%% $Id: pst-func.tex 920 2014-05-20 18:21:51Z herbert $ %% %% This is file `pst-func.tex', %% %% IMPORTANT NOTICE: %% %% Package `pst-func.tex' %% %% Herbert Voss %% %% This program can be redistributed and/or modified under the terms %% of the LaTeX Project Public License Distributed from CTAN archives %% in directory macros/latex/base/lppl.txt. %% %% DESCRIPTION: %% `pst-func' is a PSTricks package to plot special functions %% %% For a ChangeLog go the the end %% \csname PSTfuncLoaded\endcsname \let\PSTfuncLoaded\endinput % Requires some PSTricks packages \ifx\PSTricksLoaded\endinput\else \input pstricks.tex\fi \ifx\PSTnodesLoaded\endinput\else \input pst-plot.tex\fi \ifx\PSTmathLoaded\endinput \else \input pst-math.tex\fi \ifx\PSTtoolsLoaded\endinput \else \input pst-tools.tex\fi \ifx\PSTricksAddLoaded\endinput\else\input pstricks-add.tex\fi \ifx\PSTXKeyLoaded\endinput\else \input pst-xkey.tex \fi % \edef\PstAtCode{\the\catcode`\@} \catcode`\@=11\relax % interface to the `xkeyval' package \pst@addfams{pst-func} % \def\fileversion{0.82} \def\filedate{2016/05/01} \message{`PST-func' v\fileversion, \filedate\space (hv)} % \pstheader{pst-func.pro} %\pstheader{pst-math.pro}% for GAMMALN % % Shortcuts .... \def\ChebyshevT{ tx@FuncDict begin ChebyshevT end } \def\ChebyshevU{ tx@FuncDict begin ChebyshevU end } % \define@key[psset]{pst-func}{epsilon}[1.e-08]{\def\psk@epsilon{#1 }} \psset[pst-func]{epsilon=1.e-08} \define@key[psset]{pst-func}{xShift}[0]{\def\psk@xShift{#1}} \psset[pst-func]{xShift=0} % \define@key[psset]{pst-func}{cosCoeff}[0]{\def\psk@cosCoeff{#1}} \define@key[psset]{pst-func}{sinCoeff}[1]{\def\psk@sinCoeff{#1}} \psset[pst-func]{cosCoeff=0,sinCoeff=1} % coeff=a0 a1 a2 a3 ... % \def\psFourier{\@ifnextchar[{\psFourier@i}{\psFourier@i[]}} \def\psFourier@i[#1]#2#3{{% \pst@killglue \psset{#1} \psplot[algebraic=false]{#2}{#3}{% /type (cos) def /Fourier { aload length /n exch def n -1 roll 2 div n 1 roll % a0/2 n 1 sub -1 0 { /i exch def i x mul 180 mul 3.141592 div type (sin) eq {sin}{cos} ifelse mul n 1 roll } for n 1 sub -1 1 { pop add } for } def [\psk@cosCoeff] Fourier /type (sin) def [0 \psk@sinCoeff] Fourier add }% }\ignorespaces} % \define@key[psset]{pst-func}{coeff}[0 1]{\def\psk@coeff{#1}} \define@key[psset]{pst-func}{Derivation}[0]{\def\psk@Derivation{#1}} \define@boolkey[psset]{pst-func}[Pst@]{markZeros}[true]{} \define@key[psset]{pst-func}{epsZero}[0.1]{\def\psk@epsZero{#1}} \define@key[psset]{pst-func}{dZero}[0.1]{\def\psk@dZero{#1}} \define@key[psset]{pst-func}{zeroLineTo}[-1]{\def\psk@zeroLineTo{#1}} \define@key[psset]{pst-func}{zeroLineColor}[black]{\pst@getcolor{#1}\psk@zeroLineColor} \newdimen\psk@zeroLineWidth \define@key[psset]{pst-func}{zeroLineWidth}[0.5\pslinewidth]{\pssetlength\psk@zeroLineWidth{#1}} \define@key[psset]{pst-func}{zeroLineStyle}[dashed]{% \@ifundefined{psls@#1}% {\@pstrickserr{Line style `#1' not defined}\@eha}% {\edef\psk@zeroLineStyle{#1}}% } \psset[pst-func]{% coeff=0 1, % coeff=a0 a1 a2 a3 ... Derivation=0, % 0 is the original function markZeros=false,% no dots for the zeros epsZero=0.1, % the distance between two zero points dZero=0.1, % the distance of the x value for scanning the function zeroLineTo=-1, % a line to the value of the lineTo's Derivation (-1= none) zeroLineStyle=dashed,% zeroLineWidth=0.5\pslinewidth,% zeroLineColor=black}% % \def\psGetZeros{\pst@object{psGetZeros}} \def\psGetZeros@i(#1,#2)#3{% \pst@killglue \begin@SpecialObj \use@par \typeout{>>> GetZeros}% \addto@pscode{ tx@FuncDict begin /xStart #1 def /xEnd #2 def /x xStart def /func { /x exch def \ifPst@algebraic (#3) AlgParser cvx exec \else #3 \fi } def #1 Steffensen \ifPst@markZeros \fi end }% \end@SpecialObj \ignorespaces } \iffalse /Steffensen {% the start value and the function must be on top of the stack /y0 exch def % the start value /Iter 0 def /MaxIter 200 def { y0 Function /F exch def F abs eps2 lt { exit } if y0 F sub /Phi exch def Phi Function /F2 exch def F2 abs eps2 le { exit }{ Phi y0 sub dup mul Phi F2 sub 2 Phi mul sub y0 add Div /Diff exch def y0 Diff sub /y0 exch def Diff abs eps1 le { exit } if } ifelse /Iter Iter 1 add def Iter MaxIter gt { exit } if } loop y0 % the returned value ist the zero point 0 \tx@ScreenCoor pstack 3 0 360 arc gsave 0 0 1 setrgbcolor fill grestore 1 setlinewidth stroke } def \fi % \def\psPolynomial{\pst@object{psPolynomial}} \def\psPolynomial@i#1#2{% \pst@killglue% \begingroup% \use@par% \@nameuse{beginplot@\psplotstyle}% \gdef\psplot@init{}% \@nameuse{testqp@\psplotstyle}% \addto@pscode{% tx@FuncDict begin /coeff [ \psk@coeff ] def /x0 #1 def /x1 #2 def /dx x1 x0 sub \psk@plotpoints\space div def /Derivation \psk@Derivation\space def /x x0 def \ifPst@markZeros 5 dict begin % hold all local! gsave \pst@number\psk@zeroLineWidth SLW \pst@usecolor\psk@zeroLineColor \psk@epsZero\space \psk@dZero\space FindZeros aload length { % zero array is on stack /xZero exch def xZero \pst@number\psxunit mul /xPixel exch def \psk@dotsize \@nameuse{psds@\psk@dotstyle}% xPixel 0 Dot \psk@zeroLineTo\space 0 ge { % line to function \psk@lineTo xPixel 0 moveto xZero coeff \psk@zeroLineTo\space FuncValue \pst@number\psyunit mul xPixel exch L \@nameuse{psls@\psk@zeroLineStyle} } if } repeat grestore end \fi /xy { x \psk@xShift\space sub coeff Derivation FuncValue \pst@number\psyunit mul x \pst@number\psxunit mul exch } def xy moveto }% \if@pst% lines and dots \psPolynomial@iii% \else% curves \psPolynomial@ii% \fi% \endgroup \ignorespaces} % \def\psPolynomial@ii{% \addto@pscode{% xy \@nameuse{beginqp@\psplotstyle} \psk@plotpoints { xy \@nameuse{doqp@\psplotstyle} /x x dx add def } repeat xy \@nameuse{doqp@\psplotstyle} end }% \@nameuse{endqp@\psplotstyle}% } \def\psPolynomial@iii{% curves \addto@pscode{% mark /n 2 def \psk@plotpoints { xy n 2 roll /n n 2 add def /x x dx add def } repeat /x x1 def xy n 2 roll end }% \@nameuse{endplot@\psplotstyle}% } % % Bessel 2004-06-08 % Manuel Luque, Herbert Voss % Look at the end for some more documentation about the algorithm % \define@key[psset]{pst-func}{constI}[1]{\def\psk@constI{#1 }} \define@key[psset]{pst-func}{constII}[0]{\def\psk@constII{#1 }} \psset{constI=1,constII=0} % \def\psBessel{\@ifnextchar[{\psBessel@i}{\psBessel@i[]}} \def\psBessel@i[#1]#2#3#4{{%%% #2 = n \pst@killglue \psset{plotpoints=500}% \psset{#1}% \parametricplot{#3}{#4}{% /J1 0 def /k { 57.29577951 mul } def /xBessel t k def 0 0.1 180 { /tB exch k def /J1 J1 0.1 xBessel tB sin mul tB #2\space mul sub cos mul add def } for t J1 180 div \psk@constI mul \psk@constII add }% }\ignorespaces} % % \def\psModBessel{\@ifnextchar[{\psModBessel@i}{\psModBessel@i[]}}%% hv 20111021 \def\psModBessel@i[#1]#2#3{{%%% #2 = n \pst@killglue% \psset{nue=0,#1}% \psplot{#2}{#3}[ /nue \psk@nue def /epsilon 1e-20 def ]{% /Sum 0 def /Iter 0 def {/Sum_Iter x dup mul 4 div Iter exp % nominator nue Iter add 1 add GAMMA Iter tx@AddMathFunc begin ! end mul % denominator Div def Sum_Iter abs epsilon lt { exit } if /Sum Sum Sum_Iter add def /Iter Iter 1 add def } loop x 0.5 mul nue exp Sum mul }% }\ignorespaces} % \define@key[psset]{pst-func}{sigma}[0.5]{\def\psk@sigma{#1 }} \define@key[psset]{pst-func}{mue}[0]{\def\psk@mue{#1 }} \define@key[psset]{pst-func}{nue}[1]{\def\psk@nue{#1 }} \psset[pst-func]{sigma=0.5,mue=0,nue=1} % \def\psGauss{\@ifnextchar[{\psGauss@i}{\psGauss@i[]}} \def\psGauss@i[#1]#2#3{{% \pst@killglue% \psset{plotpoints=200}% \psset{#1}% \psplot[algebraic=false]{#2}{#3}{% Euler x \psk@mue sub dup mul 2 div \psk@sigma dup mul div neg exp 1.0 \psk@sigma div TwoPi sqrt div mul% }% }\ignorespaces} % \define@key[psset]{pst-func}{Simpson}[5]{\def\psk@Simpson{#1 }} \psset[pst-func]{Simpson=5} % \def\psGaussI{\pst@object{psGaussI}} \def\psGaussI@i#1#2{% \addbefore@par{plotpoints=200,plotstyle=line} \begin@OpenObj% \addto@pscode{ /a #1 def /dx #2 #1 sub \psk@plotpoints\space div def /b a dx add def /scx { \pst@number\psxunit mul } def /scy { \pst@number\psyunit mul } def tx@FuncDict begin /C 1 \psk@sigma div TwoPi sqrt div def /SFunc {% x on Stack Euler exch \psk@mue\space sub dup mul 2 div \psk@sigma\space dup mul div neg exp C mul } def end % a scx 0 moveto a scx 0 \@nameuse{beginqp@\psplotstyle} \psk@plotpoints 1 sub { a b \psk@Simpson % a b M on Stack tx@FuncDict begin Simpson I end % y value on stack scy b scx exch \@nameuse{doqp@\psplotstyle} %lineto /b b dx add def } repeat % stroke }% \end@OpenObj% } % \def\psSi{\pst@object{psSi}} \def\psSi@i#1#2{% \begin@OpenObj% \addto@pscode{ /x #1 def /dx #2 #1 sub \psk@plotpoints\space div def /scx { \pst@number\psxunit mul } def /scy { \pst@number\psyunit mul } def x scx x tx@FuncDict begin Si end scy moveto \psk@plotpoints 1 sub { x dup scx exch tx@FuncDict begin Si end scy lineto /x x dx add def } repeat stroke }% \end@OpenObj% } \def\pssi{\pst@object{pssi}} \def\pssi@i#1#2{% \begin@OpenObj% \addto@pscode{ /x #1 def /dx #2 #1 sub \psk@plotpoints\space div def /scx { \pst@number\psxunit mul } def /scy { \pst@number\psyunit mul } def x scx x tx@FuncDict begin si end scy moveto \psk@plotpoints 1 sub { x dup scx exch tx@FuncDict begin si end scy lineto /x x dx add def } repeat stroke }% \end@OpenObj% } % \def\psCi{\pst@object{psCi}} \def\psCi@i#1#2{% \begin@OpenObj% \addto@pscode{ /x #1 def /dx #2 #1 sub \psk@plotpoints\space div def /scx { \pst@number\psxunit mul } def /scy { \pst@number\psyunit mul } def x scx x tx@FuncDict begin Ci end scy moveto \psk@plotpoints 1 sub { x dup scx exch tx@FuncDict begin Ci end scy lineto /x x dx add def } repeat stroke }% \end@OpenObj% } \def\psci{\pst@object{psci}} \def\psci@i#1#2{% \begin@OpenObj% \addto@pscode{ /x #1 def /dx #2 #1 sub \psk@plotpoints\space div def /scx { \pst@number\psxunit mul } def /scy { \pst@number\psyunit mul } def x scx x tx@FuncDict begin ci end scy moveto \psk@plotpoints 1 sub { x dup scx exch tx@FuncDict begin ci end scy lineto /x x dx add def } repeat stroke }% \end@OpenObj% } % \define@key[psset]{pst-func}{PSfont}[Times-Roman]{\def\psk@PSfont{/#1 }} \define@key[psset]{pst-func}{valuewidth}[10]{\pst@getint{#1}\psk@valuewidth } \define@key[psset]{pst-func}{fontscale}[10]{\pst@checknum{#1}\psk@fontscale } \define@key[psset]{pst-func}{decimals}[-1]{\pst@getint{#1}\psk@decimals } \psset[pst-func]{PSfont=Times-Roman,fontscale=10,valuewidth=10,decimals=-1} % \def\psPrintValue{\pst@object{psPrintValue}} \def\psPrintValue@i#1{\expandafter\psPrintValue@ii#1,,\@nil} \def\psPrintValue@ii#1,#2,#3\@nil{% #1,#2 only for algebraic code \begin@SpecialObj \addto@pscode{ gsave \psk@PSfont findfont \psk@fontscale scalefont setfont \ifPst@algebraic /x #1 def /Func (#2) tx@AlgToPs begin AlgToPs end cvx def Func \else #1 \fi \psk@decimals -1 gt { 10 \psk@decimals exp dup 3 1 roll mul cvi exch div } if \psk@valuewidth string cvs %/Output exch def % save output \ifPst@comma dot2comma \fi % do we have to change dot to comma \psk@xShift\space 0 moveto %Output show grestore }% \end@SpecialObj% } \define@boolkey[psset]{pst-func}[Pst@]{round}[true]{}% \define@boolkey[psset]{pst-func}[Pst@]{science}[true]{% \ifPst@science\def\psk@Scin{true }\else\def\psk@Scin{false }\fi} \psset[pst-func]{science=false,round=false} \def\psPrintValueNew{\pst@object{psPrintValueNew}} \def\psPrintValueNew@i#1{\expandafter\psPrintValueNew@ii#1,,\@nil} \def\psPrintValueNew@ii#1,#2,#3\@nil{% #1,#2 only for algebraic code \begin@SpecialObj \addto@pscode{ % thanks to Buddy Ledger /mfont { \psk@PSfont findfont \psk@fontscale scalefont setfont } bind def /mfontexp { \psk@PSfont findfont \psk@fontscale 1.2 div scalefont setfont } bind def /s1 { /Symbol findfont \psk@fontscale scalefont setfont } bind def \ifPst@algebraic /x #1 def /Func (#2) tx@AlgToPs begin AlgToPs end cvx def Func \else #1 \fi /value ED \psk@Scin { value 0 ne { value log floor cvi /expon ED }{ /expon 0 def } ifelse value 10 expon exp div \psk@decimals -1 gt { 10 \psk@decimals exp dup 3 1 roll mul \ifPst@round round \else cvi \fi exch div } if \psk@decimals 0 eq { cvi } if /numb ED expon \psk@valuewidth string cvs /expon exch def numb \psk@valuewidth string cvs \ifPst@comma dot2comma \fi % do we have to change dot to comma /Output exch def /txspc \psk@fontscale 4 div def \psk@xShift\space 0 moveto mfont Output show txspc 0 rmoveto s1 (\string\264) show txspc 0 rmoveto mfont (10) show txspc 2 div txspc 1.5 mul rmoveto mfontexp expon show } { value \psk@decimals -1 gt { 10 \psk@decimals exp dup 3 1 roll mul \ifPst@round round \else cvi \fi exch div } if \psk@decimals 0 eq { cvi } if %inserted to handle decimals=0 \psk@valuewidth string cvs \ifPst@comma dot2comma \fi % do we have to change dot to comma \psk@xShift\space 0 moveto mfont %Output show } ifelse }% \end@SpecialObj% } % % Integrals 2006-01-16 % Jose-Emilio Vila-Forcen, Herbert Voss % \def\psCumIntegral{\pst@object{psCumIntegral}} \def\psCumIntegral@i#1#2#3{% \begin@OpenObj% \addto@pscode{ /a #1 def /dx #2 #1 sub \psk@plotpoints\space div def /b a dx add def /scx { \pst@number\psxunit mul } def /scy { \pst@number\psyunit mul } def tx@FuncDict begin /SFunc { #3 } def end a scx 0 moveto \psk@plotpoints 1 sub { a b \psk@Simpson % a b M on Styack tx@FuncDict begin Simpson I end % y value on stack scy b scx exch lineto /b b dx add def } repeat % stroke }% % \psk@fillstyle% % \pst@stroke% \end@OpenObj% } % \def\psIntegral{\pst@object{psIntegral}} \def\psIntegral@i#1#2(#3,#4)#5{% \begin@OpenObj% \addto@pscode{ /a #3 def /dx #4 #3 sub \psk@plotpoints\space div def /b #4 def /aa #1 def /dd #2 #1 sub \psk@plotpoints\space div def /t aa dd add def /scx { \pst@number\psxunit mul } def /scy { \pst@number\psyunit mul } def tx@FuncDict begin /SFunc { t #5 } def end a b \psk@Simpson % a b M on Stack tx@FuncDict begin Simpson I end % y value on stack scy t scx