% tkz-tools-eu-points-by.tex % Copyright 2022 Alain Matthes % This work may be distributed and/or modified under the % conditions of the LaTeX Project Public License, either version 1.3 % of this license or (at your option) any later version. % The latest version of this license is in % http://www.latex-project.org/lppl.txt % and version 1.3 or later is part of all distributions of LaTeX % version 2005/12/01 or later. % This work has the LPPL maintenance status “maintained”. % The Current Maintainer of this work is Alain Matthes. \def\fileversion{4.03} \def\filedate{2022/01/19} \typeout{2022/01/19 4.03 tkz-tools-el-points-by.tex} \makeatletter %<--------------------------------------------------------------------------–> % Transformations Géométriques %<--------------------------------------------------------------------------–> \def\tkz@numtrsf{0} \pgfkeys{/tkzDefPointBy/.cd, translation/.code args={from #1 to #2}{ \def\tkzfrom{#1}% \def\tkzto{#2}% \def\tkz@numtrsf{0}}, homothety/.code args={center #1 ratio #2}{ \def\tkzcenter{#1}% \def\tkzratio{#2}% \def\tkz@numtrsf{1}}, reflection/.code args={over #1--#2}{ \def\tkzdeb{#1}% \def\tkzfin{#2}% \def\tkz@numtrsf{2}}, symmetry/.code args={center #1}{ \def\tkzcenter{#1}% \def\tkz@numtrsf{3}}, projection/.code args={onto #1--#2}{ \def\tkzdeb{#1}% \def\tkzfin{#2}% \def\tkz@numtrsf{4}}, rotation/.code args={center #1 angle #2}{ \def\tkzcenter{#1}% \def\tkzangle{#2}% \def\tkz@numtrsf{5}}, rotation in rad/.code args={center #1 angle #2}{ \def\tkzcenter{#1}% \def\tkzangle{#2}% \def\tkz@numtrsf{6}}, inversion/.code args={center #1 through #2}{ \def\tkzcenter{#1}% \def\tkzpoint{#2}% \def\tkz@numtrsf{7}}, inversion negative/.code args={center #1 through #2}{ \def\tkzcenter{#1}% \def\tkzpoint{#2}% \def\tkz@numtrsf{8}} % inversion négative ? } %<--------------------------------------------------------------------------–> \def\tkzDefPointBy{\pgfutil@ifnextchar[{\tkz@DefPointBy}{\tkz@DefPointBy[]}} \def\tkz@DefPointBy[#1](#2){% \begingroup \pgfqkeys{/tkzDefPointBy}{#1} \ifcase\tkz@numtrsf% % % first case 0 \tkzUTranslation(\tkzfrom,\tkzto)(#2) \or% 1 \tkzUHomo(\tkzcenter,\tkzratio)(#2) \or% 2 \tkzUSymOrth(\tkzdeb,\tkzfin)(#2) \or% 3 \tkzUCSym(\tkzcenter)(#2) \or% 4 \tkzUProjection(\tkzdeb,\tkzfin)(#2) \or% 5 \tkzURotateAngle(\tkzcenter,\tkzangle)(#2) \or% 6 \tkzURotateInRad(\tkzcenter,\tkzangle)(#2) \or% 7 \tkzUInversePoint(\tkzcenter,\tkzpoint)(#2) \or% 8 \tkzUInverseNegativePoint(\tkzcenter,\tkzpoint)(#2) \fi \endgroup } %<--------------------------------------------------------------------------–> \def\tkzDefPointsBy{\pgfutil@ifnextchar[{\tkz@DefPointsBy}{\tkz@DefPointsBy[]}} \def\tkz@DefPointsBy[#1](#2)#3{% \begingroup \pgfqkeys{/tkzDefPointBy}{#1} \ifcase\tkz@numtrsf% % first case 0 \tkzTranslation(\tkzfrom,\tkzto)(#2){#3} \or% 1 \tkzHomo(\tkzcenter,\tkzratio)(#2){#3} \or% 2 \tkzSymOrth(\tkzdeb,\tkzfin)(#2){#3} \or% 3 \tkzCSym(\tkzcenter)(#2){#3} \or% 4 \tkzProjection(\tkzdeb,\tkzfin)(#2){#3} \or% 5 \tkzRotateAngle(\tkzcenter,\tkzangle)(#2){#3} \or% 6 \tkzRotateInRad(\tkzcenter,\tkzangle)(#2){#3} \or% 7 \tkzInversePoint(\tkzcenter,\tkzpoint)(#2){#3} \or% 8 \tkzInverseNegativePoint(\tkzcenter,\tkzpoint)(#2){#3} \fi \endgroup } %<--------------------------------------------------------------------------–> \def\ExtractPoint#1,#2\@nil{% \xdef\tkz@LastList{#2} \xdef\tkz@FirstPoint{#1} } \def\FirstPointInList#1{% \edef\tkz@templist{#1,} \expandafter\ExtractPoint\tkz@templist\@nil } %<--------------------------------------------------------------------------–> % Translation par rapport à un point %<--------------------------------------------------------------------------–> \def\tkzTranslation(#1,#2)(#3)#4{% \begingroup \gdef\tkz@LastList{#4} \foreach\PT in {#3}{% \FirstPointInList\tkz@LastList \ifx\tkz@FirstPoint\tkzutil@empty \def\tkz@pointtsf{\PT '} \else \def\tkz@pointtsf{\tkz@FirstPoint} \fi \tkz@VecCoLinear(#1,#2,\PT) \pgfnodealias{\tkz@pointtsf}{tkzPointResult} } \endgroup } %<--------------------------------------------------------------------------–> \def\tkzUTranslation(#1,#2)(#3){% \begingroup \tkz@VecCoLinear(#1,#2,#3)% \endgroup } %<--------------------------------------------------------------------------–> % Symétrie par rapport à un point Homo with (-1) % #2 le centre #3 l'antécédent %<--------------------------------------------------------------------------–> \def\tkzCSym(#1)(#2)#3{% \begingroup \gdef\tkz@LastList{#3} \foreach\PointCS in {#2}{% \FirstPointInList\tkz@LastList \ifx\tkz@FirstPoint\tkzutil@empty \xdef\tkz@pointtsf{\PointCS '} \else \xdef\tkz@pointtsf{\tkz@FirstPoint} \fi \pgfpointdiff{\pgfpointanchor{#1}{center}}% {\pgfpointanchor{\PointCS}{center}}% \tkz@ax=\pgf@x% \tkz@ay=\pgf@y% \pgfinterruptboundingbox \path(#1)--++(-\tkz@ax,-\tkz@ay)coordinate (\tkz@pointtsf); \endpgfinterruptboundingbox } \endgroup } %<--------------------------------------------------------------------------–> \def\tkzUCSym(#1)(#2){% \begingroup \pgfpointdiff{\pgfpointanchor{#1}{center}}% {\pgfpointanchor{#2}{center}}% \tkz@ax=\pgf@x% \tkz@ay=\pgf@y% \path(#1)--++(-\tkz@ax,-\tkz@ay)coordinate (tkzPointResult); \endgroup } %<--------------------------------------------------------------------------–> % Symétrie orthogonale par rapport à une droite %<--------------------------------------------------------------------------–> \def\tkzSymOrth(#1,#2)(#3)#4{% \begingroup \gdef\tkz@LastList{#4} \foreach\PointSO in {#3}{% \FirstPointInList\tkz@LastList \ifx\tkz@FirstPoint\tkzutil@empty \def\tkz@pointtsf{\PointSO '} \else \def\tkz@pointtsf{\tkz@FirstPoint} \fi \tkzUSymOrth(#1,#2)(\PointSO) \pgfnodealias{\tkz@pointtsf}{tkzPointResult} } \endgroup } %<--------------------------------------------------------------------------–> \def\tkzUSymOrth(#1,#2)(#3){% \begingroup \pgfpointdiff{\pgfpointanchor{#1}{center}}% {\pgfpointanchor{#2}{center}}% \tkz@ax =\pgf@y% \tkz@ay =\pgf@x% \pgfinterruptboundingbox \path[coordinate] (#3)--++(-\tkz@ax,\tkz@ay) coordinate (tkz@point); \endpgfinterruptboundingbox \tkzInterLL(#1,#2)(#3,tkz@point) \pgfnodealias{tkzPointofSym}{tkzPointResult} \tkz@VecK[2](#3,tkzPointofSym) \endgroup } %<--------------------------------------------------------------------------–> % Projection orthogonale sur une droite %<--------------------------------------------------------------------------–> \def\tkzProjection(#1,#2)(#3)#4{% \begingroup \gdef\tkz@LastList{#4} \foreach\PointPJ in {#3}{% \FirstPointInList\tkz@LastList \ifx\tkz@FirstPoint\tkzutil@empty \def\tkz@pointtsf{\PointPJ '} \else \def\tkz@pointtsf{\tkz@FirstPoint} \fi \tkzUProjection(#1,#2)(\PointPJ) \pgfnodealias{\tkz@pointtsf}{tkzPointResult} } \endgroup } %<--------------------------------------------------------------------------–> \def\tkzUProjection(#1,#2)(#3){% \begingroup \pgfpointdiff{\pgfpointanchor{#1}{center}}% {\pgfpointanchor{#2}{center}}% \tkz@ax =\pgf@y% \tkz@ay =\pgf@x% \pgfinterruptboundingbox \path[coordinate](#3)--++(-\tkz@ax,\tkz@ay) coordinate (tkz@point); \tkzInterLL(#1,#2)(#3,tkz@point)% définit tkzPointResult \endpgfinterruptboundingbox \endgroup } %<--------------------------------------------------------------------------–> \def\tkz@Projection(#1,#2)(#3)#4{% \begingroup \pgfpointdiff{\pgfpointanchor{#1}{center}}% {\pgfpointanchor{#2}{center}}% \tkz@ax =\pgf@y% \tkz@ay =\pgf@x% \pgfinterruptboundingbox \path[coordinate](#3)--++(-\tkz@ax,\tkz@ay) coordinate (tkz@point); \endpgfinterruptboundingbox \tkz@InterLL(#1,#2)(#3,tkz@point){#4}% définit tkzPointResult \endgroup } %<--------------------------------------------------------------------------–> % Homothétie par rapport à un point %<--------------------------------------------------------------------------–> \def\tkzHomo(#1,#2)(#3)#4{% \begingroup \gdef\tkz@LastList{#4} \foreach\PointHO in {#3}{% \FirstPointInList\tkz@LastList \ifx\tkz@FirstPoint\tkzutil@empty \xdef\tkz@pointtsf{\PointHO '} \else \xdef\tkz@pointtsf{\tkz@FirstPoint} \fi \pgfpointdiff{\pgfpointanchor{#1}{center}}% {\pgfpointanchor{\PointHO}{center}}% \pgf@xa=\pgf@x% \pgf@ya=\pgf@y% \pgfmathparse{#2}\edef\tkz@coeff{\pgfmathresult}% \pgfinterruptboundingbox \path[coordinate](#1)--++(\tkz@coeff\pgf@xa,\tkz@coeff\pgf@ya)% coordinate(\tkz@pointtsf); \endpgfinterruptboundingbox } \endgroup } %<--------------------------------------------------------------------------–> \def\tkzUHomo(#1,#2)(#3){% \begingroup \pgfpointdiff{\pgfpointanchor{#1}{center}}% {\pgfpointanchor{#3}{center}}% \pgf@xa=\pgf@x% \pgf@ya=\pgf@y% \pgfmathparse{#2}\edef\tkz@coeff{\pgfmathresult}% \pgfinterruptboundingbox \path[coordinate](#1)--++(\tkz@coeff\pgf@xa,\tkz@coeff\pgf@ya)% coordinate(tkzPointResult); \endpgfinterruptboundingbox \endgroup } %<--------------------------------------------------------------------------–> % rotation en degré %<--------------------------------------------------------------------------–> \def\tkzRotateAngle(#1,#2)(#3)#4{% \begingroup \gdef\tkz@LastList{#4} \foreach\PointRot in {#3}{% \FirstPointInList\tkz@LastList \ifx\tkz@FirstPoint\tkzutil@empty \def\tkz@pointtsf{\PointRot '} \else \def\tkz@pointtsf{\tkz@FirstPoint} \fi \tkz@@extractxy{\PointRot} \tkz@ax\pgf@x% \tkz@ay\pgf@y% \tkz@@extractxy{#1} \tkz@bx\pgf@x% \tkz@by\pgf@y% \pgfmathrotatepointaround{\pgfpoint{\tkz@ax}{\tkz@ay}}% {\pgfpoint{\tkz@bx}{\tkz@by}}% {#2} \tkz@bx\pgf@x% \tkz@by\pgf@y% \pgfinterruptboundingbox \path[coordinate](\tkz@bx,\tkz@by)coordinate(\tkz@pointtsf);% \endpgfinterruptboundingbox } \endgroup } %<--------------------------------------------------------------------------–> \def\tkzURotateAngle(#1,#2)(#3){% \begingroup \pgf@process{\pgfpointanchor{#3}{center}}% \tkz@ax\pgf@x% \tkz@ay\pgf@y% \pgf@process{\pgfpointanchor{#1}{center}}% \tkz@bx\pgf@x% \tkz@by\pgf@y% \pgfmathrotatepointaround{\pgfpoint{\tkz@ax}{\tkz@ay}}% {\pgfpoint{\tkz@bx}{\tkz@by}}% {#2} \tkz@bx\pgf@x% \tkz@by\pgf@y% \pgfinterruptboundingbox \path (\tkz@bx,\tkz@by) coordinate (tkzPointResult);% \endpgfinterruptboundingbox \endgroup } %<--------------------------------------------------------------------------–> % % rotation en radian % %<--------------------------------------------------------------------------–> \def\tkzRotateInRad(#1,#2)(#3)#4{% \begingroup \gdef\tkz@LastList{#4} \foreach\PointRot in {#3}{% \FirstPointInList\tkz@LastList \ifx\tkz@FirstPoint\tkzutil@empty \xdef\tkz@pointtsf{\PointRot '} \else \xdef\tkz@pointtsf{\tkz@FirstPoint} \fi \pgfmathparse{#2 r} \let\tkz@Angle\pgfmathresult \tkz@@extractxy{\PointRot} \tkz@ax\pgf@x% \tkz@ay\pgf@y% \tkz@@extractxy{#1} \tkz@bx\pgf@x% \tkz@by\pgf@y% \pgfmathrotatepointaround{\pgfpoint{\tkz@ax}{\tkz@ay}}% {\pgfpoint{\tkz@bx}{\tkz@by}}% {\tkz@Angle} \tkz@bx\pgf@x% \tkz@by\pgf@y% \pgfinterruptboundingbox \path[coordinate](\tkz@bx,\tkz@by)coordinate(\tkz@pointtsf); \endpgfinterruptboundingbox } \endgroup } %<--------------------------------------------------------------------------–> \def\tkzURotateInRad(#1,#2)(#3){% \begingroup \pgfmathparse{#2 r} \let\tkz@Angle\pgfmathresult \tkz@@extractxy{#3} \tkz@ax\pgf@x% \tkz@ay\pgf@y% \tkz@@extractxy{#1} \tkz@bx\pgf@x% \tkz@by\pgf@y% \pgfmathrotatepointaround{\pgfpoint{\tkz@ax}{\tkz@ay}}% {\pgfpoint{\tkz@bx}{\tkz@by}}% {\tkz@Angle} \tkz@bx\pgf@x% \tkz@by\pgf@y% \pgfinterruptboundingbox \path[coordinate](\tkz@bx,\tkz@by)coordinate(tkzPointResult); \endpgfinterruptboundingbox \endgroup } %<--------------------------------------------------------------------------–> % Inverse of a point %<--------------------------------------------------------------------------–> \def\tkzInversePoint(#1,#2)(#3)#4{% \begingroup \gdef\tkz@LastList{#4} \foreach\PointIP in {#3}{% \FirstPointInList\tkz@LastList \ifx\tkz@FirstPoint\tkzutil@empty \xdef\tkz@pointtsf{\PointIP '} \else \xdef\tkz@pointtsf{\tkz@FirstPoint} \fi \tkz@@CalcLengthcm(#1,#2){tkz@lna} \tkz@@CalcLengthcm(#1,\PointIP){tkz@lnb} \edef\tkz@lnc{\fpeval{\tkz@lna/\tkz@lnb*\tkz@lna}} \tkzVecKNorm[\tkz@lnc](#1,\PointIP) \pgfnodealias{\tkz@pointtsf}{tkzPointResult} } \endgroup } \def\tkzUInversePoint(#1,#2)(#3){% \begingroup \tkz@@CalcLengthcm(#1,#2){tkz@lna}% \tkz@@CalcLengthcm(#1,#3){tkz@lnb}% \edef\tkz@lnc{\fpeval{\tkz@lna/\tkz@lnb*\tkz@lna}} \tkzVecKNorm[\tkz@lnc](#1,#3) \endgroup } %<--------------------------------------------------------------------------–> % Inverse negative of a point %<--------------------------------------------------------------------------–> \def\tkzInverseNegativePoint(#1,#2)(#3)#4{% \begingroup \gdef\tkz@LastList{#4} \foreach\PointIP in {#3}{% \FirstPointInList\tkz@LastList \ifx\tkz@FirstPoint\tkzutil@empty \xdef\tkz@pointtsf{\PointIP '} \else \xdef\tkz@pointtsf{\tkz@FirstPoint} \fi \tkz@@CalcLengthcm(#1,#2){tkz@lna} \tkz@@CalcLengthcm(#1,\PointIP){tkz@lnb} \edef\tkz@lnc{\fpeval{\tkz@lna/\tkz@lnb*\tkz@lna}} \tkzVecKNorm[\tkz@lnc](#1,\PointIP) \tkzUCSym(#1)(tkzPointResult) \pgfnodealias{\tkz@pointtsf}{tkzPointResult} } \endgroup } \def\tkzUInverseNegativePoint(#1,#2)(#3){% \begingroup \tkz@@CalcLengthcm(#1,#2){tkz@lna}% \tkz@@CalcLengthcm(#1,#3){tkz@lnb}% \edef\tkz@lnc{\fpeval{\tkz@lna/\tkz@lnb*\tkz@lna}} \tkzVecKNorm[\tkz@lnc](#1,#3) \tkzUCSym(#1)(tkzPointResult) \endgroup } %<--------------------------------------------------------------------------–> % Fin des transformations %<--------------------------------------------------------------------------–> \makeatother \endinput