% * * * * * * * * * * * * * * * * * * * * * * * * * * * * * * * * * * * * * * * * * * * * * * * * * * * * * * * * * * * * % % Sa-TikZ package v0.6 * * (C) Claudio Fiandrino 2012-2013 % % * * * * * * * * * * * * * * * * * * * * * * * * * * * * * * * * * * * * * * * * * * * * * * * * * * * * * * * * * * * * \NeedsTeXFormat{LaTeX2e} \ProvidesPackage{sa-tikz}[2013/9/28 v0.6 Switching architectures design library.] \RequirePackage{tikz} \usetikzlibrary{backgrounds,calc,positioning,decorations.pathreplacing} % * * * * * * * * * * * * * * * * * * * * * * * * * * * * * * * * * * * * * * * * * * * * * * * * * * * * * * * * * * * * % UTILITY % * * * * * * * * * * * * * * * * * * * * * * * * * * * * * * * * * * * * * * * * * * * * * * * * * * * * * * * * * * * * % PGFMATHISODD: 1 = true, 0 = false % % #1: number to be checked % #2: output macro % % example: %% \pgfmathisodd{32}{output} %% \ifnum\output=1 %% \node{\output}; %% \fi \newcommand*{\pgfmathisodd}[2]{ \pgfmathparse{mod(#1,2)} \pgfmathtruncatemacro\res\pgfmathresult \global\expandafter\edef\csname #2\endcsname{\res} } % PGFMATHOMEGAROTATION: % % #1: number to be rotated % #2: numbers of bits % #3: output macro % \newcommand*{\pgfmathomegarotation}[3]{ \pgfmathisodd{#1}{test} \ifnum\test=1 \pgfmathparse{#1/2 + 2^#2} \else \pgfmathparse{#1/2} \fi \pgfmathtruncatemacro\res\pgfmathresult \global\expandafter\edef\csname #3\endcsname{\res} } % * * * * * * * * * * * * * * * * * * * * * * * * * * * * * * * * * * * * * * * * * * * * * * * * * * * * * * * * * * * * % KEY DEFINITION - Design choices % * * * * * * * * * * * * * * * * * * * * * * * * * * * * * * * * * * * * * * * * * * * * * * * * * * * * * * * * * * * * % * * * * * * * * * * * * * * * * * * % CLOS % * * * * * * * * * * * * * * * * * * % N is the key representing the number of inputs x number of modules first stage \pgfkeys{/tikz/.cd,% N/.initial=10,% N/.get=\N,% N/.store in=\N,% }% % N label \pgfkeys{/tikz/.cd,% N label/.initial=N,% N label/.store in=\Nlabel,% N label/.get=\Nlabel,% }% % r1 is the number of modules first stage % m1 is the number of inputs first stage per module \pgfkeys{/tikz/.cd,% r1/.initial=5,% r1/.store in=\rone,% r1/.get=\rone,% }% % r1 label \pgfkeys{/tikz/.cd,% r1 label/.initial={r\ensuremath{_1}},% r1 label/.store in=\ronelabel,% r1 label/.get=\ronelabel,% }% % m1 label \pgfkeys{/tikz/.cd, m1 label/.initial={m\ensuremath{_1}},% m1 label/.store in=\monelabel,% m1 label/.get=\monelabel,% }% % r2 label \pgfkeys{/tikz/.cd,% r2 label/.initial={r\ensuremath{_2}},% r2 label/.store in=\rtwolabel,% r2 label/.get=\rtwolabel,% }% % M is the key representing the number of inputs x number of modules last stage \pgfkeys{/tikz/.cd,% M/.initial=10,% M/.get=\M,% M/.store in=\M,% }% % M label \pgfkeys{/tikz/.cd,% M label/.initial=M,% M label/.store in=\Mlabel,% M label/.get=\Mlabel,% }% % r3 is the number of modules last stage % m3 is the number of inputs last stage per module \pgfmathtruncatemacro\rthree{5}% \pgfkeys{/tikz/.cd, r3/.initial=5}% \pgfkeys{/tikz/.cd, r3/.store in=\rthree}% % r3 label \pgfkeys{/tikz/.cd,% r3 label/.initial={r\ensuremath{_3}},% r3 label/.store in=\rthreelabel,% r3 label/.get=\rthreelabel,% }% % m3 label \pgfkeys{/tikz/.cd, m3 label/.initial={m\ensuremath{_3}},% m3 label/.store in=\mthreelabel,% m3 label/.get=\mthreelabel,% }% % * * * * * * * * * * * * * * * * * * % BENES % * * * * * * * * * * * * * * * * * * % P is the number of input/output ports \pgfkeys{/tikz/.cd,% P/.initial=8,% P/.get=\P,% P/.store in=\P,% }% % * * * * * * * * * * * * * * * * * * * * * * * * * * * * * * * * * * * * * * * * * * * * * * * * * * * * * * * * * * * * % GENERAL SETTINGS - Keys and styles % * * * * * * * * * * * * * * * * * * * * * * * * * * * * * * * * * * * * * * * * * * * * * * * * * * * * * * * * * * * * % module customization \pgfkeys{/tikz/.cd,% module size/.initial={1cm},% module size/.get=\modulesize,% module size/.store in=\modulesize,% }% \pgfkeys{/tikz/.cd,% module ysep/.initial={1.5},% module ysep/.get=\moduleysep,% module ysep/.store in=\moduleysep,% }% \pgfkeys{/tikz/.cd,% module xsep/.initial={3},% module xsep/.get=\modulexsep,% module xsep/.store in=\modulexsep,% }% \pgfkeys{/tikz/.cd,% module font/.initial=\normalfont,% module font/.get=\modulefont,% module font/.store in=\modulefont,% }% \tikzset{module/.style={% draw,rectangle, minimum size=\modulesize, font=\modulefont, } } \tikzset{module extensible/.style={% draw,rectangle, minimum size=#1, }, module extensible/.default={\modulesize} } \pgfkeys{/tikz/.cd,% module label opacity/.initial={1},% module label opacity/.get=\modulelabelopacity,% module label opacity/.store in=\modulelabelopacity,% }% \tikzset{module opacity/.style={ text opacity=\modulelabelopacity, } } \pgfkeys{/tikz/.cd,% pin length factor/.initial={1},% pin length factor/.get=\pinlength,% pin length factor/.store in=\pinlength,% }% % setting labels in math mode \tikzset{math mode labels/.style={% execute at begin node=$,% execute at end node=$,% } } \pgfkeys{/tikz/.cd,% use math mode labels/.is choice,% use math mode labels/true/.style={math mode labels},% use math mode labels/false/.style={},% }% \tikzset{set math mode labels/.style={% use math mode labels=#1,% },% set math mode labels/.default=false,% } % disable the connections \newif\ifconnectiondisabled% \pgfkeys{/tikz/.cd, connections disabled/.is if=connectiondisabled}% \pgfkeys{/tikz/.cd, connections disabled/.default=false}% % * * * * * * * * * * * * * * * * * * * * * * * * * * * * * * * * * * * * * * * * * * * * * * * * * * * * * * * * * * * * % CODE % * * * * * * * * * * * * * * * * * * * * * * * * * * * * * * * * * * * * * * * * * * * * * * * * * * * * * * * * * * * * % CLOS SNB \tikzset{clos snb/.code={ % Number of ports per module \pgfmathtruncatemacro{\mone}{\N/\rone} \pgfmathtruncatemacro{\mthree}{\M/\rthree} % COMPUTATION SNB CONDITION \pgfmathtruncatemacro\rtwo{\mone+\mthree-1} % MODULE 1 \foreach \i in {1,...,\rone}{ \path let \n1 = {int(0-\i)}, \n2={0-\i*\moduleysep} in node[module,#1,module opacity,yshift=1cm] (r1-\i) at +(0,\n2) {\pgfmathparse{int(multiply(\n1,-1))}\pgfmathresult}; % INPUTS MODULE 1 % the number of inputs module one is exactly \mone \pgfmathsetmacro\roneintervalspace{1/(\mone+1)} \foreach \roneinput[evaluate=\roneinput as \roneinterval using \roneintervalspace*\roneinput] in {1,...,\mone} \draw ($(r1-\i.north west)!