% This is axodraw2.sty
%
% (C) 1994-2018 by authors:
% John Collins (jcc8 at psu dot edu)
% Jos Vermaseren (t68 at nikhef dot nl)
%
%
% Conditions of use:
%
% axodraw is free software: you can redistribute it and/or modify it under
% the terms of the GNU General Public License as published by the Free
% Software Foundation, either version 3 of the License, or (at your option)
% any later version.
%
% axodraw is distributed in the hope that it will be useful, but WITHOUT ANY
% WARRANTY; without even the implied warranty of MERCHANTABILITY or FITNESS
% FOR A PARTICULAR PURPOSE. See the GNU General Public License for more
% details.
%
% For the GNU General Public License see .
%
% Code necessities:
%
% 1. \ignorespaces at end of commands that draw things. Often it won't
% matter, but occasionally a command in a picture environment
% will set material and a following uncommented end-of-line in
% the user's code will shift the insertion point.
% 2. Use end-of-line comments whereever TeX might use the end-of-line as
% a space to be typeset.
%
% Conventions
%
% 1. Any font and color changes that are supposed to be local should
% be made local, either by explicit TeX grouping or by being
% inside commands (e.g., box-making commands) that enforce groups.
% Braces work, but \begingroup and \endgroup are easier to see in
% multiline groups.
% 2. Scaling:
% \unitlength is the unit for the canvas (as in picture environment).
% \axoscale is for the unit for coordinates, widths, etc
% \axotextscale is for all text objects, BUT only when
% PSText is NOT set to scale as graphics objects
% When PSText is set to scale as graphics objects, PSText
% scales by \axoscale, but TeX-text has unit scaling.
% Given a specification of a position (x,y) as in a call to \Line,
% the position of the point relative to the origin is
% x_act = (x + \axoxo ) \axoscale pt + \axoxoffset \unitlength
% y_act = (y + \axoyo ) \axoscale pt + \axoyoffset \unitlength
% Widths and the like for lines are in units of \axoscale pt
%
% #[ About folds : (this line starts with one % and two tabs)
%
% The internals of the file have been organized in folds.
% These are defined as a range of lines if which the first and last
% lines have a special format. Each starts with any three characters
% (may include tabs), then #[ for the start line and #] for the closing
% line, then both lines need identical name fields, closed by a colon.
% After the colon can be anything. When a fold is closed one should see
% only the first line but with the #[ replaced by ## as in
% ## About folds : (this line starts with one % and two tabs)
% Folds can be nested.
% This fold concept comes originally from the occam compiler for the
% transputer in the second half of the 1980's although there it was
% implemented differently. It was taken over by the STedi editor in its
% current form. The sources of this editor are available from the form
% home site: http://www.nikhef.nl/~form
% Some people have managed to emulate these folds in editors like emacs
% and vim.
%
% #] About folds :
%
\ProvidesPackage{axodraw2}[2018/02/15 v2.1.1]
%
% axodraw.sty file, both for .tex -> .dvi -> .ps and for .tex -> .pdf
%
% #[ Common LaTeX code :
% #[ Variables :
%
%
\RequirePackage{keyval}
\RequirePackage{ifthen}
\RequirePackage{graphicx}
\RequirePackage{color}
\RequirePackage{ifxetex}
%
%
\DeclareOption{v1compatible}{
\def\B2Text{\BTwoText}
\def\G2Text{\GTwoText}
\def\C2Text{\CTwoText}
}
\DeclareOption{canvasScaleIs1pt}{\canvasScaleOnept}
\DeclareOption{canvasScaleIsObjectScale}{\canvasScaleObjectScale}
\DeclareOption{canvasScaleIsUnitLength}{\canvasScaleUnitLength}
\DeclareOption{PSTextScalesIndependently}{\PSTextScalesLikeGraphicsfalse}
\DeclareOption{PSTextScalesLikeGraphics}{\PSTextScalesLikeGraphicstrue}
% N.B. Option processing is deferred to end of this file, so that all
% definitions and initializations have been done first.
% Settings for pdf v. dvi/ps output:
% We need to be able to run under latex, pdflatex, lualatex, and
% xelatex, and use (if possible) \pdfoutput and \pdfliteral
%
% latex: Initially \pdfoutput is 0, and \pdfliteral is defined but
% not usable.
% pdflatex: Initially \pdfoutput is 1, and \pdfliteral is defined and
% usable.
% lualatex: same as pdflatex in versions up to 0.80
% But in versions from 0.85, pdfouput and pdfliteral aren't
% defined; instead \outputmode, \pdfextension literal{...}
% are available instead.
% xelatex: Both \pdfoutput and \pdfliteral are undefined
% but special{pdf:literal ...} gives same effect as
% \pdfliteral would, and we can assume pdf mode always.
% When \pdfoutput is defined, the user can change its value to change
% the type of output. This must be done before the first page is
% created. But various packages (including graphics and ifpdf, as
% well as axodraw) take actions when the package is loaded that depend
% on current state of \pdfoutput (or its equivalent). So it is
% reasonable to require that \pdfoutput be set only before packages
% are loaded and not set later.
%
% We define \axo@pdfoutput and \axo@pdfliteral for our uses to have
% function of \pdfoutput and \pdfliteral, but to be defined always.
% We initialize them to a default suitable for dvi mode, and override
% these definitions to cover the situations listed above. This needs
% tests for whether \pdfoutput, \outputmode, etc are undefined of
% defined. We put these inside a group, to evade the side effect that
% \@ifundefined defines the object being tested.
%
% Default values:
\newcount\axo@pdfoutput
\axo@pdfoutput=0
\def\axo@pdfliteral#1%
{\PackageWarning{axo}{Bug: pdfliteral accessed but not available}}
\bgroup
\@ifundefined{pdfoutput}%
{}%
{\global\axo@pdfoutput=\pdfoutput}%
%
\@ifundefined{pdfliteral}%
{}%
{% Define \axo@pdfliteral to call \pdfliteral, so that if the
% definition of \pdfliteral were to be overridden, we get to
% use the changed definition
\gdef\axo@pdfliteral#1{\pdfliteral{#1}}}%
\@ifundefined{outputmode}%
{}%
{\global\axo@pdfoutput=\outputmode}
\@ifundefined{pdfextension}%
{}%
{\gdef\axo@pdfliteral#1{\pdfextension literal{#1}}}
\egroup
\ifxetex
\axo@pdfoutput=1
\def\axo@pdfliteral#1{\special{pdf:literal #1}}
\fi
%
% For communicating with axohelp with global file
%
\newif\ifaxo@axohelpRerun
\axo@axohelpRerunfalse
%
\newcounter{axo@objectIndex}
\setcounter{axo@objectIndex}{0}
\newwrite\axo@spec
\newread\axo@axohelpFile
%
\newcommand\axo@setObject[3]{
\expandafter\gdef\csname axo@input@#1\endcsname{#2}
\expandafter\gdef\csname axo@output@#1\endcsname{#3}
}
%
\ifcase\axo@pdfoutput
\else
\IfFileExists{\jobname.ax2}%
{{% For comparisons between current definition of object
% and previously processed definition, spaces must be preserved.
\obeyspaces
\openin\axo@axohelpFile=\jobname.ax2
}}%
{%
\PackageWarning{axo}{File `\jobname.ax2' not found.}
\axo@axohelpReruntrue
}
\AtBeginDocument{\immediate\openout\axo@spec\jobname.ax1}
\AtEndDocument{\immediate\closeout\axo@spec
\ifaxo@axohelpRerun
\PackageWarning{axodraw2}{Run `axohelp \jobname'
and then rerun pdflatex.}
\fi
}
\fi
% Commands to set parameters
%
% Arrow scale:
\newcommand{\AXO@DefaultArrowScale}{1}
\newcommand\SetArrowScale[1]{%
\renewcommand\AXO@DefaultArrowScale{#1}%
}
% Alternative name
\newcommand\DefaultArrowScale[1]{\SetArrowScale{#1}}
\SetArrowScale{1}
% Arrow inset:
\newcommand\AXO@ArrowInset{0.2}
%\renewcommand\AXO@ArrowInset{-1 }
\newcommand\SetArrowInset[1]{%
\renewcommand\AXO@ArrowInset{#1}%
}
% Arrow aspect:
\newcommand\AXO@DefaultArrowAspect{1.25}
\newcommand\SetArrowAspect[1]{%
\renewcommand\AXO@DefaultArrowAspect{#1}%
}
% Arrow position (fractional position along line):
\newcommand\AXO@ArrowPos{0.5}
\newcommand\SetArrowPosition[1]{%
\renewcommand\AXO@ArrowPos{#1}%
}
% Arrow stroke width
\newcommand{\AXO@DefaultArrowStroke}{0 }
\newcommand\SetArrowStroke[1]{%
\renewcommand\AXO@DefaultArrowStroke{#1}%
}
\newlength{\axounitlength}
% The next two are scratch registers
\newlength\axo@x
\newlength\axo@y
% Initializations
\axounitlength=\unitlength
\def\axocanvas{1} % How unitlength is set in axopicture environment
% 0 => 1 pt
% 1 => \axoscale pt
% 2 => Don't set it
\def\axominusone{-1}
\def\axoone{1}
\def\axozero{0}
\def\axowidth{0.5}
\def\axoscale{1.0}
\def\axotextscale{1.0}
\newif\ifPSTextScalesLikeGraphics
\PSTextScalesLikeGraphicstrue
\def\axoxoff{0}
\def\axoyoff{0}
\def\axoxo{0}
\def\axoyo{0}
\def\axoarrowsize{2}
%
%
% Now the user callable routines, and their immediate helpers
%
% Commands for setting parameters applicable to subsequent graphical objects:
%
\def\SetLineSep#1{\def\AXO@Sep{#1}\ignorespaces}\relax
\let\SetSep=\SetLineSep\relax
\def\SetDashSize#1{\def\AXO@DashSize{#1}\ignorespaces}\relax
\def\SetWidth#1{\def\axowidth{#1}\ignorespaces}
\def\SetArrowSize#1{\def\axoarrowsize{#1}}
\def\SetObjectScale#1{\def\axoscale{#1}\ignorespaces}
\def\SetCanvasScale#1{\unitlength = #1 pt\ignorespaces}
\def\SetTextScale#1{\def\axotextscale{#1}\ignorespaces}
\let\SetScale = \SetObjectScale
\def\SetOffset(#1,#2){\def\axoxoff{#1}\def\axoyoff{#2}\ignorespaces}
\def\SetScaledOffset(#1,#2){\def\axoxo{#1}\def\axoyo{#2}\ignorespaces}
\def\canvasScaleOnept{\def\axocanvas{0}}
\def\canvasScaleObjectScale{\def\axocanvas{1}}
\def\canvasScaleUnitLength{\def\axocanvas{2}}
%
%
% #] Variables :
% #[ Defining commands with optional arguments :
%
\def\defWithOption#1#2#3{%
\@namedef{#1}%
{%
\@ifnextchar[%]
{\@nameuse{#1@A}}%
{\@nameuse{#1@A}[]}%
}%
\@namedef{#1@A}[##1]#2%
{#3}%
}
%
% #] Defining commands with optional arguments :
% #[ axopicture :
%
% Version of picture environment with unitlength set to 1pt
% as assumed by axodraw. We also store some variables and reset them
% afterwards. This makes the picture environment also local from the
% axodraw viewpoint. To change the global settings one should issue
% the corresponding command from outside the axopicture environment.
% Use: \begin{axopicture}(width,height)(xshift,yshift)
% \end{axopicture}
% The old use with the regular picture environment will still work,
% but it will have the old shortcomings connected to it.
%
\let\OLDpicture=\picture
\let\endOLDpicture=\endpicture
\newenvironment{axopicture}
{%
\ifcase \axocanvas
\setlength{\unitlength}{1 pt}%
\or
\setlength{\unitlength}{\axoscale\space pt}%
\else
% Leave \unitlength as whatever the user set
\fi
\begin{OLDpicture}%
}
{%
\end{OLDpicture}%
\ignorespacesafterend
}
%
% #] axopicture :
% #[ AXO@keys :
%
% Diagnostics for unimplemented features:
\newif\ifAXONotImplemented
\AXONotImplementedfalse
\def\AXO@NOTIMPLEMENTED#1{%
\global\AXONotImplementedtrue
\PackageWarning{axodraw2}{#1}%
}
\AtEndDocument{%
\ifAXONotImplemented
\PackageWarningNoLine{axodraw2}{unimplemented features used
somewhere in document}%
\fi
}
% The next is used temporarily, it gives the result of parsing an
% arrow-using command to give the Postscript code for setting the
% arrow.
%
% Keys for optional arguments:
% First the variables used, with some defaults.
\newif\ifAXO@arrow
\AXO@arrowfalse
\newif\ifAXO@clock
\AXO@clockfalse
\newif\ifAXO@dash
\AXO@dashfalse
\newif\ifAXO@double
\AXO@doublefalse
\newif\ifAXO@flip % Flip arrow orientation, as in JaxoDraw
\AXO@flipfalse
\newif\ifAXO@linecolor % Option sets color for current line
\AXO@linecolorfalse
\def\AXO@Sep{2} % Double line separation
\def\AXO@DashSize{3}
% Then the definitions of the keys
\define@key{axo}{arrowscale}{%
\def\AXO@CurrentArrowScale{#1}%
}
\define@key{axo}{arrowwidth}{%
\def\AXO@CurrentArrowWidth{#1}%
}
\define@key{axo}{arrowlength}{%
\def\AXO@CurrentArrowLength{#1}%
}
% Make arrowheight a synonym for arrowlength
\let\KV@axo@arrowheight=\KV@axo@arrowlength
%
\define@key{axo}{arrowpos}{%
\def\AXO@CurrentArrowPos{#1 }
}
%
\define@key{axo}{arrowaspect}{%
\def\AXO@CurrentArrowAspect{#1 }
}
%
\define@key{axo}{arrowinset}{%
\def\AXO@CurrentArrowInset{#1 }
}
% Make inset a synonym for arrowinset
\let\KV@axo@inset=\KV@axo@arrowinset
%
\define@key{axo}{arrowstroke}{%
\def\AXO@CurrentArrowStroke{#1 }
}
%
\define@key{axo}{arrow}[true]{%
\AXO@boolkey{#1}{arrow}%
}
\define@key{axo}{clock}[true]{%
\AXO@boolkey{#1}{clock}%
}
\define@key{axo}{clockwise}[true]{%
\AXO@boolkey{#1}{clock}%
}
\define@key{axo}{color}{%
\def\AXO@CurrentColor{#1}%
\AXO@linecolortrue
}
% Make colour a synonym for color
\let\KV@axo@colour=\KV@axo@color
%
\define@key{axo}{dash}[true]{%
\AXO@boolkey{#1}{dash}%
}
\define@key{axo}{dashsize}{%
\def\AXO@CurrentDashSize{#1 }
}
\define@key{axo}{dsize}{%
\def\AXO@CurrentDashSize{#1 }
}
\define@key{axo}{double}[true]{%
\AXO@boolkey{#1}{double}%
}
\define@key{axo}{flip}[true]{%
\AXO@boolkey{#1}{flip}%
}
\define@key{axo}{linesep}{%
\def\AXO@CurrentSep{#1}
}
\define@key{axo}{sep}{%
\def\AXO@CurrentSep{#1}
}
\define@key{axo}{width}{%
\def\AXO@CurrentWidth{#1}%
}
%
% #] AXO@keys :
% #[ AXO@Parse :
%
% Parsing of optional arguments, etc
%
\def\AXO@Parse#1#2{%
% Usage: \AXO@Parse#1#2 or \AXO@Parse#1#2[#3]
% #1 is a command for setting an object, that takes no optional argument
% #2 and the optional #3 are keyword settings.
% There then follow the compulsory arguments for the command in #1.
%
% E.g., \AXO@Parse{\AXO@Line}{double}(x1,y1)(x2,y2)
% \AXO@Parse{\AXO@Line}{double}[arrow](x1,y1)(x2,y2)
%
% I will
% (a) Set standard initial settings (arrows, etc)
% (b) Parse the keyword settings in #2 and #3, e.g., scale = 3,
% (c) Call #1 to make the object
\AXO@arrowfalse
\AXO@clockfalse
\AXO@dashfalse
\AXO@doublefalse
\AXO@flipfalse
\AXO@linecolorfalse
\let\AXO@CurrentWidth\axowidth
\let\AXO@CurrentArrowPos\AXO@ArrowPos
\let\AXO@CurrentArrowWidth\relax
\let\AXO@CurrentArrowLength\relax
\let\AXO@CurrentArrowInset\AXO@ArrowInset
\let\AXO@CurrentArrowScale\AXO@DefaultArrowScale
\let\AXO@CurrentArrowStroke\AXO@DefaultArrowStroke
\let\AXO@CurrentArrowAspect\AXO@DefaultArrowAspect
\let\AXO@CurrentDashSize\AXO@DashSize
\let\AXO@CurrentSep=\AXO@Sep
\@ifnextchar[{\AXO@Options{#1}{#2}}%
{\AXO@Options{#1}{#2}[]}%
}
%
% #] AXO@Parse :
% #[ AXO@Options :
%
\def\AXO@Options#1#2[#3]{%
% #1 is command to execute, #2 and #3 are options.
\setkeys{axo}{#2}%
\setkeys{axo}{#3}%
\ifx\AXO@CurrentArrowLength\relax
\def\AXO@CurrentArrowLength{0 }%
\fi
\ifx\AXO@CurrentArrowWidth\relax
\def\AXO@CurrentArrowWidth{0 }%
\fi
\ifAXO@arrow
\def\AXO@ArrowArg{
\AXO@CurrentArrowStroke \space %
\AXO@CurrentArrowWidth \space %
\AXO@CurrentArrowLength \space %
\AXO@CurrentArrowInset \space %
\AXO@CurrentArrowScale \space %
\AXO@CurrentArrowAspect \space %
\AXO@CurrentArrowPos \space %
\ifcase\axo@pdfoutput
true \space % Indicates that an arrow should be drawn.
\else
1 \space % Indicates that an arrow should be drawn.
\fi
}%
\else
\ifcase\axo@pdfoutput
\def\AXO@ArrowArg{ 0 0 0 0 0 0 0 false }%
\else
\def\AXO@ArrowArg{ 0 0 0 0 0 0 0 0 }%
\fi
\fi
#1%
}
%
\def\AXO@useopts{%
% Override global settings by those from options
% HACK: The \@killglue solves problem that setting color
% causes a shift in horizontal position.
% Motivation: From definition of \put.
\@killglue
\ifAXO@linecolor \SetColor{\AXO@CurrentColor}\fi
}
%
% Now ensure there is a setting for the current arrow
\AXO@Parse{}{}
%
% #] AXO@Options :
% #[ AXO@varia :
%
% Now ensure there is a setting for the current arrow
\AXO@Parse{}{}
\def\AXO@PrependOption#1#2{%
% Run command #1, which has an optional argument, with #2 prepended
% to the command's optional arguments. If there are no optional
% arguments, just run the command with #2 as the optional arguments
\@ifnextchar[{\AXO@TwoOption{#1}{#2}}%
{#1[#2]}%
}
\def\AXO@TwoOption#1#2[#3]{%
#1[#2,#3]%
}
%
% Copied from graphicx.sty, for use with boolean keys
% Modified to do lower casing here
\def\AXO@boolkey#1#2{%
\lowercase{\AXO@boolkeyA{#1}}{#2}%
}
\def\AXO@boolkeyA#1#2{%
\csname AXO@#2\ifx\relax#1\relax true\else#1\fi\endcsname
}
%
% #] AXO@varia :
% #[ Colors :
%
% Here we make an interface, compatible with both: color.sty,
% with the commands of axodraw v. 1, and with the commands of
% colordvi.sty (used by axodraw v. 1).
%
% 1. We make a set of named colors suitable for use with both
% axodraw's commands that take color arguments and with
% color.sty's \color command.
% 2. We define a command \SetColor to set a named color as the
% current color. It is now identical to \color.
% 3. For each of the colors that we define here, we make
% named color setting commands, e.g., \Red
% \textRed. \Red sets its (one) argument in Red, \textRed
% is a "declaration" that changes the current color.
% All the commands for setting color apply to both regular LaTeX
% material and to axodraw objects. Their setting of color
% respects LaTeX environments and TeX groups.
%
% We also define
% a. Named-color commands like \textRed and \Red for named
% colors to give the same interface as the colordvi
% package (and hence axodraw v. 1).
% b. \SetColor command to set a named color.
