% The Dynkin Diagrams package. % % Version 3.141592653589793 % % This package draws Dynkin diagrams in LaTeX % documents, using the TikZ package. % Please see the file dynkin-diagrams.tex % for examples of use of this package. % % Benjamin McKay % b.mckay@ucc.ie % % Released under the LaTeX Project Public License v1.3c or later, see % http://www.latex-project.org/lppl.txt \NeedsTeXFormat{LaTeX2e}[1994/06/01] \ProvidesPackage{dynkin-diagrams}[2021/03/31 Dynkin diagrams] \RequirePackage{tikz} \RequirePackage{xstring} \RequirePackage{xparse} \RequirePackage{etoolbox} \RequirePackage{expl3} \RequirePackage{pgfkeys} \RequirePackage{pgfopts} \RequirePackage{amsmath} \RequirePackage{amssymb} \RequirePackage{mathtools} \usetikzlibrary{ arrows, arrows.meta, backgrounds, calc, decorations.markings, decorations.pathreplacing, decorations.pathmorphing, fit, patterns, shadows} %%% %%% Application programming interface: %%% See dynkin-diagrams.tex file for examples of use. %%% \ifx\draw@lie@hasse@root\undefined\relax \pgfdeclarelayer{background} \pgfdeclarelayer{Dynkin behind} \pgfsetlayers{background,Dynkin behind,main} \fi \newif\ifold@dynkin@is@backwards \newif\ifold@dynkin@is@upsidedown \newif\ifold@dynkin@is@extended \newif\ifold@dynkin@label@the@roots \newif\ifold@dynkin@label@star@the@roots \newif\ifold@dynkin@is@twisted \newif\ifold@dynkin@reverse@arrows \newif\ifold@dynkin@left@fold \newif\ifold@dynkin@right@fold \newif\ifold@dynkin@odd \NewDocumentCommand\dynkin@save{}% {% \xdef\dynkin@ply@value{1}% \ifdynkin@is@backwards\global\old@dynkin@is@backwardstrue\else\global\old@dynkin@is@backwardsfalse\fi% \ifdynkin@is@upsidedown\global\old@dynkin@is@upsidedowntrue\else\global\old@dynkin@is@upsidedownfalse\fi% \ifdynkin@is@extended\global\old@dynkin@is@extendedtrue\else\global\old@dynkin@is@extendedfalse\fi% {\global\dynkin@is@twistedfalse}% \ifdynkin@label@the@roots\global\old@dynkin@label@the@rootstrue\else\global\old@dynkin@label@the@rootsfalse\fi% \ifdynkin@label@star@the@roots\global\old@dynkin@label@star@the@rootstrue\else\global\old@dynkin@label@star@the@rootsfalse\fi% \ifdynkin@is@twisted\global\old@dynkin@is@twistedtrue\else\global\old@dynkin@is@twistedfalse\fi% \ifdynkin@reverse@arrows\global\old@dynkin@reverse@arrowstrue\else\global\old@dynkin@reverse@arrowsfalse\fi% \ifdynkin@left@fold\global\old@dynkin@left@foldtrue\else\global\old@dynkin@left@foldfalse\fi% \ifdynkin@left@fold\global\old@dynkin@right@foldtrue\else\global\old@dynkin@right@foldfalse\fi% \ifdynkin@odd\global\old@dynkin@oddtrue\else\global\old@dynkin@oddfalse\fi% }% \NewDocumentCommand\dynkin@restore{}% {% \ifold@dynkin@is@backwards\global\dynkin@is@backwardstrue\else\global\dynkin@is@backwardsfalse\fi% \ifold@dynkin@is@upsidedown\global\dynkin@is@upsidedowntrue\else\global\dynkin@is@upsidedownfalse\fi% \ifold@dynkin@is@extended\global\dynkin@is@extendedtrue\else\global\dynkin@is@extendedfalse\fi% \ifold@dynkin@label@the@roots\global\dynkin@label@the@rootstrue\else\global\dynkin@label@the@rootsfalse\fi% \ifold@dynkin@label@star@the@roots\global\dynkin@label@star@the@rootstrue\else\global\dynkin@label@star@the@rootsfalse\fi% \ifold@dynkin@is@twisted\global\dynkin@is@twistedtrue\else\global\dynkin@is@twistedfalse\fi% \ifold@dynkin@reverse@arrows\global\dynkin@reverse@arrowstrue\else\global\dynkin@reverse@arrowsfalse\fi% \ifold@dynkin@left@fold\global\dynkin@left@foldtrue\else\global\dynkin@left@foldfalse\fi% \ifold@dynkin@left@fold\global\dynkin@right@foldtrue\else\global\dynkin@right@foldfalse\fi% \ifold@dynkin@odd\global\dynkin@oddtrue\else\global\dynkin@oddfalse\fi% }% \NewDocumentEnvironment{dynkinDiagram}{O{}mO{0}m}% {% \dynkin@save{}% \begin{tikzpicture}[baseline=(origin.base)]% \@dynkin[#1]{#2}[#3]{#4}% }% {% \end{tikzpicture}% \dynkin@restore{}% }% \NewDocumentCommand\dynkin@check@if@in@tikZ{}% {\ifdefined\filldraw\relax\else\dynkin@error@not@in@tikz\fi} \NewDocumentCommand\dynkin{O{}mO{0}m}% {% \dynkin@save{}% \ifdefined\filldraw\relax% \@dynkin[vertical shift=0,#1]{#2}[#3]{#4}% \else% \tikz[baseline=(origin.base)]{\@dynkin[#1]{#2}[#3]{#4}}% \fi% \dynkin@restore{}% }% %% Names for Dynkin diagrams. \xdef\dynkin@indefinite@number@symbol{n} \NewDocumentCommand\dynkinIndefiniteSymbol{m}% {% \xdef\dynkin@indefinite@number@symbol{#1}% }% \NewDocumentCommand\dynkinName{O{}mO{0}m}% {% \dynkin@save{}% \xdef\dynkin@ply@value{1}% \xdef\dynkin@label@directions{}% \xdef\dynkin@label@directions@star{}% \setcounter{dynkinRootNo}{0}% \dynkin@clear@indefinite@edge@list% \xdef\dynkin@parabolic{0}% \pgfkeys{/Dynkin diagram, #1}% \xdef\dynkin@user@series{#2}% \xdef\dynkin@twisted@series{#3}% \xdef\dynkin@user@string{#4}% \xdef\dynkin@string{#4}% \xdef\dynkin@series{#2}% \dynkin@grok@series% \IfSubStr{ABCDEFGHI}{\dynkin@series}{}{\dynkin@error@series}% \IfInteger{\dynkin@string}% {% \dynkin@integer@rank% }% {% % Turn Satake codes into Dynkin diagram expressions in \dynkin@string. \dynkin@grok@Satake@codes% }% % Expand out any digits in \dynkin@string into multiples of the various root marks. \expand@Dynkin@Roots@Digits% % Assign to \dynkin@roots the input string \dynkin@string with all . symbols removed, % so we only get the symbols representing the marks for the various roots. \StrDel{\dynkin@string}{.}[\temp]% \xdef\dynkin@roots{\temp}% \StrLen{\dynkin@roots}[\temp]% \global\dynkin@nodes=\temp\relax% \dynkin@grok@indefinite@edges% \dynkin@find@rank{}% \ensuremath{% \dynkin@series^{% \ifdynkin@is@extended{1}% \else{% \IfStrEq{\dynkin@twisted@series}{0}% {}% {\dynkin@twisted@series}% }% \fi% }% _% {% \ifx\dynkin@user@string\empty\relax% \dynkin@indefinite@number@symbol% \else% \ifdynkin@Satake@diagram% \dynkin@user@string% \else% \IfStrEq{\dynkin@user@string}{even}{ev}% {% \IfStrEq{\dynkin@user@string}{odd}{od}% {% \the\dynkin@rank% }% }% \fi% \fi% \IfStrEq{\dynkin@parabolic}{0}% {}% {,\dynkin@parabolic} }% }% \dynkin@restore{}% }% %% Returns the current Dynkin diagram ordering as a string. \NewDocumentCommand\currentDynkinOrdering{}% {% \dynkin@ordering% }% \newcount\dynkinOverrideRoot \NewDocumentCommand\dynkin@override@label@directions{}% {% \dynkinOverrideRoot1\relax% \ifdynkin@is@extended% \global\dynkinOverrideRoot0\relax% \fi% \foreach \overRide in \dynkin@label@directions@override {% \IfStrEq{\overRide}{}% {% }% {% \dynkinPutLabelInDirection{\the\dynkinOverrideRoot}{\overRide}% }% \global\advance\dynkinOverrideRoot by 1\relax% }% }% \NewDocumentCommand\dynkinRefreshRoots{}% {% \dynkin@override@label@directions{}% \dynkin@draw@all@roots{}% \ifdynkin@label@the@roots% \dynkinPrintLabels{}% \fi% \ifdynkin@label@star@the@roots% \dynkinPrintLabelsStar{}% \fi% }% \xdef\dynkin@label@direction{} \NewDocumentCommand\dynkin@translate@direction{m}% {% \xdef\Dir{#1} \ifdynkin@is@backwards \IfStrEqCase{\Dir}{% {0}{\xdef\Dir{4}}% {1}{\xdef\Dir{3}}% {2}{\xdef\Dir{2}}% {3}{\xdef\Dir{1}}% {4}{\xdef\Dir{0}}% {5}{\xdef\Dir{7}}% {6}{\xdef\Dir{6}}% {7}{\xdef\Dir{5}}% }% [\ClassError% {Dynkin diagrams}% {Unrecognized root label direction: ``\temp'' in Dynkin diagram \dynkin@user@series{\dynkin@user@string}}% {}] \fi \ifdynkin@is@upsidedown \IfStrEqCase{\Dir}{% {1}{\xdef\Dir{7}}% {2}{\xdef\Dir{6}}% {3}{\xdef\Dir{5}}% {5}{\xdef\Dir{3}}% {6}{\xdef\Dir{2}}% {7}{\xdef\Dir{1}}% }% \fi \IfStrEqCase{\Dir}{% {0}{\xdef\dynkin@label@direction{right}}% {1}{\xdef\dynkin@label@direction{above right}}% {2}{\xdef\dynkin@label@direction{above}}% {3}{\xdef\dynkin@label@direction{above left}}% {4}{\xdef\dynkin@label@direction{left}}% {5}{\xdef\dynkin@label@direction{below left}}% {6}{\xdef\dynkin@label@direction{below}}% {7}{\xdef\dynkin@label@direction{below right}}% }% }% \newcount\dynkin@rpo% \NewDocumentCommand\drlap{m}% {% \IfStrEq{\dynkin@label@direction}{left}% {% #1% }% {% \IfStrEq{\dynkin@label@direction}{right}% {% #1% }% {% \mathrlap{#1}% }% }% }% %% \dynkinLabelRoot{}{} or \dynkinLabelRoot*{}{} %% Prints the label string on the Dynkin diagram at root number , in the current ordering convention. %% Starred form uses the alternate label location. \NewDocumentCommand\dynkinLabelRoot{smm}% {% \dynkin@check@if@in@tikZ% \ifnum\dynkin@nodes<#2\relax% \ClassError{Dynkin diagrams}% {Unrecognized root: ``#2'' found when labelling Dynkin diagram \dynkin@user@series{\dynkin@user@string}. Allowed values are up to \the\dynkin@nodes}% {}% \fi% \ifx#3\empty\relax% \else% \dynkin@rpo=#2\relax% \advance\dynkin@rpo by 1\relax% \IfBooleanTF{#1}% {% \StrMid{\dynkin@label@directions@star}{\the\dynkin@rpo}{\the\dynkin@rpo}[\dynkin@direction@letter]% }% {% \StrMid{\dynkin@label@directions}{\the\dynkin@rpo}{\the\dynkin@rpo}[\dynkin@direction@letter]% }% \dynkin@translate@direction{\dynkin@direction@letter}% \IfBooleanTF{#1}% {% \node[inner sep=\dynkin@root@radius,% label={% [/Dynkin diagram/text style]% \dynkin@label@direction:% \(\pgfkeys{/Dynkin diagram/label macro*=#3}\)% }% ]% at (\dynkin@root@name #2){};% }% {% \node[inner sep=\dynkin@root@radius,% label={% [/Dynkin diagram/text style]% \dynkin@label@direction:% \(\pgfkeys{/Dynkin diagram/label macro=#3}\)% }% ]% at (\dynkin@root@name #2){};% }% \fi% }% \newcounter{dynkinRootNo} \NewDocumentCommand\@dynkinLabelThisRoot{m}% {% \stepcounter{dynkinRootNo}% \dynkinLabelRoot{\arabic{dynkinRootNo}}{#1}% }% \NewDocumentCommand\@dynkinLabelThisRootStar{m}% {% \stepcounter{dynkinRootNo}% \dynkinLabelRoot*{\arabic{dynkinRootNo}}{#1}% }% \NewDocumentCommand\dynkinBrace{somm}%[text]{start}{end} {% \dynkin@check@if@in@tikZ% \IfBooleanTF{#1}% {% \xdef\braceYshift{1mm}% }% {% \xdef\braceYshift{-1mm}% }% \draw[% decoration=% {% brace, \IfBooleanF{#1}{mirror}, raise=0.05cm, },% decorate]% ($(root #3)-({\dynkin@root@radius}, \IfBooleanTF{#1}% {{-\dynkin@root@radius}}% {{\dynkin@root@radius}}% )$) -- ($(root #4)+({\dynkin@root@radius}, \IfBooleanTF{#1}% {{\dynkin@root@radius}}% {{-\dynkin@root@radius}}% )$) node% [% pos=0.5,% anchor=\IfBooleanTF{#1}{south}{north},% yshift=\braceYshift,% /Dynkin diagram/text style% ]% {\IfValueT{#2}{\(#2\)}};% }% \NewDocumentCommand\dynkin@involution{somD<>{}om}% {% \begin{pgfonlayer}{Dynkin behind}% \IfValueTF{#2}% {% \IfValueTF{#5}% {% \draw[/Dynkin diagram/involution,#2] (root #3) to node[% midway, /Dynkin diagram/text style, #4] {$#5$} (root #6);% }% {% \draw[/Dynkin diagram/involution,#2] (root #3) to (root #6);% }% }% {% \IfBooleanTF{#1} {% \IfValueTF{#5}% {% \draw[/Dynkin diagram/involution] (root #3) to node[% midway, /Dynkin diagram/text style, #4] {$#5$} (root #6);% }% {% \draw[/Dynkin diagram/involution] (root #3) to[bend left] (root #6);% }% }% {% \IfValueTF{#5}% {% \draw[/Dynkin diagram/involution] (root #3) to[bend right] node[% midway, /Dynkin diagram/text style, #4] {$#5$} (root #6);% }% {% \draw[/Dynkin diagram/involution] (root #3) to[bend right] (root #6);% }% }% }% \end{pgfonlayer}% }% \DeclareListParser*{\forDynkinSemicolonsvlist}{;} \def\dynkin@involution@input@splitter#1{\dynkin@involution#1} \NewDocumentCommand\dynkin@draw@involutions{}% {% \expandafter\forDynkinSemicolonsvlist% \expandafter\dynkin@involution@input@splitter% \expandafter{\dynkin@involution@list}% }% %% \dynkinPrintLabels %% Prints the labels on the Dynkin diagram,in the given ordering. Uses the default labels if ``label'' is set without a list of ``labels'' being set. \newcommand{\dynkinPrintLabels}% {% \dynkin@check@if@in@tikZ% \ifx\dynkin@label@list\empty\relax% \foreach \i in {1,...,\the\dynkin@nodes}{\dynkinLabelRoot{\i}{\i}}% \ifdynkin@is@extended% \dynkinLabelRoot{0}{0}% \else% \ifdynkin@is@twisted% \dynkinLabelRoot{0}{0}% \fi% \fi% \else% \ifdynkin@is@extended% \setcounter{dynkinRootNo}{-1}% \else% \ifdynkin@is@twisted% \setcounter{dynkinRootNo}{-1}% \else% \setcounter{dynkinRootNo}{0}% \fi% \fi% \foreach \i in \dynkin@label@list% {% \@dynkinLabelThisRoot{\i}% }% \ifdynkin@is@extended% \setcounter{dynkinRootNo}{-1}% \else% \ifdynkin@is@twisted% \setcounter{dynkinRootNo}{-1}% \else% \setcounter{dynkinRootNo}{0}% \fi% \fi% \fi% }% % Print alternate location labels. \newcommand{\dynkinPrintLabelsStar}% {% \dynkin@check@if@in@tikZ% \ifx\dynkin@label@list@star\empty\relax% \foreach \i in {1,...,\the\dynkin@nodes}{\dynkinLabelRoot*{\i}{\i}}% \ifdynkin@is@extended% \dynkinLabelRoot*{0}{0}% \else% \ifdynkin@is@twisted% \dynkinLabelRoot*{0}{0}% \fi% \fi% \else% \ifdynkin@is@extended% \setcounter{dynkinRootNo}{-1}% \else% \ifdynkin@is@twisted% \setcounter{dynkinRootNo}{-1}% \else% \setcounter{dynkinRootNo}{0}% \fi% \fi% \foreach \i in \dynkin@label@list@star% {% \@dynkinLabelThisRootStar{\i}% }% \ifdynkin@is@extended% \setcounter{dynkinRootNo}{-1}% \else% \ifdynkin@is@twisted% \setcounter{dynkinRootNo}{-1}% \else% \setcounter{dynkinRootNo}{0}% \fi% \fi% \fi% }% %% \dynkinEdgeLabel{}{}{} %% Prints between root and on the current Dynkin diagram in the current root ordering. \NewDocumentCommand\dynkinEdgeLabel{mmm}% {% \convertRootPair{#1}{#2}% \node[inner sep=\dynkin@root@radius,% label={% [/Dynkin diagram/text style,/Dynkin diagram/edge label]% above: \(\pgfkeys{/Dynkin diagram/label macro*=#3}\)% }% ] at ($.5*(\dynkin@root@name \the\@dynkin@from@root)+.5*(\dynkin@root@name \the\@dynkin@to@root)$) {}; }% \NewDocumentCommand\dynkinDrawCrossRootMark{O{}m}% {% \draw[/Dynkin diagram,x,#1]% ($(#2)+(\dynkin@root@radius,\dynkin@root@radius)$)% --% ($(#2)-(\dynkin@root@radius,\dynkin@root@radius)$);% \draw[/Dynkin diagram,x,#1]% ($(#2)+(-\dynkin@root@radius,\dynkin@root@radius)$)% --% ($(#2)+(\dynkin@root@radius,-\dynkin@root@radius)$);% }% %% \dynkinCrossRootMark{} %% Prints a cross at root on the current Dynkin diagram. %% The starred form accepts in the Bourbaki ordering. \NewDocumentCommand\dynkinCrossRootMark{sO{}m}% {% \dynkin@check@if@in@tikZ% \IfBooleanTF{#1}% {% \convertRootNumber{#3}% }% {% \dynkin@Root@Number=#3\relax% }% \dynkinDrawCrossRootMark[#2]{\dynkin@root@name \the\dynkin@Root@Number}% }% %% \dynkinHeavyCrossRootMark{} %% Prints a heavy cross at root on the current Dynkin diagram. %% The starred form accepts in the Bourbaki ordering. \NewDocumentCommand\dynkinHeavyCrossRootMark{sO{}m}% {% \dynkin@check@if@in@tikZ% \IfBooleanTF{#1}% {% \convertRootNumber{#3}% }% {% \dynkin@Root@Number=#3\relax% }% \draw[/Dynkin diagram,X,#2]% ($(\dynkin@root@name \the\dynkin@Root@Number)+(\dynkin@root@radius,\dynkin@root@radius)$)% --% ($(\dynkin@root@name \the\dynkin@Root@Number)-(\dynkin@root@radius,\dynkin@root@radius)$);% \draw[/Dynkin diagram,X,#2]% ($(\dynkin@root@name \the\dynkin@Root@Number)+(-\dynkin@root@radius,\dynkin@root@radius)$)% --% ($(\dynkin@root@name \the\dynkin@Root@Number)+(\dynkin@root@radius,-\dynkin@root@radius)$);% }% %% \dynkinHollowRootMark{} %% Prints an hollow dot at root on the current Dynkin diagram. %% The starred form accepts in the Bourbaki ordering. \NewDocumentCommand\dynkinHollowRootMark{sO{}m}% {% \dynkin@check@if@in@tikZ% \IfBooleanTF{#1}% {% \convertRootNumber{#3}% }% {% \dynkin@Root@Number=#3\relax% }% \fill[/Dynkin diagram,o,#2] (\dynkin@root@name \the\dynkin@Root@Number) circle (\dynkin@root@radius);% }% %% \dynkinDoubleHollowRootMark{} %% Prints a double hollow dot at root on the current Dynkin diagram. %% The starred form accepts in the Bourbaki ordering. \NewDocumentCommand\dynkinDoubleHollowRootMark{sO{}m}% {% \dynkin@check@if@in@tikZ% \IfBooleanTF{#1}% {% \convertRootNumber{#3}% }% {% \dynkin@Root@Number=#3\relax% }% \fill[/Dynkin diagram,o,#2] (\dynkin@root@name \the\dynkin@Root@Number) circle (2*\dynkin@root@radius);% \fill[/Dynkin diagram,o,#2] (\dynkin@root@name \the\dynkin@Root@Number) circle (\dynkin@root@radius);% }% \NewDocumentCommand\dynkinDrawSolidRootMark{O{}m}% {% \dynkin@check@if@in@tikZ% \fill[/Dynkin diagram,*,#1] (#2) circle (\dynkin@root@radius);% }% %% \dynkinSolidRootMark{} %% Prints a solid dot at root on the current Dynkin diagram. %% The starred form accepts in the Bourbaki ordering. \NewDocumentCommand\dynkinSolidRootMark{sO{}m}% {% \dynkin@check@if@in@tikZ% \IfBooleanTF{#1}% {% \convertRootNumber{#3}% }% {% \dynkin@Root@Number=#3\relax% }% \dynkinDrawSolidRootMark[#2]{\dynkin@root@name \the\dynkin@Root@Number}% % \fill[/Dynkin diagram,*,#2] (\dynkin@root@name \the\dynkin@Root@Number) circle (\dynkin@root@radius);% }% %% \dynkinTensorRootMark{} %% Prints a tensor product symbol at root on the current Dynkin diagram. %% The starred form accepts in the Bourbaki ordering. \NewDocumentCommand\dynkinTensorRootMark{sO{}m}% {% \dynkin@check@if@in@tikZ% \IfBooleanTF{#1}% {% \convertRootNumber{#3}% }% {% \dynkin@Root@Number=#3\relax% }% \fill[/Dynkin diagram,o,#2] (\dynkin@root@name \the\dynkin@Root@Number) circle ({\dynkin@root@radius});% \draw[/Dynkin diagram,t,#2]% ($(\dynkin@root@name \the\dynkin@Root@Number)+({\dynkin@root@radius/sqrt(2)},{\dynkin@root@radius/sqrt(2)})$)% --% ($(\dynkin@root@name \the\dynkin@Root@Number)-({\dynkin@root@radius/sqrt(2)},{\dynkin@root@radius/sqrt(2)})$);% \draw[/Dynkin diagram,t,#2]% ($(\dynkin@root@name \the\dynkin@Root@Number)+({-\dynkin@root@radius/sqrt(2)},{\dynkin@root@radius/sqrt(2)})$)% --% ($(\dynkin@root@name \the\dynkin@Root@Number)+({\dynkin@root@radius/sqrt(2)},{-\dynkin@root@radius/sqrt(2)})$);% }% % \dynkinRootMark{}{} % Prints a dot at root on the current Dynkin diagram using mark style . % Use empty to get the default mark style. % The starred form accepts in the Bourbaki ordering. \NewDocumentCommand\dynkinRootMark{smm}% {% \dynkin@check@if@in@tikZ% \IfBooleanTF{#1}% {% \IfStrEqCase{#2}% {% {}{\dynkinRootMark*{\dynkin@root@mark}{#3}}% {*}{\dynkinSolidRootMark*{#3}}% {O}{\dynkinDoubleHollowRootMark*{#3}}% {X}{\dynkinHeavyCrossRootMark*{#3}}% {o}{\dynkinHollowRootMark*{#3}}% {t}{\dynkinTensorRootMark*{#3}}% {x}{\dynkinCrossRootMark*{#3}}% }% [\ClassError% {Dynkin diagrams}% {Unrecognized root mark: ``#2'' in Dynkin diagram% \dynkin@user@series{\dynkin@user@string}}% {}] }% {% \IfStrEqCase{#2}% {% {}{\dynkinRootMark{\dynkin@root@mark}{#3}}% {*}{\dynkinSolidRootMark{#3}}% {O}{\dynkinDoubleHollowRootMark{#3}}% {X}{\dynkinHeavyCrossRootMark{#3}}% {o}{\dynkinHollowRootMark{#3}}% {t}{\dynkinTensorRootMark{#3}}% {x}{\dynkinCrossRootMark{#3}}% }% [\ClassError{Dynkin diagrams}{Unrecognized root mark: ``#2'' in Dynkin diagram \dynkin@user@series{\dynkin@user@string}}{}] }% }% %% \dynkinDefiniteSingleEdge{