\roneinterval!(r1-\i.south west)-(0.5*\pinlength,0)$)node[scale=0.1](r1-\i-front input-\roneinput){}--($(r1-\i.north west)!\roneinterval!(r1-\i.south west)$) node[circle,draw,scale=0.1] (r1-\i-input-\roneinput) {}; % OUTPUTS MODULE 1 % the number of outputs of module one is the number of modules stage 2 \rtwo \pgfmathsetmacro\roneintervalspace{1/(\rtwo+1)} \foreach \roneoutput[evaluate=\roneoutput as \roneinterval using \roneintervalspace*\roneoutput] in {1,...,\rtwo} \node[circle,draw,scale=0.1] (r1-\i-output-\roneoutput)at($(r1-\i.north east)!\roneinterval!(r1-\i.south east)$) {}; } % MODULE 2 \foreach \i in {1,...,\rtwo}{ \path let \n1 = {int(0-\i)}, \n2={0-\i*\moduleysep} in node[module,#1,module opacity,yshift=1cm] (r2-\i) at +(\modulexsep,\n2) {\pgfmathparse{int(multiply(\n1,-1))}\pgfmathresult}; % INPUTS MODULE 2 % the number of inputs of module two is the number of modules stage 1 \rone \pgfmathsetmacro\rtwointervalspace{1/(\rone+1)} \foreach \rtwoinput[evaluate=\rtwoinput as \rtwointerval using \rtwointervalspace*\rtwoinput] in {1,...,\rone} \node[circle,draw,scale=0.1] (r2-\i-input-\rtwoinput)at($(r2-\i.north west)!\rtwointerval!(r2-\i.south west)$) {}; % OUTPUTS MODULE 2 % the number of outputs module two is exactly \rthree \pgfmathsetmacro\rtwointervalspace{1/(\rthree+1)} \foreach \rtwooutput[evaluate=\rtwooutput as \rtwointerval using \rtwointervalspace*\rtwooutput] in {1,...,\rthree} \node[circle,draw,scale=0.1] (r2-\i-output-\rtwooutput)at ($(r2-\i.north east)!\rtwointerval!(r2-\i.south east)$) {}; } % MODULE 3 \foreach \i in {1,...,\rthree}{ \path let \n1 = {int(0-\i)}, \n2={0-\i*\moduleysep} in node[module,#1,module opacity,yshift=1cm] (r3-\i) at +(2*\modulexsep,\n2) {\pgfmathparse{int(multiply(\n1,-1))}\pgfmathresult}; % INPUTS MODULE 3 % the number of inputs of module three is the number of modules stage 2 \rtwo \pgfmathsetmacro\rthreeintervalspace{1/(\rtwo+1)} \foreach \rthreeinput[evaluate=\rthreeinput as \rthreeinterval using \rthreeintervalspace*\rthreeinput] in {1,...,\rtwo} \node[circle,draw,scale=0.1] (r3-\i-input-\rthreeinput)at($(r3-\i.north west)!\rthreeinterval!(r3-\i.south west)$) {}; % OUTPUTS MODULE 3 % the number of outputs module three is exactly \mthree \pgfmathsetmacro\rthreeintervalspace{1/(\mthree+1)} \foreach \rthreeoutput[evaluate=\rthreeoutput as \rthreeinterval using \rthreeintervalspace*\rthreeoutput] in {1,...,\mthree} \draw ($(r3-\i.north east)!\rthreeinterval!(r3-\i.south east)+(0.5*\pinlength,0)$)node[scale=0.1](r3-\i-front output-\rthreeoutput){}--($(r3-\i.north east)!\rthreeinterval!(r3-\i.south east)$) node[circle,draw,scale=0.1] (r3-\i-output-\rthreeoutput) {}; } % Test if connections should be removed \ifconnectiondisabled \relax \else % DRAWING CONNECTIONS %% from r1 to r2 \foreach \startmodule in {1,...,\rone}{ \foreach \conn in {1,...,\rtwo} \draw(r1-\startmodule-output-\conn)--(r2-\conn-input-\startmodule); } %% from r2 to r3 \foreach \startmodule in {1,...,\rthree}{ \foreach \conn in {1,...,\rtwo} \draw(r3-\startmodule-input-\conn)--(r2-\conn-output-\startmodule); } \fi }, } \tikzset{clos snb example/.code={ % Number of ports per module \pgfmathtruncatemacro{\mone}{\N/\rone} \pgfmathtruncatemacro{\mthree}{\M/\rthree} % COMPUTATION SNB CONDITION \pgfmathtruncatemacro\rtwo{\mone+\mthree-1} % MODULE 1 \node[module,#1,module opacity](r1-1) at (0,0) {1}; \node[below of=r1-1,yshift=0.75ex](r1-dots) {\vdots}; \node[module,#1,module opacity,below of=r1-dots](r1-2) {\rone}; \foreach \i in {1,2}{ % INPUTS MODULE 1 % just two modules \pgfmathsetmacro\roneintervalspace{1/(2+1)} \foreach \roneinput[evaluate=\roneinput as \roneinterval using \roneintervalspace*\roneinput] in {1,2} \draw ($(r1-\i.north west)!\roneinterval!(r1-\i.south west)-(0.5*\pinlength,0)$)node[scale=0.1](r1-\i-front input-\roneinput){}--($(r1-\i.north west)!\roneinterval!(r1-\i.south west)$) node[circle,draw,scale=0.1] (r1-\i-input-\roneinput) {}; % OUTPUTS MODULE 1 % just two modules \pgfmathsetmacro\roneintervalspace{1/(2+1)} \foreach \roneoutput[evaluate=\roneoutput as \roneinterval using \roneintervalspace*\roneoutput] in {1,2} \node[circle,draw,scale=0.1] (r1-\i-output-\roneoutput)at($(r1-\i.north east)!\roneinterval!(r1-\i.south east)$) {}; } % MODULE 2 \node[module,#1,module opacity](r2-1) at (\modulexsep,0) {1}; \node[below of=r2-1,yshift=0.75ex](r2-dots) {\vdots}; \node[module,#1,module opacity,below of=r2-dots](r2-2) {\rtwo}; \foreach \i in {1,2}{ % INPUTS MODULE 2 % just two modules \pgfmathsetmacro\rtwointervalspace{1/(2+1)} \foreach \rtwoinput[evaluate=\rtwoinput as \rtwointerval using \rtwointervalspace*\rtwoinput] in {1,2} \node[circle,draw,scale=0.1] (r2-\i-input-\rtwoinput)at($(r2-\i.north west)!\rtwointerval!(r2-\i.south west)$) {}; % OUTPUTS MODULE 2 % just two modules \pgfmathsetmacro\rtwointervalspace{1/(2+1)} \foreach \rtwooutput[evaluate=\rtwooutput as \rtwointerval using \rtwointervalspace*\rtwooutput] in {1,2} \node[circle,draw,scale=0.1] (r2-\i-output-\rtwooutput)at ($(r2-\i.north east)!\rtwointerval!(r2-\i.south east)$) {}; } % MODULE 3 \node[module,#1,module opacity](r3-1) at (2*\modulexsep,0) {1}; \node[below of=r3-1,yshift=0.75ex](r3-dots) {\vdots}; \node[module,#1,module opacity,below of=r3-dots](r3-2) {\rthree}; \foreach \i in {1,2}{ % INPUTS MODULE 3 % just two modules \pgfmathsetmacro\rthreeintervalspace{1/(2+1)} \foreach \rthreeinput[evaluate=\rthreeinput as \rthreeinterval using \rthreeintervalspace*\rthreeinput] in {1,2} \node[circle,draw,scale=0.1] (r3-\i-input-\rthreeinput)at($(r3-\i.north west)!\rthreeinterval!