\let\SetColor=\color
% For v. 1 compatibility:
\def\IfColor#1#2{#1}
\newcommand\newcolor[2]{%
% Define a named color both in the color.sty style
% and in the colordvi.sty, with also a command giving the CMYK value.
% #1 is the color's name, #2 is its CMYK definition, space
% separated.
%
% Invoke color.sty's \definecolor after change of argument format:
\axo@new@color #1 #2\@%
% Define commands to use this color,
% E.g., if #1 is Red, then define \Red and \textRed:
\expandafter\def\csname #1\endcsname##1{{\SetColor{#1}##1}\ignorespaces}
\expandafter\def\csname text#1\endcsname{\SetColor{#1}\ignorespaces}
% The following to give the cmyk value of a color, e.g., \cmykRed,
% is no longer needed, since we no longer do color setting in
% postscript and pdf code:
%% \expandafter\def\csname cmyk#1\endcsname{#2}
}
% Command to invoke color.sty's \definecolor, which needs a translation
% of our space-separated CMYK vector to a comma-separated vector:
\def\axo@new@color #1 #2 #3 #4 #5\@{\definecolor{#1}{cmyk}{#2,#3,#4,#5}}
% For consistency we define our named colors here, rather than
% using color.sty's mechanisms. The
% first 68 are standard colors, as defined by dvips, and
% implemented in both colordvi.ps, and in color.sty with its
% usenames and dvipsnames options (in the file dvipsnam.def
% provided by the LaTeX graphics package).
%
% We define an extra 5 colors at the end
%
% The 68 dvips-defined colors are:
%
\newcolor{GreenYellow}{0.15 0 0.69 0}
\newcolor{Yellow}{0 0 1 0}
\newcolor{Goldenrod}{0 0.10 0.84 0}
\newcolor{Dandelion}{0 0.29 0.84 0}
\newcolor{Apricot}{0 0.32 0.52 0}
\newcolor{Peach}{0 0.50 0.70 0}
\newcolor{Melon}{0 0.46 0.50 0}
\newcolor{YellowOrange}{0 0.42 1 0}
\newcolor{Orange}{0 0.61 0.87 0}
\newcolor{BurntOrange}{0 0.51 1 0}
\newcolor{Bittersweet}{0 0.75 1 0.24}
\newcolor{RedOrange}{0 0.77 0.87 0}
\newcolor{Mahogany}{0 0.85 0.87 0.35}
\newcolor{Maroon}{0 0.87 0.68 0.32}
\newcolor{BrickRed}{0 0.89 0.94 0.28}
\newcolor{Red}{0 1 1 0}
\newcolor{OrangeRed}{0 1 0.50 0}
\newcolor{RubineRed}{0 1 0.13 0}
\newcolor{WildStrawberry}{0 0.96 0.39 0}
\newcolor{Salmon}{0 0.53 0.38 0}
\newcolor{CarnationPink}{0 0.63 0 0}
\newcolor{Magenta}{0 1 0 0}
\newcolor{VioletRed}{0 0.81 0 0}
\newcolor{Rhodamine}{0 0.82 0 0}
\newcolor{Mulberry}{0.34 0.90 0 0.02}
\newcolor{RedViolet}{0.07 0.90 0 0.34}
\newcolor{Fuchsia}{0.47 0.91 0 0.08}
\newcolor{Lavender}{0 0.48 0 0}
\newcolor{Thistle}{0.12 0.59 0 0}
\newcolor{Orchid}{0.32 0.64 0 0}
\newcolor{DarkOrchid}{0.40 0.80 0.20 0}
\newcolor{Purple}{0.45 0.86 0 0}
\newcolor{Plum}{0.50 1 0 0}
\newcolor{Violet}{0.79 0.88 0 0}
\newcolor{RoyalPurple}{0.75 0.90 0 0}
\newcolor{BlueViolet}{0.86 0.91 0 0.04}
\newcolor{Periwinkle}{0.57 0.55 0 0}
\newcolor{CadetBlue}{0.62 0.57 0.23 0}
\newcolor{CornflowerBlue}{0.65 0.13 0 0}
\newcolor{MidnightBlue}{0.98 0.13 0 0.43}
\newcolor{NavyBlue}{0.94 0.54 0 0}
\newcolor{RoyalBlue}{1 0.50 0 0}
\newcolor{Blue}{1 1 0 0}
\newcolor{Cerulean}{0.94 0.11 0 0}
\newcolor{Cyan}{1 0 0 0}
\newcolor{ProcessBlue}{0.96 0 0 0}
\newcolor{SkyBlue}{0.62 0 0.12 0}
\newcolor{Turquoise}{0.85 0 0.20 0}
\newcolor{TealBlue}{0.86 0 0.34 0.02}
\newcolor{Aquamarine}{0.82 0 0.30 0}
\newcolor{BlueGreen}{0.85 0 0.33 0}
\newcolor{Emerald}{1 0 0.50 0}
\newcolor{JungleGreen}{0.99 0 0.52 0}
\newcolor{SeaGreen}{0.69 0 0.50 0}
\newcolor{Green}{1 0 1 0}
\newcolor{ForestGreen}{0.91 0 0.88 0.12}
\newcolor{PineGreen}{0.92 0 0.59 0.25}
\newcolor{LimeGreen}{0.50 0 1 0}
\newcolor{YellowGreen}{0.44 0 0.74 0}
\newcolor{SpringGreen}{0.26 0 0.76 0}
\newcolor{OliveGreen}{0.64 0 0.95 0.40}
\newcolor{RawSienna}{0 0.72 1 0.45}
\newcolor{Sepia}{0 0.83 1 0.70}
\newcolor{Brown}{0 0.81 1 0.60}
\newcolor{Tan}{0.14 0.42 0.56 0}
\newcolor{Gray}{0 0 0 0.50}
\newcolor{Black}{0 0 0 1}
\newcolor{White}{0 0 0 0}
%
% Our extra colors
%
\newcolor{LightYellow}{0 0 0.7 0}
\newcolor{LightRed}{0 0.75 0.7 0}
\newcolor{LightBlue}{0.7 0.5 0 0}
\newcolor{LightGray}{0 0 0 0.1}
\newcolor{VeryLightBlue}{0.15 0.07 0 0}
%
\SetColor{Black}
%
% #] Colors :
% #] Common LaTeX code :
% #[ LaTeX primitives :
%
% #[ Putting material
%
% Some utilities that remove extra space that creeps in, particularly
% when extra groups are inserted before the use of \put.
% Use the definition of \@killglue used in latex.ltx for \put,
% but copy it here, since \@killglue is internal and not documented.
\gdef\AXO@killglue{\unskip\@whiledim \lastskip >\z@\do{\unskip}}
% Special purpose versions of \put and \special
\long\gdef\putLen(#1,#2)#3{%
% Like LaTeX's \put, except that #1 and #2 are lengths instead of numbers
% giving lengths in units of \unitlength.
\AXO@killglue\raise#2\relax
\hbox to 0pt{\kern#1\relax #3\hss}%
\ignorespaces
}
%
\def\AxoPut(#1,#2)#3{%
% Like \put, but shifted by axodraw's offsets.
% This provides a way of coding the offsets in one place.
% But we are only using it in a limited set of cases so far.
\AXO@killglue
\bgroup
\axounitlength = \axoscale pt
\axo@x = \axoxoff \unitlength
\advance\axo@x by \axoxo \axounitlength
\advance\axo@x by #1 \axounitlength
\axo@y = \axoyoff \unitlength
\advance\axo@y by \axoyo \axounitlength
\advance\axo@y by #2 \axounitlength
\putLen(\axo@x,\axo@y){%
% If there are axodraw objects in #3, they should not also
% apply shifts, that would be double
% counting! Hence:
\SetOffset(0,0)%
\SetScaledOffset(0,0)%
#3%
}%
\egroup
\ignorespaces
}
\def\AXOspecial#1{%
% Insertion of postscript code:
% Replacement for \special{" ...}, with the color initialized
% to the color befor the \special. (Ordinary \special{"...}
% initializes color to black.)
% Definitions made by \special{!...} are in dictionary SDict
% (as stated in dvips documentation), and we save color there.
\special{ps:: SDict begin savecolor end }%
\special{" restorecolor #1 }%
}
\def\AXOputPS#1{%
% Insert postscript code after allowing for offsets.
\AxoPut(0,0){\AXOspecial{#1}}%
}
\def\AXOputPDF#1{
% Insert pdf code after allowing for offsets.
\AxoPut(0,0){\axo@pdfliteral{#1}}%
}
%
% Now variables and routines for setting material in boxes (used by
% the BText etc commands.
%
\newdimen\tmpX
\newdimen\tmpY
\newsavebox{\tmpBox}
\newsavebox{\tmpBoxA}
%
\newcount\axo@tmp
\newcount\axo@tmpA
\newcount\axo@tmpB
\newcount\bpinsp
\bpinsp = 65782
\newcount\ptinsp
\ptinsp = 65536
\def\AssignDecDiv#1#2#3{%
% Assign the variable of name #1 to the result of dividing integer
% #2 by integer #3, with result as a textual decimal. Absolute
% accuracy: 0.001.
% Typical use: conversion of lengths to points and big points.
% \AssignDecDiv{cachedscale}{\unitlength}{65536}
% \AssignDecDiv{cachedscale}{\unitlength}{\ptinsp}
% to get length in points.
% Notes on conversion
% 1 sp = 2^{-16} pt = (1/65536) pt
% 1 pt = (1/72.27) in
% 1 bp = (1/72) in
% 1 sp = (1/65781.76) bp
% Use \relax at end of lines setting count registers.
% This ensures that the code works both when the arguments are
% given as numbers, e.g., \AxoDecDiv{100}{3}, as well as when they are
% given as lengths, etc, e.g., \AxoDecDiv{\unitlength}{256}
%
\axo@tmp = #2\relax
\axo@tmpA = \axo@tmp
\divide \axo@tmpA by #3\relax
\axo@tmpB=\axo@tmpA
\multiply \axo@tmpA by #3\relax
\advance \axo@tmp by -\axo@tmpA
\multiply \axo@tmp by 1000
\divide \axo@tmp by #3\relax
\expandafter\edef\csname #1\endcsname{\the\axo@tmpB.\the\axo@tmp}%
}
\def\SetTmpBox#1{%
% Sets the box \tmpBox to the contents of #1 set with current PS
% font and size. Sets \tmpX and \tmpY to the dimensions of the box
% plus some space around it, suitable for drawing an enclosing box.
%
% The vertical box setting numbers agree with those in axodraw's
% postscript code, but not (28 July 2014) with the axohelp pdf code.
% The reverse is true for the horizontal box settings.
% We can tweak them further.
% This is a standardized routine for use in all versions of postscript
% textbox routines.
% N.B. Use LaTeX's \sbox at first step, not TeX primitives to set
% box contents; it works properly with color.
\sbox{\tmpBox}{\UseCurrentPSFont #1}%
\tmpX = \axofontsize pt
\advance \tmpX by \wd\tmpBox
\tmpY = \axofontsize pt
\tmpY = 0.33333 \tmpY
\advance \tmpY by \ht\tmpBox
\advance \tmpY by \dp\tmpBox
\AssignDecDiv{tmpXT}{\tmpX}{\ptinsp}%
\AssignDecDiv{tmpYT}{\tmpY}{\ptinsp}%
}
\def\SetTmpBoxTwo#1#2{%
% Equivalent of \SetTmpBox for two line commands.
%
% N.B. Use LaTeX's \sbox at first step, not TeX primitives to set
% box contents; it works properly with color.
\sbox{\tmpBox}{\UseCurrentPSFont #1}%
\sbox{\tmpBoxA}{\UseCurrentPSFont #2}%
\ifdim \wd\tmpBox > \wd\tmpBoxA
\tmpX = \wd\tmpBox
\else
\tmpX = \wd\tmpBoxA
\fi
\advance \tmpX by \axofontsize pt
\tmpY = \axofontsize pt
\setbox\tmpBox=%
\vbox{%
\lineskip = 0.1 \tmpY
\baselineskip = 1.1 \tmpY
\vskip 0.3 \tmpY
\hbox{\makebox[0pt]{\box\tmpBox}}%
\hbox{\makebox[0pt]{\box\tmpBoxA}}%
\vskip 0.3 \tmpY
}%
\tmpY = \ht\tmpBox
\advance \tmpY by \dp\tmpBox
\AssignDecDiv{tmpXT}{\tmpX}{\ptinsp}%
\AssignDecDiv{tmpYT}{\tmpY}{\ptinsp}%
}
%
% #] Putting
% #[ Point setting and using :
%
\def\SetPoint#1(#2,#3){%
% Define a named point in 2D
\@namedef{AXO@p.X@#1}{#2}%
\@namedef{AXO@p.Y@#1}{#3}%
}
\def\useX#1{%
% Use a named point
\@nameuse{AXO@p.X@#1}%
}
\def\useY#1{%
% Use a named point
\@nameuse{AXO@p.Y@#1}%
}
%
% #] Point setting and using :
% #[ Particle routines :
% #[ Gluon :
%
\def\Gluon{%
%
% Draws a gluon from (x1,y1) to (x2,y2) with amplitude and number of windings
%
\AXO@Parse{\AXO@Gluon}{}%
}
%
% #] Gluon :
% #[ DoubleGluon :
%
\defWithOption{DoubleGluon}{(#2,#3)(#4,#5)#6#7#8}{%
%
% Draws a gluon from (x1,y1) to (x2,y2) with amplitude and number of windings
%
\Gluon[double,sep=#8,#1](#2,#3)(#4,#5){#6}{#7}%
}
%
% #] DoubleGluon :
% #[ DashGluon :
%
\defWithOption{DashGluon}{(#2,#3)(#4,#5)#6#7#8}{%
%
% Draws a gluon from (x1,y1) to (x2,y2) with amplitude and number of windings
%
\Gluon[dash,dashsize=#8,#1](#2,#3)(#4,#5){#6}{#7}%
}
%
% #] DashGluon :
% #[ DashDoubleGluon :
%
\defWithOption{DashDoubleGluon}{(#2,#3)(#4,#5)#6#7#8#9}{%
%
% Draws a gluon from (x1,y1) to (x2,y2) with amplitude and number of windings
%
\Gluon[double,sep=#8,dash,dashsize=#9,#1](#2,#3)(#4,#5){#6}{#7}%
}
%
% #] DashDoubleGluon :
% #[ GluonCirc :
%
% Draws a gluon on a circle. The center of the circle is at (#1,#2)
% The radius and the phase angle are (#3,#4), #5 is the
% amplitude of the gluon, and #6 is the number of windings.
%
\def\GluonCirc{%
%
% Draws a gluon from (x1,y1) to (x2,y2) with amplitude and number of windings
%
\AXO@Parse{\AXO@GluonCirc}{}%
}
%
% #] GluonCirc :
% #[ DoubleGluonCirc :
%
\defWithOption{DoubleGluonCirc}{(#2,#3)(#4,#5)#6#7#8}{%
%
% Draws a gluon from (x1,y1) to (x2,y2) with amplitude and number of windings
%
\GluonCirc[double,sep=#8,#1](#2,#3)(#4,#5){#6}{#7}%
}
%
% #] DoubleGluonCirc :
% #[ DashGluonCirc :
%
\defWithOption{DashGluonCirc}{(#2,#3)(#4,#5)#6#7#8}{%
%
% Draws a gluon from (x1,y1) to (x2,y2) with amplitude and number of windings
%
\GluonCirc[dash,dashsize=#8,#1](#2,#3)(#4,#5){#6}{#7}%
}
%
% #] DashGluonCirc :
% #[ DashDoubleGluonCirc :
%
\defWithOption{DashDoubleGluonCirc}{(#2,#3)(#4,#5)#6#7#8#9}{%
%
% Draws a gluon from (x1,y1) to (x2,y2) with amplitude and number of windings
%
\GluonCirc[double,sep=#8,dash,dashsize=#9,#1](#2,#3)(#4,#5){#6}{#7}%
}
%
% #] DashDoubleGluonCirc :
% #[ GluonArc :
%
\def\GluonArc{%
% \GluonArc(x,y)(r,theta1,theta2){amplitude}{numwind}
% draws a gluon on an arc centered at (x,y) of radius r, starting
% at theta1, and ending at theta2, with given amplitude and
% number of windings
%
\AXO@Parse{\AXO@GluonArc}{}%
}
%
\let\GlueArc=\GluonArc % For backward compatibility
%
% #] GluonArc :
% #[ DoubleGluonArc :
%
\defWithOption{DoubleGluonArc}{(#2)(#3)#4#5#6}{%
%
% \DoubleGluonArc(x,y)(r,theta1,theta2){amplitude}{numwind}{sep}
% draws a gluon on an arc centered at (x,y) of radius r, starting
% at theta1, and ending at theta2, with given amplitude and
% number of windings
%
\GluonArc[double,sep=#6,#1](#2)(#3){#4}{#5}%
}
%
\let\DoubleGlueArc=\DoubleGluonArc % For backward compatibility
%
% #] DoubleGluonArc :
% #[ DashGluonArc :
%
\defWithOption{DashGluonArc}{(#2)(#3)#4#5#6}{%
%
% \DashGluonArc(x,y)(r,theta1,theta2){amplitude}{numwind}{dashsize}
% draws a gluon on an arc centered at (x,y) of radius r, starting
% at theta1, and ending at theta2, with given amplitude and
% number of windings
%
\GluonArc[dash,dashsize=#6,#1](#2)(#3){#4}{#5}%
}
%
\let\DashGlueArc=\DashGluonArc % For backward compatibility
%
% #] DashGluonArc :
% #[ DashDoubleGluonArc :
%
\defWithOption{DashDoubleGluonArc}{(#2)(#3)#4#5#6#7}{%
%
% \DashGluonArc(x,y)(r,theta1,theta2){amplitude}{numwind}{dashsize}
% draws a gluon on an arc centered at (x,y) of radius r, starting
% at theta1, and ending at theta2, with given amplitude and
% number of windings
%
\GluonArc[double,sep=#6,dash,dashsize=#7,#1](#2)(#3){#4}{#5}%
}
%
\let\DashDoubleGlueArc=\DashDoubleGluonArc % For backward compatibility
%
% #] DashDoubleGluonArc :
% #[ GluonArcn :
%
\defWithOption{GluonArcn}{(#2)(#3)#4#5}{%
% \GluonArcn(x,y)(r,theta1,theta2){amplitude}{numwind}
% draws a gluon on an arc centered at (x,y) of radius r, starting
% at theta1, and ending at theta2, with given amplitude and
% number of windings. The n stands for clockwise
%
\GluonArc[clockwise,#1](#2)(#3){#4}{#5}%
}
%
\let\GlueArcn=\GluonArcn % For backward compatibility
%
% #] GluonArcn :
% #[ DoubleGluonArcn :
%
\defWithOption{DoubleGluonArcn}{(#2)(#3)#4#5#6}{%
%
% \DoubleGluonArcn(x,y)(r,theta1,theta2){amplitude}{numwind}{sep}
% draws a gluon on an arc centered at (x,y) of radius r, starting
% at theta1, and ending at theta2, with given amplitude and
% number of windings. Clockwise.
%
\GluonArc[clockwise,double,sep=#6,#1](#2)(#3){#4}{#5}%
}
%
\let\DoubleGlueArcn=\DoubleGluonArcn % For backward compatibility
%
% #] DoubleGluonArcn :
% #[ DashGluonArcn :
%
\defWithOption{DashGluonArcn}{(#2)(#3)#4#5#6}{%
%
% \DashGluonArc(x,y)(r,theta1,theta2){amplitude}{numwind}{dashsize}
% draws a gluon on an arc centered at (x,y) of radius r, starting
% at theta1, and ending at theta2, with given amplitude and
% number of windings. Clockwise.
%
\GluonArc[clockwise,dash,dashsize=#6,#1](#2)(#3){#4}{#5}%
}
%
\let\DashGlueArcn=\DashGluonArcn % For backward compatibility
%
% #] DashGluonArcn :
% #[ DashDoubleGluonArcn :
%
\defWithOption{DashDoubleGluonArcn}{(#2)(#3)#4#5#6#7}{%
%
% \DashGluonArcn(x,y)(r,theta1,theta2){amplitude}{numwind}{dashsize}
% draws a gluon on an arc centered at (x,y) of radius r, starting
% at theta1, and ending at theta2, with given amplitude and
% number of windings. Clockwise.