}{} %% Draws a single line from root

to root on the current Dynkin diagram in the current label ordering. %% The starred form accepts

and in the Bourbaki ordering. \NewDocumentCommand\dynkinDefiniteSingleEdge{sO{}mm}% {% \dynkin@check@if@in@tikZ% \IfBooleanTF{#1}% {% \convertRootPair{#3}{#4}% }% {% \@dynkin@from@root=#3\relax% \@dynkin@to@root=#4\relax% }% \begin{pgfonlayer}{Dynkin behind}% \draw[/Dynkin diagram,edge,#2] ($(\dynkin@root@name \the\@dynkin@from@root)$) -- ($(\dynkin@root@name \the\@dynkin@to@root)$);% \end{pgfonlayer}% }% %% \dynkinIndefiniteSingleEdge{

}{} %% Draws a single line from root

to root on the current Dynkin diagram in the current label ordering, %% drawn as dashed to indicate an edge containing an indefinite number of roots. %% The starred form accepts

and in the Bourbaki ordering. \NewDocumentCommand\dynkinIndefiniteSingleEdge{sO{}mm}% {% \dynkin@check@if@in@tikZ% \IfBooleanTF{#1}% {% \convertRootPair{#3}{#4}% }% {% \@dynkin@from@root=#3\relax% \@dynkin@to@root=#4\relax% }% \begin{pgfonlayer}{Dynkin behind}% \draw[/Dynkin diagram,edge,#2] ($(\dynkin@root@name \the\@dynkin@from@root)$) -- (${(2/3)}*(\dynkin@root@name \the\@dynkin@from@root)+{(1/3)}*(\dynkin@root@name \the\@dynkin@to@root)$);% \draw[/Dynkin diagram,indefinite edge,#2] (${(2/3)}*(\dynkin@root@name \the\@dynkin@from@root)+{(1/3)}*(\dynkin@root@name \the\@dynkin@to@root)$) -- (${(1/3)}*(\dynkin@root@name \the\@dynkin@from@root)+{(2/3)}*(\dynkin@root@name \the\@dynkin@to@root)$);% \draw[/Dynkin diagram,edge,#2] (${(1/3)}*(\dynkin@root@name \the\@dynkin@from@root)+{(2/3)}*(\dynkin@root@name \the\@dynkin@to@root)$) -- ($(\dynkin@root@name \the\@dynkin@to@root)$);% \end{pgfonlayer}% }% %%% \dynkinRightFold{

}{} %%% Draws an arrow to represent folding from root

to root on the current Dynkin diagram in the current label ordering, curving to the right. %%% The starred form accepts

and in the Bourbaki ordering. \NewDocumentCommand\dynkinRightFold{sO{}mm}% {% \dynkin@check@if@in@tikZ% \IfBooleanTF{#1}% {% \dynkinFold*[/Dynkin diagram,fold right style,#2]{#3}{#4}% }% {% \dynkinFold[/Dynkin diagram,fold right style,#2]{#3}{#4}% }% }% %%% \dynkinLeftFold{

}{} %%% Draws an arrow to represent folding from root

to root on the current Dynkin diagram in the current label ordering, curving to the left. %%% The starred form accepts

and in the Bourbaki ordering. \NewDocumentCommand\dynkinLeftFold{sO{}mm}% {% \dynkin@check@if@in@tikZ% \IfBooleanTF{#1}% {% \dynkinFold*[/Dynkin diagram,fold left style,#2]{#3}{#4}% }% {% \dynkinFold[/Dynkin diagram,fold left style,#2]{#3}{#4}% }% }% %% \dynkinFold{

}{} %% Draws some colouring to indicate which roots are being folded together, including roots

and . %% The starred form accepts

and in the Bourbaki ordering. \NewDocumentCommand\dynkinFold{sO{}mm}% {% \dynkin@check@if@in@tikZ% \IfBooleanTF{#1}% {% \convertRootPair{#3}{#4}% }% {% \@dynkin@from@root=#3\relax% \@dynkin@to@root=#4\relax% }% % \convertRootPair{\@dynkin@from@root}{\@dynkin@to@root}% \begin{pgfonlayer}{Dynkin behind}% \draw[/Dynkin diagram/fold style,#2] ($(\dynkin@root@name \the\@dynkin@from@root)$) to ($(\dynkin@root@name \the\@dynkin@to@root)$); \end{pgfonlayer}% }% %% \dynkinDefiniteRightDownArc{

}{} %% Draws a quarter circle from root

to root on the current Dynkin diagram in the current label ordering. %% The starred form accepts

and in the Bourbaki ordering. \NewDocumentCommand\dynkinDefiniteRightDownArc{sO{}mm}% {% \dynkin@check@if@in@tikZ% \IfBooleanTF{#1}% {% \convertRootPair{#3}{#4}% }% {% \@dynkin@from@root=#3\relax% \@dynkin@to@root=#4\relax% }% \begin{pgfonlayer}{Dynkin behind}% \draw[/Dynkin diagram,edge,fill=none,#2]% ($(\dynkin@root@name \the\@dynkin@from@root)$)% arc (90:0:\dynkin@fold@radius);% \end{pgfonlayer}% }% %% \dynkinIndefiniteRightDownArc{

}{} %% Draws a quarter circle from root

to root on the current Dynkin diagram in the current label ordering. %% The starred form accepts

and in the Bourbaki ordering. \NewDocumentCommand\dynkinIndefiniteRightDownArc{sO{}mm}% {% \dynkin@check@if@in@tikZ% \IfBooleanTF{#1}% {% \convertRootPair{#3}{#4}% }% {% \@dynkin@from@root=#3\relax% \@dynkin@to@root=#4\relax% }% \node (center) at ($(\dynkin@root@name \the\@dynkin@from@root)-(0,\dynkin@fold@radius)$) {};% \begin{pgfonlayer}{Dynkin behind}% \draw[/Dynkin diagram,edge,fill=none,#2] (center) ++(90:\dynkin@fold@radius) arc [start angle=90, end angle=60, radius=\dynkin@fold@radius];% \draw[/Dynkin diagram,indefinite edge,fill=none,#2] (center) ++(60:\dynkin@fold@radius) arc [start angle=60, end angle=30, radius=\dynkin@fold@radius];% \draw[/Dynkin diagram,edge,fill=none,#2] (center) ++(30:\dynkin@fold@radius) arc [start angle=30, end angle=0, radius=\dynkin@fold@radius];% \end{pgfonlayer}% }% %% \dynkinDefiniteRightUpArc{

}{} %% Draws a quarter circle from root

to root on the current Dynkin diagram in the current label ordering. %% The starred form accepts

and in the Bourbaki ordering. \NewDocumentCommand\dynkinDefiniteRightUpArc{sO{}mm}% {% \dynkin@check@if@in@tikZ% \IfBooleanTF{#1}% {% \convertRootPair{#3}{#4}% }% {% \@dynkin@from@root=#3\relax% \@dynkin@to@root=#4\relax% }% \begin{pgfonlayer}{Dynkin behind}% \draw[/Dynkin diagram,edge,fill=none,#2]% ($(\dynkin@root@name \the\@dynkin@from@root)$)% arc (-90:0:\dynkin@fold@radius);% \end{pgfonlayer}% }% %% \dynkinIndefiniteRightUpArc{

}{} %% Draws a quarter circle from root

to root on the current Dynkin diagram in the current label ordering. %% The starred form accepts

and in the Bourbaki ordering. \NewDocumentCommand\dynkinIndefiniteRightUpArc{sO{}mm}% {% \dynkin@check@if@in@tikZ% \IfBooleanTF{#1}% {% \convertRootPair{#3}{#4}% }% {% \@dynkin@from@root=#3\relax% \@dynkin@to@root=#4\relax% }% \node (center) at ($(\dynkin@root@name \the\@dynkin@from@root)+(0,\dynkin@fold@radius)$) {};% \begin{pgfonlayer}{Dynkin behind}% \draw[/Dynkin diagram,edge,fill=none,#2] (center) ++(-90:\dynkin@fold@radius) arc [start angle=-90, end angle=-60, radius=\dynkin@fold@radius];% \draw[/Dynkin diagram,indefinite edge,fill=none,#2] (center) ++(-60:\dynkin@fold@radius) arc [start angle=-60, end angle=-30, radius=\dynkin@fold@radius];% \draw[/Dynkin diagram,edge,fill=none,#2] (center) ++(-30:\dynkin@fold@radius) arc [start angle=-30, end angle=0, radius=\dynkin@fold@radius];% \end{pgfonlayer}% }% %% \dynkinDefiniteLeftDownArc{

}{} %% Draws a quarter circle from root

to root on the current Dynkin diagram in the current label ordering. %% The starred form accepts

and in the Bourbaki ordering. \NewDocumentCommand\dynkinDefiniteLeftDownArc{sO{}mm}% {% \dynkin@check@if@in@tikZ% \IfBooleanTF{#1}% {% \convertRootPair{#3}{#4}% }% {% \@dynkin@from@root=#3\relax% \@dynkin@to@root=#4\relax% }% \begin{pgfonlayer}{Dynkin behind}% \draw[/Dynkin diagram,edge,fill=none,#2]% ($(\dynkin@root@name \the\@dynkin@from@root)$)% arc (90:180:\dynkin@fold@radius);% \end{pgfonlayer}% }% %% \dynkinIndefiniteLeftDownArc{

}{} %% Draws a quarter circle from root

to root on the current Dynkin diagram in the current label ordering. %% The starred form accepts

and in the Bourbaki ordering. \NewDocumentCommand\dynkinIndefiniteLeftDownArc{sO{}mm}% {% \dynkin@check@if@in@tikZ% \IfBooleanTF{#1}% {% \convertRootPair{#3}{#4}% }% {% \@dynkin@from@root=#3\relax% \@dynkin@to@root=#4\relax% }% \node (center) at ($(\dynkin@root@name \the\@dynkin@from@root)-(0,\dynkin@fold@radius)$) {};% \begin{pgfonlayer}{Dynkin behind}% \draw[/Dynkin diagram,edge,fill=none,#2] (center) ++(90:\dynkin@fold@radius) arc [start angle=90, end angle=120, radius=\dynkin@fold@radius];% \draw[/Dynkin diagram,indefinite edge,fill=none,#2] (center) ++(120:\dynkin@fold@radius) arc [start angle=120, end angle=150, radius=\dynkin@fold@radius];% \draw[/Dynkin diagram,edge,fill=none,#2] (center) ++(150:\dynkin@fold@radius) arc [start angle=150, end angle=180, radius=\dynkin@fold@radius];% \end{pgfonlayer}% }% %% \dynkinDefiniteLeftUpArc{

}{} %% Draws a quarter circle from root

to root on the current Dynkin diagram in the current label ordering. %% The starred form accepts

and in the Bourbaki ordering. \NewDocumentCommand\dynkinDefiniteLeftUpArc{sO{}mm}% {% \dynkin@check@if@in@tikZ% \IfBooleanTF{#1}% {% \convertRootPair{#3}{#4}% }% {% \@dynkin@from@root=#3\relax% \@dynkin@to@root=#4\relax% }% \begin{pgfonlayer}{Dynkin behind}% \draw[/Dynkin diagram,edge,fill=none,#2] ($(\dynkin@root@name \the\@dynkin@from@root)$) arc (-90:-180:\dynkin@fold@radius);% \end{pgfonlayer}% }% %% \dynkinIndefiniteLeftUpArc{

}{} %% Draws a quarter circle from root

to root on the current Dynkin diagram in the current label ordering. %% The starred form accepts

and in the Bourbaki ordering. \NewDocumentCommand\dynkinIndefiniteLeftUpArc{sO{}mm}% {% \dynkin@check@if@in@tikZ% \IfBooleanTF{#1}% {% \convertRootPair{#3}{#4}% }% {% \@dynkin@from@root=#3\relax% \@dynkin@to@root=#4\relax% }% \node (center) at ($(\dynkin@root@name \the\@dynkin@from@root)+(0,\dynkin@fold@radius)$) {};% \begin{pgfonlayer}{Dynkin behind}%% \draw[/Dynkin diagram,edge,fill=none,#2] (center) ++(-90:\dynkin@fold@radius) arc [start angle=-90, end angle=-120, radius=\dynkin@fold@radius];% \draw[/Dynkin diagram,indefinite edge,fill=none,#2] (center) ++(-120:\dynkin@fold@radius) arc [start angle=-120, end angle=-150, radius=\dynkin@fold@radius];% \draw[/Dynkin diagram,edge,fill=none,#2] (center) ++(-150:\dynkin@fold@radius) arc [start angle=-150, end angle=-180, radius=\dynkin@fold@radius];% \end{pgfonlayer}% }% %% \dynkinDefiniteSemiCircle{

}{} %% Draws a half circle from root

to root on the current Dynkin diagram in the current label ordering. %% The starred form accepts

and in the Bourbaki ordering. \NewDocumentCommand\dynkinDefiniteSemiCircle{sO{}mm}% {% \dynkin@check@if@in@tikZ% \IfBooleanTF{#1}% {% \convertRootPair{#3}{#4}% }% {% \@dynkin@from@root=#3\relax% \@dynkin@to@root=#4\relax% }% \begin{pgfonlayer}{Dynkin behind}%% \draw[/Dynkin diagram,edge,fill=none,#2] ($(\dynkin@root@name \the\@dynkin@from@root)$) arc (90:-90:\dynkin@fold@radius);% \end{pgfonlayer}% }% %% \dynkinIndefiniteSemiCircle{

}{} %% Draws a half circle from root

to root on the current Dynkin diagram in the current label ordering. %% The starred form accepts

and in the Bourbaki ordering. \NewDocumentCommand\dynkinIndefiniteSemiCircle{sO{}mm}% {% \dynkin@check@if@in@tikZ% \IfBooleanTF{#1}% {% \convertRootPair{#3}{#4}% }% {% \@dynkin@from@root=#3\relax% \@dynkin@to@root=#4\relax% }% \node (center) at ($(\dynkin@root@name \the\@dynkin@from@root)-(0,\dynkin@fold@radius)$) {};% \begin{pgfonlayer}{Dynkin behind}%% \draw[/Dynkin diagram,edge,fill=none,#2] (center) ++(90:\dynkin@fold@radius) arc [start angle=90, end angle=30, radius=\dynkin@fold@radius];% \draw[/Dynkin diagram,indefinite edge,fill=none,#2] (center) ++(30:\dynkin@fold@radius) arc [start angle=30, end angle=-30, radius=\dynkin@fold@radius];% \draw[/Dynkin diagram,edge,fill=none,#2] (center) ++(-90:\dynkin@fold@radius) arc [start angle=-90, end angle=-30, radius=\dynkin@fold@radius];% \end{pgfonlayer}% }% %% \dynkinDefiniteDoubleRightDownArc{

}{} %% Draws a quarter circle from root

to root on the current Dynkin diagram in the current label ordering %% as a double path. %% The starred form accepts

and in the Bourbaki ordering. \NewDocumentCommand\dynkinDefiniteDoubleRightDownArc{sO{}mm}% {% \dynkin@check@if@in@tikZ% \IfBooleanTF{#1}% {% \convertRootPair{#3}{#4}% }% {% \@dynkin@from@root=#3\relax% \@dynkin@to@root=#4\relax% }% \begin{pgfonlayer}{Dynkin behind}%% \draw[/Dynkin diagram,edge,double,fill=none,#2]% ($(\dynkin@root@name \the\@dynkin@from@root)$)% arc (90:0:{\dynkin@fold@radius});% \ifdynkin@arrows% \ifdynkin@reverse@arrows% \path[ /Dynkin diagram/arrow shape, ,tips] ($(\dynkin@root@name \the\@dynkin@to@root)$)% arc (0:45:{\dynkin@fold@radius});% \else% \path[ /Dynkin diagram/arrow shape, ,tips] ($(\dynkin@root@name \the\@dynkin@from@root)$)% arc (90:45:{\dynkin@fold@radius});% \fi% \fi% \end{pgfonlayer}% }% %% \dynkinDefiniteDoubleUpRightArc{

}{} %% Draws a quarter circle from root

to root on the current Dynkin diagram in the current label ordering %% as a double path. %% The starred form accepts

and in the Bourbaki ordering. \NewDocumentCommand\dynkinDefiniteDoubleUpRightArc{sO{}mm}% {% \dynkin@check@if@in@tikZ% \IfBooleanTF{#1}% {% \convertRootPair{#3}{#4}% }% {% \@dynkin@from@root=#3\relax% \@dynkin@to@root=#4\relax% }% \begin{pgfonlayer}{Dynkin behind}%% \draw[/Dynkin diagram,edge,double,fill=none,#2]% ($(\dynkin@root@name \the\@dynkin@from@root)$)% arc (180:90:{\dynkin@fold@radius});% \ifdynkin@arrows% \ifdynkin@reverse@arrows% \path[% /Dynkin diagram/arrow shape, tips] ($(\dynkin@root@name \the\@dynkin@to@root)$)% arc (90:135:{\dynkin@fold@radius});% \else% \path[ /Dynkin diagram/arrow shape, tips] ($(\dynkin@root@name \the\@dynkin@from@root)$)% arc (180:135:{\dynkin@fold@radius});% \fi% \fi% \end{pgfonlayer}% }% %% \dynkinDefiniteDoubleUpLeftArc{

}{} %% Draws a quarter circle from root

to root on the current Dynkin diagram in the current label ordering %% as a double path. %% The starred form accepts

and in the Bourbaki ordering. \NewDocumentCommand\dynkinDefiniteDoubleUpLeftArc{sO{}mm}% {% \dynkin@check@if@in@tikZ% \IfBooleanTF{#1}% {% \convertRootPair{#3}{#4}% }% {% \@dynkin@from@root=#3\relax% \@dynkin@to@root=#4\relax% }% \begin{pgfonlayer}{Dynkin behind}%% \draw[/Dynkin diagram,edge,double,fill=none,#2]% ($(\dynkin@root@name \the\@dynkin@from@root)$)% arc (0:90:{\dynkin@fold@radius});% \ifdynkin@arrows% \ifdynkin@reverse@arrows% \path[% /Dynkin diagram/arrow shape, ,tips] ($(\dynkin@root@name \the\@dynkin@to@root)$)% arc (90:45:{\dynkin@fold@radius});% \else% \path[% /Dynkin diagram/arrow shape, ,tips] ($(\dynkin@root@name \the\@dynkin@from@root)$)% arc (0:45:{\dynkin@fold@radius});% \fi% \fi% \end{pgfonlayer}% }% %% \dynkinDefiniteDoubleDownRightArc{

}{} %% Draws a quarter circle from root

to root on the current Dynkin diagram in the current label ordering %% as a double path. %% The starred form accepts

and in the Bourbaki ordering. \NewDocumentCommand\dynkinDefiniteDoubleDownRightArc{sO{}mm}% {% \dynkin@check@if@in@tikZ% \IfBooleanTF{#1}% {% \convertRootPair{#3}{#4}% }% {% \@dynkin@from@root=#3\relax% \@dynkin@to@root=#4\relax% }% \begin{pgfonlayer}{Dynkin behind}%% \draw[/Dynkin diagram,edge,double,fill=none,#2]% ($(\dynkin@root@name \the\@dynkin@from@root)$)% -- ($(\dynkin@root@name \the\@dynkin@to@root)+(-\dynkin@fold@radius,\dynkin@fold@radius)$)% arc (-180:-90:{\dynkin@fold@radius});% \ifdynkin@arrows% \ifdynkin@reverse@arrows% \path[% /Dynkin diagram/arrow shape, tips] ($(\dynkin@root@name \the\@dynkin@to@root)$)% arc (-90:-135:{\dynkin@fold@radius});% \else% \path[% /Dynkin diagram/arrow shape, ,tips] ($(\dynkin@root@name \the\@dynkin@from@root)$)% arc (180:225:{\dynkin@fold@radius});% \fi% \fi% \end{pgfonlayer}% }% %% \dynkinDefiniteDoubleRightUpArc{

}{} %% Draws a quarter circle from root

to root on the current Dynkin diagram in the current label ordering %% as a double path. %% The starred form accepts

and in the Bourbaki ordering. \NewDocumentCommand\dynkinDefiniteDoubleRightUpArc{sO{}mm}% {% \dynkin@check@if@in@tikZ% \IfBooleanTF{#1}% {% \convertRootPair{#3}{#4}% }% {% \@dynkin@from@root=#3\relax% \@dynkin@to@root=#4\relax% }% \begin{pgfonlayer}{Dynkin behind}%% \draw[/Dynkin diagram,edge,double,fill=none,#2]% ($(\dynkin@root@name \the\@dynkin@from@root)$)% arc (270:360:{\dynkin@fold@radius});% \ifdynkin@arrows% \ifdynkin@reverse@arrows% \path[% /Dynkin diagram/arrow shape, ,tips] ($(\dynkin@root@name \the\@dynkin@to@root)$)% arc (0:-45:\dynkin@fold@radius);% \else% \path[% /Dynkin diagram/arrow shape, ,tips] ($(\dynkin@root@name \the\@dynkin@from@root)$)% arc (270:315:\dynkin@fold@radius);% \fi% \fi% \end{pgfonlayer}% }% %% \dynkinDefiniteDoubleLeftDownArc{