exch moveto /t t dd add def \psk@plotpoints 1 sub { a b \psk@Simpson % a b M on Stack tx@FuncDict begin Simpson I end % y value on stack scy t scx exch lineto /t t dd add def } repeat % stroke }% % \psk@fillstyle% % \pst@stroke% \end@OpenObj% } % \def\psConv{\@ifnextchar[{\psConv@i}{\psConv@i[]}} \def\psConv@i[#1]#2#3(#4,#5)#6#7{% \psIntegral[#1]{#2}{#3}(#4,#5){pop pop x #6\space x t neg add #7\space mul}% }% % \define@boolkey[psset]{pst-func}[Pst@]{printValue}[true]{} \define@key[psset]{pst-func}{barwidth}[1]{\def\psFunc@barwidth{#1 }}% a factor, not a dimen \psset[pst-func]{printValue=false,barwidth=1} % \def\psBinomial{\pst@object{psBinomial}} \def\psBinomial@i#1#2{\psBinomial@ii#1,,,\@nil{#2}}% \def\psBinomial@ii#1,#2,#3,#4\@nil#5{% \def\pst@tempA{#2}% \ifx\pst@tempA\@empty \psBinomial@iii{0}{#1}{#1}{#5}% \else \def\pst@tempA{#3}% \ifx\pst@tempA\@empty\psBinomial@iii{#1}{#2}{#2}{#5}% \else\psBinomial@iii{#1}{#2}{#3}{#5}\fi \fi}% \def\psBinomial@iii#1#2#3#4{% \begin@OpenObj% \addto@pscode{ /scx { \pst@number\psxunit mul } def /scy { \pst@number\psyunit mul } def /m #1 def /n #2 def /N #3 def /p #4 def /dx \psFunc@barwidth 2 div def /q 1 p sub def /kOld dx neg m add def kOld scx 0 moveto % starting point 0 1 m 1 sub { /k exch def % save loop variable k 0 eq { /Y q N exp def } { /Y Y N k sub 1 add mul k div p mul q div def } ifelse } for m 1 n { % n-m+1 times /k exch def % save loop variable k 0 eq { /Y q N exp def } { /Y Y N k sub 1 add mul k div p mul q div def } ifelse % recursive definition kOld scx Y scy L k dx add scx Y scy L \ifPst@markZeros k dx add scx 0 L kOld 1 add scx 0 L \fi \ifPst@printValue gsave \psk@PSfont findfont \psk@fontscale scalefont setfont Y \psk@valuewidth string cvs \ifPst@comma dot2comma \fi k scx \psk@fontscale 2 div add Y scy \pst@number\pslabelsep add moveto 90 rotate show grestore \fi /kOld kOld 1 add def } for \ifPst@markZeros\else k dx add scx 0 L \fi % last line down to x-axis }% % \psk@fillstyle% % \pst@stroke% \end@OpenObj% }% % \def\psBinomialN{\pst@object{psBinomialN}} \def\psBinomialN@i#1#2{% \leavevmode \pst@killglue \begingroup \use@par \init@pscode \def\cplotstyle{curve}% \ifx\psplotstyle\cplotstyle \@nameuse{beginplot@\psplotstyle} \fi% \addto@pscode{ \ifx\psplotstyle\cplotstyle /Curve true def \else /Curve false def \fi /scx { \pst@number\psxunit mul } def /scy { \pst@number\psyunit mul } def /N #1 def /p #2 def % probability /q 1 p sub def /E N p mul def /sigma E q mul sqrt def % variant /dx 1.0 sigma div 2 div def /xOld dx neg E sub sigma div def /xEnd xOld neg dx add scx def Curve { /Coors [xOld dx sub scx 0] def }% saves the coordinates for curve { xOld scx 0 moveto } % starting point ifelse 0 1 N { % N times /k exch def % save loop variable k 0 eq { /Y q N exp def } { /Y Y N k sub 1 add mul k div p mul q div def } ifelse % recursive definition /x k E sub sigma div dx add def /y Y sigma mul def % normalize Curve { x dx sub scx y scy Coors aload length 2 add array astore /Coors exch def} { xOld scx y scy L x scx y scy L \ifPst@markZeros x scx 0 L \fi % } ifelse \ifPst@printValue gsave \psk@PSfont findfont \psk@fontscale scalefont setfont y \psk@valuewidth string cvs %/Output exch def \ifPst@comma dot2comma \fi % do we have to change dot to comma x dx sub scx \psk@fontscale 2 div add y scy \pst@number\pslabelsep add moveto 90 rotate show grestore \fi /xOld x def } for Curve { [ xEnd 0 Coors aload pop } if % showpoints on top of the stack }% \ifx\psplotstyle\cplotstyle\@nameuse{endplot@\psplotstyle}\else% \psk@fillstyle% \pst@stroke% \fi% \use@pscode% \endgroup% \ignorespaces% } % \def\psPoisson{\pst@object{psPoisson}}% with contributions from Gerry Coombes \def\psPoisson@i#1#2{\psPoisson@ii#1,,\@nil{#2}}% \def\psPoisson@ii#1,#2,#3\@nil#4{% \def\pst@tempA{#2}% \ifx\pst@tempA\@empty\psPoisson@iii{0}{#1}{#4}\else \psPoisson@iii{#1}{#2}{#4}\fi}% \def\psPoisson@iii#1#2#3{% M N lambda \begin@OpenObj% \addto@pscode{ /scx { \pst@number\psxunit mul } def /scy { \pst@number\psyunit mul } def /M #1 def /N #2 def /lambda #3 def /elambda Euler #3 neg exp def % e^-lambda /dx \psFunc@barwidth 2 div def /kOld dx neg M add def % addition of M here kOld scx 0 moveto % starting point /Y elambda def % start value 0 1 M 1 sub { % skip over first M-1 rectangles /k exch def % whilst recursing probabilities k 0 eq { /Y elambda def }{ /Y Y lambda mul k div def } ifelse } for % nothing happens if M=0 M 1 N { % N-M+1 times /k exch def % save loop variable k 0 eq { /Y elambda def }{ /Y Y lambda mul k div def } ifelse kOld scx Y scy L k dx add scx Y scy L \ifPst@markZeros