%
\GluonArc[clockwise,double,sep=#6,dash,dashsize=#7,#1](#2)(#3){#4}{#5}%
}
%
\let\DashDoubleGlueArcn=\DashDoubleGluonArcn % For backward compatibility
%
% #] DashDoubleGluonArcn :
% #[ Photon :
%
\def\Photon{%
% \Photon[opt](x1,y1)(x2,y2){amplitude}{numwind}
% Draws a photon from (x1,y1) to (x2,y2) with given amplitude and
% number of windings
% Supported options: double, sep, linesep
%
\AXO@Parse{\AXO@Photon}{}%
}
%
% #] Photon :
% #[ DoublePhoton :
%
\defWithOption{DoublePhoton}{(#2,#3)(#4,#5)#6#7#8}{%
%
% Draws a photon from (x1,y1) to (x2,y2) with amplitude and number of windings
%
\Photon[double,sep=#8,#1](#2,#3)(#4,#5){#6}{#7}%
}
%
% #] DoublePhoton :
% #[ DashPhoton :
%
\defWithOption{DashPhoton}{(#2,#3)(#4,#5)#6#7#8}{%
%
% Draws a photon from (x1,y1) to (x2,y2) with amplitude and number of windings
%
\Photon[dash,dashsize=#8,#1](#2,#3)(#4,#5){#6}{#7}%
}
%
% #] DashPhoton :
% #[ DashDoublePhoton :
%
\defWithOption{DashDoublePhoton}{(#2,#3)(#4,#5)#6#7#8#9}{%
%
% Draws a photon from (x1,y1) to (x2,y2) with amplitude and number of windings
%
\Photon[double,sep=#8,dash,dashsize=#9,#1](#2,#3)(#4,#5){#6}{#7}%
}
%
% #] DashDoublePhoton :
% #[ PhotonArc :
%
\def\PhotonArc{%
% \PhotonArc(x,y)(r,theta1,theta2){amplitude}{numwind}
% draws a photon on an arc centered at (x,y) of radius r, starting
% at theta1, and ending at theta2, with given amplitude and
% number of windings
%
\AXO@Parse{\AXO@PhotonArc}{}%
}
%
% #] PhotonArc :
% #[ DoublePhotonArc :
%
\defWithOption{DoublePhotonArc}{(#2,#3)(#4,#5,#6)#7#8#9}{%
%
% \PhotonArc(x,y)(r,theta1,theta2){amplitude}{numwind}{sep}
% draws a photon on an arc centered at (x,y) of radius r, starting
% at theta1, and ending at theta2, with given amplitude and
% number of windings
%
\PhotonArc[double,sep=#9,#1](#2,#3)(#4,#5,#6){#7}{#8}%
}
%
% #] DoublePhotonArc :
% #[ DashPhotonArc :
%
\defWithOption{DashPhotonArc}{(#2,#3)(#4,#5,#6)#7#8#9}{%
%
% \DashPhotonArc(x,y)(r,theta1,theta2){amplitude}{numwind}{dashsize}
% draws a photon on an arc centered at (x,y) of radius r, starting
% at theta1, and ending at theta2, with given amplitude and
% number of windings
%
\PhotonArc[dash,dashsize=#9,#1](#2,#3)(#4,#5,#6){#7}{#8}%
}
%
%
% #] DashPhotonArc :
% #[ DashDoublePhotonArc :
%
\defWithOption{DashDoublePhotonArc}{(#2)(#3)#4#5#6#7}{%
% Note that there are actually ten arguments with the optional #1,
% which LaTeX/TeX can't handle. I consolidate the comma separated
% arguments into one, and then pass them to \PhotonArc
%
% \DashPhotonArc(x,y)(r,theta1,theta2){amplitude}{numwind}{dashsize}
% draws a photon on an arc centered at (x,y) of radius r, starting
% at theta1, and ending at theta2, with given amplitude and
% number of windings
%
\PhotonArc[double,sep=#6,dash,dashsize=#7,#1](#2)(#3){#4}{#5}%
}
%
%
% #] DashDoublePhotonArc :
% #[ PhotonArcn :
%
\defWithOption{PhotonArcn}{(#2,#3)(#4,#5,#6)#7#8}{%
% \PhotonArcn(x,y)(r,theta1,theta2){amplitude}{numwind}
% draws a photon on an arc centered at (x,y) of radius r, starting
% at theta1, and ending at theta2, with given amplitude and
% number of windings
%
\PhotonArc[clockwise,#1](#2,#3)(#4,#5,#6){#7}{#8}%
}
%
% #] PhotonArcn :
% #[ DoublePhotonArcn :
%
\defWithOption{DoublePhotonArcn}{(#2)(#3)#4#5#6}{%
% I consolidate the comma separated arguments into one, and then pass
% them to \PhotonArc
%
% \PhotonArcn(x,y)(r,theta1,theta2){amplitude}{numwind}{sep}
% draws a photon on an arc centered at (x,y) of radius r, starting
% at theta1, and ending at theta2, with given amplitude and
% number of windings
%
\PhotonArc[clockwise,double,sep=#6,#1](#2)(#3){#4}{#5}%
}
%
% #] DoublePhotonArcn :
% #[ DashPhotonArcn :
%
\defWithOption{DashPhotonArcn}{(#2)(#3)#4#5#6}{%
% I consolidate the comma separated arguments into one, and then pass
% them to \PhotonArc
%
% \DashPhotonArcn(x,y)(r,theta1,theta2){amplitude}{numwind}{dashsize}
% draws a photon on an arc centered at (x,y) of radius r, starting
% at theta1, and ending at theta2, with given amplitude and
% number of windings.Clockwise.
%
\PhotonArc[clockwise,dash,dashsize=#6,#1](#2)(#3){#4}{#5}%
}
%
%
% #] DashPhotonArcn :
% #[ DashDoublePhotonArcn :
%
\defWithOption{DashDoublePhotonArcn}{(#2)(#3)#4#5#6#7}{%
% I consolidate the comma separated arguments into one, and then pass
% them to \PhotonArc
%
% \DashPhotonArcn(x,y)(r,theta1,theta2){amplitude}{numwind}{dashsize}
% draws a photon on an arc centered at (x,y) of radius r, starting
% at theta1, and ending at theta2, with given amplitude and
% number of windings. Clockwise.
%
\PhotonArc[clockwise,double,sep=#6,dash,dashsize=#7,#1](#2)(#3){#4}{#5}%
}
%
%
% #] DashDoublePhotonArcn :
% #[ ZigZag :
%
\def\ZigZag{%
% \ZigZag[opt](x1,y1)(x2,y2){amplitude}{numwind}
% Draws a zigzag from (x1,y1) to (x2,y2) with given amplitude and
% number of windings
% Supported options: double, sep, linesep
%
\AXO@Parse{\AXO@ZigZag}{}%
}
%
% #] ZigZag :
% #[ DoubleZigZag :
%
\defWithOption{DoubleZigZag}{(#2,#3)(#4,#5)#6#7#8}{%
%
% Draws a zigzag from (x1,y1) to (x2,y2) with amplitude and number of windings
%
\ZigZag[double,sep=#8,#1](#2,#3)(#4,#5){#6}{#7}%
}
%
% #] DoubleZigZag :
% #[ DashZigZag :
%
\defWithOption{DashZigZag}{(#2,#3)(#4,#5)#6#7#8}{%
%
% Draws a zigzag from (x1,y1) to (x2,y2) with amplitude and number of windings
%
\ZigZag[dash,dashsize=#8,#1](#2,#3)(#4,#5){#6}{#7}%
}
%
% #] DashZigZag :
% #[ DashDoubleZigZag :
%
\defWithOption{DashDoubleZigZag}{(#2,#3)(#4,#5)#6#7#8#9}{%
%
% Draws a zigzag from (x1,y1) to (x2,y2) with amplitude and number of windings
%
\ZigZag[double,sep=#8,dash,dashsize=#9,#1](#2,#3)(#4,#5){#6}{#7}%
}
%
% #] DashDoubleZigZag :
% #[ ZigZagArc :
%
\def\ZigZagArc{%
% \ZigZagArc(x,y)(r,theta1,theta2){amplitude}{numwind}
% draws a zigzag on an arc centered at (x,y) of radius r, starting
% at theta1, and ending at theta2, with given amplitude and
% number of windings
%
\AXO@Parse{\AXO@ZigZagArc}{}%
}
%
% #] ZigZagArc :
% #[ DoubleZigZagArc :
%
\defWithOption{DoubleZigZagArc}{(#2,#3)(#4,#5,#6)#7#8#9}{%
%
% \ZigZagArc(x,y)(r,theta1,theta2){amplitude}{numwind}{sep}
% draws a zigzag on an arc centered at (x,y) of radius r, starting
% at theta1, and ending at theta2, with given amplitude and
% number of windings
%
\ZigZagArc[double,sep=#9,#1](#2,#3)(#4,#5,#6){#7}{#8}%
}
%
% #] DoubleZigZagArc :
% #[ DashZigZagArc :
%
\defWithOption{DashZigZagArc}{(#2)(#3)#4#5#6}{%
%
% \DashZigZagArc(x,y)(r,theta1,theta2){amplitude}{numwind}{dashsize}
% draws a zigzag on an arc centered at (x,y) of radius r, starting
% at theta1, and ending at theta2, with given amplitude and
% number of windings
%
\ZigZagArc[dash,dashsize=#6,#1](#2)(#3){#4}{#5}%
}
%
%
% #] DashZigZagArc :
% #[ DashDoubleZigZagArc :
%
\defWithOption{DashDoubleZigZagArc}{(#2)(#3)#4#5#6#7}{%
%
% \DashZigZagArc(x,y)(r,theta1,theta2){amplitude}{numwind}{dashsize}
% draws a zigzag on an arc centered at (x,y) of radius r, starting
% at theta1, and ending at theta2, with given amplitude and
% number of windings
%
\ZigZagArc[double,sep=#6,dash,dashsize=#7,#1](#2)(#3){#4}{#5}%
}
%
%
% #] DashDoubleZigZagArc :
% #[ ZigZagArcn :
%
\defWithOption{ZigZagArcn}{(#2)(#3)#4#5}{%
% \ZigZagArcn(x,y)(r,theta1,theta2){amplitude}{numwind}
% draws a zigzag on an arc centered at (x,y) of radius r, starting
% at theta1, and ending at theta2, with given amplitude and
% number of windings
%
\ZigZagArc[clockwise,#1](#2)(#3){#4}{#5}%
}
%
% #] ZigZagArcn :
% #[ DoubleZigZagArcn :
%
\defWithOption{DoubleZigZagArcn}{(#2)(#3)#4#5#6}{%
%
% \ZigZagArcn(x,y)(r,theta1,theta2){amplitude}{numwind}{sep}
% draws a zigzag on an arc centered at (x,y) of radius r, starting
% at theta1, and ending at theta2, with given amplitude and
% number of windings
%
\ZigZagArc[clockwise,double,sep=#6,#1](#2)(#3){#4}{#5}%
}
%
% #] DoubleZigZagArcn :
% #[ DashZigZagArcn :
%
\defWithOption{DashZigZagArcn}{(#2)(#3)#4#5#6}{%
%
% \DashZigZagArcn(x,y)(r,theta1,theta2){amplitude}{numwind}{dashsize}
% draws a zigzag on an arc centered at (x,y) of radius r, starting
% at theta1, and ending at theta2, with given amplitude and
% number of windings.Clockwise.
%
\ZigZagArc[clockwise,dash,dashsize=#6,#1](#2)(#3){#4}{#5}%
}
%
%
% #] DashZigZagArcn :
% #[ DashDoubleZigZagArcn :
%
\defWithOption{DashDoubleZigZagArcn}{(#2)(#3)#4#5#6#7}{%
%
% \DashZigZagArcn(x,y)(r,theta1,theta2){amplitude}{numwind}{dashsize}
% draws a zigzag on an arc centered at (x,y) of radius r, starting
% at theta1, and ending at theta2, with given amplitude and
% number of windings. Clockwise.
%
\ZigZagArc[clockwise,double,sep=#6,dash,dashsize=#7,#1](#2)(#3){#4}{#5}%
}
%
% #] DashDoubleZigZagArcn :
% #] Particle routines :
% #[ Line routines :
% #[ Line :
%
\def\Line{%
% \Line[opt](x1,y1)(x2,y2)
% draws a line from (x1,y1) to (x2,y2). NO arrow by default.
% Supported options: all arrow settings, all double line settings,
% all dash line settings.
%
\AXO@Parse{\AXO@Line}{}%
}
%
% #] Line :
% #[ DoubleLine :
%
\defWithOption{DoubleLine}{(#2,#3)(#4,#5)#6}{%
%
% \DoubleLine[opt](x1,y1)(x2,y2){sep}
% Draws a double line, with NO arrow by default, from (x1,y1) to (x2,y2),
% with separation sep
%
\Line[arrow=false,double,sep=#6,#1](#2,#3)(#4,#5)%
}
%
% #] DoubleLine :
% #[ DashLine :
%
\defWithOption{DashLine}{(#2,#3)(#4,#5)#6}{%
% \DashLine[opt](x1,y1)(x2,y2){sep}
% Draws a line from (x1,y1) to (x2,y2) with a dash pattern of which the
% alternating black and white pieces are approximately sep points long
%
\Line[dash,dashsize=#6,#1](#2,#3)(#4,#5)%
}
%
% #] DashLine :
% #[ DashDoubleLine :
%
\defWithOption{DashDoubleLine}{(#2,#3)(#4,#5)#6#7}{%
% \DashDoubleLine[opt](x1,y1)(x2,y2){sep}{dashsize}
% Draws a double line from (x1,y1) to (x2,y2) with separation sep,
% and with a dash pattern of which the
% alternating black and white pieces are approximately sep points long
% Arrow off.
\Line[arrow=off,dash,dashsize=#7,double,sep=#6,#1](#2,#3)(#4,#5)%
}
%
% #] DashDoubleLine :
% #[ ArrowLine :
%
\defWithOption{ArrowLine}{(#2,#3)(#4,#5)}{%
% \ArrowLine[opt](x1,y1)(x2,y2)
% draws a line from (x1,y1) to (x2,y2). Arrow by default.
%
\Line[arrow,#1](#2,#3)(#4,#5)%
}
%
% #] ArrowLine :
% #[ ArrowDoubleLine :
%
\defWithOption{ArrowDoubleLine}{(#2,#3)(#4,#5)#6}{%
%
% \ArrowDoubleLine[opt](x1,y1)(x2,y2){sep}
% Draws a double line, with arrow by default, from (x1,y1) to (x2,y2),
% with separation sep
%
\Line[arrow,double,sep=#6,#1](#2,#3)(#4,#5)%
}
%
% #] ArrowDoubleLine :
% #[ DashArrowLine :
%
\defWithOption{DashArrowLine}{(#2,#3)(#4,#5)#6}{%
% \DashArrowLine[opt](x1,y1)(x2,y2){sep}
% Draws a line from (x1,y1) to (x2,y2) with a dash pattern of which the
% alternating black and white pieces are approximately sep points
% long. Arrow by default.
%
\Line[arrow,dash,dashsize=#6,#1](#2,#3)(#4,#5)%
}
%
\let\ArrowDashLine=\DashArrowLine%
%
% #] DashArrowLine :
% #[ DashArrowDoubleLine :
%
\defWithOption{DashArrowDoubleLine}{(#2,#3)(#4,#5)#6#7}{%
% \DashArrowDoubleLine[opt](x1,y1)(x2,y2){sep}{dashsize}
% Draws a double line from (x1,y1) to (x2,y2) with separation sep,
% and with a dash pattern of which the
% alternating black and white pieces are approximately sep points long
% Arrow on.
%
\Line[arrow,dash,dashsize=#7,double,sep=#6,#1](#2,#3)(#4,#5)%
}
%
\let\ArrowDashDoubleLine=\DashArrowDoubleLine%
%
% #] DashArrowDoubleLine :
% #[ LongArrow :
%
\defWithOption{LongArrow}{(#2,#3)(#4,#5)}{%
\Line[arrow,arrowpos=1,#1](#2,#3)(#4,#5)%
}
%
% #] LongArrow :
% #[ DashLongArrowLine :
%
\defWithOption{DashLongArrowLine}{(#2,#3)(#4,#5)#6}{%
% \DashLongArrowLine[opt](x1,y1)(x2,y2){sep}
% Draws a line from (x1,y1) to (x2,y2) with a dash pattern of which the
% alternating black and white pieces are approximately sep points
% long. Arrow by default.
%
%
\Line[arrow,arrowpos=1,dash,dashsize=#6,#1](#2,#3)(#4,#5)%
}
\let\DashLongArrow=\DashLongArrowLine
\let\LongArrowDash=\DashLongArrowLine
\let\LongArrowDashLine=\DashLongArrowLine
%
% #] DashLongArrowLine :
% #] Line routines :
% #[ Arc routines :
% #[ Arc :
%
\def\Arc{%
% \Arc[opt](x,y)(r,theta1,theta2)
% draws an arc centered at (x,y) of radius r, starting at theta1,
% and ending at theta2. By default: no arrow, undashed, single,
% anticlockwise.
% Supported options: all arrow settings, all double line settings,
% all dash line settings, clock
%
\AXO@Parse{\AXO@Arc}{}%
}
%
% #] Arc :
% #[ CArc :
%
\let\CArc=\Arc
%
% #] CArc :
% #[ DoubleArc :
%
\defWithOption{DoubleArc}{(#2,#3)(#4,#5,#6)#7}{%
%
% Draws a double lined arc segment. The center of the curve
% is at (1,2).
% The radius, start angle and target angle are (#3,#4,#5).
% The arc segment runs anticlockwise
% #6 is the separation of the lines.
%
\Arc[double,sep=#7,#1](#2,#3)(#4,#5,#6)%
}
\let\DoubleCArc=\DoubleArc
%
% #] DoubleArc :
% #[ DashArc :
%
\defWithOption{DashArc}{(#2,#3)(#4,#5,#6)#7}{%
%
% Draws a dashed arc segment. The center of the curve
% is at (1,2).
% The radius, start angle and target angle are (#3,#4,#5).
% The arc segment runs anticlockwise
% #6 is the dashsize. this is rounded to make things come
% out right.
%
\Arc[dash,dsize=#7,#1](#2,#3)(#4,#5,#6)%
}
\let\DashCArc=\DashArc
%
% #] DashArc :
% #[ DashDoubleArc :
%
\defWithOption{DashDoubleArc}{(#2,#3)(#4,#5,#6)#7#8}{
%
% Draws a dashed arc segment. The center of the curve
% is at (1,2).
% The radius, start angle and target angle are (#3,#4,#5).
% The arc segment runs anticlockwise
% #6 is the line separation.
% #7 is the dashsize. this is rounded to make things come
% out right.
