultc{\tkz@Dec{\tkz@Abs{\tkz@d-\tkz@Abs{(\tkz@ra-(\tkz@rb))}}}} \ifdim \tkzMathResultc pt < 0.1 pt\relax% \tkzURotateAngle(#2,90)(#3) \tkzGetPoint{tkzFirstPointResult} \tkzURotateAngle(#2,-90)(#3) \tkzGetPoint{tkzSecondPointResult} \else \ifdim \tkzMathResultb pt < 0.1 pt\relax% \tkzURotateAngle(#2,90)(#3) \tkzGetPoint{tkzFirstPointResult} \tkzURotateAngle(#2,-90)(#3) \tkzGetPoint{tkzSecondPointResult} \else \ifdim \tkzMathResult pt > 1 pt\relax% \tkzURotateAngle(#1,60)(#3) \tkzGetPoint{tkz@aux} \tkzInterCC(#1,#2)(tkz@aux,#1) \tkzGetPoints{tkz@pta}{tkz@ptb} \tkzInterCC(#3,#4)(tkz@aux,#1) \tkzGetPoints{tkz@ptc}{tkz@ptd} \tkzInterLL(tkz@pta,tkz@ptb)(tkz@ptc,tkz@ptd) \tkzGetPoint{tkz@pta} \tkzUProjection(#1,#3)(tkz@pta) \tkzGetPoint{tkz@ptb} \pgfnodealias{tkzSecondPointResult}{tkz@ptb} \pgfnodealias{tkzFirstPointResult}{tkz@pta} \else \tkzInterCCR(#1,\tkz@ra)(#3,\tkz@rb){tkzFirstPointResult}{tkzSecondPointResult} \fi \fi \fi \endgroup } \makeatother \endinput