(r3-\i.south west)$) {}; % OUTPUTS MODULE 3 % just two modules \pgfmathsetmacro\rthreeintervalspace{1/(2+1)} \foreach \rthreeoutput[evaluate=\rthreeoutput as \rthreeinterval using \rthreeintervalspace*\rthreeoutput] in {1,2} \draw ($(r3-\i.north east)!\rthreeinterval!(r3-\i.south east)+(0.5*\pinlength,0)$)node[scale=0.1](r3-\i-front output-\rthreeoutput){}--($(r3-\i.north east)!\rthreeinterval!(r3-\i.south east)$) node[circle,draw,scale=0.1] (r3-\i-output-\rthreeoutput) {}; } % DRAWING CONNECTIONS %% from r1 to r2 \foreach \startmodule in {1,2}{ \foreach \conn in {1,2} \draw(r1-\startmodule-output-\conn)--(r2-\conn-input-\startmodule); } %% from r2 to r3 \foreach \startmodule in {1,2}{ \foreach \conn in {1,2} \draw(r3-\startmodule-input-\conn)--(r2-\conn-output-\startmodule); } % SETTING LABELS \node[below of=r1-2,set math mode labels] {\mone~\ensuremath{\times}~\rtwo}; \node[below of=r2-2,set math mode labels] {\rone~\ensuremath{\times}~\rthree}; \node[below of=r3-2,set math mode labels] {\rtwo~\ensuremath{\times}~\mthree}; \draw[decorate,decoration={brace}]($(r1-2-front input-2)-(0.1,0)$)--($(r1-1-front input-1)-(0.1,0)$) node[midway,left=0.1cm,set math mode labels]{\N}; \draw[decorate,decoration={brace}]($(r3-1-front output-1)+(0.1,0)$)--($(r3-2-front output-2)+(0.1,0)$) node[midway,right=0.1cm,set math mode labels]{\M}; }, } % CLOS REAR \tikzset{clos rear/.code={ % Number of ports per module \pgfmathtruncatemacro{\mone}{\N/\rone} \pgfmathtruncatemacro{\mthree}{\M/\rthree} % COMPUTATION REAR CONDITION \pgfmathtruncatemacro\rtwo{max(\mone,\mthree)} % MODULE 1 \foreach \i in {1,...,\rone}{ \path let \n1 = {int(0-\i)}, \n2={0-\i*\moduleysep} in node[module,#1,module opacity,yshift=1cm] (r1-\i) at +(0,\n2) {\pgfmathparse{int(multiply(\n1,-1))}\pgfmathresult}; % INPUTS MODULE 1 % the number of inputs module one is exactly \mone \pgfmathsetmacro\roneintervalspace{1/(\mone+1)} \foreach \roneinput[evaluate=\roneinput as \roneinterval using \roneintervalspace*\roneinput] in {1,...,\mone} \draw ($(r1-\i.north west)!\roneinterval!(r1-\i.south west)-(0.5*\pinlength,0)$)node[scale=0.1](r1-\i-front input-\roneinput){}--($(r1-\i.north west)!\roneinterval!(r1-\i.south west)$) node[circle,draw,scale=0.1] (r1-\i-input-\roneinput) {}; % OUTPUTS MODULE 1 % the number of outputs of module one is the number of modules stage 2 \rtwo \pgfmathsetmacro\roneintervalspace{1/(\rtwo+1)} \foreach \roneoutput[evaluate=\roneoutput as \roneinterval using \roneintervalspace*\roneoutput] in {1,...,\rtwo} \node[circle,draw,scale=0.1] (r1-\i-output-\roneoutput)at($(r1-\i.north east)!\roneinterval!(r1-\i.south east)$) {}; } % MODULE 2 \foreach \i in {1,...,\rtwo}{ \path let \n1 = {int(0-\i)}, \n2={0-\i*\moduleysep} in node[module,#1,module opacity,yshift=1cm] (r2-\i) at +(\modulexsep,\n2) {\pgfmathparse{int(multiply(\n1,-1))}\pgfmathresult}; % INPUTS MODULE 2 % the number of inputs of module two is the number of modules stage 1 \rone \pgfmathsetmacro\rtwointervalspace{1/(\rone+1)} \foreach \rtwoinput[evaluate=\rtwoinput as \rtwointerval using \rtwointervalspace*\rtwoinput] in {1,...,\rone} \node[circle,draw,scale=0.1] (r2-\i-input-\rtwoinput)at($(r2-\i.north west)!\rtwointerval!(r2-\i.south west)$) {}; % OUTPUTS MODULE 2 % the number of outputs module two is exactly \rthree \pgfmathsetmacro\rtwointervalspace{1/(\rthree+1)} \foreach \rtwooutput[evaluate=\rtwooutput as \rtwointerval using \rtwointervalspace*\rtwooutput] in {1,...,\rthree} \node[circle,draw,scale=0.1] (r2-\i-output-\rtwooutput)at ($(r2-\i.north east)!\rtwointerval!(r2-\i.south east)$) {}; } % MODULE 3 \foreach \i in {1,...,\rthree}{ \path let \n1 = {int(0-\i)}, \n2={0-\i*\moduleysep} in node[module,#1,module opacity,yshift=1cm] (r3-\i) at +(2*\modulexsep,\n2) {\pgfmathparse{int(multiply(\n1,-1))}\pgfmathresult}; % INPUTS MODULE 3 % the number of inputs of module three is the number of modules stage 2 \rtwo \pgfmathsetmacro\rthreeintervalspace{1/(\rtwo+1)} \foreach \rthreeinput[evaluate=\rthreeinput as \rthreeinterval using \rthreeintervalspace*\rthreeinput] in {1,...,\rtwo} \node[circle,draw,scale=0.1] (r3-\i-input-\rthreeinput)at($(r3-\i.north west)!\rthreeinterval!(r3-\i.south west)$) {}; % OUTPUTS MODULE 3 % the number of outputs module three is exactly \mthree \pgfmathsetmacro\rthreeintervalspace{1/(\mthree+1)} \foreach \rthreeoutput[evaluate=\rthreeoutput as \rthreeinterval using \rthreeintervalspace*\rthreeoutput] in {1,...,\mthree} \draw ($(r3-\i.north east)!\rthreeinterval!(r3-\i.south east)+(0.5*\pinlength,0)$)node[scale=0.1](r3-\i-front output-\rthreeoutput){}--($(r3-\i.north east)!\rthreeinterval!(r3-\i.south east)$) node[circle,draw,scale=0.1] (r3-\i-output-\rthreeoutput) {}; } % Test if connections should be removed \ifconnectiondisabled \relax \else % DRAWING CONNECTIONS %% from r1 to r2 \foreach \startmodule in {1,...,\rone}{ \foreach \conn in {1,...,\rtwo} \draw(r1-\startmodule-output-\conn)--(r2-\conn-input-\startmodule); } %% from r2 to r3 \foreach \startmodule in {1,...,\rthree}{ \foreach \conn in {1,...,\rtwo} \draw(r3-\startmodule-input-\conn)--(r2-\conn-output-\startmodule); } \fi } } \tikzset{clos rear example/.code={ % Number of ports per module \pgfmathtruncatemacro{\mone}{\N/\rone} \pgfmathtruncatemacro{\mthree}{\M/\rthree} % COMPUTATION REAR CONDITION \pgfmathtruncatemacro\rtwo{max(\mone,\mthree)} % MODULE 1 \node[module,#1,module opacity](r1-1) at (0,0) {1}; \node[below of=r1-1,yshift=0.75ex](r1-dots) {\vdots}; \node[module,#1,module opacity,below of=r1-dots](r1-2) {\rone}; \foreach \i in {1,2}{ % INPUTS MODULE 1 % just two modules \pgfmathsetmacro\roneintervalspace{1/(2+1)} \foreach \roneinput[evaluate=\roneinput as \roneinterval using \roneintervalspace*\roneinput] in {1,2} \draw ($(r1-\i.north west)!\roneinterval!(r1-\i.south west)-(0.5*\pinlength,0)$)node[scale=0.1](r1-\i-front input-\roneinput){}--($(r1-\i.north west)!\roneinterval!(r1-\i.south west)$) node[circle,draw,scale=0.1] (r1-\i-input-\roneinput) {}; % OUTPUTS MODULE 1 % just two modules \pgfmathsetmacro\roneintervalspace{1/(2+1)} \foreach \roneoutput[evaluate=\roneoutput as \roneinterval using \roneintervalspace*\roneoutput] in {1,2} \node[circle,draw,scale=0.1] (r1-\i-output-\roneoutput)at($(r1-\i.north east)!