%
\Arc[double,sep=#7,dash,dsize=#8,#1](#2,#3)(#4,#5,#6)%
}
\let\DashDoubleCArc=\DashDoubleArc
%
% #] DashDoubleArc :
% #[ ArrowArc :
%
\def\ArrowArc{%
\AXO@PrependOption{\Arc}{arrow}%
}
\let\ArrowCArc=\ArrowArc
%
% #] ArrowArc :
% #[ ArrowDoubleArc :
%
\defWithOption{ArrowDoubleArc}{(#2,#3)(#4,#5,#6)#7}{%
\Arc[arrow,double,sep=#7,#1](#2,#3)(#4,#5,#6)%
}
\let\ArrowDoubleCArc=\ArrowDoubleArc
%
% #] ArrowDoubleArc :
% #[ ArrowDashArc :
%
\defWithOption{ArrowDashArc}{(#2,#3)(#4,#5,#6)#7}{%
\Arc[arrow,dash,dsize=#7,#1](#2,#3)(#4,#5,#6)%
}
\let\ArrowDashCArc=\ArrowDashArc
\let\DashArrowCArc=\ArrowDashArc
\let\DashArrowArc=\ArrowDashArc
%
% #] ArrowDashArc :
% #[ ArrowDashDoubleArc :
%
\defWithOption{ArrowDashDoubleArc}{(#2,#3)(#4,#5,#6)#7#8}{%
\Arc[arrow,double,sep=#7,dash,dsize=#8,#1](#2,#3)(#4,#5,#6)%
}
\let\ArrowDashDoubleCArc=\ArrowDashDoubleArc
\let\DashArrowDoubleCArc=\ArrowDashDoubleArc
\let\DashArrowDoubleArc=\ArrowDashDoubleArc
%
%
% #] ArrowDashDoubleArc :
% #[ LongArrowArc :
%
\def\LongArrowArc{%
\AXO@PrependOption{\Arc}{arrow,arrowpos=1}%
}
%
% #] LongArrowArc :
% #[ LongDashArrowArc :
%
\defWithOption{LongArrowDashArc}{(#2,#3)(#4,#5,#6)#7}{%
\Arc[arrow,arrowpos=1,dash,dsize=#7,#1](#2,#3)(#4,#5,#6)%
}
\let\LongArrowDashCArc=\LongArrowDashArc
\let\LongDashArrowCArc=\LongArrowDashArc
\let\LongDashArrowArc=\LongArrowDashArc
%
%
% #] LongDashArrowArc :
% #[ ArrowArcn :
%
\def\ArrowArcn{%
\AXO@PrependOption{\Arc}{arrow,clock}%
}
%
% #] ArrowArcn :
% #[ LongArrowArcn :
%
\def\LongArrowArcn{%
% \ArrowArcn, but with arrow at end by default
\AXO@PrependOption{\Arc}{arrow, clock, arrowpos=1}%
}
%
% #] LongArrowArcn :
% #[ DashArrowArcn :
%
\defWithOption{DashArrowArcn}{(#2,#3)(#4,#5,#6)#7}{%
% (x,y)(radius,start,end){dashsize}
% Draws a dashed arc segment with an arrow in it. The center of the curve
% is at (x,y), with given radius, start angle, and end angle
% The arc segment runs anticlockwise
\Arc[clock,arrow,dash,dashsize=#7,#1](#2,#3)(#4,#5,#6)%
}
%
\let\ArrowDashArcn=\DashArrowArcn%
%
%
% #] DashArrowArcn :
% #] Arc routines :
% #[ Bezier :
%
\def\Bezier{%
% \Bezier[opt](x1,y1)(x2,y2)(x3,y3)(x4,y4)
% Draws a Bezier cubic with the control points (x1,y1), (x2,y2), (x3,y3), (x4,y4)
% Supported options: dash, dashsize and dashsize
\AXO@Parse{\AXO@Bezier}{}%
}
%
\defWithOption{DoubleBezier}{(#2,#3)(#4,#5)(#6,#7)(#8)#9}{%
%
% Draws a Bezier cubic with control points (x1,y1), (x2,y2),
% (x3,y3), (x4,y4) in a double line
%
\Bezier[double,sep=#9,#1](#2,#3)(#4,#5)(#6,#7)(#8)%
}
%
\defWithOption{DashBezier}{(#2,#3)(#4,#5)(#6,#7)(#8)#9}{%
%
% Draws a Bezier cubic with control points (x1,y1), (x2,y2),
% (x3,y3), (x4,y4) with a dash pattern of which the
% alternating black and white pieces are approximately #9 points long
%
\Bezier[dash,dashsize=#9,#1](#2,#3)(#4,#5)(#6,#7)(#8)%
}
%
\defWithOption{DashDoubleBezier}{(#2,#3)(#4,#5)(#6)(#7)#8#9}{%
%
% Draws a Bezier cubic with control points (x1,y1), (x2,y2),
% (x3,y3), (x4,y4) with a dash pattern of which the
% alternating black and white pieces are approximately #9 points long
% The line is a double line
%
\Bezier[double,sep=#8,dash,dashsize=#9,#1](#2,#3)(#4,#5)(#6)(#7)%
}
%
% #] Bezier :
% #] LaTeX primitives :
% #[ Mixed routines :
%
% Here we have routines that make different calls depending on the value
% of the variable \axo@pdfoutput
%
% #[ EBox :
%
\def\EBox(#1,#2)(#3,#4){%
%
% Draws a transparent box with the left bottom at (x1,y1) andthe
% right top at (x2,y2).
%
\ifcase\axo@pdfoutput
\put(\axoxoff,\axoyoff){\AXOspecial{%
#1 \axoxo\space add #2 \axoyo\space add
#3 \axoxo\space add #4 \axoyo\space add \axowidth\space \axoscale\space ebox }}
\else
\getaxohelp{EBox}{#1 #2 #3 #4 \axowidth}
\put(\axoxoff,\axoyoff){\axo@pdfliteral{\contentspdf}}
\fi
}
%
% #] EBox :
% #[ FBox :
%
\def\FBox(#1,#2)(#3,#4){%
%
% Draws a filled box with the left bottom at (x1,y1) and the right top
% at (x2,y2).
%
\ifcase\axo@pdfoutput
\put(\axoxoff,\axoyoff){\AXOspecial{%
#1 \axoxo\space add #2 \axoyo\space add
#3 \axoxo\space add #4 \axoyo\space add \axowidth\space \axoscale\space fbox }}
\else
\getaxohelp{FBox}{#1 #2 #3 #4 \axowidth}
\put(\axoxoff,\axoyoff){\axo@pdfliteral{\contentspdf}}
\fi
}
%
% #] FBox :
% #[ BBox :
%
\def\BBox(#1,#2)(#3,#4){%
%
% Draws a box with the left bottom at (x1,y1) and the right top
% at (x2,y2). The contents are blanked out.
%
{%
\SetColor{White}%
\FBox(#1,#2)(#3,#4)%
}%
\EBox(#1,#2)(#3,#4)%
}
%
% #] BBox :
% #[ GBox :
%
\def\GBox(#1,#2)(#3,#4)#5{%
%
% Draws a box with the left bottom at (x1,y1) and the right top
% at (x2,y2). The contents are in Grayscale#5 (0=black,1=white).
%
{%
\color[gray]{#5}%
\FBox(#1,#2)(#3,#4)%
\color[gray]{0}%
\EBox(#1,#2)(#3,#4)%
}%
\ignorespaces
}
%
% #] GBox :
% #[ CBox :
%
\def\CBox(#1,#2)(#3,#4)#5#6{%
%
% Draws a box with the left bottom at (x1,y1) and the right top
% at (x2,y2). The outside is color#5 and the inside color #6.
%
{%
\SetColor{#6}%
\FBox(#1,#2)(#3,#4)%
\SetColor{#5}%
\EBox(#1,#2)(#3,#4)%
}%
\ignorespaces
}
%
% #] CBox :
% #[ EBoxc :
%
\def\EBoxc(#1,#2)(#3,#4){%
%
% Draws a centered box with the center at (x1,y1).
% The other parameters are the width and the height.
% Uses current color
%
\ifcase\axo@pdfoutput
\put(\axoxoff,\axoyoff){\AXOspecial{%
#1 \axoxo\space add #3 2 div sub #2 \axoyo\space add
#4 2 div sub #1 \axoxo\space add #3 2 div add #2
\axoyo\space add #4 2 div add \axowidth\space \axoscale\space ebox }}
\else
\getaxohelp{Boxc}{#1 #2 #3 #4 \axowidth}
\put(\axoxoff,\axoyoff){\axo@pdfliteral{\contentspdf}}
\fi
}
%
\let\Boxc=\EBoxc
%
% #] EBoxc :
% #[ FBoxc :
%
\def\FBoxc(#1,#2)(#3,#4){%
%
% Draws a filled centered box with the center at (x1,y1).
% The other parameters are the width and the height.
% Current color
%
\ifcase\axo@pdfoutput
\put(\axoxoff,\axoyoff){\AXOspecial{%
#1 \axoxo\space add #3 2 div sub #2 \axoyo\space add
#4 2 div sub #1 \axoxo\space add #3 2 div add #2 \axoyo\space add #4 2 div add
\axowidth\space \axoscale\space fbox }}
\else
\getaxohelp{FBoxc}{#1 #2 #3 #4 \axowidth}
\put(\axoxoff,\axoyoff){\axo@pdfliteral{\contentspdf}}
\fi
}
%
% #] FBoxc :
% #[ BBoxc :
%
\def\BBoxc(#1,#2)(#3,#4){%
%
% Draws a centered box with the center at (x1,y1).
% The other parameters are the width and the height.
% The contents are blanked out.
%
\bgroup
\SetColor{White}%
\FBoxc(#1,#2)(#3,#4)%
\egroup
\EBoxc(#1,#2)(#3,#4)%
}
%
% #] BBoxc :
% #[ GBoxc :
%
\def\GBoxc(#1,#2)(#3,#4)#5{%
%
% Draws a centered box with the center at (x1,y1).
% The other parameters are the width and the height.
% The contents are in Grayscale#5 (0=black,1=white).
%
{%
\color[gray]{#5}%
\FBoxc(#1,#2)(#3,#4)%
\color[gray]{0}%
\EBoxc(#1,#2)(#3,#4)%
}%
\ignorespaces
}
%
% #] GBoxc :
% #[ CBoxc :
%
\def\CBoxc(#1,#2)(#3,#4)#5#6{%
%
% Draws a centered box with the center at (x1,y1).
% The other parameters are the width and the height.
% The outside is color#5 and the inside color #6.
%
{%
\SetColor{#6}%
\FBoxc(#1,#2)(#3,#4)%
\SetColor{#5}%
\EBoxc(#1,#2)(#3,#4)%
}%
\ignorespaces
}
%
% #] CBoxc :
% #[ RotatedBox :
%
\def\RotatedBox(#1,#2)(#3,#4)#5#6{%
%
% Draws a centered box with the center at (#1,#2)
% with width #3, height #4, anticlockwise rotated by #5, and in
% color #6.
%
\AxoPut(#1,#2){%
{\SetColor{#6}%
\rotatebox{#5}{\EBoxc(0,0)(#3,#4)}%
}}%
}
%
% #] RotatedBox :
% #[ FilledRotatedBox :
%
\def\FilledRotatedBox(#1,#2)(#3,#4)#5#6{%
%
% Draws a filled centered box with the center at (#1,#2)
% with width #3, height #4, anticlockwise rotated by #5, and in
% color #6.
%
\AxoPut(#1,#2){%
{\SetColor{#6}%
\rotatebox{#5}{\FBoxc(0,0)(#3,#4)}%
}}%
}
%
% #] FilledRotatedBox :
% #[ ETri :
%
% Draws a triangle. No filling.
% The corners are (x1,y1), (x2,y2), (x3,y3)
%
\def\ETri(#1,#2)(#3,#4)(#5,#6){%
%
\ifcase\axo@pdfoutput
\put(\axoxoff,\axoyoff){\AXOspecial{%
#1 \axoxo\space add #2 \axoyo\space add
#3 \axoxo\space add #4 \axoyo\space add
#5 \axoxo\space add #6 \axoyo\space add
\axowidth\space \axoscale\space triangle }}
\else
\getaxohelp{ETri}{#1 #2 #3 #4 #5 #6 \axowidth}
\put(\axoxoff,\axoyoff){\axo@pdfliteral{\contentspdf}}
\fi
}
%
% #] ETri :
% #[ FTri :
%
% Draws a filled triangle.
% The corners are (x1,y1), (x2,y2), (x3,y3)
%
\def\FTri(#1,#2)(#3,#4)(#5,#6){%
%
\ifcase\axo@pdfoutput
\put(\axoxoff,\axoyoff){\AXOspecial{%
#1 \axoxo\space add #2 \axoyo\space add
#3 \axoxo\space add #4 \axoyo\space add
#5 \axoxo\space add #6 \axoyo\space add
\axowidth\space \axoscale\space ftriangle }}
\else
\getaxohelp{FTri}{#1 #2 #3 #4 #5 #6 \axowidth}
\put(\axoxoff,\axoyoff){\axo@pdfliteral{\contentspdf}}
\fi
}
%
% #] FTri :
% #[ BTri :
%
% Draws a triangle. The contents are blanked out.
% The corners are (x1,y1), (x2,y2), (x3,y3)
%
\def\BTri(#1,#2)(#3,#4)(#5,#6){%
{%
\SetColor{White}%
\FTri(#1,#2)(#3,#4)(#5,#6)%
}%
\ETri(#1,#2)(#3,#4)(#5,#6)%
}
%
% #] BTri :
% #[ GTri :
%
% Draws a triangle. The contents are given in Grayscale #7 (0=black,1=white)
% The corners are (x1,y1), (x2,y2), (x3,y3)
%
\def\GTri(#1,#2)(#3,#4)(#5,#6)#7{%
%
{%
\color[gray]{#7}%
\FTri(#1,#2)(#3,#4)(#5,#6)%
\color[gray]{0}%
\ETri(#1,#2)(#3,#4)(#5,#6)%
}%
\ignorespaces
}
%
% #] GTri :
% #[ CTri :
%
% Draws a colored(#7) triangle. The contents are blanked out in color #8
% The corners are (x1,y1), (x2,y2), (x3,y3)
%
\def\CTri(#1,#2)(#3,#4)(#5,#6)#7#8{%
{%
\SetColor{#7}%
\FTri(#1,#2)(#3,#4)(#5,#6)%
\SetColor{#8}%
\ETri(#1,#2)(#3,#4)(#5,#6)%
}%
\ignorespaces
}
%
% #] CTri :
% #[ Vertex :
%
\def\Vertex(#1,#2)#3{%
%
% Draws a fat dot at (1,2). The radius of the dot is given by 3.
%
\ifcase\axo@pdfoutput
\put(\axoxoff,\axoyoff){\AXOspecial{%
#1 \axoxo\space add #2 \axoyo\space add #3
\axoscale\space vertex }}
\else
\getaxohelp{Vertex}{#1 #2 #3 \axowidth}
\put(\axoxoff,\axoyoff){\axo@pdfliteral{\contentspdf}}
\fi
}
%
% #] Vertex :
% #[ ECirc :
%
\def\ECirc(#1,#2)#3{%
%
% Draws a circle at (1,2) and radius 3, with current color.
% Nothing is written inside.
%
\ifcase\axo@pdfoutput
\put(\axoxoff,\axoyoff){\AXOspecial{%
#1 \axoxo\space add #2 \axoyo\space add #3
\axowidth\space \axoscale\space ecirc }}%
\else
\getaxohelp{ECirc}{#1 #2 #3 \axowidth}%
\put(\axoxoff,\axoyoff){\axo@pdfliteral{\contentspdf}}%
\fi
}
%
% #] ECirc :
% #[ FCirc :
%
\let\FCirc=\Vertex
%
% #] FCirc :
% #[ BCirc :
%
\def\BCirc(#1,#2)#3{%
%
% Draws a circle at (1,2) and radius 3 that is blanked out.
{%
\SetColor{White}%
\FCirc(#1,#2){#3}
}%
\ECirc(#1,#2){#3}%
}
%
% #] BCirc :
% #[ GCirc :
%
\def\GCirc(#1,#2)#3#4{%
%
% Draws a circle at (1,2) and radius 3 that is blanked out.
% Then it fills the circle with a gray scale 4 (0 = black, 1 is white)
%
{%
\color[gray]{#4}%
\FCirc(#1,#2){#3}%
\color[gray]{0}%
\ECirc(#1,#2){#3}%
}%
\ignorespaces
}
%
% #] GCirc :
% #[ CCirc :
%
% Draws a circle at (1,2) and radius 3 that is blanked out.
% #4 is the color of the circle, #5 the color of the contents
%
\def\CCirc(#1,#2)#3#4#5{%
%
% Draws a circle at (1,2) and radius 3 that is blanked out.
% #4 is the color of the circle, #5 the color of the contents
%
{%
\SetColor{#5}%
\FCirc(#1,#2){#3}%
\SetColor{#4}%
\ECirc(#1,#2){#3}%
}%
\ignorespaces
}
%
% #] CCirc :
% #[ GOval :
%
\def\GOval(#1,#2)(#3,#4)(#5)#6{%
%
% Draws a gray oval that overwrites whatever was there.
% \GOval(x_center,y_center)(height,width)(rotation)(grayscale)
% The grayscale: (0 = black, 1 is white)
%
{%
\color[gray]{#6}%
\FOval(#1,#2)(#3,#4)(#5)%
\color[gray]{0}%
\Oval(#1,#2)(#3,#4)(#5)%
}%
\ignorespaces
}
%
% #] GOval :
% #[ COval :
%
\def\COval(#1,#2)(#3,#4)(#5)#6#7{%
%
% Draws a colored oval that overwrites whatever was there.
% \COval(x_center,y_center)(height,width)(rotation){color1}{color2}
%
{%
\SetColor{#7}%
\FOval(#1,#2)(#3,#4)(#5)%
\SetColor{#6}%
\Oval(#1,#2)(#3,#4)(#5)%
}%
\ignorespaces
}
%
% #] COval :
% #[ FOval :
%
\def\FOval(#1,#2)(#3,#4)(#5){%
%
% Draws a colored oval that overwrites whatever was there.
% \FOval(x_center,y_center)(height,width)(rotation)
% Uses current color
%
\ifcase\axo@pdfoutput
\put(\axoxoff,\axoyoff)%
{\AXOspecial{#1 \axoxo\space add #2 \axoyo\space add #3 #4 #5
\axowidth\space \axoscale\space foval
}}%
\else
\getaxohelp{FOval}{#1 #2 #3 #4 #5 \axowidth}%
\put(\axoxoff,\axoyoff){\axo@pdfliteral{\contentspdf}}%
\fi
}
%
% #] FOval :
% #[ Oval :
%
\def\Oval(#1,#2)(#3,#4)(#5){%
%
% Draws an oval that does not overwrite whatever was there.
% \Oval(x_center,y_center)(height,width)(rotation)
%
\ifcase\axo@pdfoutput
\put(\axoxoff,\axoyoff)%
{\AXOspecial{#1 \axoxo\space add #2 \axoyo\space add #3 #4 #5
\axowidth\space \axoscale\space oval
}}%
\else
\getaxohelp{Oval}{#1 #2 #3 #4 #5 \axowidth}%
\put(\axoxoff,\axoyoff){\axo@pdfliteral{\contentspdf}}%
\fi
}
%
% #] Oval :
% #[ Polygon :
%
% Draws a curve through the points in argument 1.
% The points are given as coordinates (x1,y1)(x2,y2)(x3,y3).....
% The curve is continous and continuous in its first and second
% derivatives. The method is linear interpolation of
% quadratic curves.
% Color name is argument 2.
%
\def\Polygon#1#2{%
{%
\SetColor{#2}%
\ifcase\axo@pdfoutput
\put(\axoxoff,\axoyoff){\AXOspecial{%
[ \axoparray#1] \axowidth\space \axoscale\space polygon }}%
\else
\getaxohelp{Polygon}{"#1" \axowidth}%
\put(\axoxoff,\axoyoff){\axo@pdfliteral{\contentspdf}}%
\fi
}%
\ignorespaces
}
%
% #] Polygon :
% #[ FilledPolygon :
%
% Draws a curve through the points in argument 1.
% The points are given as coordinates (x1,y1)(x2,y2)(x3,y3).....
% The curve is continous and continuous in its first and second
% derivatives. The method is linear interpolation of
% quadratic curves.
% Color name is argument 2.
%
\def\FilledPolygon#1#2{%
{%
\SetColor{#2}%
\ifcase\axo@pdfoutput
\put(\axoxoff,\axoyoff){\AXOspecial{%
[ \axoparray#1] \axowidth\space \axoscale\space filledpolygon }}
\else
\getaxohelp{FilledPolygon}{"#1" \axowidth}%
\put(\axoxoff,\axoyoff){\axo@pdfliteral{\contentspdf}}%
\fi
}%
\ignorespaces
}
%
% #] FilledPolygon :
% #[ Curve :
%
% Draws a curve through the points in argument 1.
% The points are given as coordinates (x1,y1)(x2,y2)(x3,y3).....
% The curve is continous and continuous in its first and second
% derivatives. The method is linear interpolation of quadratic curves.
%
\def\Curve#1{%
\ifcase\axo@pdfoutput
\put(\axoxoff,\axoyoff){\AXOspecial{[ \axoparray#1]
\axowidth\space \axoscale\space makecurve }}
\else
\getaxohelp{Curve}{"#1" \axowidth}
\put(\axoxoff,\axoyoff){\axo@pdfliteral{\contentspdf}}
\fi
}
%
% #] Curve :
% #[ DashCurve :
%
% Draws a curve through the points in argument 1.
% The points are given as coordinates (x1,y1)(x2,y2)(x3,y3).....
% The curve is continous and continuous in its first and second
% derivatives. The method is linear interpolation of quadratic curves.
% Argument 2 gives a dash size.
%
\def\DashCurve#1#2{%
\ifcase\axo@pdfoutput
\put(\axoxoff,\axoyoff){\AXOspecial{[ \axoparray#1] #2
\axowidth\space \axoscale\space makedashcurve }}
\else
\getaxohelp{DashCurve}{"#1" #2 \axowidth}
\put(\axoxoff,\axoyoff){\axo@pdfliteral{\contentspdf}}
\fi
}
%
% #] DashCurve :
% #[ LinAxis :
%
\def\LinAxis(#1,#2)(#3,#4)(#5,#6,#7,#8,#9){%
%
% Draws a line with linear hash marks along it.