}{} %% Draws a quarter circle from root

to root on the current Dynkin diagram in the current label ordering %% as a double path. %% The starred form accepts

and in the Bourbaki ordering. \NewDocumentCommand\dynkinDefiniteDoubleLeftDownArc{sO{}mm}% {% \dynkin@check@if@in@tikZ% \IfBooleanTF{#1}% {% \convertRootPair{#3}{#4}% }% {% \@dynkin@from@root=#3\relax% \@dynkin@to@root=#4\relax% }% \begin{pgfonlayer}{Dynkin behind}%% \draw[/Dynkin diagram,edge,double,fill=none,#2]% ($(\dynkin@root@name \the\@dynkin@from@root)$)% arc (90:180:{\dynkin@fold@radius});% \ifdynkin@arrows% \ifdynkin@reverse@arrows% \path[% /Dynkin diagram/arrow shape, ,tips] ($(\dynkin@root@name \the\@dynkin@to@root)$)% arc (180:{180-45}:{\dynkin@fold@radius});% \else% \path[ /Dynkin diagram/arrow shape, ,tips] ($(\dynkin@root@name \the\@dynkin@from@root)$)% arc (90:135:{\dynkin@fold@radius});% \fi% \fi% \end{pgfonlayer}% }% %% \dynkinDefiniteDoubleDownLeftArc{

}{} %% Draws a quarter circle from root

to root on the current Dynkin diagram in the current label ordering %% as a double path. %% The starred form accepts

and in the Bourbaki ordering. \NewDocumentCommand\dynkinDefiniteDoubleDownLeftArc{sO{}mm}% {% \dynkin@check@if@in@tikZ% \IfBooleanTF{#1}% {% \convertRootPair{#3}{#4}% }% {% \@dynkin@from@root=#3\relax% \@dynkin@to@root=#4\relax% }% \begin{pgfonlayer}{Dynkin behind}%% \draw[/Dynkin diagram,edge,double,fill=none,#2]% ($(\dynkin@root@name \the\@dynkin@from@root)$)% arc (360:270:{\dynkin@fold@radius});% \ifdynkin@arrows% \ifdynkin@reverse@arrows% \path[ /Dynkin diagram/arrow shape, ,tips] ($(\dynkin@root@name \the\@dynkin@to@root)$)% arc (-90:-45:{\dynkin@fold@radius});% \else% \path[ /Dynkin diagram/arrow shape, ,tips] ($(\dynkin@root@name \the\@dynkin@from@root)$)% arc (360:315:{\dynkin@fold@radius});% \fi% \fi% \end{pgfonlayer}% }% %% \dynkinDefiniteDoubleLeftUpArc{

}{} %% Draws a quarter circle from root

to root on the current Dynkin diagram in the current label ordering %% as a double path. %% The starred form accepts

and in the Bourbaki ordering. \NewDocumentCommand\dynkinDefiniteDoubleLeftUpArc{sO{}mm}% {% \dynkin@check@if@in@tikZ% \IfBooleanTF{#1}% {% \convertRootPair{#3}{#4}% }% {% \@dynkin@from@root=#3\relax% \@dynkin@to@root=#4\relax% }% \begin{pgfonlayer}{Dynkin behind}%% \draw[/Dynkin diagram,edge,double,fill=none,#2]% ($(\dynkin@root@name \the\@dynkin@from@root)$)% arc (-90:-180:{\dynkin@fold@radius});% \ifdynkin@arrows% \ifdynkin@reverse@arrows% \path[% /Dynkin diagram/arrow shape, ,tips] ($(\dynkin@root@name \the\@dynkin@to@root)$)% arc (-180:-135:\dynkin@fold@radius);% \else% \path[, /Dynkin diagram/arrow shape, tips] ($(\dynkin@root@name \the\@dynkin@from@root)$)% arc (-90:-135:\dynkin@fold@radius);% \fi% \fi% \end{pgfonlayer}% }% %% \dynkinDefiniteDoubleDownRightSemiCircle{

}{} %% Draws a semi circle from root

to root on the current Dynkin diagram in the current label ordering %% as a double path. %% The starred form accepts

and in the Bourbaki ordering. \NewDocumentCommand\dynkinDefiniteDoubleDownRightSemiCircle{sO{}mm}% {% \dynkin@check@if@in@tikZ% \IfBooleanTF{#1}% {% \convertRootPair{#3}{#4}% }% {% \@dynkin@from@root=#3\relax% \@dynkin@to@root=#4\relax% }% \begin{pgfonlayer}{Dynkin behind}%% \draw[/Dynkin diagram,edge,double,fill=none,#2]% ($(\dynkin@root@name \the\@dynkin@from@root)$)% arc (90:-90:{\dynkin@fold@radius});% \ifdynkin@arrows% \ifdynkin@reverse@arrows% \path[ /Dynkin diagram/arrow shape, ,tips] ($(\dynkin@root@name \the\@dynkin@to@root)$)% arc (-90:0:\dynkin@fold@radius);% \else% \path[ /Dynkin diagram/arrow shape, ,tips] ($(\dynkin@root@name \the\@dynkin@from@root)$)% arc (90:0:\dynkin@fold@radius);% \fi% \fi% \end{pgfonlayer}% }% %%% \dynkinDefiniteTripleDownRightSemiCircle{

}{} %%% Draws a semi circle from root

to root on the current Dynkin diagram in the current label ordering %%% as a triple path. %%% The starred form accepts

and in the Bourbaki ordering. \NewDocumentCommand\dynkinDefiniteTripleDownRightSemiCircle{sO{}mm}% {% \dynkin@check@if@in@tikZ% \IfBooleanTF{#1}% {% \convertRootPair{#3}{#4}% }% {% \@dynkin@from@root=#3\relax% \@dynkin@to@root=#4\relax% }% \begin{pgfonlayer}{Dynkin behind}%% \draw[/Dynkin diagram, edge, double, double distance=\dynkin@root@radius, fill=none, {Straight Barb[length=1pt]}-{Straight Barb[length=1pt]}, #2]% ($(\dynkin@root@name \the\@dynkin@from@root)$)% arc (90:-90:{\dynkin@fold@radius});% \draw[/Dynkin diagram,edge,fill=none,#2]% ($(\dynkin@root@name \the\@dynkin@from@root)$)% arc (90:-90:{\dynkin@fold@radius});% \ifdynkin@arrows% \ifdynkin@reverse@arrows% \path[ /Dynkin diagram/arrow shape, ,tips] ($(\dynkin@root@name \the\@dynkin@to@root)$)% arc (-90:0:\dynkin@fold@radius);% \else% \path[ /Dynkin diagram/arrow shape, ,tips] ($(\dynkin@root@name \the\@dynkin@from@root)$)% arc (90:0:\dynkin@fold@radius);% \fi% \fi% \end{pgfonlayer}%% }% %% \dynkinDefiniteDoubleUpRightSemiCircle{

}{} %% Draws a semi circle from root

to root on the current Dynkin diagram in the current label ordering %% as a double path. %% The starred form accepts

and in the Bourbaki ordering. \NewDocumentCommand\dynkinDefiniteDoubleUpRightSemiCircle{sO{}mm}% {% \dynkin@check@if@in@tikZ% \IfBooleanTF{#1}% {% \convertRootPair{#3}{#4}% }% {% \@dynkin@from@root=#3\relax% \@dynkin@to@root=#4\relax% }% \begin{pgfonlayer}{Dynkin behind}%% \draw[/Dynkin diagram,edge,double,fill=none,#2]% ($(\dynkin@root@name \the\@dynkin@from@root)$)% arc (-90:90:{\dynkin@fold@radius});% \ifdynkin@arrows% \ifdynkin@reverse@arrows% \path[ /Dynkin diagram/arrow shape, ,tips] ($(\dynkin@root@name \the\@dynkin@to@root)$)% arc (90:0:\dynkin@fold@radius);% \else% \path[ /Dynkin diagram/arrow shape, ,tips] ($(\dynkin@root@name \the\@dynkin@from@root)$)% arc (-90:0:\dynkin@fold@radius);% \fi% \fi% \end{pgfonlayer}%% }% %% \dynkinEdge[]{}{

}{} %% Applies \dynkinDefinite[]{

}{} if the edge

is definite, %% otherwise applies \dynkinIndefinite[]{

}{} %% The starred form accepts

and in the Bourbaki ordering. \NewDocumentCommand\dynkinEdge{sO{}mmm}% {% \dynkin@check@if@in@tikZ% \IfBooleanTF{#1}% {% \convertRootPair{#4}{#5}% \dynkin@is@edge@indefinite{\@dynkin@from@root}{\@dynkin@to@root}% \ifdynkin@is@indefinite@edge% \csname dynkinIndefinite#3\endcsname[#2]% {\@dynkin@from@root}{\@dynkin@to@root}% \else% \csname dynkinDefinite#3\endcsname[#2]% {\@dynkin@from@root}{\@dynkin@to@root}% \fi% }% {% \dynkin@is@edge@indefinite{#4}{#5}% \ifdynkin@is@indefinite@edge% \csname dynkinIndefinite#3\endcsname[#2]{#4}{#5}% \else% \csname dynkinDefinite#3\endcsname[#2]{#4}{#5}% \fi% }% }% %% \dynkinEdgeArrow{

}{} %% Draws an arrow head on the edge from root

to root . %% The starred form accepts

and in the Bourbaki ordering. \NewDocumentCommand\dynkinEdgeArrow{sO{}mm}% {% \dynkin@check@if@in@tikZ% \ifdynkin@arrows% \IfBooleanTF{#1}% {% \convertRootPair{#3}{#4}% }% {% \@dynkin@from@root=#3\relax% \@dynkin@to@root=#4\relax% }% \begin{pgfonlayer}{Dynkin behind}%% \ifdynkin@reverse@arrows% \node (from-arrow-node) at ($(\dynkin@root@name \the\@dynkin@to@root)$){};% \node (to-arrow-node) at ($(\dynkin@root@name \the\@dynkin@from@root)$){};% \else% \node (from-arrow-node) at ($(\dynkin@root@name \the\@dynkin@from@root)$){};% \node (to-arrow-node) at ($(\dynkin@root@name \the\@dynkin@to@root)$){};% \fi% \node (middle-node) at ($.5*(from-arrow-node)+.5*(to-arrow-node)$){};% \node (arrow-node) at ($(middle-node)!.5*\dynkin@arrow@width!(to-arrow-node)$) {};% \path[ /Dynkin diagram/arrow shape, tips] ($(from-arrow-node)$) -- ($(arrow-node)$);% \end{pgfonlayer}%% \fi% }% \NewDocumentCommand\dynkinKacDoubleArrow{O{}mm}% {% \draw[ arrows = {-{Triangle Cap[length=.8mm,fill=white]}},% /Dynkin diagram, edge, double=white, fill=white, double distance=1.8pt, #1]% (\dynkin@root@name \the#2)--(\dynkin@root@name \the#3);% \draw[ arrows = {-{Classical TikZ Rightarrow[length=1mm]}},% /Dynkin diagram, edge, double distance=1.8pt, #1]% (\dynkin@root@name \the#2)--(\dynkin@root@name \the#3);% }% \NewDocumentCommand\dynkinKacTripleArrow{O{}mm}% {% \draw[ arrows = {-{Triangle Cap[length=.8mm,fill=white]}},% /Dynkin diagram, edge, double=white, fill=white, double distance=1.8pt, #1]% (\dynkin@root@name \the#2)--(\dynkin@root@name \the#3);% \draw[ arrows = {-{Classical TikZ Rightarrow[length=1mm]}},% /Dynkin diagram, edge, double distance=1.8pt, #1]% (\dynkin@root@name \the#2)--(\dynkin@root@name \the#3);% \draw[ /Dynkin diagram, edge, shorten >=1.1mm, #1]% (\dynkin@root@name \the#2)--(\dynkin@root@name \the#3);% }% \NewDocumentCommand\dynkinKacQuadrupleArrow{O{}mm}% {% \draw[ arrows = {-{Triangle Cap[length=1.127mm,fill=white]}},% /Dynkin diagram, edge, double=white, fill=white, shorten >=1mm, shorten <=1mm, double distance=3.6pt, #1]% (\dynkin@root@name \the#2)--(\dynkin@root@name \the#3);% \draw[ arrows = {-{Classical TikZ Rightarrow[length=1.2mm]}},% /Dynkin diagram, edge, double distance=3.6pt, shorten <=.83mm, #1]% (\dynkin@root@name \the#2)--(\dynkin@root@name \the#3);% \draw[ arrows = {-{Classical TikZ Rightarrow[length=1.2mm]}},% /Dynkin diagram, edge, double distance=1.2pt, shorten <= .83mm, #1]% (\dynkin@root@name \the#2)--(\dynkin@root@name \the#3);% }% \newcount\dynkin@onesbit% \newcount\dynkin@twosbit% %% \dynkinDefiniteDoubleEdge{

}{} %% Draws an oriented double line from root

to root on the current Dynkin diagram. %% The starred form accepts

and in the Bourbaki ordering. \NewDocumentCommand\dynkinDefiniteDoubleEdge{sO{}mm}% {% \dynkin@check@if@in@tikZ% \IfBooleanTF{#1}% {% \convertRootPair{#3}{#4}% }% {% \@dynkin@from@root=#3\relax% \@dynkin@to@root=#4\relax% }% \StrChar{\dynkin@roots}{\the\@dynkin@from@root}[\my@root@marker]% \IfStrEq{\my@root@marker}{x}% {% \global\dynkin@onesbit=1\relax% }% {% \global\dynkin@onesbit=0\relax% }% \StrChar{\dynkin@roots}{\the\@dynkin@to@root}[\my@root@marker]% \IfStrEq{\my@root@marker}{x}% {% \global\dynkin@twosbit=1\relax% }% {% \global\dynkin@twosbit=0\relax% }% \ifdynkin@Kac@arrows \begin{pgfonlayer}{Dynkin behind}%% \ifdynkin@arrows% \ifdynkin@reverse@arrows \ifdynkin@is@backwards \dynkinKacDoubleArrow[#2]% {\@dynkin@from@root}{\@dynkin@to@root} \else% \dynkinKacDoubleArrow[#2]% {\@dynkin@to@root}{\@dynkin@from@root} \fi% \else% \ifdynkin@is@backwards \dynkinKacDoubleArrow[#2]% {\@dynkin@to@root}{\@dynkin@from@root} \else% \dynkinKacDoubleArrow[#2]% {\@dynkin@from@root}{\@dynkin@to@root} \fi% \fi% \else% \draw[/Dynkin diagram,edge,double distance=3pt,#2]% (\dynkin@root@name \the\@dynkin@from@root)% --% (\dynkin@root@name \the\@dynkin@to@root);% \fi% \end{pgfonlayer}%% \else \def\LL{.5*\dynkin@root@radius} \begin{pgfonlayer}{Dynkin behind}%% \draw[/Dynkin diagram,edge,#2]% ($(\dynkin@root@name \the\@dynkin@from@root)$)% --% +({\the\dynkin@onesbit*\LL},{\LL})% --% ($(\dynkin@root@name \the\@dynkin@to@root)% +(-\the\dynkin@twosbit*\LL,\LL)$)% --% ($(\dynkin@root@name \the\@dynkin@to@root)$)% --% ($(\dynkin@root@name \the\@dynkin@to@root)% -(\the\dynkin@twosbit*\LL,\LL)$)% --% ($(\dynkin@root@name \the\@dynkin@from@root)% +(\the\dynkin@onesbit*\LL,-\LL)$)% --% cycle;% \end{pgfonlayer}%% \ifdynkin@arrows% \dynkinEdgeArrow[#2]% {\the\@dynkin@from@root}% {\the\@dynkin@to@root}% \fi% \fi% }% %% \dynkinTripleEdge{

} %% Draws an oriented triple line from root

to root on the current Dynkin diagram. %% The starred form accepts

and in the Bourbaki ordering. \NewDocumentCommand\dynkinTripleEdge{sO{}mm}% {% \dynkin@check@if@in@tikZ% \IfBooleanTF{#1}% {% \convertRootPair{#3}{#4}% }% {% \@dynkin@from@root=#3\relax% \@dynkin@to@root=#4\relax% }% \StrChar{\dynkin@roots}{\the\@dynkin@from@root}[\my@root@marker]% \IfStrEq{\my@root@marker}{x}% {% \global\dynkin@onesbit=1\relax% }% {% \global\dynkin@onesbit=0\relax% }% \StrChar{\dynkin@roots}{\the\@dynkin@to@root}[\my@root@marker]% \IfStrEq{\my@root@marker}{x}% {% \global\dynkin@twosbit=1\relax% }% {% \global\dynkin@twosbit=0\relax% }% \ifdynkin@Kac@arrows \begin{pgfonlayer}{Dynkin behind}%% \ifdynkin@arrows% \ifdynkin@reverse@arrows \ifdynkin@is@backwards \dynkinKacTripleArrow[#2]{\@dynkin@from@root}{\@dynkin@to@root} \else% \dynkinKacTripleArrow[#2]{\@dynkin@to@root}{\@dynkin@from@root} \fi% \else% \ifdynkin@is@backwards \dynkinKacTripleArrow[#2]{\@dynkin@to@root}{\@dynkin@from@root} \else% \dynkinKacTripleArrow[#2]{\@dynkin@from@root}{\@dynkin@to@root} \fi% \fi% \else% \draw[/Dynkin diagram,edge,double distance=3pt,#2]% (\dynkin@root@name \the\@dynkin@from@root)% --% (\dynkin@root@name \the\@dynkin@to@root);% \draw[/Dynkin diagram,edge,#2]% (\dynkin@root@name \the\@dynkin@from@root)% --% (\dynkin@root@name \the\@dynkin@to@root);% \fi% \end{pgfonlayer}%% \else \begin{pgfonlayer}{Dynkin behind}%% \draw[/Dynkin diagram,edge,#2]% ($(\dynkin@root@name \the\@dynkin@from@root)$)% --% +({\the\dynkin@onesbit*\dynkin@root@radius},% {\dynkin@root@radius})% --% ($(\dynkin@root@name \the\@dynkin@to@root)% +(-\dynkin@twosbit*\dynkin@root@radius,% \dynkin@root@radius)$)% --% ($(\dynkin@root@name \the\@dynkin@to@root)$)% --% ($(\dynkin@root@name \the\@dynkin@to@root)% -(\dynkin@twosbit*\dynkin@root@radius,% \dynkin@root@radius)$)% --% ($(\dynkin@root@name \the\@dynkin@from@root)% +(\dynkin@onesbit*\dynkin@root@radius,% -\dynkin@root@radius)$)% --% cycle;% \draw[/Dynkin diagram,edge,#2] ($(\dynkin@root@name \the\@dynkin@from@root)$) -- ($(\dynkin@root@name \the\@dynkin@to@root)$);% \end{pgfonlayer}%% \ifdynkin@arrows% \dynkinEdgeArrow[#2]% {\the\@dynkin@from@root}% {\the\@dynkin@to@root}% \fi% \fi% }% %% \dynkinQuadrupleEdge{