k dx add scx 0 L \fi \ifPst@printValue gsave \psk@PSfont findfont \psk@fontscale scalefont setfont Y \psk@valuewidth string cvs %/Output exch def \ifPst@comma dot2comma \fi % do we have to change dot to comma k scx \psk@fontscale 2 div add Y scy \pst@number\pslabelsep add moveto 90 rotate show grestore \fi /kOld kOld 1 add def \ifPst@markZeros kOld scx 0 moveto \fi } for \ifPst@markZeros \else k dx add scx 0 L \fi % last line down to x-axis }% % \psk@fillstyle % \pst@stroke \end@OpenObj% } % \define@key[psset]{pst-func}{alpha}[0.5]{\pst@checknum{#1}\psk@alpha } \define@key[psset]{pst-func}{beta}[0.5]{\pst@checknum{#1}\psk@beta } \psset[pst-func]{alpha=0.5,beta=0.5} % \def\psGammaDist{\pst@object{psGammaDist}} \def\psGammaDist@i#1#2{% \ifdim#1pt<\z@ \psframebox*{\color{red}!!!\#1 must be greater than 0!!!} \else \addbefore@par{plotpoints=500,alpha=0.5,beta=0.5}% \begin@OpenObj \psplot[algebraic=false]{#1}{#2}{ \psk@beta x mul \psk@alpha exp x div Euler \psk@beta neg x mul \psk@alpha GAMMALN sub exp mul} \end@OpenObj% \fi% \ignorespaces% } % \def\psBetaDist{\pst@object{psBetaDist}} \def\psBetaDist@i#1#2{% \ifdim#1pt<\z@ \psframebox*{\color{red}!!!\#1 must be greater than 0!!!} \else \addbefore@par{plotpoints=200,alpha=1,beta=1}% \begin@OpenObj \psplot[algebraic=false]{#1}{#2}{ \psk@beta \psk@alpha add GAMMA \psk@beta GAMMA \psk@alpha GAMMA mul div 1 x sub \psk@beta 1.0 sub exp mul x \psk@alpha 1.0 sub exp mul } \end@OpenObj% \fi% \ignorespaces% } % \def\psChiIIDist{\pst@object{psChiIIDist}} \def\psChiIIDist@i#1#2{% \addbefore@par{plotpoints=500,nue=1}% \begin@OpenObj % \ifdim\psk@nue pt<\z@ \psframebox*{\color{red}!!!nue must be greater than 0!!!} % \else \psplot[algebraic=false]{#1}{#2}{% x 2 div \psk@nue 2 div exp x div Euler -0.5 x mul \psk@nue 2 div GAMMALN sub exp mul }% % \fi% \end@OpenObj% \ignorespaces% } % \def\psTDist{\pst@object{psTDist}} \def\psTDist@i#1#2{% \leavevmode \pst@killglue \begingroup \addbefore@par{plotpoints=500}% \use@par \ifdim\psk@nue pt<\z@ \psframebox*{\color{red}!!!nue must be greater than 0!!!} \else \psplot[algebraic=false]{#1}{#2}{ 1 x 2 exp \psk@nue div 1 add \psk@nue 1 add 2 div exp div \psk@nue Pi mul sqrt div Euler \psk@nue 1 add 2 div GAMMALN \psk@nue 2 div GAMMALN sub exp mul }% \fi% \endgroup% \ignorespaces% } % \def\psFDist{\pst@object{psFDist}} \def\psFDist@i#1#2{% \ifdim#1pt<\z@ \psframebox*{\color{red}!!!\#1 must be greater than 0!!!} \else \leavevmode \pst@killglue \begingroup \addbefore@par{plotpoints=500,mue=1}% \use@par \psplot[algebraic=false]{#1}{#2}{ x \psk@mue mul \psk@nue div dup \psk@mue 2 div exp x div exch 1 add \psk@mue \psk@nue add 2 div exp div Euler \psk@mue \psk@nue add 2 div GAMMALN \psk@mue 2 div GAMMALN sub \psk@nue 2 div GAMMALN sub exp mul }% \endgroup% \fi% \ignorespaces% } % \define@key[psset]{pst-func}{m}[0]{\def\psk@cauchy@m{#1 }} \define@key[psset]{pst-func}{b}[1]{\def\psk@cauchy@b{#1 }} \psset[pst-func]{m=0,b=1} % \def\psCauchy{\pst@object{psCauchy}} \def\psCauchy@i#1#2{{% \pst@killglue% \addbefore@par{plotpoints=200}% \use@par% \psplot[algebraic=false]{#1}{#2}{ \psk@cauchy@b dup dup mul x \psk@cauchy@m sub dup mul add div Pi div }% }\ignorespaces} % \def\psCauchyI{\pst@object{psCauchyI}} \def\psCauchyI@i#1#2{{% \pst@killglue% \addbefore@par{plotpoints=200}% \use@par% \psplot[algebraic=false]{#1}{#2}{ x \psk@cauchy@m sub \psk@cauchy@b div ATAN1 DegtoRad Pi div 0.5 add }% }\ignorespaces} % \def\psWeibull{\pst@object{psWeibull}} \def\psWeibull@i#1#2{% \addbefore@par{plotpoints=500,alpha=1,beta=1}% \begin@OpenObj \def\pst@tempA{#1}% \ifdim#1pt<\z@ \psline(#1,0)(0,0)\def\pst@tempA{0}\fi \psplot[algebraic=false]{\pst@tempA}{#2}{ \psk@alpha \psk@beta \psk@alpha neg exp mul % alpha*beta^(-alpha) x \psk@alpha 1 sub exp % x^(alpha-1) mul Euler x \psk@beta div \psk@alpha exp neg exp % e^(-(x/beta)^alpha)) mul } \end@OpenObj% \ignorespaces% } \def\psWeibullI{\pst@object{psWeibullI}} \def\psWeibullI@i#1#2{% \addbefore@par{plotpoints=500,alpha=1,beta=1}% \begin@OpenObj \def\pst@tempA{#1}% \ifdim#1pt<\z@ \psline(#1,0)(0,0)\def\pst@tempA{0}\fi \psplot[algebraic=false]{\pst@tempA}{#2}{ 1 Euler x \psk@beta div \psk@alpha exp neg exp % e^(-(x/beta)^alpha)) sub }% \end@OpenObj% \ignorespaces% } % \define@key[psset]{pst-func}{pd}[0.22]{\pst@checknum{#1}\psk@probability } \define@key[psset]{pst-func}{R2}[0.11]{\pst@checknum{#1}\psk@portfolio } \psset[pst-func]{pd=0.22,R2=0.11} % \def\psVasicek{\pst@object{psVasicek}} \def\psVasicek@i#1#2{% \addbefore@par{plotpoints=500}% \begin@OpenObj \psplot{#1}{#2}[/pd \psk@probability\space def /R2 \psk@portfolio\space def ]{x tx@FuncDict begin vasicek end} \end@OpenObj% \ignorespaces% } \define@boolkey[psset]{pst-func}[Pst@]{Gini}[true]{} \psset[pst-func]{Gini=false} % \def\psLorenz{\pst@object{psLorenz}} \def\psLorenz@i#1{{% % \readdata{\L@Data}{#1}% \if@star\addto@par{fillstyle=solid,fillcolor=\pslinecolor}\fi \use@par% \iffalse \def\Lorenz@code{ /D {} def [ \L@Data\space counttomark dup 1 sub /m ED 2 div cvi /n ED % m=0..n-1 n=number of pairs ] /xyValues ED /Xval [] def /Yval [] def /Xmax 0 def /Xsum 0 def /Ysum 0 def /XYsum 0 def xyValues aload pop % [ x y x y x y ... ] n { 2 copy mul XYsum add /XYsum ED dup Yval aload length 1 add array astore /Yval ED Ysum add /Ysum ED dup Xval aload length 1 add array astore /Xval ED dup Xsum add /Xsum ED dup Xmax gt { /Xmax ED }{ pop } ifelse } repeat Xval bubblesort /Xval ED Yval bubblesort /Yval ED Xval { Xmax div } forall n array astore /XvalRelMax ED Xval { Xsum div } forall n array astore /XvalRel ED Yval { Ysum div } forall n array astore /YvalRel ED 0 1 n 1 sub { cvi /Index ED Xval Index get Yval Index get mul } for n array astore /XmulY ED XmulY aload length 1 sub { add } repeat /XmulYsum ED XmulY { XmulYsum div } forall n array astore /XmulYdivXmulYsum ED /X [0] def /Y [0] def /Xsum 0 def /Ysum 0 def 0 1 n 1 sub { /Index ED % XvalRel Index get Xsum add /Xsum ED % X aload length 1 add Xsum exch array astore /X ED X aload length 1 add XvalRelMax Index get exch array astore /X ED %% XmulYdivXmulYsum Index get Ysum add /Ysum ED Y aload length 1 add Ysum exch array astore /Y ED } for \ifPst@Gini 0 % start value for Gini 0 1 X length 2 sub { /Index ED Y Index get Y Index 1 add get add 2 div % yHeight=(y0+y1)/2 X Index 1 add get X Index get sub abs % xWidth=x1-x0 mul % x*y add } for 2 mul 1 sub neg % triangle area divided by the area under the polygon \psk@PSfont findfont \psk@fontscale scalefont setfont \psk@decimals -1 gt { 10 \psk@decimals exp dup 3 1 roll mul cvi exch div } if \psk@valuewidth string cvs %/Output exch def % save output \ifPst@comma dot2comma \fi % do we have to change dot to comma /Output ED \psk@xShift\space -30 moveto (Gini: ) show Output show \fi 0 1 n { dup X exch get exch Y exch get } for \if@star 1 0 0 0 \fi % add values for the closed curve }% filling the area under the curve. \fi %%%%%%%%%%%%%%%%%%%%%%5 \def\Lorenz@code{ [ #1 ] dup length /n ED bubblesort /Yval ED [ 1 1 n { } for ] /Xval ED /Xsum n dup 1 add mul 2 div cvi def /Ysum 0 def /XYsum 0 def 0 Yval { add } forall /Ysum ED Xval { n div } forall n array astore /XvalRelMax ED Xval { Xsum div } forall n array astore /XvalRel ED Yval { Ysum div } forall n array astore /YvalRel ED 0 1 n 1 sub { /Index ED Xval Index get Yval Index get mul } for n array astore /XmulY ED XmulY aload length 1 sub { add } repeat /XmulYsum ED XmulY { XmulYsum div } forall n array astore /XmulYdivXmulYsum ED /X [0] def /Y [0] def /Xsum 0 def /Ysum 0 def 0 1 n 1 sub { /Index ED % XvalRel Index get Xsum add /Xsum ED % X aload length 1 add Xsum exch array astore /X ED X aload length 1 add XvalRelMax Index get exch array astore /X ED %% XmulYdivXmulYsum Index get Ysum add /Ysum ED Y aload length 1 add Ysum exch array astore /Y ED } for \ifPst@Gini 0 % start value for Gini 0 1 X length 2 sub { /Index ED Y Index get Y Index 1 add get add 2 div % yHeight=(y0+y1)/2 X Index 1 add get X Index get sub abs % xWidth=x1-x0 mul % x*y add } for 2 mul 1 sub neg % triangle area divided by the area under the polygon \psk@PSfont findfont \psk@fontscale scalefont setfont \psk@decimals -1 gt { 10 \psk@decimals exp dup 3 1 roll mul cvi exch div } if \psk@valuewidth string cvs %/Output exch def % save output \ifPst@comma dot2comma \fi % do we have to change dot to comma /Output ED \psk@xShift\space -30 moveto (Gini: ) show Output show \fi 0 1 n { dup X exch get exch Y exch get } for \if@star 1 0 0 0 \fi % add values for the closed curve }% filling the area under the curve. \if@star\listplot*{\Lorenz@code}\else\listplot{\Lorenz@code}% % \listplot[plotstyle=bezier,linecolor=red]{\Lorenz@code} \fi% }\ignorespaces} % % Superellipese / Lamefunction \define@key[psset]{pst-func}{radiusA}[1]{\pst@getlength{#1}\pst@radiusA} \define@key[psset]{pst-func}{radiusB}[1]{\pst@getlength{#1}\pst@radiusB} \psset[pst-func]{radiusA=1,radiusB=1} % \def\psLame{\pst@object{psLame}} \def\psLame@i#1{% \leavevmode \pst@killglue \begingroup \addbefore@par{plotpoints=200}% \use@par \parametricplot{0}{360}{% t cos dup mul 1 #1\space div exp \pst@radiusA \pst@number\psxunit div mul t 90 gt { t 270 lt { neg } if } if t sin dup mul 1 #1\space div exp \pst@radiusB \pst@number\psyunit div mul t 180 gt { neg } if } \endgroup\ignorespaces} % \def\psWeierstrass{\pst@object{psWeierstrass}} \def\psWeierstrass@i(#1,#2){\@ifnextchar[{\psWeierstrass@ii(#1,#2)}{\psWeierstrass@iii(#1,#2)}} \def\psWeierstrass@ii(#1,#2)[#3]#4{% #1 xStart; #2 xEnd; #3 a; #4 b %% the original definition \addbefore@par{plotpoints=500}% \begin@SpecialObj \psplot{#1}{#2}[/ps@a #3 def /ps@b #4 def]{ /ps@n 0 def /ps@WS 0 def { ps@a ps@n exp ps@b ps@n exp Pi mul x mul RadtoDeg cos mul dup abs \psk@epsilon gt { ps@WS add /ps@WS ED }{ ps@WS add exit } ifelse ps@n 1 add /ps@n ED } loop }% \end@SpecialObj } \def\psWeierstrass@iii(#1,#2)#3{% #1 xStart; #2 xEnd; #3 a \addbefore@par{plotpoints=500}% \begin@SpecialObj \psplot{#1}{#2}[/ps@a #3 def]{ /ps@k 1 def /ps@WS 0 def { ps@k ps@a exp Pi mul dup x mul RadtoDeg sin exch div dup abs \psk@epsilon gt { ps@WS add /ps@WS ED }{ ps@WS add exit } ifelse ps@k 1 add /ps@k ED } loop }% \end@SpecialObj } % % For polar plots %\define@boolkey[psset]{pst-func}[PstAdd@]{polarplot}[true]{} %\psset[pst-func]{polarplot=false} % %\define@boolkey[psset]{pstricks-add}[Pst@]{GetFinalState}[true]{} %\define@key[psset]{pstricks-add}{filename}{\def\psk@filename{#1}}% %\define@boolkey[psset]{pstricks-add}[Pst@]{saveData}[true]{} % \ifPst@saveData %\psset[pstricks-add]{GetFinalState=false,saveData=false,filename=PSTdata} % \define@key[psset]{pst-func}{stepFactor}[0.67]{\pst@checknum{#1}\psk@stepFactor } \psset[pst-func]{stepFactor=0.67} % \def\psplotImp{\pst@object{psplotImp}}% 20060420 \def\psplotImp@i(#1,#2)(#3,#4){% \@ifnextchar[{\psplotImp@ii(#1,#2)(#3,#4)}{\psplotImp@ii(#1,#2)(#3,#4)[]}} \def\psplotImp@ii(#1,#2)(#3,#4)[#5]#6{% \addbefore@par{filename=\jobname.data}% \begin@OpenObj% \addto@pscode{ \ifPst@saveData /Pst@data (\psk@filename) (w) file def \fi /xMin #1 def /xMax #3 def /yMin #2 def /yMax #4 def #5 % additional PS code \ifPst@polarplot /@PolarAlgPlot (#6) tx@addDict begin AlgParser end cvx def /Func { /phi y x atan def /r x y Pyth def \ifPst@algebraic @PolarAlgPlot \else #6 \fi } def \else /Func \ifPst@algebraic (#6) tx@addDict begin AlgParser end cvx \else { #6 } \fi def \fi /xPixel xMax xMin sub \pst@number\psxunit mul round cvi def /yPixel yMax yMin sub \pst@number\psyunit mul round cvi def /dx xMax xMin sub xPixel div def /dy yMax yMin sub yPixel div def /setpixel { dy div exch dx div exch \ifPst@saveData 2 copy \pst@number\psyunit div exch \pst@number\psxunit div 20 string cvs Pst@data exch writestring Pst@data (\space) writestring 20 string cvs Pst@data exch writestring % Pst@data (\string\]) writestring Pst@data (\string\n) writestring \fi \pst@number\pslinewidth 2 div 0 360 arc fill } bind def % /VZ true def % suppose that F(x,y)>=0 /x xMin def /y yMin def Func 0.0 lt { /VZ false def } if % erster Wert xMin dx \psk@stepFactor\space mul xMax { /x exch def \ifPst@saveData Pst@data ([\string\n) writestring \fi yMin dy \psk@stepFactor\space mul yMax { /y exch def Func 0 lt { VZ { x y setpixel /VZ false def} if } { VZ {}{ x y setpixel /VZ true def } ifelse } ifelse } for \ifPst@saveData Pst@data (]\string\n) writestring \fi } for %% the same for the other way round without saving the data /VZ true def % suppose that F(x,y)>=0 /x xMin def /y yMin def Func 0.0 lt { /VZ false def } if % erster Wert yMin dy \psk@stepFactor\space mul yMax { /y exch def \ifPst@saveData Pst@data ([\string\n) writestring \fi xMin dx \psk@stepFactor\space mul xMax { /x exch def Func 0 lt { VZ { x y setpixel /VZ false def} if } { VZ {}{ x y setpixel /VZ true def } ifelse } ifelse } for \ifPst@saveData Pst@data (]\string\n) writestring \fi } for % \iffalse /x xMin def /y yMin def Func 0.0 lt { /VZ false def } if % erster Wert yMin dy \psk@stepFactor\space mul yMax { /y exch def xMin dx \psk@stepFactor\space mul xMax { /x exch def Func 0 lt { VZ { x y setpixel /VZ false def} if } { VZ {}{ x y setpixel /VZ true def } ifelse } ifelse } for } for \fi \ifPst@saveData Pst@data closefile \fi }% \end@OpenObj% } % \def\psVolume{\pst@object{psVolume}}% 2007-06-23 \def\psVolume@i(#1,#2)#3#4{% \leavevmode \pst@killglue \begingroup \use@par \psplot[fillstyle=none]{#1}{#2}{#4}% original function \ifPst@algebraic \psplot[fillstyle=none]{#1}{#2}{-(#4)} \else \psplot[fillstyle=none]{#1}{#2}{#4 neg}% mirrored at the x-axis \fi \multido{\iA=1+1}{#3}{% run it #3 times with increment \A \pscustom{% to get a closed filled ellipse \code{ % the PS code /dX #2 #1 sub #3 div def % delta x, the step /Start dX \iA\space 1 sub mul #1 add def % xStart /End Start dX add def % xEnd=xStart+dX /Height End Start add 2 div /x ED \ifPst@algebraic (#4) AlgParser cvx exec \else #4 \fi def } % height=f(x) % x is the mean between Start+End \psellipticarc(!Start 0)(! Height 8 div Height){90}{270} % draw the first falf of the ellipse \rlineto(! dX 0)% draw a line in x-direction \psellipticarc(!End 0)(! Height 8 div Height){270}{90} % draw the other half of the ellipse \rlineto(!dX neg 0)}}% draw a line in negative x-direction \psset{fillstyle=none} % \psellipse(#2,0)(!