% LinAxis(x1,y1)(x2,y2)(num_decs,per_dec,hashsize,offset,width)
% The line is from (x1,y1) to (x2,y2) and the marks are on the left side
% when hashsize is positive, and right when it is negative.
% num_decs is the number of accented marks, per_dec the number of
% divisions between them and offset is the number
% at which one starts at (x1,y1) (like if offset=2 we start at the second
% small mark) Width is the linewidth.
%
\ifcase\axo@pdfoutput
\put(\axoxoff,\axoyoff){\AXOspecial{%
#1 \axoxo\space add #2 \axoyo\space add
#3 \axoxo\space add #4 \axoyo\space add
#5 #6 #7 #8 #9 \axoscale\space linaxis }}
\else
\getaxohelp{LinAxis}{#1 #2 #3 #4 #5 #6 #7 #8 #9}
\put(\axoxoff,\axoyoff){\axo@pdfliteral{\contentspdf}}
\fi
}
%
% #] LinAxis :
% #[ LogAxis :
%
\def\LogAxis(#1,#2)(#3,#4)(#5,#6,#7,#8){%
%
% Draws a line with logarithmic hash marks along it.
% LogAxis(x1,y1)(x2,y2)(num_logs,hashsize,offset,width)
% The line is from (x1,y1) to (x2,y2) and the marks are on the left side
% when hashsize is positive, and right when it is negative.
% num_logs is the number of orders of magnitude and offset is the number
% at which one starts at (x1,y1) (like if offset=2 we start at 2)
% When offset is 0 we start at 1. Width is the linewidth.
%
\ifcase\axo@pdfoutput
\put(\axoxoff,\axoyoff){\AXOspecial{%
#1 \axoxo\space add #2 \axoyo\space add
#3 \axoxo\space add #4 \axoyo\space add
#5 #6 #7 #8 \axoscale\space logaxis }}
\else
\getaxohelp{LogAxis}{#1 #2 #3 #4 #5 #6 #7 #8}
\put(\axoxoff,\axoyoff){\axo@pdfliteral{\contentspdf}}
\fi
}
%
% #] LogAxis :
% #[ AxoGrid :
%
\def\AxoGrid(#1,#2)(#3,#4)(#5,#6)#7#8{%
%
% Makes a grid with the left bottom at #1,#2
% The increments in x and y are #3,#4
% The number of steps in each direction are #5,#6 (there are n+1 lines)
% #7 is the color and #8 the linewidth
%
{\SetColor{#7}%
\ifcase\axo@pdfoutput
\put(\axoxoff,\axoyoff){%
\AXOspecial{%
#3 #4 #5 #6
#1 \axoxo\space add #2 \axoyo\space add
#8 \axoscale\space axogrid
}}%
\else
\getaxohelp{Grid}{#1 #2 #3 #4 #5 #6 #8}%
\put(\axoxoff,\axoyoff){\axo@pdfliteral{\contentspdf}}%
\fi
}%
\ignorespaces
}
%
% #] AxoGrid :
% #[ AXO@Arc :
%
% Generic Arc segment with many options.
%
%
\def\AXO@Arc(#1,#2)(#3,#4,#5){%
%
% Draws arc centered at (#1,#2), radius #3, starting and ending
% angles #4, #5.
% Double, dashing, arrow, clockwise according to current settings
%
{\AXO@useopts
\ifcase\axo@pdfoutput
\put(\axoxoff,\axoyoff){%
\AXOspecial{%
\AXO@ArrowArg \space
\ifAXO@flip true \else false \fi
\ifAXO@double \AXO@CurrentSep \space \else 0 \fi
\ifAXO@dash \AXO@CurrentDashSize \space \else 0 \fi
\ifAXO@clock true \else false \fi
#3 #4 #5
#1 \axoxo\space add #2 \axoyo\space add
\AXO@CurrentWidth\space \axoscale\space arc2
}}%
\else
\getaxohelp{AxoArc}{#1 #2 #3 #4 #5
\ifAXO@double \AXO@CurrentSep \space \else 0 \fi
\ifAXO@dash \AXO@CurrentDashSize \space \else 0 \fi
\AXO@ArrowArg \space
\ifAXO@flip 1 \else 0 \fi
\ifAXO@clock 1 \else 0 \fi
\AXO@CurrentWidth}
\put(\axoxoff,\axoyoff){\axo@pdfliteral{\contentspdf}}
\fi
}\ignorespaces
}
%
% #] AXO@Arc :
% #[ AXO@Bezier :
%
\def\AXO@Bezier(#1,#2)(#3,#4)(#5,#6)(#7,#8){%
%
% Draws a Bezier cubic with the control points (x1,y1), (x2,y2),
% (x3,y3), (x4,y4)
% Assumes options have been set
%
{\AXO@useopts
\ifcase\axo@pdfoutput
\put(\axoxoff,\axoyoff){\AXOspecial{%
#1 \axoxo\space add #2 \axoyo\space add
#3 \axoxo\space add #4 \axoyo\space add
#5 \axoxo\space add #6 \axoyo\space add
#7 \axoxo\space add #8 \axoyo\space add
\AXO@ArrowArg \space
\ifAXO@flip true \else false \fi
\ifAXO@double \AXO@CurrentSep \space \else 0 \fi
\ifAXO@dash \AXO@CurrentDashSize \space \else 0 \fi
\AXO@CurrentWidth\space \axoscale\space dashdoublebezier
}}%
\else
\getaxohelp{AxoBezier}{#1 #2 #3 #4 #5 #6 #7 #8
\ifAXO@double \AXO@CurrentSep \space \else 0 \fi
\ifAXO@dash \AXO@CurrentDashSize \space \else 0 \fi
\AXO@ArrowArg \space
\ifAXO@flip 1 \else 0 \fi
\AXO@CurrentWidth}
\put(\axoxoff,\axoyoff){\axo@pdfliteral{\contentspdf}}
\fi
}\ignorespaces
}
%
% #] AXO@Bezier :
% #[ AXO@GluonHelper :
%
\def\AXO@GluonHelper(#1,#2)(#3,#4)#5#6#7#8{%
%
% Draws a single gluon from (x1,y1) to (x2,y2) with amplitude #5 and number
% of windings #6. Width #7 + #8
% Assumes options have been set.
% Used as helper from \AXO@Gluon
%
\ifAXO@arrow\AXO@NOTIMPLEMENTED{arrow not implemented for gluon}\fi
\ifcase\axo@pdfoutput
\put(\axoxoff,\axoyoff){%
\AXOspecial{%
#1 \axoxo\space add #2 \axoyo\space add
#3 \axoxo\space add #4 \axoyo\space add
#5 #6
\ifAXO@dash \AXO@CurrentDashSize \space \else 0 \fi
#7 #8 add \axoscale \space dashgluon
}%
}%
\else
\getaxohelp{AxoGluon}{#1 #2 #3 #4 #5 #6
#7
\ifAXO@dash \AXO@CurrentDashSize \space \else 0 \fi
#8}%
\put(\axoxoff,\axoyoff){\axo@pdfliteral{\contentspdf}}
\fi
}
%
\def\AXO@GluonHelperNEW(#1,#2)(#3,#4)#5#6#7#8{%
% IDEA: Showing cleaner code
%
% Draws a single gluon from (x1,y1) to (x2,y2) with amplitude #5 and number
% of windings #6. Width #7 + #8
% Assumes options have been set.
% Used as helper from \AXO@Gluon
%
\ifAXO@arrow\AXO@NOTIMPLEMENTED{arrow not implemented for gluon}\fi
\ifcase\axo@pdfoutput
\AXOputPS{%
#1 #2 #3 #4 #5 #6
\ifAXO@dash \AXO@CurrentDashSize \space \else 0 \fi
#7 #8 add \axoscale \space dashgluon
}%
\else
\getaxohelp{AxoGluon}{#1 #2 #3 #4 #5 #6
#7
\ifAXO@dash \AXO@CurrentDashSize \space \else 0 \fi
#8}%
\AXOputPDF{\contentspdfNoOffset}%
\fi
}
%
% #] AXO@GluonHelper :
% #[ AXO@Gluon :
%
\def\AXO@Gluon(#1,#2)(#3,#4)#5#6{%
%
% Draws a gluon from (x1,y1) to (x2,y2) with amplitude #5 and number
% of windings #6.
% Assumes options have been set
%
{\AXO@useopts
\ifAXO@arrow\AXO@NOTIMPLEMENTED{arrow not implemented for gluon}\fi
\AXO@arrowfalse % To avoid repeated errors
\ifAXO@double
\AXO@GluonHelper(#1,#2)(#3,#4){#5}{#6}{\AXO@CurrentWidth}{\AXO@CurrentSep}%
\SetColor{White}%
\AXO@dashfalse
\AXO@GluonHelper(#1,#2)(#3,#4){#5}{#6}{-\AXO@CurrentWidth}{\AXO@CurrentSep}%
\else
\AXO@GluonHelper(#1,#2)(#3,#4){#5}{#6}{0}{\AXO@CurrentWidth}%
\fi
}%
\ignorespaces
}
% #] AXO@Gluon :
% #[ AXO@GluonArcHelper :
%
\def\AXO@GluonArcHelper(#1,#2)(#3,#4,#5)#6#7#8#9{%
%
% Draws a gluon on an arc segment. The center of the curve is at (1,2)
% The radius, start angle and target angle are (#3,#4,#5), #6 is the
% amplitude of the gluon, and #7 is the number of windings.
% Assumes options have been set
% Width #8 + #9
% Assumes options have been set.
% Used as helper from \AXO@GluonArc
\ifAXO@arrow\AXO@NOTIMPLEMENTED{arrow not implemented for gluon arc}\fi
\ifcase\axo@pdfoutput
\put(\axoxoff,\axoyoff){\AXOspecial{#6 #7
\ifAXO@dash \AXO@CurrentDashSize \space \else 0 \fi
\ifAXO@clock true \else false \fi
#3 #4 #5
#1 \axoxo\space add #2 \axoyo\space add
#8 #9 add \axoscale\space dashgluearc
}}%
\else
\getaxohelp{AxoGluonArc}{#1 #2 #3 #4 #5 #6 #7
#8
\ifAXO@dash \AXO@CurrentDashSize \space \else 0 \fi
\ifAXO@clock 1 \else 0 \fi
#9}
\put(\axoxoff,\axoyoff){\axo@pdfliteral{\contentspdf}}
\fi
}
% #] AXO@GluonArcHelper :
% #[ AXO@GluonArc :
%
\def\AXO@GluonArc(#1,#2)(#3,#4,#5)#6#7{%
%
% Draws a gluon on an arc segment. The center of the curve is at (1,2)
% The radius, start angle and target angle are (#3,#4,#5), #6 is the
% amplitude of the gluon, and #7 is the number of windings.
% Assumes options have been set
%
{\AXO@useopts
\ifAXO@arrow\AXO@NOTIMPLEMENTED{arrow not implemented for gluon}\fi
\AXO@arrowfalse % To avoid repeated errors
\ifAXO@double
\AXO@GluonArcHelper(#1,#2)(#3,#4,#5){#6}{#7}{\AXO@CurrentWidth}{\AXO@CurrentSep}%
\SetColor{White}%
\AXO@dashfalse
\AXO@GluonArcHelper(#1,#2)(#3,#4,#5){#6}{#7}{-\AXO@CurrentWidth}{\AXO@CurrentSep}%
\else
\AXO@GluonArcHelper(#1,#2)(#3,#4,#5){#6}{#7}{0}{\AXO@CurrentWidth}%
\fi
}%
\ignorespaces
}
% #] AXO@GluonArc :
% #[ AXO@GluonCircHelper :
%
\def\AXO@GluonCircHelper(#1,#2)(#3,#4)#5#6#7#8{%
%
% Draws a gluon on a circle. The center of the circle is at (1,2)
% The radius and the phase angle are (#3,#4), 5 is the
% amplitude of the gluon, and 6 is the number of windings.
% Width #7 + #8
% Assumes options have been set.
% Used as helper from \AXO@GluonCirc
\ifAXO@arrow\AXO@NOTIMPLEMENTED{arrow not implemented for gluon arc}\fi
\ifcase\axo@pdfoutput
\put(\axoxoff,\axoyoff){\AXOspecial{%
#5 #6
\ifAXO@dash \AXO@CurrentDashSize \space \else 0 \fi
#3 #4
#1 \axoxo\space add #2 \axoyo\space add
#7 #8 add \axoscale\space dashgluoncirc
}}%
\else
\getaxohelp{AxoGluonCirc}{#1 #2 #3 #4 #5 #6
#7
\ifAXO@dash \AXO@CurrentDashSize \space \else 0 \fi
#8}
\put(\axoxoff,\axoyoff){\axo@pdfliteral{\contentspdf}}
\fi
}
% #] AXO@GluonCicHelper :
% #[ AXO@GluonCirc :
%
\def\AXO@GluonCirc(#1,#2)(#3,#4)#5#6{%
%
% Draws a gluon on a circle. The center of the circle is at (1,2)
% The radius and the phase angle are (#3,#4), 5 is the
% amplitude of the gluon, and 6 is the number of windings.
%
{\AXO@useopts
\ifAXO@arrow\AXO@NOTIMPLEMENTED{arrow not implemented for gluon}\fi
\AXO@arrowfalse % To avoid repeated errors
\ifAXO@double
\AXO@GluonCircHelper(#1,#2)(#3,#4){#5}{#6}{\AXO@CurrentWidth}{\AXO@CurrentSep}%
\SetColor{White}%
\AXO@dashfalse
\AXO@GluonCircHelper(#1,#2)(#3,#4){#5}{#6}{-\AXO@CurrentWidth}{\AXO@CurrentSep}%
\else
\AXO@GluonCircHelper(#1,#2)(#3,#4){#5}{#6}{0}{\AXO@CurrentWidth}%
\fi
}%
\ignorespaces
}
%
% #] AXO@GluonCirc :
% #[ AXO@Line :
%
\def\AXO@Line(#1,#2)(#3,#4){%
%
% Draws a line from (x1,y1) to (x2,y2)
% Double, dashing, arrow according to current settings
%
{\AXO@useopts
\ifcase\axo@pdfoutput
\put(\axoxoff,\axoyoff){%
\AXOspecial{%
\AXO@ArrowArg \space
\ifAXO@flip true \else false \fi
\ifAXO@double \AXO@CurrentSep \space \else 0 \fi
\ifAXO@dash \AXO@CurrentDashSize \space \else 0 \fi
#1 \axoxo\space add #2 \axoyo\space add
#3 \axoxo\space add #4 \axoyo\space add
\AXO@CurrentWidth \space \axoscale \space
dasharrowdoubleline
}}%
\else
\getaxohelp{AxoLine}{#1 #2 #3 #4
\ifAXO@double \AXO@CurrentSep \space \else 0 \fi
\ifAXO@dash \AXO@CurrentDashSize \space \else 0 \fi
\AXO@ArrowArg \space
\ifAXO@flip 1 \else 0 \fi
\AXO@CurrentWidth}
\put(\axoxoff,\axoyoff){\axo@pdfliteral{\contentspdf}}%
\fi
}\ignorespaces
}
%
% #] AXO@Line :
% #[ AXO@Photon :
%
\def\AXO@Photon(#1,#2)(#3,#4)#5#6{%
%
% Draws a photon from (x1,y1) to (x2,y2) with amplitude #5 and number
% of windings #6.
% Assumes options have been set
%
{\AXO@useopts
\ifAXO@arrow\AXO@NOTIMPLEMENTED{arrow not implemented for photon}\fi
\ifcase\axo@pdfoutput
\put(\axoxoff,\axoyoff){\AXOspecial{%
#1 \axoxo\space add #2 \axoyo\space add
#3 \axoxo\space add #4 \axoyo\space add #5 #6
\ifAXO@double \AXO@CurrentSep \space \else 0 \fi
\ifAXO@dash \AXO@CurrentDashSize \space \else 0 \fi
\AXO@CurrentWidth\space \axoscale\space dashdoublephoton }}%
\else
\getaxohelp{AxoPhoton}{#1 #2 #3 #4 #5 #6
\ifAXO@double \AXO@CurrentSep \space \else 0 \fi
\ifAXO@dash \AXO@CurrentDashSize \space \else 0 \fi
\AXO@CurrentWidth}
\put(\axoxoff,\axoyoff){\axo@pdfliteral{\contentspdf}}
\fi
}\ignorespaces
}
% #] AXO@Photon :
% #[ AXO@PhotonArc :
%
\def\AXO@PhotonArc(#1,#2)(#3,#4,#5)#6#7{%
%
% Draws a photon on an arc segment. The center of the curve is at (1,2)
% The radius, start angle and target angle are (#3,#4,#5), #6 is the
% amplitude of the gluon, and #7 is the number of wiggles.
% Assumes options have been set
%
{\AXO@useopts
\ifAXO@arrow\AXO@NOTIMPLEMENTED{arrow not implemented for photon arc}\fi
\ifcase\axo@pdfoutput
\put(\axoxoff,\axoyoff){\AXOspecial{%
#6 #7
\ifAXO@double \AXO@CurrentSep \space \else 0 \fi
\ifAXO@dash \AXO@CurrentDashSize \space \else 0 \fi
\ifAXO@clock true \else false \fi
#3 #4 #5
#1 \axoxo\space add #2 \axoyo\space add
\AXO@CurrentWidth\space \axoscale\space dashdoublephotonarc
}}%
\else
\getaxohelp{AxoPhotonArc}{#1 #2 #3 #4 #5 #6 #7
\ifAXO@double \AXO@CurrentSep \space \else 0 \fi
\ifAXO@dash \AXO@CurrentDashSize \space \else 0 \fi
\ifAXO@clock 1 \else 0 \fi
\AXO@CurrentWidth}
\put(\axoxoff,\axoyoff){\axo@pdfliteral{\contentspdf}}
\fi
}\ignorespaces
}
%
% #] AXO@PhotonArc :
% #[ AXO@ZigZag :
%
\def\AXO@ZigZag(#1,#2)(#3,#4)#5#6{%
%
% Draws a zigzag from (x1,y1) to (x2,y2) with amplitude #5 and number
% of windings #6.
% Assumes options have been set
%
{\AXO@useopts
\ifAXO@arrow\AXO@NOTIMPLEMENTED{arrow not implemented for zigzag}\fi
\ifcase\axo@pdfoutput
\put(\axoxoff,\axoyoff){\AXOspecial{%
#1 \axoxo\space add #2 \axoyo\space add
#3 \axoxo\space add #4 \axoyo\space add #5 #6
\ifAXO@double \AXO@CurrentSep \space \else 0 \fi
\ifAXO@dash \AXO@CurrentDashSize \space \else 0 \fi
\AXO@CurrentWidth\space \axoscale\space dashdoublezigzag }}%
\else
\getaxohelp{AxoZigZag}{#1 #2 #3 #4 #5 #6
\ifAXO@double \AXO@CurrentSep \space \else 0 \fi
\ifAXO@dash \AXO@CurrentDashSize \space \else 0 \fi
\AXO@CurrentWidth}
\put(\axoxoff,\axoyoff){\axo@pdfliteral{\contentspdf}}%
\fi
}\ignorespaces
}
% #] AXO@ZigZag :
% #[ AXO@ZigZagArc :
%
\def\AXO@ZigZagArc(#1,#2)(#3,#4,#5)#6#7{%
%
% Draws a zigzag on an arc segment. The center of the curve is at (1,2)
% The radius, start angle and target angle are (#3,#4,#5), #6 is the
% amplitude of the gluon, and #7 is the number of wiggles.
% Assumes options have been set
%
{\AXO@useopts
\ifAXO@arrow\AXO@NOTIMPLEMENTED{arrow not implemented for zigzag arc}\fi
\ifcase\axo@pdfoutput
\put(\axoxoff,\axoyoff){\AXOspecial{%
#6 #7
\ifAXO@double \AXO@CurrentSep \space \else 0 \fi
\ifAXO@dash \AXO@CurrentDashSize \space \else 0 \fi
\ifAXO@clock true \else false \fi
#3 #4 #5
#1 \axoxo\space add #2 \axoyo\space add
\AXO@CurrentWidth\space \axoscale\space dashdoublezigzagarc
}}%
\else
\getaxohelp{AxoZigZagArc}{#1 #2 #3 #4 #5 #6 #7
\ifAXO@double \AXO@CurrentSep \space \else 0 \fi
\ifAXO@dash \AXO@CurrentDashSize \space \else 0 \fi
\ifAXO@clock 1 \else 0 \fi
\AXO@CurrentWidth}
\put(\axoxoff,\axoyoff){\axo@pdfliteral{\contentspdf}}
\fi
}\ignorespaces
}
%
% #] AXO@ZigZagArc :
% #[ Text and boxes :
% #[ SetPFont :
%
% To access fonts, from both latex and pdflatex, we need
% to define a mapping from the human-readable name to
% the name known to (pdf)latex. Then we can define a
% user command for setting the font. The human-readable
% name is the one used by postscript.