}{} %% \dynkinQuadrupleEdge*{

}{} %% Draws an oriented edge of valence 4 from root

to root on the current Dynkin diagram. %% The starred form accepts

and in the Bourbaki ordering. \NewDocumentCommand\dynkinQuadrupleEdge{sO{}mm}% {% \dynkin@check@if@in@tikZ% \IfBooleanTF{#1}% {% \convertRootPair{#3}{#4}% }% {% \@dynkin@from@root=#3\relax% \@dynkin@to@root=#4\relax% }% \ifdynkin@Kac@arrows \begin{pgfonlayer}{Dynkin behind}%% \ifdynkin@arrows% \ifdynkin@reverse@arrows \ifdynkin@is@backwards \dynkinKacQuadrupleArrow[#2]% {\@dynkin@from@root}{\@dynkin@to@root} \else% \dynkinKacQuadrupleArrow[#2]% {\@dynkin@to@root}{\@dynkin@from@root} \fi% \else% \ifdynkin@is@backwards \dynkinKacQuadrupleArrow[#2]% {\@dynkin@to@root}{\@dynkin@from@root} \else% \dynkinKacQuadrupleArrow[#2]% {\@dynkin@from@root}{\@dynkin@to@root} \fi% \fi% \else% \draw[/Dynkin diagram,edge,double distance=3pt,#2]% (\dynkin@root@name \the\@dynkin@from@root)% --% (\dynkin@root@name \the\@dynkin@to@root);% \draw[/Dynkin diagram,edge,#2]% (\dynkin@root@name \the\@dynkin@from@root)% --% (\dynkin@root@name \the\@dynkin@to@root);% \fi% \end{pgfonlayer}%% \else \begin{pgfonlayer}{Dynkin behind}%% \draw[/Dynkin diagram,edge,#2]% ($(\dynkin@root@name \the\@dynkin@from@root)% +(0,\dynkin@root@radius)$)--% ($(\dynkin@root@name \the\@dynkin@to@root)% +(0,\dynkin@root@radius)$)--% ($(\dynkin@root@name \the\@dynkin@to@root)% +(0,-\dynkin@root@radius)$)--% ($(\dynkin@root@name \the\@dynkin@from@root)% +(0,-\dynkin@root@radius)$)--% cycle; \draw[/Dynkin diagram,edge,#2]% ($(\dynkin@root@name \the\@dynkin@from@root)% +(0,\dynkin@root@radius/3)$)--% ($(\dynkin@root@name \the\@dynkin@to@root)% +(0,\dynkin@root@radius/3)$)--% ($(\dynkin@root@name \the\@dynkin@to@root)% +(0,-\dynkin@root@radius/3)$)--% ($(\dynkin@root@name \the\@dynkin@from@root)% +(0,-\dynkin@root@radius/3)$)--% cycle; \end{pgfonlayer}%% \ifdynkin@arrows% \dynkinEdgeArrow[#2]% {\the\@dynkin@from@root}% {\the\@dynkin@to@root}% \fi% \fi% }% %% \repeatCharacter{}{} %% Outputs copies of the string \ExplSyntaxOn \DeclareExpandableDocumentCommand{\repeatCharacter}{O{}mm} { \int_compare:nT { #2 > 0 } { #3 \prg_replicate:nn { #2 - 1 } { #1#3 } } } \ExplSyntaxOff %% \stringCharacterInPosition{}{} %% Outputs the element of string in position . \ExplSyntaxOn \cs_new:Npn \stringCharacterInPosition #1 #2 { \str_item:fn { #1 } { #2 } } \cs_generate_variant:Nn \str_item:nn {f} \ExplSyntaxOff %%% %%% Implementation: %%% \def\dynkin@diagram@name{anonymous} % Default diagram name \def\dynkin@root@mark{*} % Default mark \def\dynkin@affine@root@mark{o} % Default affine root mark \def\dynkin@roots{} % List of marks for each root. \def\dynkin@user@series{} % Series string passed from user. % For example: % \dynkin{A}{3} passes the string A, % \dynkin{A2}{*o*} passes the string A2, % \dynkin{E2}{} passes the string E2. \def\dynkin@user@string{} % Control string passed from user. % For example: % \dynkin{A}{3} passes the string 3, % \dynkin{A}{*o*} passes the string *o*, % \dynkin{A}{III} passes the string III. \def\dynkin@string{} % \dynkin@user@string{} with some modifications to it to expand it out. \def\dynkin@series{A} % Which series of root system: A,B,C,D,E,F,G \def\dynkin@involution@list{} % List of involutions among roots to draw. \def\dynkin@label@list{} % List of labels for the roots. \def\dynkin@label@list@star{} % List of alternate labels for the roots. \newcount\dynkin@rank% \newcount\dynkin@rank@minus@one% \newcount\dynkin@rank@minus@two% \newcount\dynkin@rank@minus@three% % Which rank of root system: 1,2,... \newcount\dynkin@nodes % How many nodes (besides the zero node for affine diagrams) are there? \newif\ifdynkin@is@backwards % Are we drawing this thing in a reverse direction? \newif\ifdynkin@is@upsidedown % Are we drawing this thing in a reverse direction? \newif\ifdynkin@is@extended % Is this an extended extended root system? \newif\ifdynkin@is@twisted % Is this a twisted extended root system? \def\dynkin@twisted@series{0} % Which Kac series? 0=finite, 1,2,3->infinite \newif\ifdynkin@label@the@roots % Should we label the roots by the current root ordering convention? \newif\ifdynkin@label@star@the@roots % Should we label the roots by the current root ordering convention? \newif\ifdynkin@reverse@arrows % Should we reverse the directions of all arrows? \newif\ifdynkin@arrows % Should we draw arrows on Dynkin diagrams? \newif\ifdynkin@left@fold % Is the left side of the Dynkin diagram folded? \newif\ifdynkin@right@fold % Is the right side of the Dynkin diagram folded? \newif\ifdynkin@Coxeter % Should we draw Coxeter diagrams? \newif\ifdynkin@Kac@arrows % Should we draw arrows following Kac? \newif\ifdynkin@odd % For twisted A series diagrams, is the rank odd? \newcount\dynkin@ply % Maximum number of nodes arranged vertically in the folding of the Dynkin diagram \def\dynkin@ply@value{1} % Default maximum number of nodes arranged vertically in the folding of the Dynkin diagram \def\dynkin@label@directions{} % List of directions in which to draw the labels attached to the roots. \def\dynkin@label@directions@override{} % List of directions in which to draw the labels attached to the roots, as overridden by the user. \def\dynkin@label@directions@star{} % List of directions in which to draw the labels attached to the roots, for alternate labels. \def\dynkin@current@location{(0,0)} \def\dynkin@arrow@width{1.5*\dynkin@root@radius} \def\dynkin@arrow@style{length=\dynkin@arrow@width} \def\dynkin@horizontal@shift{0pt} \def\dynkin@vertical@shift{.5ex} % Shift applied to all Dynkin diagrams \NewDocumentCommand\regurgitate{m}{#1} \pgfkeys{ /Dynkin diagram/.is family, /Dynkin diagram, affine mark/.estore in = \dynkin@affine@root@mark, affinemark/.forward to = /Dynkin diagram/affine mark, affine-mark/.forward to = /Dynkin diagram/affine mark, affine-mark = o, arrow color/.estore in = /Dynkin diagram/arrow style, arrow-color/.forward to=/Dynkin diagram/arrow style, arrowcolor/.forward to=/Dynkin diagram/arrow style, arrow shape/.style={-{Computer Modern Rightarrow[\dynkin@arrow@style]}}, arrow style/.estore in = \dynkin@arrow@style, arrow-style/.forward to=/Dynkin diagram/arrow style, arrowstyle/.forward to=/Dynkin diagram/arrow style, arrow width/.estore in = \dynkin@arrow@width, arrows/.is if = dynkin@arrows, arrows = true, at/.estore in = \dynkin@current@location, at/.default = {(0,0)}, backwards/.is if = dynkin@is@backwards, backwards = false, Coxeter/.is if = dynkin@Coxeter, Coxeter=false, double edges/.style = { fold style/.style = { draw=black, double=white, fill=none, double distance=\dynkin@root@radius, line width=\defaultpgflinewidth} }, double-edges/.forward to=/Dynkin diagram/double edges/.style, doubleedges/.forward to=/Dynkin diagram/double edges/.style, double fold/.style = { fold style/.style = { draw=black, double=black!40, fill=none, double distance=\dynkin@root@radius, line width=\defaultpgflinewidth} }, double-fold/.forward to=/Dynkin diagram/double fold/.style, doublefold/.forward to=/Dynkin diagram/double fold/.style, double left/.style = { fold left style/.style = { draw=black, double=white, fill=none, double distance=\dynkin@root@radius, line width=\defaultpgflinewidth} }, double-left/.forward to=/Dynkin diagram/double left/.style, doubleleft/.forward to=/Dynkin diagram/double left/.style, double fold left/.style = { fold left style/.style = { draw=black, double=black!40, fill=none, double distance=\dynkin@root@radius, line width=\defaultpgflinewidth} }, double-fold-left/.forward to=/Dynkin diagram/double fold left/.style, doublefoldleft/.forward to=/Dynkin diagram/double fold left/.style, double right/.style = { fold right style/.style = { draw=black, double=white, fill=none, double distance=\dynkin@root@radius, line width=\defaultpgflinewidth} }, double-right/.forward to=/Dynkin diagram/double right/.style, doubleright/.forward to=/Dynkin diagram/double right/.style, double fold right/.style = { fold right style/.style = { draw=black, double=black!40, fill=none, double distance=\dynkin@root@radius, line width=\defaultpgflinewidth} }, double-fold-right/.forward to=/Dynkin diagram/double fold right/.style, doublefoldright/.forward to=/Dynkin diagram/double fold right/.style, edge label/.style={text height=0,text depth=0,label distance=-4pt}, edgelabel/.forward to=/Dynkin diagram/edge label/.style, edge length/.estore in = \dynkin@edge@length, edge-length/.forward to=/Dynkin diagram/edge length, edgelength/.forward to=/Dynkin diagram/edge length, edge length = .35cm, edge/.style={solid,draw=black,fill=white,thin}, extended/.is if = dynkin@is@extended, extended = false, fold left/.is if = dynkin@left@fold, fold-left/.forward to = /Dynkin diagram/fold left, foldleft/.forward to = /Dynkin diagram/fold left, fold left = false, fold/.style={/Dynkin diagram/ply=2,fold style}, fold style/.style = { /Dynkin diagram/ply=2, solid, draw=black!40, fill=none, line width=\dynkin@root@radius, {Triangle Cap[]}-{Triangle Cap[]} }, fold-style/.forward to=/Dynkin diagram/fold style/.style, foldstyle/.forward to=/Dynkin diagram/fold style/.style, fold left style/.style = {}, fold-left-style/.forward to=/Dynkin diagram/fold left style/.style, foldleftstyle/.forward to=/Dynkin diagram/fold left style/.style, fold radius/.estore in = \dynkin@fold@radius, fold-radius/.forward to=/Dynkin diagram/fold radius, foldradius/.forward to=/Dynkin diagram/fold radius, fold radius=.3cm, fold right/.is if = dynkin@right@fold, fold-right/.forward to = fold right, foldright/.forward to = fold right, fold right = false, fold right style/.style = {}, fold-right-style/.forward to=/Dynkin diagram/fold right style/.style, foldrightstyle/.forward to=/Dynkin diagram/fold right style/.style, gonality/.estore in = \dynkin@gonality, gonality/.default = 0, horizontal shift/.estore in=\dynkin@horizontal@shift, horizontal shift/.default=0pt, horizontal-shift/.forward to=/Dynkin diagram/horizontal shift, horizontalshift/.forward to=/Dynkin diagram/horizontal shift, indefinite edge ratio/.estore in = \dynkin@indefinite@edge@ratio, indefinite-edge-ratio/.forward to = /Dynkin diagram/indefinite edge ratio, indefiniteedgeratio/.forward to = /Dynkin diagram/indefinite edge ratio, indefinite edge ratio = 1.6, indefinite edge/.style={ solid, draw=black, fill=white, thin, densely dotted }, indefinite-edge/.forward to=/Dynkin diagram/indefinite edge/.style, indefiniteedge/.forward to=/Dynkin diagram/indefinite edge/.style, involution/.style={latex-latex,black}, involutions/.default = {}, involutions/.store in = \dynkin@involution@list, Kac arrows/.is if = dynkin@Kac@arrows, Kac-arrows/.forward to = /Dynkin diagram/Kac arrows, Kacarrows/.forward to = /Dynkin diagram/Kac arrows, Kac arrows=false, Kac/.style={ Kac arrows=true, ordering=Kac, root radius=.05cm, edge length=.66cm, indefinite edge ratio = 3, edge/.style={ solid, draw=black, fill=white, thin, shorten <=1mm, shorten >=1mm }, fold style/.style = { solid, draw=black!40, fill=none, line width=\dynkin@root@radius, shorten <=1mm, shorten >=1mm }, mark=o, indefinite edge/.style={ solid, draw=black, fill=none, thin, loosely dotted }, }, label/.is if = dynkin@label@the@roots, label = false, label*/.is if = dynkin@label@star@the@roots, label*=false, label depth/.style={ /tikz/every label/.append style={ text depth={depth("#1"} } }, label depth/.default=g, label depth, label-depth/.forward to = /Dynkin diagram/label depth, labeldepth/.forward to = /Dynkin diagram/label depth, label directions/.default = {}, label directions/.store in = \dynkin@label@directions@override, label* directions/.default = {}, label* directions/.store in = \dynkin@label@star@directions@override, label height/.style={/tikz/every label/.append style={text height={height("#1"}}}, label height/.default=b, label height, label-height/.forward to = /Dynkin diagram/label height, labelheight/.forward to = /Dynkin diagram/label height, label macro/.code = {\regurgitate{#1}}, label-macro/.forward to=/Dynkin diagram/label macro, labelmacro/.forward to=/Dynkin diagram/label macro, label macro*/.code = {\regurgitate{#1}}, label-macro*/.forward to=/Dynkin diagram/label macro*, labelmacro*/.forward to=/Dynkin diagram/label macro*, labels/.default = {}, labels/.store in = \dynkin@label@list, labels*/.default = {}, labels*/.store in = \dynkin@label@list@star, make indefinite edge/.code={\dynkin@set@edge@indefinite@pair{#1}}, make-indefinite-edge/.forward to=/Dynkin diagram/make indefinite edge, makeindefiniteedge/.forward to=/Dynkin diagram/make indefinite edge, mark/.estore in = \dynkin@root@mark, mark = *, name/.estore in = \dynkin@diagram@name, name = anonymous, odd/.is if = dynkin@odd, odd=false, ordering/.store in = \dynkin@ordering, ordering = Bourbaki, parabolic/.estore in = \dynkin@parabolic, parabolic/.default = 0, ply/.estore in = \dynkin@ply@value, ply/.default = 1, reverse arrows/.is if = dynkin@reverse@arrows, reverse arrows = false, reverse-arrows/.forward to = /Dynkin diagram/reverse arrows, reversearrows/.forward to = /Dynkin diagram/reverse arrows, root radius/.estore in = \dynkin@root@radius, root-radius/.forward to=/Dynkin diagram/root radius, rootradius/.forward to=/Dynkin diagram/root radius, root radius=.05cm, text style/.style={#1}, text style/.default={black,scale=.7}, text-style/.forward to=text style/.style, textstyle/.forward to=text style/.style, twisted/.is if = dynkin@is@twisted, twisted = false, twisted series/.estore in = \dynkin@twisted@series, twisted-series/.forward to = /Dynkin diagram/twisted series, twistedseries/.forward to = /Dynkin diagram/twisted series, twisted series/.default = 0, upside down/.is if = dynkin@is@upsidedown, upside down = false, upside-down/.forward to = /Dynkin diagram/upside down, upsidedown/.forward to = /Dynkin diagram/upside down, vertical shift/.estore in=\dynkin@vertical@shift, vertical shift/.default=.5ex, vertical-shift/.forward to=/Dynkin diagram/vertical shift, verticalshift/.forward to=/Dynkin diagram/vertical shift, x shift in edge lengths/.code=% {% \pgfmathsetlengthmacro% \dynkin@horizontal@shift% {(#1*\dynkin@edge@length)+\dynkin@horizontal@shift}% },% y shift in edge lengths/.code=% {% \pgfmathsetlengthmacro% \dynkin@vertical@shift% {(#1*\dynkin@edge@length)+\dynkin@vertical@shift}% },% */.style = { solid, draw=black, fill=black, }, O/.style = { solid, draw=black, fill=white, }, X/.style = { solid, draw=black, very thick, line cap=round }, o/.style = { solid, draw=black, fill=white, }, t/.style = { solid, draw=black, fill=white, }, x/.style = { solid, thick, draw=black, line cap=round }, ceref/.style={ edge length=.48cm, indefinite edge/.style={ shorten <=2pt, shorten >=2pt, solid, draw=black, fill=white, thin, densely dotted }, edge/.style={ solid, draw=black, fill=white, thin, double copy shadow={ draw=black!90, fill=none, thin, shadow xshift=.1pt, shadow yshift=-.15pt }, }, */.style={ yscale=1.2, solid, draw=black, fill=gray, double copy shadow={ fill=black, shadow xshift=0.1pt, shadow yshift=-0.15pt }, }, o/.style={ yscale=1.2, solid, draw=black, fill=white, double copy shadow={ fill=black, shadow xshift=0.1pt, shadow yshift=-0.15pt }, }, O/.style={ yscale=1.2, solid, draw=black, fill=white, double copy shadow={ fill=green, shadow xshift=0.1pt, shadow yshift=-0.15pt }, } t/.style={ yscale=1.2, solid, draw=black, fill=white, }, }, .search also={/tikz}, } \ProcessPgfPackageOptions{/Dynkin diagram}\relax \newcount\dynkin@drpo% \newcount\dynkin@where% %% \dynkinPutLabelInDirection{}{} %% Assigns to \dynkin@label@directions or \dynkin@label@directions@star the direction that the label of root (in default ordering) should sit from the root node location, =0,1,2,3,4,5,6,7 to indicate direction in multiples of 45 degrees \NewDocumentCommand\dynkinPutLabelInDirection{smm}% {% \dynkin@drpo=\the\dynkin@nodes\relax% \advance\dynkin@drpo by 1\relax% \dynkin@where=#2\relax% \IfBooleanTF{#1}% {% \StrMid{\dynkin@label@directions@star}% {1}{\the\dynkin@where}[\dynkin@start]% \advance\dynkin@where by 2\relax% \StrMid{\dynkin@label@directions@star}% {\the\dynkin@where}{\the\dynkin@drpo}[\dynkin@end]% \IfStrEqCase{#3}{% {right}% {% \xdef\dynkin@label@directions@star% {\dynkin@start 0\dynkin@end}% }% {above right}% {% \xdef\dynkin@label@directions@star% {\dynkin@start 1\dynkin@end}% }% {above}% {% \xdef\dynkin@label@directions@star% {\dynkin@start 2\dynkin@end}% }% {above left}% {% \xdef\dynkin@label@directions@star% {\dynkin@start 3\dynkin@end}% }% {left}% {% \xdef\dynkin@label@directions@star% {\dynkin@start 4\dynkin@end}% }% {below left}% {% \xdef\dynkin@label@directions@star% {\dynkin@start 5\dynkin@end}% }% {below}% {% \xdef\dynkin@label@directions@star% {\dynkin@start 6\dynkin@end}% }% {below right}% {% \xdef\dynkin@label@directions@star% {\dynkin@start 7\dynkin@end}% }% }% [\ClassError{Dynkin diagrams}% {Unrecognized direction: ``#2'' in Dynkin diagram \dynkin@user@series{\dynkin@user@string}}{}]% }% {% \StrMid{\dynkin@label@directions}{1}% {\the\dynkin@where}[\dynkin@start]% \advance\dynkin@where by 2\relax% \StrMid{\dynkin@label@directions}{\the\dynkin@where}% {\the\dynkin@drpo}[\dynkin@end]% \IfStrEqCase{#3}{% {right}% {% \xdef\dynkin@label@directions% {\dynkin@start 0\dynkin@end}% }% {above right}% {% \xdef\dynkin@label@directions% {\dynkin@start 1\dynkin@end}% }% {above}% {% \xdef\dynkin@label@directions% {\dynkin@start 2\dynkin@end}% }% {above left}% {% \xdef\dynkin@label@directions% {\dynkin@start 3\dynkin@end}% }% {left}% {% \xdef\dynkin@label@directions% {\dynkin@start 4\dynkin@end}% }% {below left}% {% \xdef\dynkin@label@directions% {\dynkin@start 5\dynkin@end}% }% {below}% {% \xdef\dynkin@label@directions% {\dynkin@start 6\dynkin@end}% }% {below right}% {% \xdef\dynkin@label@directions% {\dynkin@start 7\dynkin@end}% }% }% [\ClassError{Dynkin diagrams}% {Unrecognized direction: ``#2'' in Dynkin diagram \dynkin@user@series{\dynkin@user@string}}{}]% }% }% % \expand@Dynkin@Roots@By@Char{}, % for example if is the letter x, expands out any expression like % x7 in \dynkin@string into 7 copies of the letter x. \NewDocumentCommand\expand@Dynkin@Roots@By@Char{m}% {% \xdef\replace@DR{}% \foreach \i in {0,...,9}% {% \StrSubstitute[0]{\dynkin@string}{#1\i}{\replace@DR}[\temp@DR]% \xdef\dynkin@string{\temp@DR}% \xdef\replace@DR{\replace@DR #1}% }% }% % \expand@Dynkin@Roots@Digits{} expands out any expression like x7 in \dynkin@roots into 7 copies of the letter x, and so on for any letter which is not a digit. \NewDocumentCommand\expand@Dynkin@Roots@Digits{}% {% \edef\current@string{\dynkin@string}% \StrLen{\current@string}[\string@len] \foreach \j in {1,...,\string@len}% {% \StrChar{\current@string}{\j}[\cccc]% \IfInteger{\cccc}% {}% {% \expand@Dynkin@Roots@By@Char{\cccc}% }% }% }% % \dynkin@integer@rank{} expands a \dynkin@string 3 into ***, i.e. % writes the given number of copies of the default root mark into the string \dynkin@string. \NewDocumentCommand\dynkin@integer@rank{}% {% \global\dynkin@rank=\dynkin@string\relax% \global\dynkin@nodes=\dynkin@string\relax% \ifdynkin@is@twisted% \IfStrEqCase{\dynkin@series}% {% {A}% {% \divide\dynkin@nodes by 2\relax% \ifodd\dynkin@rank% \global\dynkin@oddtrue% \advance\dynkin@nodes by 1\relax% \else% \global\dynkin@oddfalse% \fi% }% {D}% {% \IfStrEqCase{\dynkin@twisted@series}% {% {2}% {% \global\advance\dynkin@nodes by -1\relax% }% {3}% {% \IfStrEq{\dynkin@string}{4}% {% \global\dynkin@nodes=2\relax% }% {% \dynkin@error@series% }% }% }% [\dynkin@error@series]% }% {E}% {% \IfStrEq{\dynkin@twisted@series}{2}% {% \IfStrEq{\dynkin@string}{6}% {% \global\dynkin@nodes=4\relax% }% {% \dynkin@error@series% }% }% {% \dynkin@error@series% }% }% }% \fi% \xdef\dynkin@string{\repeatCharacter{\the\dynkin@nodes}{\dynkin@root@mark}}% }% \NewDocumentCommand\dynkin@clear@indefinite@edge@list{}% {% \xdef\dynkin@indefinite@edge@list{}% }% % \newcount\dynkin@first@root@no% \newcount\dynkin@second@root@no% \NewDocumentCommand\dynkin@set@edge@indefinite{mm}% {% \dynkin@first@root@no=#1\relax% \dynkin@second@root@no=#2\relax% \ifnum\the\dynkin@first@root@no<\the\dynkin@second@root@no\relax% \listxadd\dynkin@indefinite@edge@list{\the\dynkin@first@root@no,\the\dynkin@second@root@no}% \else% \listxadd\dynkin@indefinite@edge@list{\the\dynkin@second@root@no,\the\dynkin@first@root@no}% \fi% }% \NewDocumentCommand\dynkin@set@edge@indefinite@pair% {>{\SplitArgument{1}{-}}m}% {% \dynkin@set@edge@indefinite#1% }% \newif\ifdynkin@is@indefinite@edge% \NewDocumentCommand\dynkin@typeout@indefinite@edge@list{}% {% \renewcommand*{\do}[1]{\typeout{##1}}% \typeout{Indefinite edges: [}\dolistloop{\dynkin@indefinite@edge@list}\typeout{]}% }% %% \dynkin@is@edge@indefinite{