\roneinterval!(r1-\i.south east)$) {}; } % MODULE 2 \node[module,#1,module opacity](r2-1) at (\modulexsep,0) {1}; \node[below of=r2-1,yshift=0.75ex](r2-dots) {\vdots}; \node[module,#1,module opacity,below of=r2-dots](r2-2) {\rtwo}; \foreach \i in {1,2}{ % INPUTS MODULE 2 % just two modules \pgfmathsetmacro\rtwointervalspace{1/(2+1)} \foreach \rtwoinput[evaluate=\rtwoinput as \rtwointerval using \rtwointervalspace*\rtwoinput] in {1,2} \node[circle,draw,scale=0.1] (r2-\i-input-\rtwoinput)at($(r2-\i.north west)!\rtwointerval!(r2-\i.south west)$) {}; % OUTPUTS MODULE 2 % just two modules \pgfmathsetmacro\rtwointervalspace{1/(2+1)} \foreach \rtwooutput[evaluate=\rtwooutput as \rtwointerval using \rtwointervalspace*\rtwooutput] in {1,2} \node[circle,draw,scale=0.1] (r2-\i-output-\rtwooutput)at ($(r2-\i.north east)!\rtwointerval!(r2-\i.south east)$) {}; } % MODULE 3 \node[module,#1,module opacity](r3-1) at (2*\modulexsep,0) {1}; \node[below of=r3-1,yshift=0.75ex](r3-dots) {\vdots}; \node[module,#1,module opacity,below of=r3-dots](r3-2) {\rthree}; \foreach \i in {1,2}{ % INPUTS MODULE 3 % just two modules \pgfmathsetmacro\rthreeintervalspace{1/(2+1)} \foreach \rthreeinput[evaluate=\rthreeinput as \rthreeinterval using \rthreeintervalspace*\rthreeinput] in {1,2} \node[circle,draw,scale=0.1] (r3-\i-input-\rthreeinput)at($(r3-\i.north west)!\rthreeinterval!(r3-\i.south west)$) {}; % OUTPUTS MODULE 3 % just two modules \pgfmathsetmacro\rthreeintervalspace{1/(2+1)} \foreach \rthreeoutput[evaluate=\rthreeoutput as \rthreeinterval using \rthreeintervalspace*\rthreeoutput] in {1,2} \draw ($(r3-\i.north east)!\rthreeinterval!(r3-\i.south east)+(0.5*\pinlength,0)$)node[scale=0.1](r3-\i-front output-\rthreeoutput){}--($(r3-\i.north east)!\rthreeinterval!(r3-\i.south east)$) node[circle,draw,scale=0.1] (r3-\i-output-\rthreeoutput) {}; } % DRAWING CONNECTIONS %% from r1 to r2 \foreach \startmodule in {1,2}{ \foreach \conn in {1,2} \draw(r1-\startmodule-output-\conn)--(r2-\conn-input-\startmodule); } %% from r2 to r3 \foreach \startmodule in {1,2}{ \foreach \conn in {1,2} \draw(r3-\startmodule-input-\conn)--(r2-\conn-output-\startmodule); } % SETTING LABELS \node[below of=r1-2, set math mode labels] {\mone~\ensuremath{\times}~\rtwo}; \node[below of=r2-2, set math mode labels] {\rone~\ensuremath{\times}~\rthree}; \node[below of=r3-2, set math mode labels] {\rtwo~\ensuremath{\times}~\mthree}; \draw[decorate,decoration={brace}]($(r1-2-front input-2)-(0.1,0)$)--($(r1-1-front input-1)-(0.1,0)$) node[midway,left=0.1cm, set math mode labels]{\N}; \draw[decorate,decoration={brace}]($(r3-1-front output-1)+(0.1,0)$)--($(r3-2-front output-2)+(0.1,0)$) node[midway,right=0.1cm, set math mode labels]{\M}; }, } % CLOS EXAMPLE WITH LABELS \tikzset{clos example with labels/.code={ % Number of ports per module \pgfmathtruncatemacro{\mone}{\N/\rone} \pgfmathtruncatemacro{\mthree}{\M/\rthree} % COMPUTATION REAR CONDITION \pgfmathtruncatemacro\rtwo{max(\mone,\mthree)} % MODULE 1 \node[module,#1,module opacity](r1-1) at (0,0) {1}; \node[below of=r1-1,yshift=0.75ex](r1-dots) {\vdots}; \node[module,#1,module opacity,below of=r1-dots](r1-2) {\ronelabel}; \foreach \i in {1,2}{ % INPUTS MODULE 1 % just two modules \pgfmathsetmacro\roneintervalspace{1/(2+1)} \foreach \roneinput[evaluate=\roneinput as \roneinterval using \roneintervalspace*\roneinput] in {1,2} \draw ($(r1-\i.north west)!\roneinterval!(r1-\i.south west)-(0.5*\pinlength,0)$)node[scale=0.1](r1-\i-front input-\roneinput){}--($(r1-\i.north west)!\roneinterval!(r1-\i.south west)$) node[circle,draw,scale=0.1] (r1-\i-input-\roneinput) {}; % OUTPUTS MODULE 1 % just two modules \pgfmathsetmacro\roneintervalspace{1/(2+1)} \foreach \roneoutput[evaluate=\roneoutput as \roneinterval using \roneintervalspace*\roneoutput] in {1,2} \node[circle,draw,scale=0.1] (r1-\i-output-\roneoutput)at($(r1-\i.north east)!\roneinterval!(r1-\i.south east)$) {}; } % MODULE 2 \node[module,#1,module opacity](r2-1) at (\modulexsep,0) {1}; \node[below of=r2-1,yshift=0.75ex](r2-dots) {\vdots}; \node[module,#1,module opacity,below of=r2-dots](r2-2) {\rtwolabel}; \foreach \i in {1,2}{ % INPUTS MODULE 2 % just two modules \pgfmathsetmacro\rtwointervalspace{1/(2+1)} \foreach \rtwoinput[evaluate=\rtwoinput as \rtwointerval using \rtwointervalspace*\rtwoinput] in {1,2} \node[circle,draw,scale=0.1] (r2-\i-input-\rtwoinput)at($(r2-\i.north west)!\rtwointerval!(r2-\i.south west)$) {}; % OUTPUTS MODULE 2 % just two modules \pgfmathsetmacro\rtwointervalspace{1/(2+1)} \foreach \rtwooutput[evaluate=\rtwooutput as \rtwointerval using \rtwointervalspace*\rtwooutput] in {1,2} \node[circle,draw,scale=0.1] (r2-\i-output-\rtwooutput)at ($(r2-\i.north east)!\rtwointerval!(r2-\i.south east)$) {}; } % MODULE 3 \node[module,#1,module opacity](r3-1) at (2*\modulexsep,0) {1}; \node[below of=r3-1,yshift=0.75ex](r3-dots) {\vdots}; \node[module,#1,module opacity,below of=r3-dots](r3-2) {\rthreelabel}; \foreach \i in {1,2}{ % INPUTS MODULE 3 % just two modules \pgfmathsetmacro\rthreeintervalspace{1/(2+1)} \foreach \rthreeinput[evaluate=\rthreeinput as \rthreeinterval using \rthreeintervalspace*\rthreeinput] in {1,2} \node[circle,draw,scale=0.1] (r3-\i-input-\rthreeinput)at($(r3-\i.north west)!\rthreeinterval!(r3-\i.south west)$) {}; % OUTPUTS MODULE 3 % just two modules \pgfmathsetmacro\rthreeintervalspace{1/(2+1)} \foreach \rthreeoutput[evaluate=\rthreeoutput as \rthreeinterval using \rthreeintervalspace*\rthreeoutput] in {1,2} \draw ($(r3-\i.north east)!\rthreeinterval!(r3-\i.south east)+(0.5*\pinlength,0)$)node[scale=0.1](r3-\i-front output-\rthreeoutput){}--($(r3-\i.north east)!\rthreeinterval!