% Variables used:
% \pfontN = human name of current PS font (e.g., Helvetica).
% \pfontC = TeX code for the font (e.g., phvr).
% Both are \relax to use regular document font
% \axofontsize = size of font (text command with unit)
\def\defineaxofont#1#2{%
% #1 is user visible name of font, #2 is LaTex name.
% Define a command of name #1 to return #2
\expandafter\def\csname #1\endcsname{#2}
}
\def\SetPFont#1#2{%
\ifthenelse{ \equal{#1}{} }%
{\let\pfontN=\relax \let\pfontC=\relax}%
{\@ifundefined{#1}%
{\PackageWarning{axodraw2}{trying to set undefined font `#1'}}%
{\def\pfontN{#1}% Human name (postscript)
\def\pfontC{\@nameuse{#1}}% Code name
}%
}%
\ifthenelse{ \equal{#2}{} }%
{% Use the value of LaTeX's fontsize when the font is used:
\def\axofontsize{\f@size}%
}%
{\def\axofontsize{#2}}%
\ignorespaces
}
\def\UseCurrentPSFont{%
% Set regular size of regular font, so math has rational size
\fontsize{\axofontsize}{\axofontsize}%
\selectfont
\ifx\pfontC\relax
\else
\font\axofont = \pfontC \space at \axofontsize pt
\axofont
\fi
}
\defineaxofont{AvantGarde-Book}{pagk}
\defineaxofont{AvantGarde-BookOblique}{pagko}
\defineaxofont{AvantGarde-Demi}{pagd}
\defineaxofont{AvantGarde-DemiOblique}{pagdo}
\defineaxofont{Bookman-Demi}{pbkd}
\defineaxofont{Bookman-DemiItalic}{pbkdi}
\defineaxofont{Bookman-Light}{pbkl}
\defineaxofont{Bookman-LightItalic}{pbkli}
\defineaxofont{Courier-Bold}{pcrb}
\defineaxofont{Courier-BoldOblique}{pcrbo}
\defineaxofont{Courier}{pcrr}
\defineaxofont{Courier-Oblique}{pcrro}
\defineaxofont{Helvetica-Bold}{phvb}
\defineaxofont{Helvetica-BoldOblique}{phvbo}
\defineaxofont{Helvetica-NarrowBold}{phvbrn}
\defineaxofont{Helvetica-NarrowBoldOblique}{phvbon}
\defineaxofont{Helvetica}{phvr}
\defineaxofont{Helvetica-Oblique}{phvro}
\defineaxofont{Helvetica-Narrow}{phvrrn}
\defineaxofont{Helvetica-NarrowOblique}{phvron}
\defineaxofont{NewCenturySchlbk-Bold}{pncb}
\defineaxofont{NewCenturySchlbk-BoldItalic}{pncbi}
\defineaxofont{NewCenturySchlbk-Italic}{pncri}
\defineaxofont{NewCenturySchlbk-Roman}{pncr}
\defineaxofont{Palatino-Bold}{pplb}
\defineaxofont{Palatino-BoldItalic}{pplbi}
\defineaxofont{Palatino-Italic}{pplri}
\defineaxofont{Palatino-Roman}{pplr}
\defineaxofont{Symbol}{psyr}
\defineaxofont{Times-Bold}{ptmb}
\defineaxofont{Times-BoldItalic}{ptmbi}
\defineaxofont{Times-Italic}{ptmri}
\defineaxofont{Times-Roman}{ptmr}
\defineaxofont{ZapfChancery-MediumItalic}{pzcmi}
\defineaxofont{ZapfDingbats}{pzdr}
% Now we can set the default:
\SetPFont{Times-Roman}{10}
%
% #] SetPFont :
% #[ Text :
%
% Aim: \Text(#1,#2)(#3)[#4]#5, to set text #5 at position (#1,#2)
% with angle #3 and positioning #4.
% But the presence of (#3) and [#3] is to be optional (with
% defaults being equivalent to (0) and []
%
\def\Text(#1,#2){%
\@ifnextchar(% )
{\Text@A(#1,#2)}%
{\Text@A(#1,#2)(0)}%
}
%
\def\Text@A(#1,#2)(#3){%
\@ifnextchar[% ]
{\Text@Z(#1,#2)(#3)}%
{\Text@Z(#1,#2)(#3)[]}%
}
%
\def\axoscaleTT{\ifPSTextScalesLikeGraphics 1\else \axotextscale \fi}
\def\axoscalePT{\ifPSTextScalesLikeGraphics \axoscale\else \axotextscale \fi}
%
\def\Text@Z(#1,#2)(#3)[#4]#5{%
%
% Draws text at (#1,#2). Argument #3 is combination of l, r, t, b to
% indicate positioning instead of default (which is horizontally and
% vertically centered --- these are same as \makebox
% the text is left adjusted, right adjusted or centered. Or b or t.
% 4 is of course the text.
%
\AxoPut(#1,#2){%
\scalebox{\axoscaleTT}%
{\rotatebox{#3}{\makebox(0,0)[#4]{#5}}}%
}%
\ignorespaces
}
%
% #] Text :
% #[ PText : *+
%
\def\PText(#1,#2)(#3)[#4]#5{%
%
% Draws a postscript text in a postscript font.
% Focal point is (1,2), rotation angle is 3, 4 is the mode (as in text)
% and 5 is the text.
%
\begingroup
\UseCurrentPSFont
\AxoPut(#1,#2){%
\scalebox{\axoscalePT}%
{\rotatebox{#3}{\makebox(0,0)[#4]{#5}}}%
}%
\endgroup
\ignorespaces
}
%
% #] PText :
% #[ RText :
%
\def\RText(#1,#2)[#3](#4)#5{%
%
% Draws rotated text at (1,2). Argument 3 is l,r or c indicating whether
% the text is left adjusted, right adjusted or centered.
% 4 is the rotation angle and 5 is of course the text.
%
\Text(#1,#2)(#4)[#3]{#5}%
\ignorespaces
}
%
% #] RText :
% #[ rText : *
%
\def\rText(#1,#2)[#3][#4]#5{%
%
% Draws rotated text at (1,2). Argument 3 is l,r or c indicating whether
% the text is left adjusted, right adjusted or centered.
% 4 is the rotation angle (specified as l, r, u, or blank,
% and 5 is of course the text.
%
\begingroup
\def\this@angle{0}%
\ifx#4l%
\def\this@angle{90}%
\else
\ifx#4r%
\def\this@angle{-90}%
\else
\ifx#4u%
\def\this@angle{180}%
\fi
\fi
\fi
\Text(#1,#2)(\this@angle)[#3]{#5}%
\endgroup
\ignorespaces
}
%
% #] rText :
% #[ BText :
%
\def\BText(#1,#2)#3{%
%
% Draws a box with the center at (x1,y1) and postscript text #3 in it.
%
\AxoPut(#1,#2){%
\edef\axoscale{\axoscalePT}%
\SetTmpBox{#3}%
\BBoxc(0,0)(\tmpXT,\tmpYT)%
\PText(0,0)(0)[]{\usebox{\tmpBox}}%
}%
\ignorespaces
}
%
% #] BText :
% #[ GText :
%
\def\GText(#1,#2)#3#4{%
%
% Draws a box with the center at (x1,y1) and postscript(#4) text in it.
% The grayness of the box is given by #3
%
\AxoPut(#1,#2){%
\edef\axoscale{\axoscalePT}%
\SetTmpBox{#4}%
\GBoxc(0,0)(\tmpXT,\tmpYT){#3}%
\PText(0,0)(0)[]{\usebox{\tmpBox}}%
}%
\ignorespaces
}
%
% #] GText :
% #[ CText :
%
\def\CText(#1,#2)#3#4#5{%
%
% Draws a box with the center at (x1,y1) and postscript(#5) text in it.
% The color of box and text is in #3
% The color of the background is in #4
%
\AxoPut(#1,#2){%
\edef\axoscale{\axoscalePT}%
\SetTmpBox{\SetColor{#3}{#5}}%
\CBoxc(0,0)(\tmpXT,\tmpYT){#3}{#4}%
\PText(0,0)(0)[]{\usebox{\tmpBox}}%
}%
}
%
% #] CText :
% #[ BTwoText :
%
\def\BTwoText(#1,#2)#3#4{%
%
% Draws a box with the center at (x1,y1) and two lines of postscript
% text in it.
%
\AxoPut(#1,#2){%
\edef\axoscale{\axoscalePT}%
\SetTmpBoxTwo{#3}{#4}%
\BBoxc(0,0)(\tmpXT,\tmpYT)%
\PText(0,0)(0)[]{\usebox{\tmpBox}}%
}%
\ignorespaces
}
%
% #] BTwoText :
% #[ GTwoText :
%
\def\GTwoText(#1,#2)#3#4#5{%
%
% Draws a box with the center at (x1,y1) and two lines of postscript
% text (#4 and #5) in it.
% The grayness of the box is given by #3
%
\AxoPut(#1,#2){%
\edef\axoscale{\axoscalePT}%
\SetTmpBoxTwo{#4}{#5}%
\GBoxc(0,0)(\tmpXT,\tmpYT){#3}%
\PText(0,0)(0)[]{\usebox{\tmpBox}}%
}%
\ignorespaces
}
%
% #] GTwoText :
% #[ CTwoText :
%
\def\CTwoText(#1,#2)#3#4#5#6{%
%
% Draws a box with the center at (x1,y1) and two lines of postscript
% text (#5 and #6) in it.
% The color of the box and the text is given by #3
% The background color is given by #4
%
\AxoPut(#1,#2){%
\edef\axoscale{\axoscalePT}%
\SetTmpBoxTwo{\SetColor{#3}#5}{\SetColor{#3}#6}%
\CBoxc(0,0)(\tmpXT,\tmpYT){#3}{#4}%
\PText(0,0)(0)[]{\usebox{\tmpBox}}%
}%
\ignorespaces
}
%
% #] CTwoText :
% #] Text and boxes :
% #] Mixed routines :
% #[ Postscript specific :
%
% The code here is used only when we need Postscript output. This concerns
% mainly the Postscript library.
%
\ifcase\axo@pdfoutput
%
% #[ PostScript preamble :
%
\AtBeginDvi{
%
% This forces the PostScript preamble commands to be put into the
% dvi file. Without this, revtex4 can remove them by funny
% stuff with manipulating the first page.
%
% #[ inventory :
%
% The variables in here are:
% num,num1,ampi,ampi1,x1,y1,x2,y2,x3,y3,x4,y4,dx,dy,dr
% width, arrowpos, arrowspec, arrowwidth, arrowlength, arrowinset
% arcend, arcmid, arcstart, radius, linesep, angdsize, dsize,
% clockwise, dotsize, inc, pi, sign
% darc,const,amp1, amp2, amp3, amp4, amp5, amp6, amp7, amp8, amp1i
% gcolor,xx2
%
% NOTE: blank lines are not allowed inside the postscript code!!!!!
% (LaTeX sneaks \par commands in and the postscript goes boink)
%
\special{color} % Provoke dvips into including color.pro
% Revtex4 in 2-column mode fails to force that
%
\special{!
/savecolor { %/cmyk [ currentcmykcolor ] def
/oldcolor [ [ currentcolor ] currentcolorspace ] def
} def
/restorecolor { oldcolor aload pop setcolorspace aload pop setcolor } def
% /savecolor { [ currentcmykcolor ] /cmyk ed } def
% /restorecolor { cmyk aload pop setcmykcolor } def
% % Do a save color now, to ensure default variables are defined:
savecolor
}
%
\special{!
/pi 3.141592 def
/ed{exch def}def
% Implement conversion of length unit from pt to bp by scaling
/gs{gsave 1.00375 div dup scale}def
/gsw{ gs
/width ed
width setlinewidth
}def
/p1{/y1 ed /x1 ed}def
/p2{/y2 ed /x2 ed}def
/p3{/y3 ed /x3 ed}def
/p4{/y4 ed /x4 ed}def
/pp1{/yy1 ed /xx1 ed}def
/pp2{/yy2 ed /xx2 ed}def
/pp3{/yy3 ed /xx3 ed}def
/setabs{
% Usage /var setabs
% Sets variable to its absolute value
dup load abs def
}def
%
/normalizearc {
% Usage: clockwise r angle1 angle2 x y normalizearc
% Adjusts coordinate system for anticlockwize arc from angle
% zero, centered at origin.
% Left on stack: r d_angle, with 0 x1 y1 x2 y2 r
% Pure stack based: computes distance between points. Keeps points
dup
3 index sub dup mul
2 index 5 index sub dup mul add sqrt
} def
/setbackgroundcolor{
0 0 0 0 setcmykcolor
} def
}
%
% #] inventory :
% #[ Arrows :
%
% Define better arrows
%
\special{!
% Arrow making routines
%
/getarrow {
/witharrow ed
/arrowpos ed
/arrowaspect ed
/arrowscale ed
/arrowinset ed
/arrowlength ed
/arrowwidth ed
/arrowstroke ed
} def
/drawarrow {
gsave
[] 0 setdash
rotate
arrowwidth 0 eq {
arrowlength 0 eq {
linewidth linesep 0.7 mul add 1 add 1.2 mul dup
2.5 lt {
pop
2.5
} if
arrowscale mul
/arrowwidth ed
/arrowlength arrowwidth 2 mul arrowaspect mul def
} {
/arrowlength arrowlength arrowscale mul def
/arrowwidth arrowlength 2 div arrowaspect div def
} ifelse
} {
arrowlength 0 eq {
/arrowwidth arrowwidth arrowscale mul def
/arrowlength arrowwidth 2 mul arrowaspect mul def
} {
/arrowwidth arrowwidth arrowscale mul def
/arrowlength arrowlength arrowscale mul def
} ifelse
} ifelse
arrowstroke 0 ne {
arrowstroke setlinewidth
gsave
setbackgroundcolor
newpath
0 arrowlength -0.5 mul moveto
arrowwidth arrowlength rlineto
arrowwidth -1 mul arrowlength arrowinset mul -1 mul rlineto
arrowwidth -1 mul arrowlength arrowinset mul rlineto
closepath fill
grestore
newpath
0 arrowlength -0.5 mul moveto
arrowwidth arrowlength rlineto
arrowwidth -1 mul arrowlength arrowinset mul -1 mul rlineto
arrowwidth -1 mul arrowlength arrowinset mul rlineto
closepath stroke
} {
newpath
0 arrowlength -0.5 mul moveto
arrowwidth arrowlength rlineto
arrowwidth -1 mul arrowlength arrowinset mul -1 mul rlineto
arrowwidth -1 mul arrowlength arrowinset mul rlineto
closepath fill
} ifelse
grestore
} def
%
}
%
% #] Arrows :
%
% Basic line drawing
% #[ fixdash :
%
\special{! /fixdash{
% Usage: r dashsize fixdash
% Sets renormalized dashsize, doing
% [rdsize rdsize] 0 setdash
% so that n+1/2 patterns fit in length r
% If dsize is too big or if dsize is zero, use continuous line
% Uses stack, no named variables.
2 copy gt
1 index 0 ne
and
{
2 copy
2 mul div 0.5 sub round
dup 0 le { pop 0 } if
2 mul 1 add exch pop div
dup 2 array astore 0 setdash
}
{ pop pop [] 0 setdash }
ifelse
} def }
%
% #] fixdash :
% #[ dashline :
%
\special{! /dashline{
% Draws a straight dashed line: x1,y1,x2,y2
% Assumes dsize already set
% The pattern is ideally [dsize dsize] 0 setdash
% but we want to have (2*n+1)/2 patterns, so dsize must be rounded
% If dsize is too large or zero, use a continuous line
% Pure stack operation.
gsave
distance dsize fixdash % Function distance leaves points on stack
newpath
moveto
lineto
stroke
grestore
} def }
% #] dashline :
% #[ dasharc :
%
\special{! /dasharc{
% Draws an arc segment anticlockwise:
% x_center, y_center, radius, start_angle, end_angle
% Assumes angdsize (radians) set elsewhere
gsave
3 copy sub abs
% Top of stack is copy of radius, start_angle, end_angle
pi mul 180 div mul
% Top of stack is arc length
3 index angdsize mul fixdash
newpath arc stroke
grestore
} def }
%
% #] dasharc :
% #[ dashgluon :
%
\special{! /dashgluon{
%
% Draw gluon, possibly dashed
% We have a 'head' and a 'tail' and in between the 'body'
% The head + tail is 2 windings. The body is num-1 windings.
%
gsw
/dsize ed
/num ed /ampi ed
normalizeline /dr ed
/num num 0.5 sub round def
%
dsize 0 eq {
[] 0 setdash
} {
/amp8 ampi abs 0.9 mul def
/size amp8 neg 0 amp8 neg ampi 2 mul dup dr num 2 mul 2 add div exch
1 lengthofbezier def
%
/ndash size dsize 2 mul div truncate def
ndash 0 eq { /ndash 1 def } if
size 2 dsize ndash mul mul sub abs
size 2 dsize ndash 1 add mul mul sub abs gt { /ndash ndash 1 add def } if
/dsize size 2 ndash mul div def
[ dsize dsize ] dsize 2 div setdash
} ifelse
%
/inc dr num 2 mul 2 add div def % increment per half winding
/amp8 ampi 0.9 mul def
amp8 0 lt {/amp8 amp8 neg def} if
%
/x1 inc 2 mul def
%
newpath
x1 ampi neg moveto
x1 amp8 add dup ampi neg exch ampi inc 1.4 mul ampi curveto
inc 0.5 mul ampi inc 0.1 mul ampi 0.5 mul 0 0 curveto
stroke
newpath
x1 ampi neg moveto
2 1 num {
pop
x1 amp8 sub dup ampi neg exch ampi dup x1 inc add exch curveto
/x1 x1 inc dup add add def
x1 amp8 add dup ampi exch ampi neg dup x1 exch curveto
} for
%
x1 amp8 sub dup ampi neg exch ampi dup x1 inc 0.6 mul add exch curveto
x1 inc 1.5 mul add ampi dr inc 0.1 mul sub ampi 0.5 mul dr 0 curveto
stroke
%
grestore
} def }
%
% #] dashgluon :
% #[ dashdoublephoton :
%
\special{! /dashdoublephoton{
%
% Draws a photon from x1,y1 to x2,y2 with amplitude A and n wiggles
% Possibly double
%
gsw
/dsize ed
/linesep ed
/num ed /ampi ed
normalizeline /dr ed
/num num 2 mul 0.5 sub round def
%
dsize 0 eq {
[] 0 setdash
} {
% Compute the dash size
/xdd dr num div def
/size 4 3 div xdd mul pi div dup neg xdd add
4 3 div ampi mul dup 3 1 roll xdd 0 1 lengthofbezier 2 div def
/ndash size dsize 2 mul div truncate def
ndash 0 eq { /ndash 1 def } if
size 2 dsize ndash mul mul sub abs
size 2 dsize ndash 1 add mul mul sub abs gt { /ndash ndash 1 add def } if
/dsize size 2 ndash mul div def
[ dsize dsize ] dsize 2 div setdash
} ifelse
%
linesep 0 eq
{ 0 0 dr 0 ampi num photon1 }
{
% 0 linesep 2 div dup dr exch ampi num photon1
% 0 linesep -2 div dup dr exch ampi num photon1
%
linesep width add setlinewidth 0 0 dr 0 ampi num photon1
[] 0 setdash
0 0 0 0 setcmykcolor
linesep width sub setlinewidth 0 0 dr 0 ampi num photon1
%
}
ifelse
grestore
} def }
%
% #] dashdoublephoton :
% #[ photon1 :
%
\special{! /photon1{
%
% Draws a single photon from x1,y1 to x2,y2 with amplitude A and n wiggles
%
gsave
/num1 ed /ampi1 ed
normalizeline /dr ed
%
/x2 dr num1 div def
/sign 1 def
1 1 num1 {
pop
newpath
0 0 moveto
4 3 div x2 mul pi div dup neg x2 add
4 3 div ampi1 sign mul mul dup 3 1 roll
x2 0 curveto
stroke
/sign sign neg def
x2 0 translate
} for
%
grestore
} def }
%
% #] photon1 :
% #[ dashdoublezigzag :
%
\special{! /dashdoublezigzag{
%
% Draws a zigzag from x1,y1 to x2,y2 with amplitude A and n wiggles
% Possibly double
%
gsw
/dsize ed
/linesep ed
/num ed /ampi ed
normalizeline /dr ed
/num num 2 mul 0.5 sub round def
%
dsize 0 eq {
[] 0 setdash
} {
% Compute the dash size
/size dr num 2 mul div dup mul ampi dup mul add sqrt def
/ndash size dsize 2 mul div truncate def
ndash 0 eq { /ndash 1 def } if
size 2 dsize ndash mul mul sub abs
size 2 dsize ndash 1 add mul mul sub abs gt { /ndash ndash 1 add def } if
/dsize size 2 ndash mul div def
[ dsize dsize ] dsize 2 div setdash
} ifelse
%
linesep 0 eq
{ 0 0 dr 0 ampi num zigzag1 }
{
% 0 linesep 2 div dup dr exch ampi num zigzag1
% 0 linesep -2 div dup dr exch ampi num zigzag1
%
linesep width add setlinewidth 0 0 dr 0 ampi num zigzag1
[] 0 setdash
0 0 0 0 setcmykcolor
linesep width sub setlinewidth 0 0 dr 0 ampi num zigzag1
%
}
ifelse
grestore
} def }
%
% #] dashdoublezigzag :
% #[ zigzag1 :
%
\special{! /zigzag1{
%
% Draws a single zigzag from x1,y1 to x2,y2 with amplitude A and n wiggles
%
gsave
/num1 ed /ampi1 ed
normalizeline /dr ed
%
/x2 dr num1 div def
/sign 1 def
1 1 num1 {
pop
newpath
0 0 moveto
x2 2 div ampi1 sign mul lineto
x2 0 lineto
stroke
/sign sign neg def
x2 0 translate
} for
%
grestore
} def }
%
% #] zigzag1 :
% #[ dashgluearc :
%
\special{! /dashgluearc{
%
% Draws a gluon on an arcsegment
% gluon_radius, num, linesep (0 for no-double), dsize (0 for no dashes)
% clock, radius, start_angle, end_angle, x_center, y_center
% in which num is the number of windings of the gluon.