}{} sets the global if \ifdynkin@is@indefinite@edge to true or false %% depending on whether there is an indefinite edge between roots

and . %% The starred form uses Bourbaki ordering. \NewDocumentCommand\dynkin@is@edge@indefinite{smm}% {% \IfBooleanTF{#1}% {% \convertRootPair{#2}{#3}% }% {% \@dynkin@from@root=#2\relax% \@dynkin@to@root=#3\relax% }% % Next we sort the order, since edges are stored as undirected edges. \global\dynkin@first@root@no=\@dynkin@from@root\relax% \global\dynkin@second@root@no=\@dynkin@to@root\relax% \ifnum\the\dynkin@second@root@no<\the\dynkin@first@root@no\relax% \global\dynkin@first@root@no=\@dynkin@to@root\relax% \global\dynkin@second@root@no=\@dynkin@from@root\relax% \fi% \global\dynkin@is@indefinite@edgefalse\relax% \renewcommand*{\do}[1]{% \IfStrEq{##1}{\the\dynkin@first@root@no,\the\dynkin@second@root@no}% {\global\dynkin@is@indefinite@edgetrue\listbreak}% {}}% \dolistloop{\dynkin@indefinite@edge@list}% }% \newcount\dynkin@Root@Numbr% \newcount\dynkin@string@length% \newcount\dynkin@Root@Numbrpo% % \dynkin@grok@indefinite@edges{} reads the input string found when you write \dynkin{}{}, and % interprets it to say which edges are indefinite edges. \NewDocumentCommand\dynkin@grok@indefinite@edges{}% {% \dynkin@Root@Numbr=1\relax \StrLen{\dynkin@string}[\temp]% \dynkin@string@length=\temp\relax% \foreach \i in {2,...,\the\dynkin@string@length}% {% \StrChar{\dynkin@string}{\i}[\c]% \IfStrEq{\c}{.}% {% \dynkin@Root@Numbrpo=\dynkin@Root@Numbr\relax% \advance\dynkin@Root@Numbrpo by 1\relax% \ifnum\the\dynkin@Root@Numbr<\the\dynkin@nodes\relax% \dynkin@set@edge@indefinite{\dynkin@Root@Numbr}{\dynkin@Root@Numbrpo}% \fi% }% {% \global\advance\dynkin@Root@Numbr by 1\relax% }% }% }% \xdef\dynkin@spacy{ } \NewDocumentCommand\dynkin@clear@label@directions{}% {% \xdef\dynkin@label@directions{}% \xdef\dynkin@label@directions@star{}% }% \NewDocumentCommand\dynkin@set@default@label@directions{}% {% \dynkin@drpo=\the\dynkin@nodes\relax% \advance\dynkin@drpo by 1\relax% \xdef\dynkin@label@directions{\repeatCharacter{\the\dynkin@drpo}{?}}% \xdef\dynkin@label@directions@star{\repeatCharacter{\the\dynkin@drpo}{?}}% }% \newlength{\defaultpgflinewidth}% % % %% \@dynkin[]{}[]{} %% Draws a complete Dynkin diagram of %% series and %% subseries , %% described by the string %% with TikZ options specified by . \NewDocumentCommand\@dynkin{O{}mO{0}m}% {% \setcounter{dynkinRootNo}{0}% \setlength{\defaultpgflinewidth}{\pgflinewidth}% \global\defaultpgflinewidth=\defaultpgflinewidth\relax% \dynkin@clear@indefinite@edge@list% \xdef\dynkin@parabolic{0}% \pgfkeys{/Dynkin diagram, #1}% \ifdynkin@is@backwards% \tikzset{xscale=-1}% \fi% \ifdynkin@is@upsidedown% \tikzset{yscale=-1}% \fi% \ifx\dynkin@label@list\empty\relax\else\global\dynkin@label@the@rootstrue\fi% \ifx\dynkin@label@list@star\empty\relax\else\global\dynkin@label@star@the@rootstrue\fi% \xdef\dynkin@user@series{#2}% \xdef\dynkin@twisted@series{#3}% \xdef\dynkin@user@string{#4}% \global\dynkin@ply=\dynkin@ply@value\relax% \xdef\dynkin@indefinite@edge@length{(\dynkin@edge@length*\dynkin@indefinite@edge@ratio)}\relax% \xdef\dynkin@series{#2}% \IfStrEq{\dynkin@diagram@name}{anonymous}% {% \xdef\dynkin@root@name{root\dynkin@spacy}% }% {% \xdef\dynkin@root@name{\dynkin@diagram@name\dynkin@spacy root\dynkin@spacy}% }% \dynkin@grok@series% \IfSubStr{ABCDEFGHI}{\dynkin@series}{}{\dynkin@error@series}% \xdef\dynkin@string{#4}% \IfInteger{\dynkin@string}% {% \dynkin@integer@rank% }% {% % Turn Satake codes into Dynkin diagram expressions in \dynkin@string. \dynkin@grok@Satake@codes% }% % Expand out any digits in \dynkin@string into multiples of the various root marks. \expand@Dynkin@Roots@Digits% % Assign to \dynkin@roots the input string \dynkin@string with all . symbols removed, % so we only get the symbols representing the marks for the various roots. \StrDel{\dynkin@string}{.}[\temp]% \xdef\dynkin@roots{\temp}% \StrLen{\dynkin@roots}[\temp]% \global\dynkin@nodes=\temp\relax% \dynkin@grok@indefinite@edges% \dynkin@find@rank{}% \dynkin@cross@out@parabolics{}% \dynkin@set@default@label@directions{}% \check@Dynkin@diagram{}% \ifdefined\initialize@roots@as@sums@table% \initialize@roots@as@sums@table% \fi% \node[anchor=base,inner sep=0pt,outer sep=0pt] (origin) at \dynkin@current@location {};% \node (Dynkin current) at ($(origin)+(\dynkin@horizontal@shift,\dynkin@vertical@shift)$)% {};% \ifdynkin@is@twisted% \csname twisted\dynkin@series dynkin\endcsname% \else% \ifdynkin@is@extended% \csname extended\dynkin@series dynkin\endcsname% \else% \csname\dynkin@series dynkin\endcsname% \fi% \fi% \dynkin@draw@involutions% \dynkinRefreshRoots% }% % %% We know the number of nodes; lets find the rank. \NewDocumentCommand\dynkin@find@rank{}% {% \global\dynkin@rank=\the\dynkin@nodes\relax% \ifdynkin@is@twisted% \IfStrEqCase{\dynkin@series}% {% {A}% {% \global\multiply\dynkin@rank by 2% \ifdynkin@odd% \global\advance\dynkin@rank by -1\relax% \fi% }% {D}% {% \IfStrEqCase{\dynkin@twisted@series}% {% {2} {% \global\advance\dynkin@rank by 1\relax% }% {3} {% \global\advance\dynkin@rank by 2\relax% }% }% }% {E}% {% \global\advance\dynkin@rank by 2\relax% }% }% \fi% \global\dynkin@rank@minus@one\the\dynkin@rank\relax% \global\advance\dynkin@rank@minus@one by -1\relax% \global\dynkin@rank@minus@two\the\dynkin@rank@minus@one\relax% \global\advance\dynkin@rank@minus@two by -1\relax% \global\dynkin@rank@minus@three\the\dynkin@rank@minus@two\relax% \global\advance\dynkin@rank@minus@three by -1\relax% }% \newcount\dynkin@lenny% %% \dynkin@grok@series %% Interprets the dynkin@series, to see if it is extended, twisted, and what twisted series it is. \NewDocumentCommand\dynkin@grok@series{}% {% \StrLen{\dynkin@series}[\dynkin@lenny] \ifnum\dynkin@lenny>1\relax% \dynkin@error@series% \fi% \edef\series{\dynkin@series}% \IfStrEqCase{\dynkin@twisted@series}% {% {0}{}% {1}{ \global\dynkin@is@extendedtrue}% {2}{% \IfSubStr{ADE}{\dynkin@series}% {% \global\dynkin@is@twistedtrue% }% {% \dynkin@error@series% }% }% {3}{% \IfStrEq{\dynkin@series}{D}% {% \global\dynkin@is@twistedtrue% }% {% \dynkin@error@series% }% }% }% [\dynkin@error@series]% }% \newif\ifdynkin@Satake@diagram% \NewDocumentCommand\dynkin@grok@Satake@codes{}% {% \ifdynkin@is@extended% \else% \ifdynkin@is@twisted% \else% \global\dynkin@Satake@diagramtrue% \fi% \fi% \IfStrEqCase{\dynkin@series}% {% {A}% {% \IfStrEqCase{\dynkin@string}% {% {even}% {% \gdef\dynkin@string{ddd.ddd}% \global\dynkin@oddfalse% \global\dynkin@Satake@diagramfalse% }% {odd}% {% \gdef\dynkin@string{dddd.ddd}% \global\dynkin@oddtrue% \global\dynkin@Satake@diagramfalse% }% {}% {% \gdef\dynkin@string{dd.dd}% \global\dynkin@Satake@diagramfalse% }% {I} {% \gdef\dynkin@string{oo.oo}% }% {II}% {% \gdef\dynkin@string{*o*.o*}% }% {IIIa}% {% \global\dynkin@ply=2\relax% \gdef\dynkin@string{oo.o**.**o.oo}% }% {IIIb}% {% \global\dynkin@ply=2\relax% \gdef\dynkin@string{oo.ooo.oo}% }% {IV}% {% \global\dynkin@ply=2\relax% \gdef\dynkin@string{o*.*o}% }% }% [\global\dynkin@Satake@diagramfalse]% }% {B}% {% \IfStrEqCase{\dynkin@string}% {% {}{% \global\dynkin@Satake@diagramfalse% \ifdynkin@Coxeter% \gdef\dynkin@string{ddd.ddd}% \else% \ifdynkin@is@extended% \gdef\dynkin@string{ddd.ddd}% \else% \gdef\dynkin@string{dd.ddd}% \fi% \fi% }% {I}{\gdef\dynkin@string{oo.o*.**}}% {II}{\gdef\dynkin@string{o*.**}}% }% [\global\dynkin@Satake@diagramfalse]% }% {C}% {% \IfStrEqCase{\dynkin@string}% {% {}{% \global\dynkin@Satake@diagramfalse% \ifdynkin@Coxeter% \gdef\dynkin@string{ddd.ddd}% \else% \gdef\dynkin@string{dd.ddd}% \fi% }% {I}{\gdef\dynkin@string{oo.oo}}% {IIa}{\gdef\dynkin@string{*o*.o*.**}}% {IIb}{\gdef\dynkin@string{*o*.o*o}}% }% [\global\dynkin@Satake@diagramfalse]% }% {D}% {% \IfStrEqCase{\dynkin@string}% {% {}{% \global\dynkin@Satake@diagramfalse% \ifdynkin@is@extended% \ifnum\dynkin@ply=4\relax% \gdef\dynkin@string{dddd.d.ddddd} \else% \gdef\dynkin@string{ddd.dddd}% \fi% \else% \ifdynkin@is@twisted% \IfStrEqCase{\dynkin@twisted@series}% {% {2}{ \gdef\dynkin@string{dd.ddd}}% {3}{\gdef\dynkin@string{ddd}}% }% [\dynkin@error@series]% \else% \gdef\dynkin@string{dd.dddd}% \fi% \fi% }% {Ia}{\gdef\dynkin@string{oo.o*.***}}% {Ib}{\global\dynkin@ply=2\relax\gdef\dynkin@string{o.ooo}}% {Ic}{\gdef\dynkin@string{o.ooo}}% {II} {\gdef\dynkin@string{o*.***}}% {IIIa}{\gdef\dynkin@string{*o*.o*o}}% {IIIb}{\global\dynkin@ply=2\relax\gdef\dynkin@string{*o*.o*oo}}% }% [\global\dynkin@Satake@diagramfalse]% }% {E}% {% \IfStrEqCase{\dynkin@string}% {% {}% {% \global\dynkin@Satake@diagramfalse% \IfStrEq{\dynkin@twisted@series}{2}% {% \gdef\dynkin@string{ddddd}% }% {% \dynkin@error@series% }% }% {I}{ \global\dynkin@rank=6\relax\gdef\dynkin@string{oooooo}}% {II} {\global\dynkin@ply=2\relax\gdef\dynkin@string{oooooo}}% {III}{\global\dynkin@ply=2\relax\gdef\dynkin@string{oo***o}}% {IV} {\gdef\dynkin@string{o****o}}% {V}{ \gdef\dynkin@string{ooooooo}}% {VI} {\gdef\dynkin@string{o*oo*o*} }% {VII}{\gdef\dynkin@string{o****oo}}% {VIII}{\gdef\dynkin@string{oooooooo}}% {IX} {\gdef\dynkin@string{o****ooo}}% }% [\global\dynkin@Satake@diagramfalse]% }% {F}% {% \global\dynkin@rank=4\relax% \IfStrEqCase{\dynkin@string}% {% {I}{ \gdef\dynkin@string{oooo}}% {II} {\gdef\dynkin@string{***o}}% }% [\global\dynkin@Satake@diagramfalse]% }% {G}% {% \IfStrEqCase{\dynkin@string}% {% {I}{\gdef\dynkin@string{oo}}% }% [\global\dynkin@Satake@diagramfalse]% }% {H}% {% \IfStrEqCase{\dynkin@string}% {% {}{\gdef\dynkin@string{**}}% }% [\global\dynkin@Satake@diagramfalse]% }% {I}% {% \IfStrEqCase{\dynkin@string}% {% {}{\gdef\dynkin@string{**}}% {% }% }% [\global\dynkin@Satake@diagramfalse]% }% }% [\dynkin@error@series]% \ifdynkin@Satake@diagram% \else% \StrSubstitute{\dynkin@string}{d}{\dynkin@root@mark}[\temp]% \xdef\dynkin@string{\temp}% \fi% }% \NewDocumentCommand\dynkin@error@not@in@tikz{} {% \ClassError% {Dynkin diagrams}% {Dynkin diagram macros called outside of tikz environment}% {}% }% \NewDocumentCommand\dynkin@error@root@ordering{} {% \ClassError% {Dynkin diagrams}% {Unrecognized root ordering: ``\dynkin@ordering'' in Dynkin diagram \dynkin@user@series{\dynkin@user@string}}% {}% }% \NewDocumentCommand\dynkin@error@rank{}% {% \ClassError% {Dynkin diagrams}% {Unrecognized \dynkin@user@series\dynkin@spacy series rank: ``\the\dynkin@rank'' in Dynkin diagram \dynkin@user@series{\dynkin@user@string}}% {}% }% \NewDocumentCommand\dynkin@error@series{}% {% \ClassError% {Dynkin diagrams}% {Unrecognized series ``\dynkin@user@series'' in Dynkin diagram \dynkin@user@series{\dynkin@user@string}}% {}% }% \NewDocumentCommand\dynkin@error@ply{} {% \ClassError% {Dynkin diagrams}% {Unrecognized ply: ``\the\dynkin@ply'' in Dynkin diagram \dynkin@user@series{\dynkin@user@string}}% {}% }% %% \check@Dynkin@Roots %% Raises error messages for erroneous input in the list of Dynkin roots. \NewDocumentCommand\check@Dynkin@Roots{}% {% \foreach \i in {1,...,\the\dynkin@nodes}% {% \StrChar{\dynkin@roots}{\i}[\cccc]% \IfSubStr{*OXotx}{\cccc}% {% }% {%else \ClassError% {Dynkin diagrams}% {Unrecognized Dynkin diagram root mark: ``\cccc'' in Dynkin diagram \dynkin@user@series{\dynkin@user@string}}% {}% }% }% }% %% \check@Dynkin@root@order \NewDocumentCommand\check@Dynkin@root@order{m}% {% \IfStrEqCase{#1}% {% {Adams}{}% {Bourbaki}{}% {Carter}{}% {Dynkin}{}% {Kac}{}% {TestOrder}{}% }% [\ClassError% {Dynkin diagrams}% {Unrecognized label ordering: ``#1'' }% {}]% }% %% \check@Dynkin@diagram %% Raises error messages for erroneous inputs. \NewDocumentCommand\check@Dynkin@diagram{}% {% \IfSubStr{1234}{\the\dynkin@ply}{}{\dynkin@error@ply}% \check@Dynkin@Roots% \check@Dynkin@root@order{\dynkin@ordering}% \IfStrEqCase{\dynkin@series}% {% {A}{}% {B}{}% {C}{}% {D}{}% {E}% {% \ifnum\dynkin@nodes=5\relax% \ifnum\dynkin@rank=6\relax% \IfStrEq{\dynkin@twisted@series}{2}% {% }% {% \dynkin@error@rank% }% \else% \dynkin@error@rank% \fi% \else \ifnum\dynkin@rank=6\relax% \else% \ifnum\dynkin@rank=7\relax% \else% \ifnum\dynkin@rank=8\relax% \else% \IfStrEq{\dynkin@ordering}{Kac}{}{\dynkin@error@rank}% \fi% \fi% \fi% \fi% }% {F}% {% \ifnum\dynkin@rank=4\relax% \else% \dynkin@error@rank% \fi% }% {G}% {% \ifnum\dynkin@rank=2\relax% \else% \dynkin@error@rank% \fi% }% {H}{}% {I}{}% }% [\dynkin@error@series]% }% %% A slight headache: all of the routines that draw Dynkin diagrams are written %% in Bourbaki ordering. We store the roots in the current ordering. %% So when we draw edges, we need to convert from the Bourbaki ordering each time. %% We store the conversions here. \newcount\dynkin@Root@Number% \newcount\@dynkin@from@root% \newcount\@dynkin@to@root% %% \swapRootIfInLastTwoRoots{} %% If the input root is one of the last two roots, then put the other in \dynkin@Root@Number, otherwise %% let \dynkin@Root@Number be . \NewDocumentCommand\swapRootIfInLastTwoRoots{m}% {% \ifnum\dynkin@rank>1\relax% \ifnum\dynkin@rank=#1\relax% \global\dynkin@Root@Number=\the\dynkin@rank@minus@one\relax% \else% \ifnum\dynkin@rank@minus@one=#1\relax% \global\dynkin@Root@Number=\the\dynkin@rank\relax% \else% \global\dynkin@Root@Number=#1\relax% \fi% \fi% \else% \global\dynkin@Root@Number=#1\relax% \fi% }% \newcount\dynkin@r% \NewDocumentCommand\swap@if@in@last@two{mm}% {% \global\dynkin@r=#2\relax% \ifnum\dynkin@r=#1\relax% \global\advance \dynkin@r by -1\relax% \else% \global\advance \dynkin@r by 1\relax% \ifnum\dynkin@r=#1\relax% \else% \global\advance \dynkin@r by -1\relax% \fi% \fi% \the\dynkin@r% }% \newcount\dynkin@root@no% \NewDocumentCommand\dynkinOrderToBourbaki{mmmmm}% %% \dynkinOrderToBourbaki{series}{rank}{from order}{root}{counter to store result} %% Stores the number of root in Bourbaki order which corresponds to %% the root in , for the series of simple Lie algebra %% , rank . %% Example: \dynkinOrderToBourbaki{E}{8}{Carter}{7} %% yields 3, because the 7th root in E8 according to Carter's ordering is the %% 3rd in Bourbaki's. {% % \check@Dynkin@root@order{#3}% \IfStrEq{#4}{0}% {% % The affine root is often labelled as root 0, and it is the same in all orderings. \global#5=0% }% {% \IfStrEqCase{#1}% {% {A}% {% \global#5=#4\relax% }% {D}% {% \IfStrEqCase{#3}% {% {Adams}{% \global#5=% \swap@if@in@last@two{#2}{#4}% \relax% }% {Dynkin}{% \global#5=% \swap@if@in@last@two{#2}{#4}% \relax% }% {Kac}{% \global#5=% \swap@if@in@last@two{#2}{#4}% \relax% }% }% [\global#5=#4\relax]% }% {E}% {% \ifnum#2=6\relax% \IfStrEqCase{#3}% {% {Adams}% {% \global#5=% \stringCharacterInPosition% {135426}{#4}% \relax% }% {Carter}% {% \global#5=% \stringCharacterInPosition% {134256}{#4}% \relax% }% {Dynkin}% {% \global#5=% \stringCharacterInPosition{134562}{#4}% \relax% }% {Kac}% {% \global#5=% \stringCharacterInPosition% {134562}{#4}% \relax% }% }% [\global#5=#4\relax]% \else% \ifnum#2=7\relax% \IfStrEqCase{#3}% {% {Adams}% {% \global#5=% \stringCharacterInPosition% {6524317}{#4}% \relax% }% {Carter}% {% \global#5=% \stringCharacterInPosition% {7654231}{#4}% \relax% }% {Dynkin}% {% \global#5=% \stringCharacterInPosition% {1345672}{#4}% \relax% }% {Kac}% {% \global#5=% \stringCharacterInPosition% {1245672}{#4}% \relax% }% }% [\global#5=#4\relax]% \else% \ifnum#2=8\relax% \IfStrEqCase{#3}% {% {Adams}% {% \global#5=% \stringCharacterInPosition% {13245678}{#4}% \relax% }% {Carter}% {% \global#5=% \stringCharacterInPosition% {87654231}{#4}% \relax% }% {Dynkin}% {% \global#5=% \stringCharacterInPosition% {13456782}{#4}% \relax% }% {Kac}% {% \global#5=% \stringCharacterInPosition% {87654312}{#4}% \relax% }% }% [\global#5=#4\relax]% \else% \global#5=#4\relax% \fi% \fi% \fi% }% {F}% {% \IfStrEqCase{#3}% {% {Adams}{\global#5=% \stringCharacterInPosition{4321}{#4}% \relax}% }% [\global#5=#4\relax]% }% {G}% {% \IfStrEqCase{#3}% {% {Carter}{\global#5=% \stringCharacterInPosition{21}{#4}% \relax}% {Dynkin}{\global#5=% \stringCharacterInPosition{21}{#4}% \relax}% }% [\global#5=#4\relax]% }% }% [\global#5=#4\relax]% }% }% \NewDocumentCommand\dynkinOrderFromBourbaki{mmmmm}% %% \dynkinOrderFromBourbaki{series}{rank}{root}{to order}{count to store result} %% Stores the number of root in which corresponds to %% the root in Bourbaki ordering, for the series of simple Lie algebra %% , rank . %% Example: \dynkinOrderFromBourbaki{E}{8}{7}{Carter} %% yields 2, because the 7th root in E8 according to Bourbaki's ordering is the %% 2nd in Carter's. {% % \check@Dynkin@root@order{#4}% \IfStrEq{#3}{0}% {% % The affine root is often labelled as root 0, and it is the same in all orderings. \global#5=0\relax% }% {% \IfStrEqCase{#1}% {% {A}% {% \global#5=#3\relax% }% {D}% {% \IfStrEqCase{#4}% {% {Adams}{% \global#5=% \swap@if@in@last@two{#2}{#3}% \relax% }% {Dynkin}{% \global#5=% \swap@if@in@last@two{#2}{#3}% \relax% }% {Kac}{% \global#5=% \swap@if@in@last@two{#2}{#3}% \relax% }% }% [\global#5=#3\relax]% }% {E}% {% \ifnum#2=6\relax% \IfStrEqCase{#4}% {% {Adams}% {% \global#5=% \stringCharacterInPosition% {152436}{#3}% \relax% }% {Carter}% {% \global#5=% \stringCharacterInPosition% {142356}{#3}% \relax% }% {Dynkin}% {% \global#5=% \stringCharacterInPosition% {162345}{#3}% \relax% }% {Kac}% {% \global#5=% \stringCharacterInPosition% {162345}{#3}% \relax% }% }% [\global#5=#3\relax]% \else% \ifnum#2=7\relax% \IfStrEqCase{#4}% {% {Adams}% {% \global#5=% \stringCharacterInPosition{6354217}{#3}% \relax% }% {Carter}% {% \global#5=% \stringCharacterInPosition{7564321}{#3}% \relax% }% {Dynkin}% {% \global#5=% \stringCharacterInPosition{1723456}{#3}% \relax% }% {Kac}% {% \global#5=% \stringCharacterInPosition{1723456}{#3}% \relax% }% }% [\global#5=#3\relax]% \else% \ifnum#2=8\relax% \IfStrEqCase{#4}% {% {Adams}% {% \global#5=% \stringCharacterInPosition% {13245678}{#3}% \relax% }% {Carter}% {% \global#5=% \stringCharacterInPosition% {86754321}{#3}% \relax% }% {Dynkin}% {% \global#5=% \stringCharacterInPosition% {18234567}{#3}% \relax% }% {Kac}% {% \global#5=% \stringCharacterInPosition% {78654321}{#3}% \relax% }% }% [\global#5=#3\relax]% \else% \global#5=#3\relax% \fi% \fi% \fi% %\fi% }% {F}% {% \IfStrEqCase{#4}% {% {Adams}% {% \global#5=% \stringCharacterInPosition% {4321}{#3}% \relax% }% }% [\global#5=#3\relax]% }% {G}% {% \IfStrEqCase{#4}% {% {Carter}% {% \global#5=% \stringCharacterInPosition{21}{#3}% \relax% }% {Dynkin}% {% \global#5=% \stringCharacterInPosition{21}{#3}% \relax% }% }% [\global#5=#3\relax]% }% }% [\global#5=#3\relax]% }% }% \newcount\dynkin@order@temp% \newcount\dynkin@order@temp@b% \NewDocumentCommand\dynkinOrder{mmD.:{Bourbaki}r:-D>.{Bourbaki}m}% %% \dynkinOrder .::->. %% Example: \newcount\r\dynkinOrder D7.Carter::7->Bourbaki.{\r} {% \dynkinOrderToBourbaki{#1}{#2}{#3}{#4}{\dynkin@order@temp}% \dynkinOrderFromBourbaki{#1}{#2}{\the\dynkin@order@temp}{#5}{#6}% }% %% \typeDynkinOrder .::->. %% Example: \typeDynkinOrder D7.Carter::7->Bourbaki. \newcount\tempDynkinReorder% \NewDocumentCommand\typeDynkinOrder{mmD.:{Bourbaki}r:-D>.{Bourbaki}}% {% \dynkinOrder{#1}{#2}.#3::#4->#5.{\tempDynkinReorder}\the\tempDynkinReorder% }% %% \convertRootNumber{} %% Converts from Bourbaki ordering to the current ordering, storing the result in a count called \dynkin@Root@Number. \NewDocumentCommand\convertRootNumber{m}% {% \IfStrEq{#1}{0}% {% \global\dynkin@Root@Number=0\relax% }% {% \IfStrEqCase{\dynkin@series}% {% {A}% {% \IfStrEqCase{\dynkin@ordering}% {% {TestOrder}% {% \global\dynkin@Root@Number=#1\relax% \global\advance\dynkin@Root@Number by 1\relax% \ifnum\dynkin@Root@Number>\the\dynkin@rank\relax% \global\dynkin@Root@Number=1\relax% \fi% }% }% [\global\dynkin@Root@Number=#1\relax]% }% {D}% {% \IfStrEqCase{\dynkin@ordering}% {% {Adams}{\swapRootIfInLastTwoRoots{#1}}% {Dynkin}{\swapRootIfInLastTwoRoots{#1}}% {Kac}{% \ifdynkin@is@twisted \global\dynkin@Root@Number=#1\relax% \else \ifdynkin@is@extended \global\dynkin@Root@Number=#1\relax% \else \swapRootIfInLastTwoRoots{#1} \fi \fi}% }% [\global\dynkin@Root@Number=#1\relax]% }% {E}% {% \ifdynkin@is@twisted% \global\dynkin@Root@Number=#1\relax% \else% \ifnum\dynkin@rank=6\relax% \IfStrEqCase{\dynkin@ordering}% {% {Adams}{\global\dynkin@Root@Number=\stringCharacterInPosition{152436}{#1}\relax}% {Carter}{\global\dynkin@Root@Number=\stringCharacterInPosition{142356}{#1}\relax}% {Dynkin}{\global\dynkin@Root@Number=\stringCharacterInPosition{162345}{#1}\relax}% {Kac}{\global\dynkin@Root@Number=\stringCharacterInPosition{162345}{#1}\relax}% }% [\global\dynkin@Root@Number=#1\relax]% \else% \ifnum\dynkin@rank=7\relax% \IfStrEqCase{\dynkin@ordering}% {% {Adams}{\global\dynkin@Root@Number=\stringCharacterInPosition{6354217}{#1}\relax}% {Carter}{\global\dynkin@Root@Number=\stringCharacterInPosition{7564321}{#1}\relax}% {Dynkin}{\global\dynkin@Root@Number=\stringCharacterInPosition{1723456}{#1}\relax}% {Kac}{\global\dynkin@Root@Number=\stringCharacterInPosition{1723456}{#1}\relax}% }% [\global\dynkin@Root@Number=#1\relax]% \else% \ifnum\dynkin@rank=8\relax% \IfStrEqCase{\dynkin@ordering}% {% {Adams}{\global\dynkin@Root@Number=\stringCharacterInPosition{13245678}{#1}\relax}% {Carter}{\global\dynkin@Root@Number=\stringCharacterInPosition{86754321}{#1}\relax}% {Dynkin}{\global\dynkin@Root@Number=\stringCharacterInPosition{18234567}{#1}\relax}% {Kac}{\global\dynkin@Root@Number=\stringCharacterInPosition{78654321}{#1}\relax}% }% [\global\dynkin@Root@Number=#1\relax]% \else% \global\dynkin@Root@Number=#1\relax% \fi% \fi% \fi% \fi% }% {F}% {% \IfStrEqCase{\dynkin@ordering}% {% {Adams}{\global\dynkin@Root@Number=\stringCharacterInPosition{4321}{#1}\relax}% }% [\global\dynkin@Root@Number=#1\relax]% }% {G}% {% \IfStrEqCase{\dynkin@ordering}% {% {Carter}{\global\dynkin@Root@Number=\stringCharacterInPosition{21}{#1}\relax}% {Dynkin}{\global\dynkin@Root@Number=\stringCharacterInPosition{21}{#1}\relax}% }% [\global\dynkin@Root@Number=#1\relax]% }% }% [\global\dynkin@Root@Number=#1\relax]% }% }% %% \convertRootPair{