(r3-\i.south east)$) node[circle,draw,scale=0.1] (r3-\i-output-\rthreeoutput) {}; } % DRAWING CONNECTIONS %% from r1 to r2 \foreach \startmodule in {1,2}{ \foreach \conn in {1,2} \draw(r1-\startmodule-output-\conn)--(r2-\conn-input-\startmodule); } %% from r2 to r3 \foreach \startmodule in {1,2}{ \foreach \conn in {1,2} \draw(r3-\startmodule-input-\conn)--(r2-\conn-output-\startmodule); } % SETTING LABELS \node[below of=r1-2,set math mode labels] {\monelabel~\ensuremath{\times}~\rtwolabel}; \node[below of=r2-2,set math mode labels] {\ronelabel~\ensuremath{\times}~\rthreelabel}; \node[below of=r3-2,set math mode labels] {\rtwolabel~\ensuremath{\times}~\mthreelabel}; \draw[decorate,decoration={brace}]($(r1-2-front input-2)-(0.1,0)$)--($(r1-1-front input-1)-(0.1,0)$) node[midway,left=0.1cm,set math mode labels]{\Nlabel}; \draw[decorate,decoration={brace}]($(r3-1-front output-1)+(0.1,0)$)--($(r3-2-front output-2)+(0.1,0)$) node[midway,right=0.1cm,set math mode labels]{\Mlabel}; }, } % BENES % uses modules 2x2 \tikzset{benes/.code={ % Number of ports per module \pgfmathtruncatemacro{\m}{2} % Numbers of modules in the second stage \pgfmathtruncatemacro\rtwo{\m} % Number of modules in the first/third stage \pgfmathtruncatemacro{\r}{\P/\m} \ifnum\P=4 \def\increment{0-\i*0.5*\r*\moduleysep} \def\xincrement{\r*0.25*\modulexsep} \else \def\increment{0-\i*0.39*\r*\moduleysep} \def\xincrement{\r*0.2*\modulexsep} \fi % MODULE 1 \foreach \i in {1,...,\r}{ \path let \n1 = {int(0-\i)}, \n2={0-\i*\moduleysep} in node[module,#1,module opacity,yshift=1cm] (r1-\i) at +(0,\n2) {\pgfmathparse{int(multiply(\n1,-1))}\pgfmathresult}; % INPUTS MODULE 1 % the number of inputs module one is exactly \mone \pgfmathsetmacro\roneintervalspace{1/(\m+1)} \foreach \roneinput[evaluate=\roneinput as \roneinterval using \roneintervalspace*\roneinput] in {1,...,\m} \draw ($(r1-\i.north west)!\roneinterval!(r1-\i.south west)-(0.5*\pinlength,0)$)node[scale=0.1](r1-\i-front input-\roneinput){}--($(r1-\i.north west)!\roneinterval!(r1-\i.south west)$) node[circle,draw,scale=0.1] (r1-\i-input-\roneinput) {}; % OUTPUTS MODULE 1 % the number of outputs of module one is the number of modules stage 2 \rtwo \pgfmathsetmacro\roneintervalspace{1/(\rtwo+1)} \foreach \roneoutput[evaluate=\roneoutput as \roneinterval using \roneintervalspace*\roneoutput] in {1,...,\rtwo} \node[circle,draw,scale=0.1] (r1-\i-output-\roneoutput)at($(r1-\i.north east)!\roneinterval!(r1-\i.south east)$) {}; } % MODULE 2 \foreach \i in {1,...,\rtwo}{ \path let \n1 = {int(0-\i)}, \n2={\increment} in node[module extensible={\r*0.5*\modulesize},#1,module opacity,yshift=1cm] (r2-\i) at +(\xincrement,\n2) {\pgfmathparse{int(multiply(\n1,-1))}\pgfmathresult}; % INPUTS MODULE 2 % the number of inputs of module two is the number of modules stage 1 \rone \pgfmathsetmacro\rtwointervalspace{1/(\r+1)} \foreach \rtwoinput[evaluate=\rtwoinput as \rtwointerval using \rtwointervalspace*\rtwoinput] in {1,...,\r} \node[circle,draw,scale=0.1] (r2-\i-input-\rtwoinput)at($(r2-\i.north west)!\rtwointerval!(r2-\i.south west)$) {}; % OUTPUTS MODULE 2 % the number of outputs module two is exactly \rthree \pgfmathsetmacro\rtwointervalspace{1/(\r+1)} \foreach \rtwooutput[evaluate=\rtwooutput as \rtwointerval using \rtwointervalspace*\rtwooutput] in {1,...,\r} \node[circle,draw,scale=0.1] (r2-\i-output-\rtwooutput)at ($(r2-\i.north east)!\rtwointerval!(r2-\i.south east)$) {}; } % MODULE 3 \foreach \i in {1,...,\r}{ \path let \n1 = {int(0-\i)}, \n2={0-\i*\moduleysep} in node[module,#1,module opacity,yshift=1cm] (r3-\i) at +(2*\xincrement,\n2) {\pgfmathparse{int(multiply(\n1,-1))}\pgfmathresult}; % INPUTS MODULE 3 % the number of inputs of module three is the number of modules stage 2 \rtwo \pgfmathsetmacro\rthreeintervalspace{1/(\rtwo+1)} \foreach \rthreeinput[evaluate=\rthreeinput as \rthreeinterval using \rthreeintervalspace*\rthreeinput] in {1,...,\rtwo} \node[circle,draw,scale=0.1] (r3-\i-input-\rthreeinput)at($(r3-\i.north west)!\rthreeinterval!(r3-\i.south west)$) {}; % OUTPUTS MODULE 3 % the number of outputs module three is exactly \m \pgfmathsetmacro\rthreeintervalspace{1/(\m+1)} \foreach \rthreeoutput[evaluate=\rthreeoutput as \rthreeinterval using \rthreeintervalspace*\rthreeoutput] in {1,...,\m} \draw ($(r3-\i.north east)!\rthreeinterval!(r3-\i.south east)+(0.5*\pinlength,0)$)node[scale=0.1](r3-\i-front output-\rthreeoutput){}--($(r3-\i.north east)!\rthreeinterval!(r3-\i.south east)$) node[circle,draw,scale=0.1] (r3-\i-output-\rthreeoutput) {}; } % Test if connections should be removed \ifconnectiondisabled \relax \else % DRAWING CONNECTIONS %% from r1 to r2 \foreach \startmodule in {1,...,\r}{ \foreach \conn in {1,...,\rtwo} \draw(r1-\startmodule-output-\conn)--(r2-\conn-input-\startmodule); } %% from r2 to r3 \foreach \startmodule in {1,...,\r}{ \foreach \conn in {1,...,\rtwo} \draw(r3-\startmodule-input-\conn)--(r2-\conn-output-\startmodule); } \fi } } % BENES COMPLETE \tikzset{benes complete/.code={ % Number of ports per module \pgfmathtruncatemacro{\m}{2} % Number of modules in the first/third stage \pgfmathtruncatemacro{\r}{\P/\m} % Number of stages \pgfmathtruncatemacro{\stages}{2*round(log2(\P))-1} % MODULES for all stages \foreach \s [evaluate=\s as \numstage using int(\s-1)] in {1,...,\stages}{ \ifnum\s=1 % FIRST MODULE \foreach \i in {1,...,\r}{ \path let \n1 = {int(0-\i)}, \n2={0-\i*\moduleysep} in node[module,#1,module opacity,yshift=1cm] (r\s-\i) at +(0,\n2) {\pgfmathparse{int(multiply(\n1,-1))}\pgfmathresult}; % INPUTS MODULE 1 % the number of inputs module one is exactly \mone \pgfmathsetmacro\roneintervalspace{1/(\m+1)} \foreach \roneinput[evaluate=\roneinput as \roneinterval using \roneintervalspace*\roneinput] in {1,...,\m} \draw ($(r1-\i.north west)!\roneinterval!(r1-\i.south west)-(0.5*\pinlength,0)$)node[scale=0.1](r1-\i-front input-\roneinput){}--($(r1-\i.north west)!\roneinterval!(r1-\i.south west)$) node[circle,draw,scale=0.1] (r1-\i-input-\roneinput) {}; % OUTPUTS MODULE 1 % the number of outputs of module one is the number of modules stage 2 \pgfmathsetmacro\roneintervalspace{1/(\m+1)} \foreach \roneoutput[evaluate=\roneoutput as \roneinterval using \roneintervalspace*\roneoutput] in {1,...,\m} \node[circle,draw,scale=0.1] (r1-\i-output-\roneoutput)at($(r1-\i.north east)!