%
% Method for the gluon arc itself:
% 1: compute length of arc.
% 2: generate gluon in x and y as if the arc is a straight line
% 3: x' = (radius+y)*cos(x*const)
% y' = (radius+y)*sin(x*const)
%
gsw
normalizearc
/darc ed /radius ed /dsize ed /num ed /ampi ed
/num num 0.5 sub round def
%
dsize 0 eq {
[] 0 setdash
} {
/dr radius darc mul pi mul 180 div def % length of segment.
/const darc dr div def % conversion constant
/inc dr num 2 mul 2 add div def % increment per half winding
/amp8 ampi 0.9 mul def
/amp1 radius ampi add def
/amp2 radius ampi sub def
/amp4 amp1 inc amp8 add const mul cos div def
/amp5 amp2 amp8 const mul cos div def
amp8 0 lt {/amp8 amp8 neg def} if
/x1 inc 2 mul def
/x0 x1 const mul cos amp2 mul def
/y0 x1 const mul sin amp2 mul def
x1 amp8 sub const mul dup cos amp5 mul x0 sub exch sin amp5 mul y0 sub
x1 amp8 sub const mul dup cos amp4 mul x0 sub exch sin amp4 mul y0 sub
x1 inc add const mul dup cos amp1 mul x0 sub exch sin amp1 mul y0 sub
1 lengthofbezier
/size ed
%
/ndash size dsize 2 mul div truncate def
ndash 0 eq { /ndash 1 def } if
size 2 dsize ndash mul mul sub abs
size 2 dsize ndash 1 add mul mul sub abs gt { /ndash ndash 1 add def } if
/dsize size 2 ndash mul div def
[ dsize dsize ] dsize 2 div setdash
} ifelse
%
/dr radius darc mul pi mul 180 div def % length of segment.
/const darc dr div def % conversion constant
/inc dr num 2 mul 2 add div def % increment per half winding
/amp8 ampi 0.9 mul def
/amp1 radius ampi add def
/amp2 radius ampi sub def
/amp3 radius ampi 2 div add def
/amp4 amp1 inc amp8 add const mul cos div def
/amp5 amp2 amp8 const mul cos div def
/amp6 amp1 inc 0.6 mul amp8 add const mul cos div def
/amp7 amp1 inc 0.9 mul const mul cos div def
amp8 0 lt {/amp8 amp8 neg def} if
%
newpath
/x1 inc 2 mul def
x1 const mul dup cos amp2 mul exch sin amp2 mul
moveto
x1 amp8 add const mul dup cos amp5 mul exch sin amp5 mul
x1 amp8 add const mul dup cos amp6 mul exch sin amp6 mul
inc 1.4 mul const mul dup cos amp1 mul exch sin amp1 mul
curveto
inc 0.5 mul const mul dup cos amp7 mul exch sin amp7 mul
inc 0.1 mul const mul dup cos amp3 mul exch sin amp3 mul
radius 0
curveto
stroke
newpath
x1 const mul dup cos amp2 mul exch sin amp2 mul moveto
2 1 num { pop
x1 amp8 sub const mul dup cos amp5 mul exch sin amp5 mul
x1 amp8 sub const mul dup cos amp4 mul exch sin amp4 mul
x1 inc add const mul dup cos amp1 mul exch sin amp1 mul
curveto
/x1 x1 inc dup add add def
x1 amp8 add const mul dup cos amp4 mul exch sin amp4 mul
x1 amp8 add const mul dup cos amp5 mul exch sin amp5 mul
x1 const mul dup cos amp2 mul exch sin amp2 mul
curveto
} for
x1 amp8 sub const mul dup cos amp5 mul exch sin amp5 mul
x1 amp8 sub const mul dup cos amp6 mul exch sin amp6 mul
x1 inc 0.6 mul add const mul dup cos amp1 mul exch sin amp1 mul
curveto
x1 inc 1.5 mul add const mul dup cos amp7 mul exch sin amp7 mul
dr inc 0.1 mul sub const mul dup cos amp3 mul exch sin amp3 mul
dr const mul dup cos radius mul exch sin radius mul
curveto
stroke
%
grestore
} def
}
%
% #] dashgluearc :
% #[ dashdoublephotonarc :
%
\special{! /dashdoublephotonarc{
%
% Draws a photon on an arcsegment
% photon_radius, num, linesep (0 for no-double), dsize (0 for no dashes),
% clock, radius, start_angle, end_angle, x_center, y_center
% in which num is the number of wiggles of the photon.
%
gsw
normalizearc
/darc ed /radius ed /dsize ed /linesep ed /num ed /ampli ed
%
/num num 2 mul round def % number of half wiggles
/darc1 darc num div def
/cp darc1 cos def
/sp darc1 sin def
darc1 2 div dup
/cp2 exch cos def
/sp2 exch sin def
%
dsize 0 eq {
[] 0 setdash
} {
%
% Compute the length of the outer curve and the inner curve.
% There must be an integer number of patterns in half the sum.
% The we use half of the first to determine where in the pattern
% we should start.
%
/ampli1 ampli def
/beta radius darc1 mul 180 ampli1 mul div def
/tt sp cp beta mul sub cp sp beta mul add div def
/amp1 radius ampli1 add 8 mul beta cp2 mul sp2 sub mul beta 4 cp add mul
tt cp mul 3 mul sp 4 mul sub add radius mul sub
beta tt sub 3 mul div def % this is x2
radius ampli1 add 8 mul cp2 mul 1 cp add radius mul sub 3 div amp1 sub
dup radius sub exch radius sub beta mul % x1,y1
amp1 radius sub amp1 radius cp mul sub tt mul radius sp mul add % x2,y2
radius cp mul radius sub radius sp mul % x3 y3
1 lengthofbezier
/len1 ed
/ampli1 ampli1 neg def
/beta radius darc1 mul 180 ampli1 mul div def
/tt sp cp beta mul sub cp sp beta mul add div def
/amp1 radius ampli1 add 8 mul beta cp2 mul sp2 sub mul beta 4 cp add mul
tt cp mul 3 mul sp 4 mul sub add radius mul sub
beta tt sub 3 mul div def % this is x2
radius ampli1 add 8 mul cp2 mul 1 cp add radius mul sub 3 div amp1 sub
dup radius sub exch radius sub beta mul % x1,y1
amp1 radius sub amp1 radius cp mul sub tt mul radius sp mul add % x2,y2
radius cp mul radius sub radius sp mul % x3 y3
1 lengthofbezier
/len2 ed
/size len1 len2 add 2 div def
/size2 len1 2 div def
%
/ndash size dsize 2 mul div truncate def
ndash 0 eq { /ndash 1 def } if
size 2 dsize ndash mul mul sub abs
size 2 dsize ndash 1 add mul mul sub abs gt { /ndash ndash 1 add def } if
/dsize size 2 ndash mul div def
/numd size2 dsize 2 mul div truncate def
/dstart dsize 2 div size2 sub 2 numd dsize mul mul add def
dstart 0 lt { /dstart dstart dsize 2 mul add def } if
[ dsize dsize ] dstart setdash
} ifelse
%
linesep 0 eq {
radius photonarc1
} {
linesep width add setlinewidth radius photonarc1
[] 0 setdash
0 0 0 0 setcmykcolor
linesep width sub setlinewidth radius photonarc1
} ifelse
%
grestore
} def }
%
% #] dashdoublephotonarc :
% #[ photonarc1 :
%
\special{! /photonarc1{
% Usage: radius photonarc1
% Draws a single photon on an arcsegment.
% Called from dashdoublephotonarc with coordinates centered on center,
% start on x-axis.
% Assume the following are set: num, ampli, arcend phi, arcstart phi/2, cp,
% cp2, sp, sp2.
% Draws a photonarc center at x1,y1, radius arcstart,arcend, amplitude
% number of wiggles, width, scale
%
gsave
/radius1 ed
% Local copy of amplitude, since I change it
/ampli1 ampli def
%
newpath
radius1 0 moveto
1 1 num { 1 sub /ii ed
/cpi darc1 ii mul cos def
/spi darc1 ii mul sin def
/beta radius1 darc1 mul 180 ampli1 mul div def
/tt sp cp beta mul sub cp sp beta mul add div def
/x2 radius1 ampli1 add 8 mul beta cp2 mul sp2 sub mul beta 4 cp add mul
tt cp mul 3 mul sp 4 mul sub add radius1 mul sub
beta tt sub 3 mul div def
/x1 radius1 ampli1 add 8 mul cp2 mul 1 cp add radius1 mul sub 3 div x2 sub def
/y1 x1 radius1 sub beta mul def
/y2 x2 radius1 cp mul sub tt mul radius1 sp mul add def
/x3 radius1 cp mul def
/y3 radius1 sp mul def
x1 cpi mul y1 spi mul sub y1 cpi mul x1 spi mul add
x2 cpi mul y2 spi mul sub y2 cpi mul x2 spi mul add
x3 cpi mul y3 spi mul sub y3 cpi mul x3 spi mul add
curveto
/ampli1 ampli1 neg def
} for
stroke
%
grestore
} def }
%
% #] photonarc1 :
% #[ dashdoublezigzagarc :
%
\special{! /dashdoublezigzagarc{
%
% Draws a zigzag on an arcsegment
% zigzag_radius, num, linesep (0 for no-double), dsize (0 for no dashes),
% clock, radius, start_angle, end_angle, x_center, y_center
% in which num is the number of wiggles of the zigzag.
%
gsw
normalizearc
/darc ed /radius ed /dsize ed /linesep ed /num ed /ampli ed
%
/num num 2 mul round def % number of half wiggles
/darc1 darc num div def
/cp darc1 cos def
/sp darc1 sin def
darc1 2 div dup
/cp2 exch cos def
/sp2 exch sin def
%
dsize 0 eq {
[] 0 setdash
} {
/size ampli dup mul radius dup mul add radius dup mul ampli dup mul sub
cp mul sub 2 div sqrt def
/size2 ampli dup mul ampli radius add radius mul 2 mul 1 cp2 sub mul
add sqrt def
%
/ndash size dsize 2 mul div truncate def
ndash 0 eq { /ndash 1 def } if
size 2 dsize ndash mul mul sub abs
size 2 dsize ndash 1 add mul mul sub abs gt { /ndash ndash 1 add def } if
/dsize size 2 ndash mul div def
/numd size2 dsize 2 mul div truncate def
/dstart dsize 2 div size2 sub 2 numd dsize mul mul add def
dstart 0 lt { /dstart dstart dsize 2 mul add def } if
[ dsize dsize ] dstart setdash
} ifelse
%
linesep 0 eq {
radius zigzagarc1
} {
linesep width add setlinewidth radius zigzagarc1
[] 0 setdash
0 0 0 0 setcmykcolor
linesep width sub setlinewidth radius zigzagarc1
} ifelse
%
grestore
} def }
%
% #] dashdoublezigzagarc :
% #[ zigzagarc1 :
%
\special{! /zigzagarc1{
% Usage: radius zigzagarc1
% Draws a single zigzag on an arcsegment.
% Called from dashdoublezigzagarc with coordinates centered on center,
% start on x-axis.
% Assume the following are set: num, ampli, arcend phi, arcstart phi/2, cp,
% cp2, sp, sp2.
% Draws a zigzagarc center at x1,y1, radius arcstart,arcend, amplitude
% number of wiggles, width, scale
%
gsave
/radius1 ed
% Local copy of amplitude, since I change it
/ampli1 ampli def
%
% Num is the number of half wiggles. We like to start and end with
% quarter wiggles though.
%
/darc2 darc1 2 div def
newpath
radius1 0 moveto
darc2 dup sin exch cos
radius1 ampli1 add mul exch radius1 ampli1 add mul lineto
/ampli1 ampli1 neg def
/num1 num 1 sub def
1 1 num1 {
darc1 mul darc2 add dup sin exch cos
radius1 ampli1 add mul exch radius1 ampli1 add mul lineto
/ampli1 ampli1 neg def
} for
num darc1 mul dup sin exch cos
radius1 mul exch radius1 mul lineto
stroke
%
grestore
} def }
%
% #] zigzagarc1 :
% #[ dashgluoncirc :
%
\special{! /dashgluoncirc{
%
% Draws a gluon on a complete circle
% cmyk color setting
% gluon_ampl, num, linesep (0 for no-double), dsize (0 for no dashes)
% radius, phase_angle, x_center, y_center
% in which num is the number of windings of the gluon.
%
gsw
translate
/phase ed /radius ed /dsize ed /num ed /ampi ed
/num num 0.5 sub round def
/darc 180 num div def
%
% We rotate in such a way that 0 angle becomes more accessible.
%
darc phase add rotate
%
dsize 0 eq {
[] 0 setdash
} {
/dr radius 2 mul pi mul def % 2*pi*r
/inc dr 2 num mul div def % 2*pi*r/(2*num)
/const 360 dr div def % 360/(2*pi*r)
/amp8 ampi 0.9 mul def
/amp1 radius ampi add def
/amp2 radius ampi sub def
/amp4 amp1 inc amp8 add const mul cos div def
/amp5 amp2 amp8 const mul cos div def
amp8 0 lt {/amp8 amp8 neg def} if
/xx inc 2 mul def
/x0 amp1 inc const mul cos mul def
/y0 amp1 inc const mul sin mul def
amp4 xx amp8 add const mul cos mul x0 sub
amp4 xx amp8 add const mul sin mul y0 sub
amp5 xx amp8 add const mul cos mul x0 sub
amp5 xx amp8 add const mul sin mul y0 sub
amp2 xx const mul cos mul x0 sub
amp2 xx const mul sin mul y0 sub
1 lengthofbezier
/size ed
%
/ndash size dsize 2 mul div truncate def
ndash 0 eq { /ndash 1 def } if
size 2 dsize ndash mul mul sub abs
size 2 dsize ndash 1 add mul mul sub abs gt { /ndash ndash 1 add def } if
/dsize size 2 ndash mul div def
[ dsize dsize ] dsize 2 div setdash
} ifelse
%
/dr radius 2 mul pi mul def % 2*pi*r
/inc dr 2 num mul div def % 2*pi*r/(2*num)
/const 360 dr div def % 360/(2*pi*r)
/amp8 ampi 0.9 mul def
/amp1 radius ampi add def
/amp2 radius ampi sub def
/amp4 amp1 inc amp8 add const mul cos div def
/amp5 amp2 amp8 const mul cos div def
amp8 0 lt {/amp8 amp8 neg def} if
%
newpath
%
/xx inc 2 mul def
amp1 inc const mul cos mul amp1 inc const mul sin mul moveto
%
1 1 num { pop
amp4 xx amp8 add const mul cos mul
amp4 xx amp8 add const mul sin mul
amp5 xx amp8 add const mul cos mul
amp5 xx amp8 add const mul sin mul
amp2 xx const mul cos mul
amp2 xx const mul sin mul
curveto
amp5 xx amp8 sub const mul cos mul
amp5 xx amp8 sub const mul sin mul
amp4 xx amp8 sub const mul cos mul
amp4 xx amp8 sub const mul sin mul
amp1 xx inc add const mul cos mul
amp1 xx inc add const mul sin mul
curveto
/xx xx inc 2 mul add def
} for
%
stroke
%
grestore
} def }
%
% #] dashgluoncirc :
% #[ arc2 :
%
\special{! /arc2{
% Draws an arc segment:
% arrowspec, arrowpos, flip, linesep, dsize,
% clock, radius, start_angle, end_angle, x_center, y_center, width, scale
% If linesep == 0, then single line, else double with separation linesep.
%
gsw
normalizearc
/darc ed /radius ed
/dsize ed /linesep ed
/angdsize dsize radius div def
/flip ed
getarrow
/arcmid darc arrowpos mul def
/linewidth width def
dsize 0 eq
{ linesep 0 eq
{ 0 0 radius 0 darc dasharc }
{ gsave
linesep linewidth add setlinewidth
0 0 radius 0 darc dasharc
setbackgroundcolor
[] 0 setdash
linesep linewidth sub setlinewidth
0 0 radius 0 darc dasharc
grestore
} ifelse
}
{ linesep 0 eq
{ 0 0 radius 0 arcmid dasharc
0 0 radius arcmid darc dasharc
} {
gsave
linesep linewidth add setlinewidth
0 0 radius 0 arcmid dasharc
0 0 radius arcmid darc dasharc
setbackgroundcolor
[] 0 setdash
linesep linewidth sub setlinewidth
0 0 radius 0 darc dasharc
grestore
} ifelse
} ifelse
arcmid rotate
radius 0 translate
flip { 0 } { 180 } ifelse
witharrow { drawarrow } if
grestore
} def }
%
% #] arc2 :
% #[ dasharrowdoubleline :
%
\special{! /dasharrowdoubleline{
%
% arrowspec, arrowpos, flip, linesep, dsize,
% x1, y1, x2, y2, width, scale
% If linesep == 0, then single line, else double with separation linesep.
% Draws a dashed double straight line with arrow.
% If dsize==0, then continuous line.
% If linesep==0, then single line.
gsw
normalizeline
/dr ed
/dsize ed
/linesep ed
/flip ed
getarrow
%
% If linesep is negative, that means the arrow is flipped.
% But the lineend coordinates are already flipped, so there is
% no need to make any adjustment; i.e., replace linesep by
% absolute value.