}{} %% Stores conversions in \@dynkin@from@root and \@dynkin@to@root. \NewDocumentCommand\convertRootPair{mm} {% \convertRootNumber{#1}% \global\@dynkin@from@root=\dynkin@Root@Number\relax% \convertRootNumber{#2}% \global\@dynkin@to@root=\dynkin@Root@Number\relax% }% %% \testbit{}{} %% If bit number of is 1 then set bittrue else set bitfalse \newif\ifdynkin@bit \newcount\test@bit@a \newcount\test@bit@b \newif\iftest@bit@more \NewDocumentCommand\testbit{mm}% {% \test@bit@a#1\relax% \test@bit@b#2\relax% \ifnum\test@bit@a=0\relax% \global\bitfalse% \else% \global\test@bit@moretrue% \loop% \ifnum\test@bit@b=0\relax% \global\test@bit@morefalse% \ifodd\test@bit@a\empty% \global\dynkin@bittrue% \else% \global\dynkin@bitfalse% \fi% \else% \divide\test@bit@a by 2\relax% \advance\test@bit@b by -1\relax% \fi% \iftest@bit@more\repeat% \fi% }% %% \replaceNthChar{}{}{} %% redefines the string , a name of a macro returning a character string, %% to be the same as its original output, but with character replaced by . \newcount\replaceNthCounter \newcount\replacementN \xdef\replacementLeftString{} \xdef\replacementRightString{} \NewDocumentCommand\replaceNthChar{mmm}% {% \ifnum#2<1\relax% \else% \StrLen{#1}[\thatreplaceNthCounter]% \replaceNthCounter\thatreplaceNthCounter\relax% \ifnum\replaceNthCounter<#2\relax% \else% \replacementN#2\relax% \advance\replacementN by -1\relax% \StrLeft{#1}{\the\replacementN}[\replacementLeftString]% \advance\replacementN by 1\relax% \StrGobbleLeft{#1}{\the\replacementN}[\replacementRightString]% \xdef#1{\replacementLeftString#3\replacementRightString}% \fi% \fi% }% \newcount\dynkin@where% \NewDocumentCommand\dynkin@put@cross{m}% {% \dynkin@where#1\relax% \advance\dynkin@where by 1\relax% \replaceNthChar{\dynkin@roots}{\the\dynkin@where}{x}% }% \newcount\dynkin@nodes@minus@one% \NewDocumentCommand\dynkin@cross@out@parabolics{}% {% \IfInteger{\dynkin@parabolic}% {% \IfStrEq{\dynkin@parabolic}{0}% {% }% {% \dynkin@nodes@minus@one=\the\dynkin@nodes\relax% \advance\dynkin@nodes@minus@one by -1\relax% \foreach \b in {0,...,\the\dynkin@nodes@minus@one}% {% \testbit{\dynkin@parabolic}{\b}% \ifdynkin@bit\dynkin@put@cross{\b}\fi% }% }% }% {% }% }% \NewDocumentCommand\dynkinMoveToRoot{sm}% {% \IfBooleanTF{#1}% {% \convertRootNumber{#2}% }% {% \global\dynkin@Root@Number=#2\relax% }% \node (Dynkin current) at (\dynkin@root@name \the\dynkin@Root@Number){};% }% %% \dynkinPlaceRootHere{}{}{} %% \dynkinPlaceRootHere*{}{}{} %% Tell TikZ to place node for a root of a Dynkin diagram at the current %% cursor location. Draws nothing. %% =label positioning: above, below, left, right, above left, above right, below left, below right. %% similarly, the alternate label position. %% Starred form converts from Bourbaki ordering to default ordering. \NewDocumentCommand\dynkinPlaceRootHere{smmm}% {% \xdef\yyyy{#2} \IfBooleanTF{#1}% {% \convertRootNumber{#2}% }% {% \global\dynkin@Root@Number=#2\relax% }% \node (\dynkin@root@name \the\dynkin@Root@Number) at (Dynkin current) {};% \dynkinPutLabelInDirection{\the\dynkin@Root@Number}{#3}% \dynkinPutLabelInDirection*{\the\dynkin@Root@Number}{#4}% }% \newif\ifdynkin@hex@grid \dynkin@hex@gridtrue %% \dynkinPlaceRootRelativeTo{

}{}{}{}{} %% \dynkinPlaceRootRelativeTo*{

}{}{}{}{} %% Tell TikZ to place node

for a root of a Dynkin diagram at a location %% in direction from root . Draws nothing. %% is the label position: above, below, left, right, above left, above right, below left, below right. %% is the position of the alternate label similarly. %% is the direction from : %% west,east,south,north, %% northeast,northwest,southeast,southwest, %% southfold,northfold, %% southeastfold,southwestfold,northeastfold,northwestfold. %% Starred form is in Bourbaki root ordering; otherwise default ordering. \NewDocumentCommand\dynkinPlaceRootRelativeTo{smmmmm}% {% \IfBooleanTF{#1}% {% \convertRootPair{#3}{#2}% }% {% \global\@dynkin@from@root=#3\relax% \global\@dynkin@to@root=#2\relax% }% \dynkin@is@edge@indefinite{\@dynkin@from@root}{\@dynkin@to@root}% \ifdynkin@is@indefinite@edge% \xdef\dynkin@distance{\dynkin@indefinite@edge@length} \else \xdef\dynkin@distance{\dynkin@edge@length} \fi \ifdynkin@hex@grid \IfStrEqCase{#4}% {% {west}{\xdef\xd{-\dynkin@distance}\xdef\yd{0}}% {east}{\xdef\xd{\dynkin@distance}\xdef\yd{0}}% {south}{\xdef\xd{0}\xdef\yd{-\dynkin@distance}}% {north}{\xdef\xd{0}\xdef\yd{\dynkin@distance}}% {southeast}% {% \xdef\xd{cos(-60)*\dynkin@distance}% \xdef\yd{sin(-60)*\dynkin@distance}% }% {southwest}% {% \xdef\xd{cos(240)*\dynkin@distance}% \xdef\yd{sin(240)*\dynkin@distance}% }% {northeast}% {% \xdef\xd{cos(60)*\dynkin@distance}% \xdef\yd{sin(60)*\dynkin@distance}% }% {northwest}% {% \xdef\xd{cos(120)*\dynkin@distance}% \xdef\yd{sin(120)*\dynkin@distance}% }% {southeastfold}% {% \xdef\xd{\dynkin@fold@radius}% \xdef\yd{-\dynkin@fold@radius}% }% {southwestfold}% {% \xdef\xd{-\dynkin@fold@radius}% \xdef\yd{-\dynkin@fold@radius}% }% {northeastfold}% {% \xdef\xd{\dynkin@fold@radius}% \xdef\yd{\dynkin@fold@radius}% }% {northwestfold}% {% \xdef\xd{-\dynkin@fold@radius}% \xdef\yd{\dynkin@fold@radius}% }% {northfold}% {% \xdef\xd{0}% \xdef\yd{2*\dynkin@fold@radius}% }% {southfold}% {% \xdef\xd{0}% \xdef\yd{-2*\dynkin@fold@radius}% }% }% \else% \IfStrEqCase{#4}% {% {west}{\xdef\xd{-\dynkin@distance}\xdef\yd{0}}% {east}{\xdef\xd{\dynkin@distance}\xdef\yd{0}}% {south}{\xdef\xd{0}\xdef\yd{-\dynkin@distance}}% {north}{\xdef\xd{0}\xdef\yd{\dynkin@distance}}% {southeast}% {% \xdef\xd{cos(-45)*\dynkin@distance}% \xdef\yd{sin(-45)*\dynkin@distance}% }% {southwest}% {% \xdef\xd{cos(225)*\dynkin@distance}% \xdef\yd{sin(225)*\dynkin@distance}% }% {northeast}% {% \xdef\xd{cos(45)*\dynkin@distance}% \xdef\yd{sin(45)*\dynkin@distance}% }% {northwest}% {% \xdef\xd{cos(135)*\dynkin@distance}% \xdef\yd{sin(135)*\dynkin@distance}% }% {southeastfold}% {% \xdef\xd{\dynkin@fold@radius}% \xdef\yd{-\dynkin@fold@radius}% }% {southwestfold}% {% \xdef\xd{-\dynkin@fold@radius}% \xdef\yd{-\dynkin@fold@radius}% }% {northeastfold}% {% \xdef\xd{\dynkin@fold@radius}% \xdef\yd{\dynkin@fold@radius}% }% {northwestfold}% {% \xdef\xd{-\dynkin@fold@radius}% \xdef\yd{\dynkin@fold@radius}% }% {northfold}% {% \xdef\xd{0}% \xdef\yd{2*\dynkin@fold@radius}% }% {southfold}% {% \xdef\xd{0}% \xdef\yd{-2*\dynkin@fold@radius}% }% }% \fi \node (Dynkin current) at ($(\dynkin@root@name \the\@dynkin@from@root)% +({\xd},{\yd})$){}; \dynkinPlaceRootHere{\the\@dynkin@to@root}{#5}{#6}% }% % Jump the current location by a certain multiple of the fold radius. \NewDocumentCommand\dynkin@jump{m}% {% \xdef\yj{#1*\dynkin@fold@radius}% \node (Dynkin current) at ($(Dynkin current)+(0,{\yj})$){};% }% % Jump the current location by a certain multiple of the edge radius multiplied by sin(60). \NewDocumentCommand\dynkin@hop{m}% {% \xdef\yjj{#1*\dynkin@edge@length*sin(60)}% \node (Dynkin current) at ($(Dynkin current)+(0,{\yjj})$){};% }% %% \dynkinEast %% Moves the TikZ cursor one edge to the right. %% Starred form for an indefinite edge. \NewDocumentCommand\dynkinEast{s}% {% \xdef\distance{\IfBooleanTF{#1}{\dynkin@indefinite@edge@length}{\dynkin@edge@length}} \node (Dynkin current) at ($(Dynkin current)+({\distance},0)$) {};% }% %% \dynkinWest %% Moves the TikZ cursor one edge to the left. %% Starred form for an indefinite edge. \NewDocumentCommand\dynkinWest{s}% {% \xdef\distance{\IfBooleanTF{#1}{\dynkin@indefinite@edge@length}{\dynkin@edge@length}}% \node (Dynkin current) at ($(Dynkin current)+({-\distance},0)$) {};% }% %% \dynkinNorth %% Moves the TikZ cursor one edge up. %% Starred form for an indefinite edge. \NewDocumentCommand\dynkinNorth{s}% {% \xdef\distance{\IfBooleanTF{#1}{\dynkin@indefinite@edge@length}{\dynkin@edge@length}}% \node (Dynkin current) at ($(Dynkin current)+(0,{\distance})$) {};% }% %% \dynkinSouth %% Moves the TikZ cursor one edge to the left. %% Starred form for an indefinite edge. \NewDocumentCommand\dynkinSouth{s}% {% \xdef\distance{\IfBooleanTF{#1}{\dynkin@indefinite@edge@length}{\dynkin@edge@length}}% \node (Dynkin current) at ($(Dynkin current)+(0,{-\distance})$) {};% }% %% \dynkinNorthEast %% Moves the TikZ cursor one edge to the north east. %% Starred form for an indefinite edge. \NewDocumentCommand\dynkinNorthEast{s}% {% \xdef\distance{\IfBooleanTF{#1}{\dynkin@indefinite@edge@length}{\dynkin@edge@length}}% \node (Dynkin current) at ($(Dynkin current)+ ({cos(60)*\distance},{sin(60)*\distance})$) {};% }% %% \dynkinSouthEast %% Moves the TikZ cursor one edge to the south east. %% Starred form for an indefinite edge. \NewDocumentCommand\dynkinSouthEast{s}% {% \xdef\distance{\IfBooleanTF{#1}{\dynkin@indefinite@edge@length}{\dynkin@edge@length}}% \node (Dynkin current) at ($(Dynkin current)+ ({cos(-60)*\distance},{sin(-60)*\distance})$) {};% }% %% \dynkinNorthWest %% Moves the TikZ cursor one edge to the north west. %% Starred form for an indefinite edge. \NewDocumentCommand\dynkinNorthWest{s}% {% \xdef\distance{\IfBooleanTF{#1}{\dynkin@indefinite@edge@length}{\dynkin@edge@length}}% \node (Dynkin current) at ($(Dynkin current)+ ({cos(120)*\distance},{sin(120)*\distance})$) {};% }% %% \dynkinSouthWest %% Moves the TikZ cursor one edge to the south west. %% Starred form for an indefinite edge. \NewDocumentCommand\dynkinSouthWest{s}% {% \xdef\distance{\IfBooleanTF{#1}{\dynkin@indefinite@edge@length}{\dynkin@edge@length}}% \node (Dynkin current) at ($(Dynkin current)+ ({cos(240)*\distance},{sin(240)*\distance})$) {};% }% %% \dynkinSouthEastFold %% Moves the TikZ cursor one edge to the south east in the middle of a fold. \NewDocumentCommand\dynkinSouthEastFold{}% {% \node (Dynkin current) at ($(Dynkin current)+({\dynkin@fold@radius},{-\dynkin@fold@radius})$) {};% }% %% \dynkinSouthWestFold %% Moves the TikZ cursor one edge to the south west in the middle of a fold. \NewDocumentCommand\dynkinSouthWestFold{}% {% \node (Dynkin current) at ($(Dynkin current)+({-\dynkin@fold@radius},{-\dynkin@fold@radius})$) {};% }% %% \dynkinSouthFold %% Moves the TikZ cursor one edge to the south in the middle of a fold. \NewDocumentCommand\dynkinSouthFold{}% {% \node (Dynkin current) at ($(Dynkin current)+(0,{-2*\dynkin@fold@radius})$) {};% }% \NewDocumentCommand\find@mark@of@root{m}% {% \StrChar{\dynkin@roots}{#1}[\my@root@marker]% \my@root@marker }% \NewDocumentCommand\dynkin@draw@all@roots{}% {% \foreach \b in {1,...,\the\dynkin@nodes}% {% \StrChar{\dynkin@roots}{\b}[\c]% \dynkinRootMark{\c}{\b}% }% \ifdynkin@is@extended% \dynkinRootMark*{\dynkin@affine@root@mark}{0}% \else% \ifdynkin@is@twisted% \dynkinRootMark*{\dynkin@affine@root@mark}{0}% \fi% \fi% }% %% \dynkin@fold@arrow@if@oo{