\roneinterval!(r1-\i.south east)$) {}; } \fi \ifnum\s=\stages % FINAL MODULE \foreach \i in {1,...,\r}{ \path let \n1 = {int(0-\i)}, \n2={0-\i*\moduleysep} in node[module,#1,module opacity,yshift=1cm] (r\s-\i) at +(\numstage*0.6*\modulexsep,\n2) {\pgfmathparse{int(multiply(\n1,-1))}\pgfmathresult}; % INPUTS MODULE \s % the number of inputs of module three is the number of modules stage 2 \rtwo \pgfmathsetmacro\rintervalspace{1/(\m+1)} \foreach \rinput[evaluate=\rinput as \rinterval using \rintervalspace*\rinput] in {1,...,\m} \node[circle,draw,scale=0.1] (r\s-\i-input-\rinput)at($(r\s-\i.north west)!\rinterval!(r\s-\i.south west)$) {}; % OUTPUTS MODULE \s % the number of outputs module three is exactly \mthree \pgfmathsetmacro\rintervalspace{1/(\m+1)} \foreach \routput[evaluate=\routput as \rinterval using \rintervalspace*\routput] in {1,...,\m} \draw ($(r\s-\i.north east)!\rinterval!(r\s-\i.south east)+(0.5*\pinlength,0)$)node[scale=0.1](r\s-\i-front output-\routput){}--($(r\s-\i.north east)!\rinterval!(r\s-\i.south east)$) node[circle,draw,scale=0.1] (r\s-\i-output-\routput) {}; } \fi \pgfmathparse{and(\s>1,\s<\stages)} \let\cond\pgfmathresult \ifnum\cond=1 % INTERMEDIATE MODULEs \foreach \i in {1,...,\r}{ \path let \n1 = {int(0-\i)}, \n2={0-\i*\moduleysep} in node[module,#1,module opacity,yshift=1cm] (r\s-\i) at +(\numstage*0.6*\modulexsep,\n2) {\pgfmathparse{int(multiply(\n1,-1))}\pgfmathresult}; % INPUTS MODULE \s % the number of inputs of module three is the number of modules stage 2 \rtwo \pgfmathsetmacro\rintervalspace{1/(\m+1)} \foreach \rinput[evaluate=\rinput as \rinterval using \rintervalspace*\rinput] in {1,...,\m} \node[circle,draw,scale=0.1] (r\s-\i-input-\rinput)at($(r\s-\i.north west)!\rinterval!(r\s-\i.south west)$) {}; % OUTPUTS MODULE \s % the number of outputs module three is exactly \mthree \pgfmathsetmacro\rintervalspace{1/(\m+1)} \foreach \routput[evaluate=\routput as \rinterval using \rintervalspace*\routput] in {1,...,\m} \node[circle,draw,scale=0.1] (r\s-\i-output-\routput) at($(r\s-\i.north east)!\rinterval!(r\s-\i.south east)$) {}; } \fi } % end modules % Test if connections should be removed \ifconnectiondisabled \relax \else % CONNECTIONS % the algorithm works for all the stages a part from the two in the middle \ifnum\P>4 % in this case there are just two stages, thus the algorithm fails: treat it separately % Compute \stages/2: they are the stages from left to the middle or from right to the middle \pgfmathparse{floor(divide(\stages,2))} \pgfmathtruncatemacro\stagesondirection{\pgfmathresult-1} % on left \foreach \stg[evaluate=\stg as \nextstg using int(\stg+1)] in {1,...,\stagesondirection}{ \pgfmathtruncatemacro\applicationon{\P/(2^\stg)}% number of modules over which the algorithm is applied \pgfmathtruncatemacro\repetition{int(2^(\stg-1))}% the algorithm should be repeated for \repetition times \foreach \t in {1,...,\repetition}{ \pgfmathtruncatemacro\startingpoint{1+((\t-1)*\applicationon)} \pgfmathtruncatemacro\endingpoint{(\startingpoint+\applicationon)-1} \foreach \startmodule in {\startingpoint,...,\endingpoint}{ \pgfmathisodd{\startmodule}{initmodule} \ifnum\t=1 \ifnum\initmodule=1 % if odd \pgfmathtruncatemacro\endmodulei{int((\startmodule+1)/2)} \pgfmathtruncatemacro\endmoduleii{int((\startmodule+1+\applicationon)/2)} \draw(r\stg-\startmodule-output-1)--(r\nextstg-\endmodulei-input-1); \draw(r\stg-\startmodule-output-2)--(r\nextstg-\endmoduleii-input-1); \else % if even \pgfmathtruncatemacro\endmodulei{int((\startmodule)/2)} \pgfmathtruncatemacro\endmoduleii{int((\startmodule+\applicationon)/2)} \draw(r\stg-\startmodule-output-1)--(r\nextstg-\endmodulei-input-2); \draw(r\stg-\startmodule-output-2)--(r\nextstg-\endmoduleii-input-2); \fi \fi \ifnum\t=2 \ifnum\initmodule=1 % if odd \pgfmathtruncatemacro\endmodulei{int((\startmodule+1)/2+(\applicationon/2))} \pgfmathtruncatemacro\endmoduleii{int((\startmodule+1+\applicationon)/2+(\applicationon/2))} \draw(r\stg-\startmodule-output-1)--(r\nextstg-\endmodulei-input-1); \draw(r\stg-\startmodule-output-2)--(r\nextstg-\endmoduleii-input-1); \else % if even \pgfmathtruncatemacro\endmodulei{int((\startmodule)/2+(\applicationon/2))} \pgfmathtruncatemacro\endmoduleii{int((\startmodule+\applicationon)/2+(\applicationon/2))} \draw(r\stg-\startmodule-output-1)--(r\nextstg-\endmodulei-input-2); \draw(r\stg-\startmodule-output-2)--(r\nextstg-\endmoduleii-input-2); \fi \fi \ifnum\t>2 \ifnum\initmodule=1 % if odd \pgfmathtruncatemacro\endmodulei{int((\startmodule+1)/2+(\applicationon/2)+((\applicationon/2)*(\t-2)))} \pgfmathtruncatemacro\endmoduleii{int((\startmodule+1+\applicationon)/2+(\applicationon/2)+((\applicationon/2)*(\t-2)))} \draw(r\stg-\startmodule-output-1)--(r\nextstg-\endmodulei-input-1); \draw(r\stg-\startmodule-output-2)--(r\nextstg-\endmoduleii-input-1); \else % if even \pgfmathtruncatemacro\endmodulei{int((\startmodule)/2+(\applicationon/2)+((\applicationon/2)*(\t-2)))} \pgfmathtruncatemacro\endmoduleii{int((\startmodule+\applicationon)/2+(\applicationon/2)+((\applicationon/2)*(\t-2)))} \draw(r\stg-\startmodule-output-1)--(r\nextstg-\endmodulei-input-2); \draw(r\stg-\startmodule-output-2)--(r\nextstg-\endmoduleii-input-2); \fi \fi } } } % on the right \foreach \stg[evaluate=\stg as \currstg using int(\stages-(\stg-1)), evaluate=\stg as \nextstg using int(\currstg-1)] in {1,...,\stagesondirection}{ \pgfmathtruncatemacro\applicationon{\P/(2^\stg)}% number of modules over which the algorithm is applied \pgfmathtruncatemacro\repetition{int(2^(\stg-1))}% the algorithm should be repeated for \repetition times \foreach \t in {1,...,\repetition}{ \pgfmathtruncatemacro\startingpoint{1+((\t-1)*\applicationon)} \pgfmathtruncatemacro\endingpoint{(\startingpoint+\applicationon)-1} \foreach \startmodule in {\startingpoint,...,\endingpoint}{ \pgfmathisodd{\startmodule}{initmodule} \ifnum\t=1 \ifnum\initmodule=1 % if odd \pgfmathtruncatemacro\endmodulei{int((\startmodule+1)/2)} \pgfmathtruncatemacro\endmoduleii{int((\startmodule+1+\applicationon)/2)} \draw(r\currstg-\startmodule-input-1)--(r\nextstg-\endmodulei-output-1); \draw(r\currstg-\startmodule-input-2)--(r\nextstg-\endmoduleii-output-1); \else % if even \pgfmathtruncatemacro\endmodulei{int((\startmodule)/2)} \pgfmathtruncatemacro\endmoduleii{int((\startmodule+\applicationon)/2)} \draw(r\currstg-\startmodule-input-1)--(r\nextstg-\endmodulei-output-2); \draw(r\currstg-\startmodule-input-2)--(r\nextstg-\endmoduleii-output-2); \fi \fi \ifnum\t=2 \ifnum\initmodule=1 % if odd \pgfmathtruncatemacro\endmodulei{int((\startmodule+1)/2+(\applicationon/2))} \pgfmathtruncatemacro\endmoduleii{int((\startmodule+1+\applicationon)/2+(\applicationon/2))} \draw(r\currstg-\startmodule-input-1)--(r\nextstg-\endmodulei-output-1); \draw(r\currstg-\startmodule-input-2)--(r\nextstg-\endmoduleii-output-1); \else % if even \pgfmathtruncatemacro\endmodulei{int((\startmodule)/2+(\applicationon/2))} \pgfmathtruncatemacro\endmoduleii{int((\startmodule+\applicationon)/2+(\applicationon/2))} \draw(r\currstg-\startmodule-input-1)--(r\nextstg-\endmodulei-output-2); \draw(r\currstg-\startmodule-input-2)--(r\nextstg-\endmoduleii-output-2); \fi \fi \ifnum\t>2 \ifnum\initmodule=1 % if odd \pgfmathtruncatemacro\endmodulei{int((\startmodule+1)/2+(\applicationon/2)+((\applicationon/2)*(\t-2)))} \pgfmathtruncatemacro\endmoduleii{int((\startmodule+1+\applicationon)/2+(\applicationon/2)+((\applicationon/2)*(\t-2)))} \draw(r\currstg-\startmodule-input-1)--(r\nextstg-\endmodulei-output-1); \draw(r\currstg-\startmodule-input-2)--(r\nextstg-\endmoduleii-output-1); \else % if even \pgfmathtruncatemacro\endmodulei{int((\startmodule)/2+(\applicationon/2)+((\applicationon/2)*(\t-2)))} \pgfmathtruncatemacro\endmoduleii{int((\startmodule+\applicationon)/2+(\applicationon/2)+((\applicationon/2)*(\t-2)))} \draw(r\currstg-\startmodule-input-1)--(r\nextstg-\endmodulei-output-2); \draw(r\currstg-\startmodule-input-2)--(r\nextstg-\endmoduleii-output-2); \fi \fi } } } \fi % * * * * % 2 Intermediate stages % Compute \stages/2 \pgfmathparse{floor(divide(\stages,2))} \pgfmathtruncatemacro\middlestage{\pgfmathresult} \pgfmathtruncatemacro\middlestagei{int(\middlestage+1)} \pgfmathtruncatemacro\middlestageii{int(\middlestagei+1)} % Drawing \foreach \startmodule in {1,...,\r}{ \pgfmathisodd{\startmodule}{initmodule} \ifnum\initmodule=1 % if odd \pgfmathtruncatemacro\endmodule{int(\startmodule+1)} \draw(r\middlestage-\startmodule-output-1)--(r\middlestagei-\startmodule-input-1); \draw(r\middlestage-\startmodule-output-2)--(r\middlestagei-\endmodule-input-1); \draw(r\middlestagei-\startmodule-output-1)--(r\middlestageii-\startmodule-input-1); \draw(r\middlestagei-\startmodule-output-2)--(r\middlestageii-\endmodule-input-1); \else % if even \pgfmathtruncatemacro\endmodule{int(\startmodule-1)} \draw(r\middlestage-\startmodule-output-1)--(r\middlestagei-\endmodule-input-2); \draw(r\middlestage-\startmodule-output-2)--(r\middlestagei-\startmodule-input-2); \draw(r\middlestagei-\startmodule-output-1)--(r\middlestageii-\endmodule-input-2); \draw(r\middlestagei-\startmodule-output-2)--(r\middlestageii-\startmodule-input-2); \fi } % end connections \fi % disable connections } } % BANYAN NETWORKS % BANYAN-OMEGA (thanks to Joćo Gabriel Reis) \tikzset{banyan omega/.code={ % Number of ports per module \pgfmathtruncatemacro{\m}{2} % Number of modules in each stage \pgfmathtruncatemacro{\r}{\P/\m} % Number of stages \pgfmathtruncatemacro{\stages}{round(log2(\P))} % Modules for all stages \foreach \s [evaluate=\s as \numstage using int(\s-1)] in {0,...,\stages}{ \ifnum\s=0 % Invisible modules \foreach \i in {1,...,\r}{ \path let \n2={-\i*\moduleysep} in node[rectangle,minimum height=\modulesize,#1,module opacity,xshift=\modulesize/2,yshift=1cm] (r\s-\i) at +(-0.6*\modulexsep,\n2) {}; % Invisible modules outputs \pgfmathsetmacro\rintervalspace{1/(\m+1)} \foreach \routput[evaluate=\routput as \rinterval using \rintervalspace*\routput] in {1,...,\m} \draw ($(r\s-\i.north east)!\rinterval!(r\s-\i.south east)+(0.5*0.3*\pinlength,0)$) node[coordinate] (r\s-\i-front output-\routput) {} -- ($(r\s-\i.north east)!\rinterval!(r\s-\i.south east)$)node[coordinate](r\s-\i-output-\routput) {}; \foreach \routput[evaluate=\routput as \rinterval using \rintervalspace*\routput] in {1,...,\m} \draw ($(r\s-\i.north east)!\rinterval!(r\s-\i.south east)-(0.5*0.3*\pinlength,0)$) node[circle,draw,scale=0.1] (r\s-\i-front input-\routput) {} -- ($(r\s-\i.north east)!\rinterval!(r\s-\i.south east)$)node[coordinate](r\s-\i-input-\routput) {}; } \fi \ifnum\s=\stages % Final Module \foreach \i in {1,...,\r}{ \path let \n1 = {int(0-\i)}, \n2={0-\i*\moduleysep} in node[module,#1,module opacity,yshift=1cm] (r\s-\i) at +(\numstage*0.6*\modulexsep,\n2) {\pgfmathparse{int(multiply(\n1,-1))}\pgfmathresult}; % Final module inputs \pgfmathsetmacro\roneintervalspace{1/(\m+1)} \foreach \roneinput[evaluate=\roneinput as \roneinterval using \roneintervalspace*\roneinput] in {1,...,\m} \draw ($(r\s-\i.north west)!\roneinterval!(r\s-\i.south west)-(0.5*0.3*\pinlength,0)$) node[coordinate](r\s-\i-front input-\roneinput) {} -- ($(r\s-\i.north west)!\roneinterval!(r\s-\i.south west)$)node[circle,draw,scale=0.1] (r\s-\i-input-\roneinput) {}; % Final module outputs \pgfmathsetmacro\rintervalspace{1/(\m+1)} \foreach \routput[evaluate=\routput as \rinterval using \rintervalspace*\routput] in {1,...,\m} \draw ($(r\s-\i.north east)!\rinterval!(r\s-\i.south east)+(0.5*0.3*\pinlength,0)$) node[coordinate](r\s-\i-front output-\routput) {} -- ($(r\s-\i.north east)!\rinterval!(r\s-\i.south east)$)node[circle,draw,scale=0.1] (r\s-\i-output-\routput) {}; } \fi \pgfmathparse{and(\s>0,\s<\stages)} \let\cond\pgfmathresult \ifnum\cond=1 % Intermediate modules \foreach \i in {1,...,\r}{ \path let \n1 = {int(0-\i)}, \n2={0-\i*\moduleysep} in node[module,#1,module opacity,yshift=1cm] (r\s-\i) at +(\numstage*0.6*\modulexsep,\n2) {\pgfmathparse{int(multiply(\n1,-1))}\pgfmathresult}; % Intermediate modules inputs \pgfmathsetmacro\roneintervalspace{1/(\m+1)} \foreach \roneinput[evaluate=\roneinput as \roneinterval using \roneintervalspace*\roneinput] in {1,...,\m} \draw ($(r\s-\i.north west)!