/linesep setabs
/linewidth width def
linesep 0 eq {
0 0 dr 0 dashline
} {
gsave
linesep linewidth add setlinewidth 0 0 dr 0 dashline
setbackgroundcolor
[] 0 setdash
linesep linewidth sub setlinewidth 0 0 dr 0 newpath moveto lineto stroke
grestore
} ifelse
dr arrowpos mul 0 translate
flip { -90 }{ 90 } ifelse
witharrow { drawarrow } if
grestore
} def }
%
% #] dasharrowdoubleline :
% #[ vertex :
%
\special{! /vertex{
%
% Puts a fat dot at x,y size is the radius of the dot
%
gs
/dotsize ed
translate
newpath
0 0 dotsize 0 360 arc
fill stroke
grestore
} def }
%
% #] vertex :
% #[ ecirc :
%
\special{! /ecirc{
%
% Draws an anti-clockwise circle :
% x_center, y_center, radius
% Transparent interior
%
gsw /radius ed
translate % x and y are still on stack
newpath 0 0 radius 0 360 arc stroke
grestore
} def }
%
% #] ecirc :
% #[ ebox :
%
\special{! /ebox{
%
% Draws a transparent box x1,y1,x2,y2
%
gsw p2 p1
abox stroke
grestore
} def }
%
% #] ebox :
% #[ fbox :
%
\special{! /fbox{
%
% Draws a filled box x1,y1,x2,y2
%
gsw p2 p1
abox fill
grestore
} def }
%
% #] fbox :
% #[ triangle :
%
\special{! /triangle{
%
% Draws a triangle x1,y1,x2,y2,x3,y3
%
gsw p3 p2 p1
atriangle stroke
grestore
} def }
%
% #] triangle :
% #[ ftriangle :
%
\special{! /ftriangle{
%
% Draws a triangle x1,y1,x2,y2,x3,y3
%
gsw p3 p2 p1
atriangle fill
grestore
} def }
%
% #] ftriangle :
% #[ ellipse:
%
\special{! /ellipse {
% Draw an ellipse
% RedGrittyBrick 20/10/2003
% From http://www.redgrittybrick.org/postscript/ellipse.html. 2011/03/22
% draw an ellipse using four bezier curves
%
/r2 exch def % 2nd parameter
/r1 exch def % 1st parameter
/kappa 0.5522847498 def
%
newpath
0 r2 moveto % start point of curve
%
% top clockwise
kappa r1 mul r2 % 1st Bezier control point
r1 kappa r2 mul % 2nd Bezier control point
r1 0 curveto % end point of curve
%
% right clockwise
r1 kappa r2 mul neg
kappa r1 mul r2 neg
0 r2 neg curveto
%
% bottom clockwise
kappa r1 mul neg r2 neg
r1 neg kappa r2 mul neg
r1 neg 0 curveto
%
% left clockwise
r1 neg kappa r2 mul
kappa r1 mul neg r2
0 r2 curveto
%
} def % ellipse
}
%
% #] ellipse:
% #[ goval :
%
\special{! /goval{
%
% Draws a gray oval that overwrites whatever was there.
% x_center y_center height width rotation color linewidth scale
%
gsw /gcolor ed /angle ed /width ed /height ed
%
translate % x and y are still on stack
angle rotate
1 setgray width height ellipse fill
gcolor setgray width height ellipse fill
0 setgray width height ellipse stroke
grestore
} def }
%
% #] goval :
% #[ fcoval :
%
\special{! /foval{
%
% Draws an oval that overwrites whatever was there.
% x_center y_center height width rotation linewidth scale
%
gsw /angle ed /width ed /height ed
%
translate % x and y are still on stack
angle rotate
width height ellipse fill
grestore
} def }
%
% #] foval :
% #[ oval :
%
\special{! /oval{
%
% Draws an oval that does not overwrite whatever was there.
% x_center y_center height width rotation linewidth scale
%
gsw /angle ed /width ed /height ed
%
translate % x and y are still on stack
angle rotate
width height ellipse stroke
grestore
} def }
%
% #] oval :
% #[ polygon :
%
% Incoming stack:
% [array of x,y pairs] width scale
%
\special{! /polygon{
gsw /points ed
/ss points length 2 idiv 2 mul def
ss 4 gt {
newpath
points 0 get points 1 get moveto
0 2 ss 4 sub { /ii ed
/x1 points ii 2 add get def
/y1 points ii 3 add get def
x1 y1 lineto
} for
closepath
stroke
} if
grestore
} def }
%
% #] polygon :
% #[ filledpolygon :
%
% Incoming stack:
% [array of x,y pairs] width scale
%
\special{! /filledpolygon{
gsw /points ed
/ss points length 2 idiv 2 mul def
ss 4 gt {
newpath
points 0 get points 1 get moveto
0 2 ss 4 sub { /ii ed
/x1 points ii 2 add get def
/y1 points ii 3 add get def
x1 y1 lineto
} for
closepath
fill
} if
grestore
} def }
%
% #] filledpolygon :
% #[ makecurve :
%
\special{! /docurve{
x1 2 mul x2 add 3 div
y1 y0 sub x1 x0 sub div x2 x0 sub mul
y2 y0 sub x2 x0 sub div x1 x0 sub mul add
y1 add y0 2 mul add 3 div
x1 x2 2 mul add 3 div
y2 y3 sub x2 x3 sub div x1 x3 sub mul
y1 y3 sub x1 x3 sub div x2 x3 sub mul add
y2 add y3 2 mul add 3 div
x2 y2 curveto
} def }
%
\special{! /makecurve{
%
% Incoming stack:
% [array of x,y pairs] width scale
%
gsw /points ed
/ss points length 2 idiv 2 mul def
newpath
ss 4 gt {
/x1 points 0 get def
/y1 points 1 get def
/x2 points 2 get def
/y2 points 3 get def
/x3 points 4 get def
/y3 points 5 get def
/x0 x1 2 mul x2 sub def
/y0 y3 y2 sub x3 x2 sub div y2 y1 sub x2 x1 sub div sub 2 mul
x2 x1 sub dup mul x3 x1 sub div mul
y1 2 mul add y2 sub def
x1 y1 moveto
docurve
0 2 ss 8 sub { /ii ed
/x0 points ii get def
/y0 points ii 1 add get def
/x1 points ii 2 add get def
/y1 points ii 3 add get def
/x2 points ii 4 add get def
/y2 points ii 5 add get def
/x3 points ii 6 add get def
/y3 points ii 7 add get def
docurve
} for
/x0 points ss 6 sub get def
/y0 points ss 5 sub get def
/x1 points ss 4 sub get def
/y1 points ss 3 sub get def
/x2 points ss 2 sub get def
/y2 points ss 1 sub get def
/x3 x2 2 mul x1 sub def
/y3 y2 y1 sub x2 x1 sub div y1 y0 sub x1 x0 sub div sub 2 mul
x2 x1 sub dup mul x2 x0 sub div mul
y2 2 mul add y1 sub def
docurve
} {
ss 4 eq {
points 0 get points 1 get moveto
points 2 get points 3 get lineto
} if
} ifelse
stroke
grestore
} def }
%
% #] makecurve :
% #[ makedashcurve :
%
\special{! /makedashcurve{
%
% Incoming stack:
% [array of x,y pairs] dashsize width scale
%
gsw /dsize ed /points ed
/ss points length 2 idiv 2 mul def
newpath
ss 4 gt {
/x1 points 0 get def
/y1 points 1 get def
/x2 points 2 get def
/y2 points 3 get def
/x3 points 4 get def
/y3 points 5 get def
/x0 x1 2 mul x2 sub def
/y0 y3 y2 sub x3 x2 sub div y2 y1 sub x2 x1 sub div sub 2 mul
x2 x1 sub dup mul x3 x1 sub div mul
y1 2 mul add y2 sub def
x1 y1 moveto
docurve
0 2 ss 8 sub { /ii ed
/x0 points ii get def
/y0 points ii 1 add get def
/x1 points ii 2 add get def
/y1 points ii 3 add get def
/x2 points ii 4 add get def
/y2 points ii 5 add get def
/x3 points ii 6 add get def
/y3 points ii 7 add get def
docurve
} for
/x0 points ss 6 sub get def
/y0 points ss 5 sub get def
/x1 points ss 4 sub get def
/y1 points ss 3 sub get def
/x2 points ss 2 sub get def
/y2 points ss 1 sub get def
/x3 x2 2 mul x1 sub def
/y3 y2 y1 sub x2 x1 sub div y1 y0 sub x1 x0 sub div sub 2 mul
x2 x1 sub dup mul x2 x0 sub div mul
y2 2 mul add y1 sub def
docurve
} {
ss 4 eq {
points 0 get points 1 get moveto
points 2 get points 3 get lineto
} if
} ifelse
centerdash
stroke
grestore
} def }
%
\special{! /pathlength{
flattenpath
/dist 0 def
{ /yfirst ed /xfirst ed /ymoveto yfirst def /xmoveto xfirst def }
{ /ynext ed /xnext ed /dist dist ynext yfirst sub dup mul
xnext xfirst sub dup mul add sqrt add def
/yfirst ynext def /xfirst xnext def }
{}
{/ynext ymoveto def /xnext xmoveto def
/dist ynext yfirst sub dup mul
xnext xfirst sub dup mul add sqrt add def
/yfirst ynext def /xfirst xnext def }
pathforall
dist
} def }
%
\special{! /centerdash{
/pathlen pathlength def
/jj pathlen dsize div 2.0 div cvi def
/ddsize pathlen jj 2.0 mul div def
[ddsize] ddsize 2 div setdash
} def }
%
% #] makedashcurve :
% #[ logaxis :
%
\special{! /logaxis{
%
% Draws an axis from x1,y1 to x2,y2 with nl log divisions
% size of the hashes hs, offset F
% and width W. The stack looks like
% x1,y1,x2,y2,nl,hs,F,W,scale
% After the rotation the hash marks are on top if nl is positive and
% on the bottom if nl is negative
%
% Offset 0 or negative: replace by 1.
% Adjust by factors of 10 to be in range 1 to 10.
%
gsw /offset ed /hashsize ed /nlogs ed
normalizeline /rr ed
offset 0 le { /offset 1 def } if
/offset
offset ln 10 ln div
dup cvi sub
dup 0 lt { 1 add } if
def
/lsize rr nlogs div def
newpath
0 0 moveto
rr 0 lineto
0 1 nlogs 1 add {
offset sub lsize mul
dup -0.001 gt {
dup rr 0.001 add le {
dup 0 moveto
hashsize 1.2 mul lineto
} if
} if
} for
stroke
width 0.6 mul setlinewidth
newpath
0 1 nlogs { /x2 ed
2 1 9 {
ln 10 ln div x2 add
offset sub lsize mul
dup -0.001 gt {
dup rr 0.001 add le {
dup 0 moveto
hashsize 0.8 mul lineto
} if
} if
} for
} for
stroke
grestore
} def }
%
% #] logaxis :
% #[ linaxis :
%
\special{! /linaxis{
%
% x1,y1,x2,y2,num_decs,per_dec,hashsize,offset,width,scale
% Bad offset <= 0: change to 1.
%
gsw /offset ed /hashsize ed /perdec ed /numdec ed
normalizeline
/rr ed
/perdec
perdec round
dup 0 le { pop 1 } if
def
/offset offset
% Do real equivalent of offset perdec mod
dup cvi perdec idiv perdec mul
sub
dup 0 lt {perdec add} if
dup perdec ge {perdec sub} if
def
newpath
0 0 moveto
rr 0 lineto
/x1 rr numdec perdec mul div def
/y1 rr numdec div def
0 1 numdec 1 add
{ y1 mul offset x1 mul sub
dup -0.001 gt {
dup rr 0.001 add lt {
dup 0 moveto
hashsize 1.2 mul lineto
} if
} if
} for
stroke
width 0.6 mul setlinewidth
newpath
/offset offset dup cvi sub def
0 1 numdec perdec mul {
offset sub x1 mul
dup -0.001 ge {
dup rr 0.001 add le {
dup 0 moveto
hashsize 0.8 mul lineto
} if
} if
} for
stroke
grestore
} def }
%
% #] linaxis :
% #[ dashbezier :
%
\special{! /dashbezier{
%
% Draws a dashed Bezier with control points x1,y1,x2,y2,x3,y3,x4,y4
%
gsw /dsize ed p4 p3 p2 p1
dsize 0 ne {
/size x2 x1 sub y2 y1 sub x3 x1 sub y3 y1 sub x4 x1 sub y4 y1 sub
1 lengthofbezier def
/numdashes size dsize 2 mul div def
numdashes 0 eq { /numdashes 1 def } if
size dsize 2 mul numdashes mul sub abs
size dsize 2 mul numdashes 1 add mul sub abs
gt { /numdashes 1 add def } if
/dsize size numdashes 2 mul div def
[dsize dsize] dsize 2 div setdash
} if
abezier stroke
grestore
} def }
%
% #] dashbezier :
% #[ dashdoublebezier :
%
\special{! /dashdoublebezier{
%
% Draws a dashed Bezier with control points x1,y1,x2,y2,x3,y3,x4,y4
%
gsw /dsize ed /linesep ed
/flip ed
getarrow
p4 p3 p2 p1
/linewidth width def
/bsize x2 x1 sub y2 y1 sub x3 x1 sub y3 y1 sub x4 x1 sub y4 y1 sub
1 lengthofbezier def
dsize 0 ne {
/numdashes bsize dsize 2 mul div def
numdashes 0 eq { /numdashes 1 def } if
bsize dsize 2 mul numdashes mul sub abs
bsize dsize 2 mul numdashes 1 add mul sub abs
gt { /numdashes 1 add def } if
/dsize bsize numdashes 2 mul div def
[dsize dsize] dsize 2 div setdash
} if
linesep 0 ne {
linesep linewidth add setlinewidth abezier stroke
gsave
0 0 0 0 setcmykcolor
linesep linewidth sub setlinewidth abezier stroke
grestore
} {
abezier stroke
} ifelse
%
witharrow {
/tb arrowpos def
/tbmax 1 def /tbmin 0 def
{
/sizeb x2 x1 sub y2 y1 sub x3 x1 sub y3 y1 sub x4 x1 sub y4 y1 sub
tb lengthofbezier def
sizeb bsize div arrowpos sub abs 0.0001 le { exit } if
sizeb bsize div arrowpos gt
{ /tbmax tb def /tb tb tbmin add 2 div def }
{ /tbmin tb def /tb tb tbmax add 2 div def } ifelse
} loop
/ub 1 tb sub def
x1 ub ub ub mul mul mul tb x2 3 mul ub mul ub mul tb x3 3 mul ub mul
x4 tb mul add mul add mul add
y1 ub ub ub mul mul mul tb y2 3 mul ub mul ub mul tb y3 3 mul ub mul
y4 tb mul add mul add mul add translate
y4 tb dup mul mul y3 tb mul 2 3 tb mul sub mul add y2 ub mul 1 3 tb mul
sub mul add y1 ub dup mul mul sub 3 mul
x4 tb dup mul mul x3 tb mul 2 3 tb mul sub mul add x2 ub mul 1 3 tb mul
sub mul add x1 ub dup mul mul sub 3 mul
atan rotate
flip { -90 }{ 90 } ifelse
drawarrow
} if
%
grestore
} def }
%
% #] dashdoublebezier :
% #[ lengthofbezier :
%
% Calculates the length of a Bezier curve assuming that we start
% in the point 0,0. We use a Gaussian quadrature with 16 points.
% If, at any time, more precision is needed we have the 32 points
% numbers in axohelp.c. (and there is more commentary in that file)
%
\special{!
/g16x1 { 0.095012509837637440185 } def
/g16x2 { 0.281603550779258913230 } def
/g16x3 { 0.458016777657227386342 } def
/g16x4 { 0.617876244402643748447 } def
/g16x5 { 0.755404408355003033895 } def
/g16x6 { 0.865631202387831743880 } def
/g16x7 { 0.944575023073232576078 } def
/g16x8 { 0.989400934991649932596 } def
/g16w1 { 0.189450610455068496285 } def
/g16w2 { 0.182603415044923588867 } def
/g16w3 { 0.169156519395002538189 } def
/g16w4 { 0.149595988816576732081 } def
/g16w5 { 0.124628971255533872052 } def
/g16w6 { 0.095158511682492784810 } def
/g16w7 { 0.062253523938647892863 } def
/g16w8 { 0.027152459411754094852 } def
/onepoint {
/gpt ed
/tpt 1 gpt add 2 div tmax mul def
xc tpt mul xb add tpt mul xa add dup mul
yc tpt mul yb add tpt mul ya add dup mul
add sqrt
/tpt 1 gpt sub 2 div tmax mul def
xc tpt mul xb add tpt mul xa add dup mul
yc tpt mul yb add tpt mul ya add dup mul
add sqrt add 2 div
} def
/lengthofbezier {
/tmax ed
pp3 pp2 pp1
/xa xx1 3 mul def /xb xx2 xx1 2 mul sub 6 mul def
/xc xx3 xx2 xx1 sub 3 mul sub 3 mul def
/ya yy1 3 mul def /yb yy2 yy1 2 mul sub 6 mul def
/yc yy3 yy2 yy1 sub 3 mul sub 3 mul def
%
g16x1 onepoint g16w1 mul
g16x2 onepoint g16w2 mul add
g16x3 onepoint g16w3 mul add
g16x4 onepoint g16w4 mul add
g16x5 onepoint g16w5 mul add
g16x6 onepoint g16w6 mul add
g16x7 onepoint g16w7 mul add
g16x8 onepoint g16w8 mul add
tmax mul
} def
}
% #] lengthofbezier :
% #[ axogrid :
%
\special{! /axogrid{
gsw translate
/ny ed /nx ed /dy ed /dx ed
/maxx nx dx mul def
/maxy ny dy mul def
0 1 nx {
newpath dx mul dup 0 moveto maxy lineto stroke
} for
0 1 ny {
newpath maxx exch dy mul dup 0 exch moveto lineto stroke
} for
} def }
%
% #] axogrid :
}
% #] PostScript preamble :
% #[ axoparray : Puts an array of 2-dim points
%
% Puts a sequence of points in the notation (x1,y1)(x2,y2)....
% on the Postscript stack. This is for Curve and DashCurve.
%
\let\eind=]
%
\def\axoparray(#1,#2)#3{#1 \axoxo\space add #2 \axoyo\space add \ifx #3\eind\else
\expandafter\axoparray\fi#3}
%
% #] axoparray :
%
\fi
% #] Postscript specific :
% #[ PDF specific :
%
% Here are the routines that are used purely for the PDF output.
% The main concern here is the communication with the axohelp program.
%
\ifcase\axo@pdfoutput\else
%
% #[ getaxohelp :
%
% This is the command that makes the PDF work. Use as in
% getaxohelp{NameOfFunction}{parameters to be passed}
% The format is very precise. If axohelp is not happy there will
% be no output. The most common error is that the parameters are
% not separated by black spaces. Some \space might have to be inserted.
% The reason we do not separate the parameters by comma's is that
% both Postscript and PDF want their objects separated by blanks.
% Also a separation by blanks makes the parameters into separate
% arguments in the call to axohelp. Our colors need blanks....
%
%
\def\getoneline#1#2{%
% Set the command of name #1 to the next line of the file
% for which the input stream number is #2.
\def\tmpfh{#2}%
\ifeof\tmpfh
\else
\read\tmpfh to \tmpline
\fi
\ifeof\tmpfh
\@namedef{#1}{}%
\else
\expandafter \let \csname #1\endcsname = \tmpline
\fi
}
%
\def\getaxohelp#1#2{%
\def\axohelp{}%
\stepcounter{axo@objectIndex}%
\def\axo@currentInput{#1 #2;}%
\immediate\write\axo@spec{[\arabic{axo@objectIndex}]\space \axo@currentInput}%
\ifaxo@axohelpRerun%
\else%
\def\axo@currentInput{{#1 #2;}}%
\getoneline{axo@partOne}\axo@axohelpFile%
\catcode`\ =13%
\getoneline{axo@partTwo}\axo@axohelpFile%
\catcode`\ =10%
\getoneline{axo@partThree}\axo@axohelpFile%
\ifeof\axo@axohelpFile
\rlap{New object; rerun axohelp}%
\global\axo@axohelpReruntrue
\else
\ifthenelse{\equal{\axo@partTwo}{\axo@currentInput}}%
{% Current definition is same as the one processed
% by axohelp, so it is safe to use
\expandafter\def\expandafter\axohelp\axo@partThree%
}%
{%
\rlap{Changed object; rerun axohelp}%
\global\axo@axohelpReruntrue
}%
\fi
\fi%
}
%
% #] getaxohelp :
% #[ Use the axohelp output :
%
% Implement conversion of length unit from pt to bp by scaling
\def\contentspdf{q \axoscale\space 0 0 \axoscale\space 0 0 cm
0.99626401 0 0 0.99626401 0 0 cm
1 0 0 1 \axoxo\space \axoyo\space cm
\axohelp\space
Q}
\def\contentspdfNoOffset{q \axoscale\space 0 0 \axoscale\space 0 0 cm
0.99626401 0 0 0.99626401 0 0 cm
\axohelp\space
Q}
%
% #] Use the axohelp output :
%
\fi
% #] PDF specific :
% Process options now, after all potentially necessary commands have
% been defined. Use starred form, so that the options are processed
% in the order the user writes them. Also set defaults here.
\PSTextScalesLikeGraphicstrue
\canvasScaleObjectScale
\ProcessOptions*