}{} %% Inputs are roots (in Bourbaki ordering). %% If we are working on a Satake diagram, and both roots are %% marked with hollow circles o, then draws a fold arrow between them. \NewDocumentCommand\dynkin@fold@arrow@if@oo{mm}% {% \convertRootPair{#1}{#2}% \ifdynkin@Satake@diagram% \StrChar{\dynkin@roots}% {\the\@dynkin@from@root}% [\my@root@marker]% \IfStrEq{\my@root@marker}{o}% {% \StrChar{\dynkin@roots}% {\the\@dynkin@to@root}% [\my@other@root@marker]% \IfStrEq{\my@other@root@marker}{o}% {% \dynkinFold% {\the\@dynkin@from@root}% {\the\@dynkin@to@root}% }% {}% }{}% \else% \dynkinFold{\the\@dynkin@from@root}{\the\@dynkin@to@root}% \fi% }% \newcount\pipebmo \newcount\pipefpo \newcount\pipe@end \newcount\start@pipe %% \dynkin@pipe{}{}{}{}{} %% Layout the roots (as TikZ nodes) , +1, \dots, in the Bourbaki ordering, in a straight line, %% starting at the current position (Dynkin current), moving in the direction =east, west, north, south, with labels placed according to =left,right,above,below. %% Assumes that the root is already created as a node in TikZ, but the others are not. \NewDocumentCommand\dynkin@pipe{mmmmm}% {% \start@pipe=#1\relax% \pipe@end=#2\relax% \ifnum\start@pipe<\the\pipe@end\relax% \global\pipebmo=\the\start@pipe\relax% \global\pipefpo=\the\start@pipe\relax% \global\advance\pipefpo by 1\relax% \foreach \bpipe in {\the\pipefpo,...,\the\pipe@end}% {% \dynkinPlaceRootRelativeTo*{\bpipe}{\the\pipebmo}{#3}{#4}{#5}% \dynkinEdge*{SingleEdge}{\the\pipebmo}{\bpipe}% \global\advance\pipebmo by 1\relax% }% \fi% }% \newcount\dynkin@h% \newcount\dynkin@hpo% \newcount\dynkin@afterfold% \newcount\dynkin@nrts% \newcount\dynkin@countdown% %% \dynkin@fold{}{} %% Layout the roots (as TikZ nodes) , +1, \dots, in the Bourbaki ordering, in a folded arrangement, %% moving first east, then down, then west, starting at the current position (Dynkin current). %% Assumes that the root is already created as a node in TikZ, but the others are not. \NewDocumentCommand\dynkin@fold{mm}% {% \dynkin@h=#1\relax% \advance\dynkin@h by #2\relax% \advance\dynkin@h by -1\relax% \divide\dynkin@h by 2\relax% \dynkin@pipe{#1}{\the\dynkin@h}{east}{above}{below right} \dynkin@hpo=\the\dynkin@h\relax% \advance\dynkin@hpo by 1\relax% \global\dynkin@afterfold=\the\dynkin@hpo\relax% \dynkin@nrts=#2\relax% \advance\dynkin@nrts by 1\relax% \advance\dynkin@nrts by -#1\relax% \ifodd\dynkin@nrts% \global\advance\dynkin@afterfold by 1\relax% \dynkinPlaceRootRelativeTo*% {\the\dynkin@hpo}% {\the\dynkin@h}% {southeastfold}{right}{left}% \dynkinEdge*{RightDownArc}% {\the\dynkin@h}% {\the\dynkin@hpo}% \dynkinPlaceRootRelativeTo*% {\the\dynkin@afterfold}% {\the\dynkin@hpo}% {southwestfold}% {below}{above right}% \dynkinEdge*{RightUpArc}% {\the\dynkin@afterfold}% {\the\dynkin@hpo}% \else \dynkinPlaceRootRelativeTo*% {\the\dynkin@afterfold}% {\the\dynkin@h}% {southfold}{below}{above right}% \dynkinEdge*{SemiCircle}% {\the\dynkin@h}% {\the\dynkin@afterfold}% \fi \dynkin@pipe{\the\dynkin@afterfold}% {#2}{west}{below}{above right} \ifdynkin@arrows% \dynkin@countdown=#2\relax% \foreach \dynkin@b in {#1,...,\the\dynkin@h}% {% \dynkin@fold@arrow@if@oo{\dynkin@b}{\the\dynkin@countdown}% \global\advance\dynkin@countdown by -1\relax% }% \fi% }% %% \Adynkin %% Draws an A series Dynkin diagram. \NewDocumentCommand\Adynkin{}% {% \ifnum\dynkin@rank=1\relax% \global\dynkin@ply=1\relax% \fi% % % Create the roots. \ifnum\dynkin@ply>1\relax% \ifnum\dynkin@ply=2\relax% \dynkin@jump{1}% \fi% \dynkinPlaceRootHere*{1}{above}{below right}% \dynkin@fold{1}{\the\dynkin@rank}% \else% \dynkinPlaceRootHere*{1}{below}{above}% \ifnum\dynkin@rank>1\relax% \dynkin@pipe{1}% {\the\dynkin@rank}% {east}{below}{above}% \fi% \fi% }% %% \Bdynkin %% Draw a B series Dynkin diagram. \NewDocumentCommand\Bdynkin{}% {% \ifnum\dynkin@rank<2\relax% \Adynkin% \else% \ifdynkin@Coxeter% \Adynkin% \dynkinEdgeLabel% {\the\dynkin@rank@minus@one}% {\the\dynkin@rank}{4}% \else % Create the roots. \ifnum\dynkin@ply>1\relax% \ifnum\dynkin@rank>3\relax% \dynkin@jump{1}% \dynkinPlaceRootHere*{1}{above}{below right}% \dynkinPlaceRootRelativeTo*% {2}{1}% {east}{above}{below right}% \dynkin@fold{2}{\the\dynkin@rank@minus@one}% \dynkinPlaceRootRelativeTo*% {\the\dynkin@rank}{\the\dynkin@rank@minus@one}% {west}{below}{above right}% \dynkinEdge*{DoubleEdge}% {\the\dynkin@rank@minus@one}{\the\dynkin@rank}% \dynkinEdge*{SingleEdge}{1}{2}% \else% \ifnum\dynkin@rank=2\relax% \dynkin@jump{1}% \dynkinPlaceRootHere*{1}{above}{below right}% \dynkinPlaceRootRelativeTo*{2}{1}% {southfold}{below}{above right}% \dynkinEdge*{DoubleDownRightSemiCircle}{1}{2}% \else% \dynkin@jump{1}% \dynkinPlaceRootHere*{1}{above}{below right}% \dynkinPlaceRootRelativeTo*{2}{1}% {southeastfold}{right}{left}% \dynkinPlaceRootRelativeTo*{3}{2}% {southwestfold}{below}{above right}% \dynkinEdge*{RightDownArc}{1}{2}% \dynkinEdge*{DoubleDownLeftArc}{2}{3}% \fi% \fi% \else% \dynkinPlaceRootHere*{1}{below}{above} \dynkin@pipe{1}{\the\dynkin@rank@minus@one}{east}{below}{above} \dynkinPlaceRootRelativeTo*% {\the\dynkin@rank}% {\the\dynkin@rank@minus@one}% {east}{below}{above} \dynkinEdge*{DoubleEdge}% {\the\dynkin@rank@minus@one}% {\the\dynkin@rank}% \fi% \ifdynkin@arrows% \ifnum\dynkin@ply>1\relax% \dynkinLeftFold*{1}{\the\dynkin@rank}% \fi% \fi% \fi% \fi% } %% \Cdynkin %% Draws a C series Dynkin diagram. \newcommand*{\Cdynkin} { \ifdynkin@reverse@arrows% \global\dynkin@reverse@arrowsfalse% \else% \global\dynkin@reverse@arrowstrue% \fi% \Bdynkin% \ifdynkin@reverse@arrows% \global\dynkin@reverse@arrowsfalse% \else% \global\dynkin@reverse@arrowstrue% \fi% } %% \Ddynkin@roots %% Tell TikZ where to place the @roots for a D series Dynkin diagram. Draws nothing. \newcommand*{\Ddynkin@roots} { % Create the roots. \ifdynkin@is@extended% \ifnum\dynkin@ply>1\relax% \ifnum\dynkin@rank=4\relax% \dynkinPlaceRootRelativeTo*% {2}{0}% {southeastfold}% {left}{right}% \else% \dynkinPlaceRootRelativeTo*% {2}{0}% {southeastfold}% {below right}{above right}% \fi% \dynkinPlaceRootRelativeTo*% {1}{2}% {southwestfold}% {left}{above left}% \else% \ifdynkin@left@fold% \ifnum\dynkin@rank=4\relax% \dynkinPlaceRootRelativeTo*% {2}{0}% {southeastfold}% {left}{right}% \else% \dynkinPlaceRootRelativeTo*% {2}{0}% {southeastfold}% {below right}{above right}% \fi% \dynkinPlaceRootRelativeTo*% {1}{2}% {southwestfold}% {left}{above left}% \else% \ifnum\dynkin@rank=4\relax% \ifdynkin@right@fold% \dynkinPlaceRootRelativeTo*% {2}{0}% {southeast}% {left}{right}% \else% \dynkinPlaceRootRelativeTo*% {2}{0}% {southeast}% {below}{above}% \fi% \else% \dynkinPlaceRootRelativeTo*% {2}{0}% {southeast}% {below right}{above right}% \fi% \dynkinPlaceRootRelativeTo*% {1}{2}% {southwest}% {left}{above left}% \fi% \fi% \dynkinMoveToRoot*{2}% \else \dynkinPlaceRootHere*{1}{below}{above} \ifnum\dynkin@rank=4\relax% \ifdynkin@right@fold% \dynkinPlaceRootRelativeTo*% {2}{1}% {east}{below}{above}% \else% \ifnum\dynkin@ply>1\relax% \dynkinPlaceRootRelativeTo*% {2}{1}% {east}% {below left}{above left}% \else% \dynkinPlaceRootRelativeTo*% {2}{1}% {east}% {below left}{above left}% \fi% \fi% \else% \dynkinPlaceRootRelativeTo*% {2}{1}% {east}% {below}{above}% \fi% \fi \ifnum\dynkin@rank>2\relax% \ifnum\dynkin@rank>5\relax% \dynkinPlaceRootRelativeTo*{3}{2}{east}{below}{above}% \else% \ifnum\dynkin@ply>1\relax% \dynkinPlaceRootRelativeTo*% {3}{2}% {east}% {below left}{above left}% \else% \ifnum\dynkin@rank=5\relax% \ifdynkin@right@fold% \dynkinPlaceRootRelativeTo*% {3}{2}% {east}% {below left}{above left}% \else% \dynkinPlaceRootRelativeTo*% {3}{2}% {east}% {below left}{above left}% \fi% \else% \dynkinPlaceRootRelativeTo*% {3}{2}% {east}% {below right}{above left}% \fi% \fi% \fi% \ifnum\dynkin@rank@minus@three>3\relax% \dynkin@pipe% {3}{\the\dynkin@rank@minus@three}% {east}% {below}{above}% \fi% \ifnum\dynkin@rank@minus@two>3\relax% \ifnum\dynkin@ply>1\relax% \dynkinPlaceRootRelativeTo*% {\dynkin@rank@minus@two}% {\dynkin@rank@minus@three}% {east}% {below left}{above left}% \else% \ifdynkin@right@fold% \dynkinPlaceRootRelativeTo*% {\dynkin@rank@minus@two}% {\dynkin@rank@minus@three}% {east}% {below left}{above left}% \else% \dynkinPlaceRootRelativeTo*% {\dynkin@rank@minus@two}% {\dynkin@rank@minus@three}% {east}% {below left}{above left}% \fi% \fi% \dynkinEdge*{SingleEdge}% {\dynkin@rank@minus@two}% {\dynkin@rank@minus@three}% \fi% \ifnum\dynkin@ply=1\relax% \ifdynkin@right@fold% \dynkinPlaceRootRelativeTo*% {\the\dynkin@rank@minus@one}% {\the\dynkin@rank@minus@two}% {northeastfold}{right}{above right}% \dynkinPlaceRootRelativeTo*% {\the\dynkin@rank}% {\the\dynkin@rank@minus@two}% {southeastfold}{right}{above right}% \else% \dynkinPlaceRootRelativeTo*% {\the\dynkin@rank@minus@one}% {\the\dynkin@rank@minus@two}% {northeast}{right}{above right}% \dynkinPlaceRootRelativeTo*% {\the\dynkin@rank}{\the\dynkin@rank@minus@two}% {southeast}{right}{above right}% \fi% \else% \dynkinPlaceRootRelativeTo*% {\the\dynkin@rank@minus@one}% {\the\dynkin@rank@minus@two}% {northeastfold}% {right}{above right}% \dynkinPlaceRootRelativeTo*% {\the\dynkin@rank}% {\the\dynkin@rank@minus@two}% {southeastfold}% {right}{above right}% \fi% \fi% }% %% \Ddynkin@edges %% Draws edges on a D series Dynkin diagram. \NewDocumentCommand\Ddynkin@edges{}% {% % Draw the edges. \ifnum\dynkin@ply>1\relax% \ifdynkin@is@extended% \dynkinEdge*{RightUpArc}{1}{2}% \else% \dynkinEdge*{SingleEdge}{1}{2}% \fi% \ifnum\dynkin@rank>4\relax% \dynkinEdge*{SingleEdge}{2}{3}% \fi% \dynkinEdge*{LeftDownArc}% {\the\dynkin@rank@minus@one}% {\the\dynkin@rank@minus@two}% \dynkinEdge*{LeftUpArc}% {\the\dynkin@rank}% {\the\dynkin@rank@minus@two}% \ifdynkin@arrows% \dynkinRightFold*% {\the\dynkin@rank@minus@one}% {\the\dynkin@rank}% \ifdynkin@is@extended% \dynkinLeftFold*{0}{1}% \fi% \fi% \else% \ifnum\dynkin@rank=4\relax% \else% \dynkinEdge*{SingleEdge}{2}{3}% \fi% \ifdynkin@is@extended% \ifdynkin@left@fold% \dynkinEdge*{RightUpArc}{1}{2}% \ifdynkin@arrows% \ifdynkin@is@extended% \dynkinLeftFold*{0}{1}% \fi% \fi% \else% \dynkinEdge*{SingleEdge}{1}{2}% \fi% \else% \dynkinEdge*{SingleEdge}{1}{2}% \fi% \ifdynkin@right@fold% \dynkinEdge*{LeftDownArc}% {\the\dynkin@rank@minus@one}% {\the\dynkin@rank@minus@two}% \dynkinEdge*{LeftUpArc}% {\the\dynkin@rank}% {\the\dynkin@rank@minus@two}% \dynkinRightFold*% {\the\dynkin@rank@minus@one}% {\the\dynkin@rank}% \else% \dynkinEdge*{SingleEdge}% {\the\dynkin@rank@minus@two}% {\the\dynkin@rank@minus@one}% \dynkinEdge*{SingleEdge}% {\the\dynkin@rank@minus@two}% {\the\dynkin@rank}% \fi% \fi% }% \def\centerarc[#1](#2)(#3:#4:#5);% %Syntax: [draw options] (center) (initial angle:final angle:radius) { \draw[#1]([shift=(#3:#5)]#2) arc (#3:#4:#5); } %% \DthreePly %% Draws a D series Dynkin diagram of rank 4, folded over a G2. \NewDocumentCommand\DthreePly{}% {% \ifdynkin@right@fold% \dynkinPlaceRootHere*% {1}% {below left}{above right}% \dynkinPlaceRootRelativeTo*% {3}{1}% {east}% {below left}{above right}% \dynkinPlaceRootRelativeTo*% {2}{3}% {north}% {below left}{above right}% \dynkinPlaceRootRelativeTo*% {4}{3}% {south}% {below}{above right}% \edef\old@fold@radius{\dynkin@fold@radius}% \xdef\dynkin@fold@radius{\dynkin@edge@length}% \dynkinEdge*{SingleEdge}{1}{3}% \dynkinEdge*{LeftDownArc}{2}{1}% \dynkinEdge*{LeftUpArc}{4}{1}% \xdef\dynkin@fold@radius{\old@fold@radius}% \ifdynkin@arrows% \dynkin@fold@arrow@if@oo{2}{3}% \dynkin@fold@arrow@if@oo{3}{4}% \fi% \else% \dynkinPlaceRootHere*{1}{left}{above right}% \dynkinPlaceRootRelativeTo*% {2}{1}% {east}% {below left}{above left}% \dynkinPlaceRootRelativeTo*% {3}{2}% {northeast}% {above right}{below}% \dynkinPlaceRootRelativeTo*% {4}{2}% {southeast}% {below right}{left}% \dynkinEdge*{SingleEdge}{1}{2}% \dynkinEdge*{SingleEdge}{2}{3}% \dynkinEdge*{SingleEdge}{2}{4}% \begin{pgfonlayer}{Dynkin behind}%% \centerarc[/Dynkin diagram/fold style]% (\dynkin@root@name 2)(-60:60:\dynkin@edge@length); \centerarc[/Dynkin diagram/fold style]% (\dynkin@root@name 2)(60:180:\dynkin@edge@length); \centerarc[/Dynkin diagram/fold style]% (\dynkin@root@name 2)(180:300:\dynkin@edge@length); \end{pgfonlayer}%% \fi% }% %% \Ddynkin %% Draws a D series Dynkin diagram. \NewDocumentCommand\Ddynkin{}% {% \ifnum\dynkin@rank>3\relax% \ifnum\dynkin@rank=4\relax% \ifnum\dynkin@ply=3\relax% \DthreePly% \else% \Ddynkin@roots% \Ddynkin@edges% \fi% \else% \Ddynkin@roots% \Ddynkin@edges% \fi% \else% \gdef\dynkin@series{A}% \Adynkin% \ifnum\dynkin@ply>1\relax% \ifdynkin@arrows% \ifnum\dynkin@rank=1\relax% \else% \dynkinLeftFold*{1}{\the\dynkin@rank}% \fi% \fi% \fi% \gdef\dynkin@series{D}% \fi% }% \newcount\dynkin@bmo% \newcommand*{\Edynkin@unfolded@rank@up@to@eight}% {% % Create the @roots. \dynkinPlaceRootHere*{1}{below}{above}% \dynkinPlaceRootRelativeTo*% {3}{1}% {east}% {below}{above}% \dynkinPlaceRootRelativeTo*% {4}{3}% {east}% {below}{above right}% \ifdynkin@is@extended% \ifnum\dynkin@rank=6\relax% \dynkinPlaceRootRelativeTo*% {2}{4}% {north}% {right}{above right}% \else \dynkinPlaceRootRelativeTo*% {2}{4}% {north}% {right}{above}% \fi% \else% \dynkinPlaceRootRelativeTo*% {2}{4}% {north}% {right}{above}% \fi% \dynkin@bmo=4\relax% \foreach \dynkin@b in {5,...,\dynkin@rank}% {% \dynkinPlaceRootRelativeTo*% {\dynkin@b}{\the\dynkin@bmo}% {east}{below}{above}% \dynkinEdge*{SingleEdge}{\the\dynkin@bmo}{\dynkin@b}% \global\advance\dynkin@bmo by 1\relax% }% % % Draw the remaining edges. \dynkinEdge*{SingleEdge}{1}{3} \dynkinEdge*{SingleEdge}{3}{4} \dynkinEdge*{SingleEdge}{4}{2} \ifdynkin@is@extended% \ifnum\dynkin@rank=6\relax% \dynkinPlaceRootRelativeTo*{0}{2}{north}{right}{above}% \dynkinEdge*{SingleEdge}{0}{2}% \else% \ifnum\dynkin@rank=7\relax% \dynkinPlaceRootRelativeTo*% {0}{1}% {west}% {below}{above}% \dynkinEdge*{SingleEdge}{0}{1}% \else% \dynkinPlaceRootRelativeTo*% {0}{8}% {east}% {below}{above}% \dynkinEdge*{SingleEdge}{0}{8}% \fi% \fi% \fi% }% %% \Edynkin@unfolded %% Draws an E series Dynkin diagram not folded. \newcommand*{\Edynkin@unfolded}% { \ifnum\dynkin@rank>8\relax% % We have to work in Kac ordering directly. \dynkinPlaceRootHere*{1}{below}{above}% \ifnum\dynkin@rank>1\relax% \dynkin@pipe% {1}{\the\dynkin@rank@minus@one}% {east}{below}% {above}% \dynkinPlaceRootRelativeTo*% {\the\dynkin@rank}{\dynkin@rank@minus@three}% {north}{right}{above}% \dynkinEdge*{SingleEdge}% {\the\dynkin@rank}{\dynkin@rank@minus@three}% \fi% \else% \Edynkin@unfolded@rank@up@to@eight% \fi }% %% \Edynkin@folded %% Draws a folded E6, affine E6 or affine E7 Dynkin diagram. \NewDocumentCommand\Edynkin@folded{}% {% \ifnum\dynkin@rank=6\relax% \ifnum\dynkin@ply=2\relax\ESixTwoPly\else\ESixThreePly\fi% \else% \extendedESevenFolded% \fi% }% \NewDocumentCommand\ESixTwoPly{}% {% \dynkin@jump{1}% \dynkinPlaceRootHere*{1}{above}{below right}% \dynkinPlaceRootRelativeTo*% {3}{1}% {east}% {above}{below right}% \dynkinPlaceRootRelativeTo*% {4}{3}% {southeastfold}% {below right}{above right}% \dynkinPlaceRootRelativeTo*% {5}{4}% {southwestfold}% {below}{above right}% \dynkinPlaceRootRelativeTo*% {6}{5}% {west}% {below}{above right}% \ifdynkin@is@extended% \dynkinPlaceRootRelativeTo*{2}{4}{east}{below}{above}% \dynkinPlaceRootRelativeTo*{0}{2}{east}{below}{above}% \dynkinEdge*{SingleEdge}{0}{2}% \else% \dynkinPlaceRootRelativeTo*{2}{4}{east}{below}{above}% \fi% \dynkinEdge*{SingleEdge}{1}{3}% \dynkinEdge*{SingleEdge}{2}{4}% \dynkinEdge*{SingleEdge}{5}{6}% \dynkinEdge*{RightDownArc}{3}{4}% \dynkinEdge*{RightUpArc}{5}{4}% \ifdynkin@arrows% \dynkin@fold@arrow@if@oo{1}{6}% \dynkin@fold@arrow@if@oo{3}{5}% \fi% }% \NewDocumentCommand\ESixThreePly{}% {% \dynkin@is@extendedtrue \node (Dynkin current) at ($(Dynkin current)+(0,%1.5* \dynkin@edge@length)$){};% \dynkinPlaceRootHere*{3}{below left}{above}% \dynkinPlaceRootRelativeTo*{2}{3}{south}{below left}{above right}% \dynkinPlaceRootRelativeTo*{5}{2}{south}{below}{above right}% \dynkinPlaceRootRelativeTo*{1}{3}{west}{below left}{above right}% \dynkinPlaceRootRelativeTo*{0}{2}{west}{below left}{above right}% \dynkinPlaceRootRelativeTo*{6}{5}{west}{below}{above right}% \edef\old@fold@radius{\dynkin@fold@radius}% \xdef\dynkin@fold@radius{\dynkin@edge@length}% \dynkinPlaceRootRelativeTo*{4}{2}{east}{below left}{above right}% \dynkinEdge*{SingleEdge}{4}{2}% \dynkinEdge*{SingleEdge}{3}{1}% \dynkinEdge*{SingleEdge}{2}{0}% \dynkinEdge*{SingleEdge}{5}{6}% \dynkinEdge*{RightDownArc}{3}{4}% \dynkinEdge*{RightUpArc}{5}{4}% \xdef\dynkin@fold@radius{\old@fold@radius}% \ifdynkin@arrows% \dynkin@fold@arrow@if@oo{1}{0}% \dynkin@fold@arrow@if@oo{6}{0}% \dynkin@fold@arrow@if@oo{3}{2}% \dynkin@fold@arrow@if@oo{2}{5}% \fi% }% \NewDocumentCommand\extendedESevenFolded{}% {% \dynkin@jump{1}% \dynkinPlaceRootHere*{0}{above}{below}% \dynkinPlaceRootRelativeTo*{1}{0}{east}{above}{below}% \dynkinPlaceRootRelativeTo*{3}{1}{east}{above}{below}% \dynkinPlaceRootRelativeTo*{4}{3}{southeastfold}{left}{right}% \dynkinPlaceRootRelativeTo*{5}{4}{southwestfold}{below}{above}% \dynkinPlaceRootRelativeTo*{6}{5}{west}{below}{above}% \dynkinPlaceRootRelativeTo*{7}{6}{west}{below}{above}% \dynkinPlaceRootRelativeTo*{2}{4}{east}{below}{above}% \dynkinEdge*{SingleEdge}{0}{1}% \dynkinEdge*{SingleEdge}{1}{3}% \dynkinEdge*{SingleEdge}{2}{4}% \dynkinEdge*{SingleEdge}{5}{6}% \dynkinEdge*{SingleEdge}{6}{7}% \dynkinEdge*{RightDownArc}{3}{4}% \dynkinEdge*{RightUpArc}{5}{4}% \ifdynkin@arrows% \dynkin@fold@arrow@if@oo{0}{7}% \dynkin@fold@arrow@if@oo{1}{6}% \dynkin@fold@arrow@if@oo{3}{5}% \fi% }% %% \Edynkin %% Draws an E6 Dynkin diagram. \NewDocumentCommand\Edynkin{}% {% \ifnum\dynkin@ply>1\relax% \ifnum\dynkin@rank=6\relax% \Edynkin@folded% \else% \ifnum\dynkin@rank=7\relax \ifdynkin@is@extended \Edynkin@folded% \else% \ClassError{Dynkin diagrams}% {Can not fold a diagram of type \dynkin@user@series{} \the\dynkin@rank.