\roneinterval!(r\s-\i.south west)-(0.5*0.3*\pinlength,0)$) node[coordinate](r\s-\i-front input-\roneinput) {} -- ($(r\s-\i.north west)!\roneinterval!(r\s-\i.south west)$)node[circle,draw,scale=0.1] (r\s-\i-input-\roneinput) {}; % Intermediate modules outputs \pgfmathsetmacro\rintervalspace{1/(\m+1)} \foreach \routput[evaluate=\routput as \rinterval using \rintervalspace*\routput] in {1,...,\m} \draw ($(r\s-\i.north east)!\rinterval!(r\s-\i.south east)+(0.5*0.3*\pinlength,0)$) node[coordinate](r\s-\i-front output-\routput) {} -- ($(r\s-\i.north east)!\rinterval!(r\s-\i.south east)$)node[circle,draw,scale=0.1] (r\s-\i-output-\routput) {}; } \fi } % Test if connections should be removed \ifconnectiondisabled \relax \else % Connections \foreach \stg[evaluate=\stg as \prevstg using int(\stg - 1)] in {1,...,\stages}{ \foreach \startmod in {1,...,\r}{ \pgfmathomegarotation{2*(\startmod - 1)}{\stages - 1}{address} \pgfmathtruncatemacro\endmodi{\address/2 + 1} \pgfmathtruncatemacro\endmodii{\endmodi + \r/2} \pgfmathtruncatemacro\cond{mod(\startmod,2)} \ifnum\cond=0 \draw(r\stg-\startmod-front input-1)--(r\prevstg-\endmodi-front output-2); \draw(r\stg-\startmod-front input-2)--(r\prevstg-\endmodii-front output-2); \else \draw(r\stg-\startmod-front input-1)--(r\prevstg-\endmodi-front output-1); \draw(r\stg-\startmod-front input-2)--(r\prevstg-\endmodii-front output-1); \fi } } \fi } } % BANYAN-FLIP \tikzset{banyan flip/.code={ % Number of ports per module \pgfmathtruncatemacro{\m}{2} % Number of modules in each stage \pgfmathtruncatemacro{\r}{\P/\m} % Number of stages \pgfmathtruncatemacro{\stages}{round(log2(\P))} % Modules for all stages \foreach \s [evaluate=\s as \numstage using int(\s-1)] in {0,...,\stages}{ \ifnum\s=0 % Final Module \foreach \i in {1,...,\r}{ \path let \n1 = {int(0-\i)}, \n2={0-\i*\moduleysep} in node[module,#1,module opacity,yshift=1cm] (r\s-\i) at +(\numstage*0.6*\modulexsep,\n2) {\pgfmathparse{int(multiply(\n1,-1))}\pgfmathresult}; % Final module inputs \pgfmathsetmacro\roneintervalspace{1/(\m+1)} \foreach \roneinput[evaluate=\roneinput as \roneinterval using \roneintervalspace*\roneinput] in {1,...,\m} \draw ($(r\s-\i.north west)!\roneinterval!(r\s-\i.south west)-(0.5*0.3*\pinlength,0)$) node[coordinate](r\s-\i-front input-\roneinput) {} -- ($(r\s-\i.north west)!\roneinterval!(r\s-\i.south west)$) node[circle,draw,scale=0.1] (r\s-\i-input-\roneinput) {}; % Final module outputs \pgfmathsetmacro\rintervalspace{1/(\m+1)} \foreach \routput[evaluate=\routput as \rinterval using \rintervalspace*\routput] in {1,...,\m} \draw ($(r\s-\i.north east)!\rinterval!(r\s-\i.south east)+(0.5*0.3*\pinlength,0)$) node[coordinate](r\s-\i-front output-\routput) {} -- ($(r\s-\i.north east)!\rinterval!(r\s-\i.south east)$) node[circle,draw,scale=0.1] (r\s-\i-output-\routput) {}; } \fi \ifnum\s=\stages % Invisible modules \foreach \i in {1,...,\r}{ \path let \n2={-\i*\moduleysep} in node[rectangle,minimum height=\modulesize,#1,module opacity,xshift=\modulesize/2,yshift=1cm] (r\s-\i) at +(\numstage*0.415*\modulexsep,\n2) {}; % Invisible modules outputs \pgfmathsetmacro\rintervalspace{1/(\m+1)} \foreach \roneinput[evaluate=\roneinput as \rinterval using \rintervalspace*\roneinput] in {1,...,\m} \draw ($(r\s-\i.north west)!\rinterval!(r\s-\i.south west)$)node [coordinate](r\s-\i-input-\roneinput) {} -- ($(r\s-\i.north west)!\rinterval!(r\s-\i.south west)-(0.5*0.3*\pinlength,0)$) node [coordinate] (r\s-\i-front input-\roneinput) {}; \foreach \roneinput[evaluate=\roneinput as \rinterval using \rintervalspace*\roneinput] in {1,...,\m} \draw ($(r\s-\i.north west)!\rinterval!(r\s-\i.south west)$)node [coordinate](r\s-\i-input-\roneinput) {} -- ($(r\s-\i.north west)!\rinterval!(r\s-\i.south west)+(0.5*0.3*\pinlength,0)$) node [circle,draw,scale=0.1] (r\s-\i-front output-\roneinput) {}; } \fi \pgfmathparse{and(\s>0,\s<\stages)} \let\cond\pgfmathresult \ifnum\cond=1 % Intermediate modules \foreach \i in {1,...,\r}{ \path let \n1 = {int(0-\i)}, \n2={0-\i*\moduleysep} in node[module,#1,module opacity,yshift=1cm] (r\s-\i) at +(\numstage*0.6*\modulexsep,\n2) {\pgfmathparse{int(multiply(\n1,-1))}\pgfmathresult}; % Intermediate modules inputs \pgfmathsetmacro\roneintervalspace{1/(\m+1)} \foreach \roneinput[evaluate=\roneinput as \roneinterval using \roneintervalspace*\roneinput] in {1,...,\m} \draw ($(r\s-\i.north west)!\roneinterval!(r\s-\i.south west)-(0.5*0.3*\pinlength,0)$) node[coordinate](r\s-\i-front input-\roneinput) {} -- ($(r\s-\i.north west)!\roneinterval!(r\s-\i.south west)$) node[circle,draw,scale=0.1] (r\s-\i-input-\roneinput) {}; % Intermediate modules outputs \pgfmathsetmacro\rintervalspace{1/(\m+1)} \foreach\routput[evaluate=\routput as \rinterval using \rintervalspace*\routput] in {1,...,\m} \draw ($(r\s-\i.north east)!\rinterval!(r\s-\i.south east)+(0.5*0.3*\pinlength,0)$) node[coordinate](r\s-\i-front output-\routput) {} -- ($(r\s-\i.north east)!\rinterval!(r\s-\i.south east)$) node[circle,draw,scale=0.1] (r\s-\i-output-\routput) {}; } \fi } % Test if connections should be removed \ifconnectiondisabled \relax \else % Connections \foreach \stg[evaluate=\stg as \prevstg using int(\stg - 1)] in {1,...,\stages}{ \foreach \startmod in {1,...,\r}{ \pgfmathomegarotation{2*(\startmod - 1)}{\stages - 1}{address} \pgfmathtruncatemacro\endmodi{\address/2 + 1} \pgfmathtruncatemacro\endmodii{\endmodi + \r/2} \pgfmathtruncatemacro\cond{mod(\startmod,2)} \ifnum\cond=0 \draw(r\stg-\startmod-front input-1)--(r\prevstg-\endmodi-front output-2); \draw(r\stg-\startmod-front input-2)--(r\prevstg-\endmodii-front output-2); \else \draw(r\stg-\startmod-front input-1)--(r\prevstg-\endmodi-front output-1); \draw(r\stg-\startmod-front input-2)--(r\prevstg-\endmodii-front output-1); \fi } } \fi } } \endinput