}{}% \fi% \fi% \fi% \else% \Edynkin@unfolded% \fi% }% %% \Fdynkin %% Draws an F series Dynkin diagram. \newcommand*{\Fdynkin}% {% \dynkinPlaceRootHere*{1}{below}{above}% \dynkinPlaceRootRelativeTo*{2}{1}{east}{below}{above}% \dynkinPlaceRootRelativeTo*{3}{2}{east}{below}{above}% \dynkinPlaceRootRelativeTo*{4}{3}{east}{below}{above}% \ifdynkin@Coxeter% \dynkinEdge*{SingleEdge}{1}{2}% \dynkinEdge*{SingleEdge}{2}{3}% \dynkinEdge*{SingleEdge}{3}{4}% \dynkinEdgeLabel{2}{3}{4}% \else% \dynkinEdge*{SingleEdge}{1}{2}% \dynkinEdge*{SingleEdge}{3}{4}% \dynkinEdge*{DoubleEdge}{2}{3}% \fi% }% %% \Gdynkin %% Draws a G series Dynkin diagram. \NewDocumentCommand\Gdynkin{}% {% \ifdynkin@Coxeter% \Idynkin% \else% \ifnum\dynkin@ply>1\relax% \dynkin@jump{1}% \dynkinPlaceRootHere*{1}{left}{above}% \dynkinPlaceRootRelativeTo*{2}{1}{southfold}{left}{below}% \dynkinEdge*{TripleDownRightSemiCircle}{1}{2}% \ifdynkin@arrows% \dynkinLeftFold*{1}{2}% \fi% \else% \dynkinPlaceRootHere*{1}{below}{above}% \dynkinPlaceRootRelativeTo*{2}{1}{east}{below}{above}% \dynkinTripleEdge*{1}{2}% \fi% \fi% }% %% \Hdynkin %% Draws an H series Coxeter diagram. \newcommand*{\Hdynkin}% {% \Adynkin% \dynkinEdgeLabel{1}{2}{5}% }% %% \Idynkin %% Draws an I series Coxeter diagram. \newcommand*{\Idynkin}% {% \dynkin@rank=2\relax% \Adynkin% \dynkinEdgeLabel{1}{2}{\dynkin@gonality}% }% %% \extendedAdynkin %% Draws an A series affine Dynkin/Coxeter diagram. \NewDocumentCommand\extendedAdynkin{}% {% \ifnum\dynkin@rank=1\relax% \dynkinPlaceRootHere{0}{below}{above}% \dynkinPlaceRootRelativeTo*{1}{0}{east}{below}{above}% \convertRootNumber{1}% \begin{pgfonlayer}{Dynkin behind}% \draw[/Dynkin diagram/t,double, {Classical TikZ Rightarrow[length={2*\dynkin@root@radius}]}% -{Classical TikZ Rightarrow[length={2*\dynkin@root@radius}]}% ]% ($(\dynkin@root@name 0)+(\dynkin@root@radius,0)$) -- ($(\dynkin@root@name \the\dynkin@Root@Number)-(\dynkin@root@radius,0)$);% \end{pgfonlayer}%% \else% \ifnum\dynkin@ply=4\relax% \node (Dynkin current) at ($(Dynkin current)+(0,\dynkin@edge@length)$){};% \dynkinPlaceRootHere*{0}{left}{above}% \dynkinPlaceRootRelativeTo*{1}{0}{east}{right}{above}% \dynkinPlaceRootRelativeTo*{2}{0}{south}{below}{left}% \dynkinPlaceRootRelativeTo*{3}{1}{south}{below}{right}% \dynkinEdge*{SingleEdge}{0}{1}% \dynkinEdge*{SingleEdge}{1}{2}% \dynkinEdge*{SingleEdge}{2}{3}% \dynkinEdge*{SingleEdge}{3}{0}% \dynkinFold*{0}{2}% \dynkinFold*{1}{3}% \else% \Adynkin{}% \ifnum\dynkin@ply>1\relax% \dynkinPlaceRootRelativeTo*{0}{1}{southwestfold}{left}{right}% \dynkinEdge*{LeftDownArc}{1}{0}% \dynkinEdge*{LeftUpArc}{\the\dynkin@rank}{0}% \else% \node (Dynkin current) at ($.5*(\dynkin@root@name 1)% +.5*(\dynkin@root@name \the\dynkin@rank)$)% {};% \dynkinNorth% \dynkinPlaceRootHere*{0}{above}{below}% \dynkinEdge*{SingleEdge}{0}{1}% \dynkinEdge*{SingleEdge}{\the\dynkin@rank}{0}% \fi% \dynkinRootMark*{}{0}% \fi% \fi% }% \NewDocumentCommand\extendedBthreePly{}% {% \ifnum\dynkin@rank=3\relax% \else% \ClassError% {Dynkin diagrams}% {B series extended 3-ply diagrams must have rank 3, so cannot have rank \the\dynkin@rank}{}% \fi% \dynkinPlaceRootHere*{1}{right}{above left}% \dynkinPlaceRootRelativeTo*{0}{1}{north}{above}{below left}% \dynkinPlaceRootRelativeTo*{3}{1}{south}{below}{above left}% \edef\old@fold@radius{\dynkin@fold@radius}% \xdef\dynkin@fold@radius{\dynkin@edge@length}% \dynkinPlaceRootRelativeTo*{2}{1}{west}{left}{above right}% \dynkinEdge*{LeftDownArc}{0}{2}% \dynkinFold*{0}{1}% \dynkinFold*{1}{3}% \dynkinEdge*{SingleEdge}{1}{2}% \dynkinEdge*{DoubleDownRightArc}{2}{3}% \xdef\dynkin@fold@radius{\old@fold@radius}% }% \newcount\dynkin@bmo% %% \extendedBdynkin %% Draws a B series affine Dynkin/Coxeter diagram. \newcommand*{\extendedBdynkin}% {% \ifnum\the\dynkin@rank=1\relax% \extendedAdynkin% \else% \ifnum\the\dynkin@rank=2\relax% \dynkinPlaceRootHere*{0}{below}{above}% \dynkinPlaceRootRelativeTo*{1}{0}{east}{below}{above}% \dynkinPlaceRootRelativeTo*{2}{1}{east}{below}{above}% \dynkinEdge*{SingleEdge}{0}{1}% \dynkinEdge*{DoubleEdge}{1}{2}% \else% \ifnum\dynkin@ply=3\relax% \extendedBthreePly% \else% \ifnum\dynkin@ply=2\relax% \dynkin@jump{1}% \dynkinPlaceRootHere*{0}{left}{above left}% \dynkinPlaceRootRelativeTo*% {2}{0}% {southeastfold}% {below right}{above right}% \dynkinPlaceRootRelativeTo*% {1}{2}% {southwestfold}% {left}{above left}% \dynkinLeftFold*{0}{1}% \dynkinEdge*{RightDownArc}{0}{2}% \dynkinEdge*{RightUpArc}{1}{2}% \else% \dynkin@hop{1}% \dynkinPlaceRootHere*{0}{left}{above left}% \dynkinPlaceRootRelativeTo*% {2}{0}% {southeast}% {below right}{above right}% \dynkinPlaceRootRelativeTo*% {1}{2}% {southwest}% {left}{above left}% \dynkinEdge*{SingleEdge}{0}{2}% \dynkinEdge*{SingleEdge}{1}{2}% \fi% \dynkin@bmo=2\relax% \ifnum\dynkin@rank>3\relax% \foreach \dynkin@b in {3,...,\the\dynkin@rank@minus@one}% {% \dynkinPlaceRootRelativeTo*% {\dynkin@b}{\the\dynkin@bmo}% {east}{below}{above}% \dynkinEdge*{SingleEdge}% {\dynkin@b}{\the\dynkin@bmo}% \global\advance\dynkin@bmo by 1\relax% }% \fi% \ifnum\dynkin@ply<3\relax% \dynkinPlaceRootRelativeTo*% {\the\dynkin@rank}% {\the\dynkin@rank@minus@one}% {east}{below}{above}% \fi% \ifdynkin@Coxeter% \dynkinEdge*{SingleEdge}% {\the\dynkin@rank@minus@one}% {\the\dynkin@rank}% \dynkinEdgeLabel% {\the\dynkin@rank@minus@one}% {\the\dynkin@rank}{4}% \else% \ifnum\dynkin@ply<3\relax% \dynkinEdge*{DoubleEdge}% {\the\dynkin@rank@minus@one}% {\the\dynkin@rank}% \else% \dynkinEdge*{DoubleDownRightArc}% {\the\dynkin@rank@minus@one}% {\the\dynkin@rank}% \fi% \fi% \fi% \fi% \fi% }% %% \extendedCdynkin %% Draws an C series affine Dynkin/Coxeter diagram. \newcommand*{\extendedCdynkin}% {% \dynkinPlaceRootHere*{0}{below}{above}% \dynkinEast% \Cdynkin{}% \ifdynkin@Coxeter% \dynkinEdge*{SingleEdge}{0}{1}% \dynkinEdgeLabel{0}{1}{4}% \else% \dynkinEdge*{DoubleEdge}{0}{1}% \fi% }% %% \DOneFourFourPly %% Draws a D^1_4 series affine Dynkin diagram folded about an A^2_2. \NewDocumentCommand\DOneFourFourPly{}% {% \dynkin@hop{2.25}% \dynkinPlaceRootHere*{0}{right}{left}% \edef\old@edge@length{\dynkin@edge@length}% \dynkinPlaceRootRelativeTo*{1}{0}{south}{right}{left}% \dynkinPlaceRootRelativeTo*{3}{1}{south}{right}{left}% \dynkinPlaceRootRelativeTo*{4}{3}{south}{right}{left}% \convertRootPair{0}{4}% \node (Dynkin current) at ($.5*(\dynkin@root@name \the\@dynkin@from@root)% +.5*(\dynkin@root@name \the\@dynkin@to@root)$)% {};% \dynkinWest% \dynkinPlaceRootHere*{2}{right}{left}% \dynkinEdge*{SingleEdge}{0}{2}% \dynkinEdge*{SingleEdge}{1}{2}% \dynkinEdge*{SingleEdge}{3}{2}% \dynkinEdge*{SingleEdge}{4}{2}% \dynkinFold*{0}{1}% \dynkinFold*{1}{3}% \dynkinFold*{3}{4}% }% %% \DfourPly %% Draws a D series affine Dynkin diagram folded about its middle. \NewDocumentCommand\DfourPly{}% {% \xdef\yfp{2*\dynkin@fold@radius+2*cos(60)*\dynkin@edge@length}% \node (Dynkin current) at ($(Dynkin current)+(0,{\yfp})$){};% \dynkinPlaceRootHere*{0}{left}{above left}% \dynkinPlaceRootRelativeTo*% {2}{0}% {southeastfold}% {above right}{below right}% \dynkinPlaceRootRelativeTo*% {1}{2}% {southwestfold}% {left}{above left}% \dynkinMoveToRoot*{2}% \xdef\old@fold{\dynkin@fold@radius}% \pgfmathparse{\dynkin@fold@radius+2*cos(60)*\dynkin@edge@length}% \xdef\dynkin@fold@radius{\pgfmathresult pt}% \dynkin@fold{2}{\the\dynkin@rank@minus@two}% % We place the root number rank-2 once again (it is already placed in the \dynkin@fold): \dynkinPlaceRootHere*% {\the\dynkin@rank@minus@two}% {below right}{above right}% \xdef\dynkin@fold@radius{\old@fold}% \dynkinPlaceRootRelativeTo*% {\the\dynkin@rank@minus@one}% {\the\dynkin@rank@minus@two}% {northwestfold}% {left}% {above left}% \dynkinPlaceRootRelativeTo*% {\the\dynkin@rank}% {\the\dynkin@rank@minus@two}% {southwestfold}% {left}% {above left}% \dynkinEdge*{RightDownArc}{0}{2}% \dynkinEdge*{RightUpArc}{1}{2}% \dynkinEdge*{RightDownArc}% {\the\dynkin@rank@minus@one}% {\the\dynkin@rank@minus@two}% \dynkinEdge*{RightUpArc}% {\the\dynkin@rank}% {\the\dynkin@rank@minus@two}% }% %% \extendedDthreePly %% Draws a D^1_4 series Dynkin diagram, folded over a B^1_3. \NewDocumentCommand\extendedDthreePly{}% {% \dynkinPlaceRootHere*{0}{below}{above}% \dynkinPlaceRootRelativeTo*{1}{0}{east}{below left}{above right}% \dynkinPlaceRootRelativeTo*{3}{1}{east}{below left}{above right}% \dynkinPlaceRootRelativeTo*{2}{3}{north}{below left}{above right}% \dynkinPlaceRootRelativeTo*{4}{3}{south}{below}{above right}% \dynkinEdge*{SingleEdge}{1}{3}% \edef\old@fold@radius{\dynkin@fold@radius}% \xdef\dynkin@fold@radius{\dynkin@edge@length}% \dynkinEdge*{LeftDownArc}{2}{1}% \dynkinEdge*{LeftUpArc}{4}{1}% \xdef\dynkin@fold@radius{\old@fold@radius}% \ifdynkin@arrows% \dynkin@fold@arrow@if@oo{2}{3}% \dynkin@fold@arrow@if@oo{3}{4}% \fi% \dynkinEdge*{SingleEdge}{0}{1}% }% %% \extendedDdynkin %% Draws an D series affine Dynkin/Coxeter diagram. \NewDocumentCommand\extendedDdynkin{}% {% \ifnum\dynkin@ply=4\relax% \ifnum\dynkin@rank=4\relax% \DOneFourFourPly% \else% \DfourPly% \fi% \else% \ifnum\dynkin@ply=3\relax% \extendedDthreePly% \else% \ifnum\the\dynkin@rank=1\relax% \extendedAdynkin% \else% \ifnum\the\dynkin@rank=4\relax% \global\dynkin@hex@gridfalse \fi \dynkin@hop{1}% \dynkinPlaceRootHere*{0}{left}{above left}% \Ddynkin% \ifnum\dynkin@ply=2\relax% \dynkinEdge*{RightDownArc}{0}{2}% \else% \ifdynkin@left@fold% \dynkinEdge*{RightDownArc}{0}{2}% \else% \dynkinEdge*{SingleEdge}{0}{2}% \fi% \fi% \ifnum\the\dynkin@rank=4\relax% \global\dynkin@hex@gridtrue \fi \fi% \fi% \fi% }% %% \extendedEdynkin %% Draws an E series affine Dynkin/Coxeter diagram. \newcommand*{\extendedEdynkin}% {% \Edynkin% }% %% \extendedFdynkin %% Draws an F series affine Dynkin/Coxeter diagram. \newcommand*{\extendedFdynkin}% {% \ifnum\dynkin@ply=1\relax% \dynkinPlaceRootHere*{0}{below}{above}% \dynkinEast% \Fdynkin% \dynkinEdge*{SingleEdge}{0}{1}% \else% \dynkin@jump{1}% \dynkinPlaceRootHere*{0}{above}{below}% \dynkinPlaceRootRelativeTo*{1}{0}{east}{above}{below}% \dynkinEdge*{SingleEdge}{0}{1}% \dynkinPlaceRootRelativeTo*{2}{1}{southeastfold}{right}{left}% \dynkinDefiniteRightDownArc*{1}{2}% \dynkinPlaceRootRelativeTo*{3}{2}{southwestfold}{below}{above}% \dynkinDefiniteDoubleDownLeftArc*{2}{3}% \dynkinPlaceRootRelativeTo*{4}{3}{west}{below}{above}% \dynkinEdge*{SingleEdge}{3}{4}% \ifdynkin@arrows% \dynkinFold*{0}{4}% \dynkinFold*{1}{3}% \fi% \fi% }% %% \extendedGdynkin %% Draws an G series affine Dynkin/Coxeter diagram. \newcommand*{\extendedGdynkin}% {% \xdef\dynkin@gonality{6}% \dynkinPlaceRootHere*{0}{below}{above}% \dynkinEast% \Gdynkin% \dynkinEdge*{SingleEdge}{0}{1}% }% %% \extendedHdynkin %% Draws an H series affine Coxeter diagram. \newcommand*{\extendedHdynkin}% {% \dynkinPlaceRootHere*{0}{below}{above}% \dynkinEast% \Adynkin% \dynkinEdge*{SingleEdge}{0}{1}% \ifnum\dynkin@rank=3\relax% \convertRootPair{1}{2}% \else% \convertRootPair{0}{1}% \fi% \node[/Dynkin diagram/text style,above] at ($.5*(\dynkin@root@name \the\@dynkin@from@root)% +.5*(\dynkin@root@name \the\@dynkin@to@root)$)% {\(5\)};% }% %% \extendedIdynkin %% Draws an I series affine Coxeter diagram. \newcommand*{\extendedIdynkin}% {% \dynkinPlaceRootHere*{0}{below}{above}% \dynkinEast% \dynkin@rank=1\relax% \Adynkin% \dynkinEdge*{SingleEdge}{0}{1}% \dynkinEdgeLabel{0}{1}{\infty}% }% \newcount\dynkin@height@minus@one% %% \twistedAdynkin %% Draws a twisted A series affine Dynkin diagram. \NewDocumentCommand\twistedAdynkin{}% {% \ifnum\dynkin@rank=3\relax% \ClassError{Dynkin diagrams}{A2 series twisted diagrams cannot have rank \the\dynkin@rank}{}% \fi% \ifnum\dynkin@rank=2\relax% \dynkinPlaceRootHere*{0}{below}{above}% \dynkinPlaceRootRelativeTo*{1}{0}{east}{below}{above}% \dynkinQuadrupleEdge*{1}{0}% \else% \dynkin@height@minus@one=\the\dynkin@nodes\relax% \advance\dynkin@height@minus@one by -1\relax% \ifodd\dynkin@rank% \ifnum\dynkin@ply>1\relax% \dynkinPlaceRootHere*{2}{below right}{above right}% \dynkinPlaceRootRelativeTo*% {0}{2}% {northwestfold}% {left}{above left}% \dynkinPlaceRootRelativeTo*% {1}{2}% {southwestfold}% {left}{above left}% \dynkinEdge*{RightDownArc}{0}{2}% \dynkinEdge*{RightUpArc}{1}{2}% \else% \dynkin@hop{1}% \dynkinPlaceRootHere*{0}{left}{right}% \dynkinPlaceRootRelativeTo*{2}{0}{southeast}{left}{right}% \dynkinPlaceRootRelativeTo*{1}{2}{southwest}{left}{right}% \dynkinEdge*{SingleEdge}{0}{2}% \dynkinEdge*{SingleEdge}{1}{2}% \fi% \dynkinMoveToRoot*{2}% \dynkin@pipe% {2}{\the\dynkin@height@minus@one}% {east}{below}% {above}% \dynkinPlaceRootRelativeTo*% {\the\dynkin@nodes}% {\the\dynkin@height@minus@one}% {east}% {below}% {above}% \dynkinEdge*{DoubleEdge}% {\the\dynkin@nodes}% {\the\dynkin@height@minus@one}% \ifnum\dynkin@ply>1\relax% \dynkinLeftFold*{0}{1}% \fi% \else% \ifnum\dynkin@nodes>1\relax% \ifnum\dynkin@ply>1\relax% \ifnum\dynkin@height@minus@one>1\relax% \dynkin@jump{1}% \fi% \dynkinPlaceRootHere*{0}{below}{above}% \dynkinPlaceRootRelativeTo*% {1}{0}% {east}% {below left}{above}% \dynkinEdge*{DoubleEdge}{1}{0}% \ifnum\dynkin@height@minus@one>1\relax% \dynkin@fold{1}{\the\dynkin@height@minus@one}% \fi% \dynkinPlaceRootRelativeTo*% {\the\dynkin@nodes}% {\the\dynkin@height@minus@one}% {west}% {below}% {above}% \else% \dynkinPlaceRootHere*{0}{below}{above}% \dynkinPlaceRootRelativeTo*% {1}{0}% {east}% {below right}{above}% \dynkinEdge*{DoubleEdge}{1}{0}% \ifnum\dynkin@height@minus@one>1\relax% \dynkin@pipe{1}{\the\dynkin@height@minus@one}% {east}{below}{above}% \fi% \dynkinPlaceRootRelativeTo*% {\the\dynkin@nodes}% {\the\dynkin@height@minus@one}% {east}% {below}% {above}% \fi% \dynkinEdge*{DoubleEdge}% {\the\dynkin@nodes}% {\the\dynkin@height@minus@one}% \else% \dynkinPlaceRootHere*{0}{below}{above}% \dynkinPlaceRootRelativeTo*% {1}{0}% {east}% {below right}{above}% \dynkinEdge*{DoubleEdge}{1}{0}% \fi% \fi% \fi% }% %% \twistedDdynkin %% Draws a twisted D series affine Dynkin diagram. \NewDocumentCommand\twistedDdynkin{}% {% \IfStrEqCase{\dynkin@twisted@series}% {% {1}{\extendedDdynkin}% {2}{\twistedDTwo}% {3}% {% \ifnum\dynkin@rank=4\relax% \dynkinPlaceRootHere*{0}{below}{above}% \dynkinPlaceRootRelativeTo*{1}{0}{east}{below}{above}% \dynkinPlaceRootRelativeTo*{2}{1}{east}{below}{above}% \dynkinEdge*{SingleEdge}{0}{1}% \dynkinTripleEdge*{2}{1}% \else% \ClassError% {Dynkin diagrams}% {D3 series twisted diagrams must have rank 2 and cannot have rank \the\dynkin@rank}% {}% \fi% }% }% }% \newcount\dynkin@nodes@minus@one% \NewDocumentCommand\twistedDTwo{}% {% \dynkin@nodes@minus@one\dynkin@nodes\relax% \advance\dynkin@nodes@minus@one by -1\relax% \ifnum\dynkin@rank<3\relax% \ClassError{Dynkin diagrams}{D2 series twisted diagrams cannot have rank \the\dynkin@rank}{}% \fi% \ifnum\dynkin@ply=1\relax% \dynkinPlaceRootHere*{0}{below}{above}% \dynkinPlaceRootRelativeTo*{1}{0}{east}{below}{above}% \else% \ifnum\dynkin@rank=3\relax% \dynkin@jump{1}% \dynkinPlaceRootHere*{0}{above}{right}% \dynkinPlaceRootRelativeTo*{1}{0}{southwestfold}{left}{right}% \dynkinPlaceRootRelativeTo*{2}{1}{southeastfold}{below}{right}% \else% \dynkinPlaceRootHere*{0}{above}{below}% \dynkinPlaceRootRelativeTo*{1}{0}{east}{above}{below}% \fi% \fi% \ifnum\dynkin@ply=2\relax% \dynkinEdge*{DoubleUpRightArc}{1}{0}% \else \dynkinEdge*{DoubleEdge}{1}{0}% \fi% \ifnum\dynkin@ply>1\relax% \ifnum\dynkin@rank>3\relax% \dynkin@fold{1}{\the\dynkin@nodes@minus@one}% \dynkinPlaceRootRelativeTo*% {\the\dynkin@nodes}% {\the\dynkin@nodes@minus@one}% {west}{below}{above}% \dynkinFold*{0}{\the\dynkin@nodes}% \else% \dynkinFold*{0}{2}% \fi% \else% \ifnum\dynkin@rank>2\relax% \dynkin@pipe{1}{\the\dynkin@nodes@minus@one}{east}{below}{above}% \fi% \dynkinPlaceRootRelativeTo*% {\the\dynkin@nodes}% {\the\dynkin@nodes@minus@one}% {east}{below}{above}% \fi% \ifnum\dynkin@ply=2\relax% \dynkinEdge*{DoubleDownRightArc}% {\the\dynkin@nodes@minus@one}% {\the\dynkin@nodes}% \else \dynkinEdge*{DoubleEdge}% {\the\dynkin@nodes@minus@one}% {\the\dynkin@nodes}% \fi% }% %% \twistedEdynkin %% Draws a twisted E series affine Dynkin diagram. \NewDocumentCommand\twistedEdynkin{}% {% \IfStrEqCase{\dynkin@twisted@series}% {% {0}{\Edynkin}% {1}{\extendedEdynkin}% {2}% {% \dynkinPlaceRootHere*{0}{below}{above}% \dynkin@pipe{0}{2}{east}{below}{above}% \dynkinPlaceRootRelativeTo*{3}{2}{east}{below}{above}% \dynkinPlaceRootRelativeTo*{4}{3}{east}{below}{above}% \dynkinEdge*{SingleEdge}{3}{4}% \dynkinEdge*{DoubleEdge}{3}{2}% }% }% [\dynkin@error@series]% }% \endinput