#2 dup #1 sub #3 div 2 div sub /x ED #4 dup % 8 div exch)% draw again the ellipse to get the borderline. \psellipse(#2,0)(!{ #2 dup #1 sub #3 div 2 div sub /x ED \ifPst@algebraic (#4) AlgParser cvx exec \else #4 \fi dup 8 div exch}) % draw again the ellipse to get the borderline. \psset{plotstyle=line,linestyle=dashed, plotpoints=40,dotstyle=*,dotsize=0.5pt} \psplot[fillstyle=none]{#1}{#2}{#4} \ifPst@algebraic \psplot[fillstyle=none]{#1}{#2}{-(#4)} \else \psplot[fillstyle=none]{#1}{#2}{#4 neg}% mirrored at the x-axis \fi % draw again the curves to get the borderline \endgroup% \ignorespaces% } \def\txFunc@BezierCurve{ tx@FuncDict begin BezierCurve Points end } \def\txFunc@BezierShowPoints{ tx@Dict begin /Points ED BezierShowPoints end } \def\pst@BezierType{2 } % the default % \def\psBezier#1{% % allowed order is 1 ... 9 \ifnum#1>0 \ifnum#1<10 \def\pst@BezierType{#1 }\fi\fi% \pst@object{psBezier}} \def\psBezier@i{% \pst@getarrows{% \addbefore@par{plotpoints=200}% \begin@OpenObj \pst@getcoors[\psBezier@ii% }} \def\psBezier@ii{% \addto@pscode{% \psk@plotpoints % step for Bezier T=0,0+epsilon,0+i*epsilon,...,1 \pst@BezierType % type of the Bezier curve 2,3,4,... \txFunc@BezierCurve \ifshowpoints \txFunc@BezierShowPoints \else pop \fi }% \end@OpenObj} % \def\tx@Bernstein{ tx@FuncDict begin Bernstein end } \define@boolkey[psset]{pst-func}[Pst@]{envelope}[true]{} \psset[pst-func]{envelope=false} % \def\psBernstein{\pst@object{psBernstein}}% \psBernstein[options](t1,t2)(i,n) \def\psBernstein@i(#1,#2){% \@ifnextchar({\psBernstein@ii(#1,#2)}{\psBernstein@ii(0,1)(#1,#2)}} % \def\psBernstein@ii(#1,#2)(#3,#4){% (tStart,tEnd)(i,n) \addbefore@par{plotpoints=200}% \begin@OpenObj \addto@pscode{% /ScreenCoor { \tx@ScreenCoor } def #1\space #2\space 1.0 \psk@plotpoints\space div % step=1/plotpoints #3\space #4\space % on stack we have tStart tEnd epsilon i n \ifPst@envelope true \else false \fi \tx@Bernstein }% \end@OpenObj} % \def\psThomae{\pst@object{psThomae}} \def\psThomae@i(#1,#2)#3{% \addbefore@par{dotsize=1pt} \begin@ClosedObj \addto@pscode{ 1 1 #3 { dup /ipSave ED % save loop value /ip ED % dito 1 1 #3 { dup /iqSave ED % save loop value /iq ED % dito { iq 0 le { exit } if ip iq mod /ip iq def /iq ED } loop ip 1 eq { /xVal ipSave iqSave div def xVal #1 ge { xVal #2 le { \psk@dotsize \@nameuse{psds@\psk@dotstyle} \pst@usecolor\pslinecolor xVal 1 iqSave div \tx@ScreenCoor 2 copy pop 0 moveto lineto } if } if % 2 copy moveto Dot } if } if } if } for } for }% \end@ClosedObj% } % \def\psCplot{\def\pst@par{}\pst@object{psCplot}} \def\psCplot@i#1#2#3#4{% start | end | complex variables | function \pst@killglue \begingroup \use@par \@nameuse{beginplot@\psplotstyle}% \addto@pscode{% \psplot@init /x #1 def /x1 #2 def /dx x1 x sub \psk@plotpoints div def #3 /xy { % x tx@FuncDict begin #4 aload pop \pst@number\psyunit mul exch \pst@number\psxunit mul exch end } def}% \gdef\psplot@init{}% \@pstfalse \@nameuse{testqp@\psplotstyle}% \if@pst \psplot@ii \else \psplot@iii \fi \endgroup \ignorespaces} % \define@boolkey[psset]{pst-func}[Pst@]{Newton}[true]{} \define@boolkey[psset]{pst-func}[Pst@]{PrintCoord}[true]{} \define@boolkey[psset]{pst-func}[Pst@]{onlyNode}[true]{} \define@boolkey[psset]{pst-func}[Pst@]{onlyYVal}[true]{} \define@boolkey[psset]{pst-func}[Pst@]{originV}[true]{} \define@key[psset]{pst-func}{PointName}[]{\def\psk@func@PointName{#1}} \define@key[psset]{pst-func}{ydecimals}[2]{\pst@getint{#1}\psk@ydecimals } \psset[pst-func]{originV=false,onlyNode=false,ydecimals=2, PrintCoord=false,onlyYVal=false,Newton=false,PointName=I, } % %-------------------------------------------------------------------- %------------- calculate the value of an intersectionpoint ----------- %--------------------------------------------------------------------- \def\psZero{\def\pst@par{}\pst@object{psZero}} \def\psZero@i(#1,#2)#3{\@ifnextchar[{\psZero@ii(#1,#2)#3}{\psZero@ii(#1,#2){#3}[0]}} \def\psZero@ii(#1,#2)#3[#4]#5{% % (#1,#2) Intervall für die Nullstelle, bzw #1 Startwert für Newton, #3 1. Funktion, #4 2. Funktion, #5 Knotenname \begingroup \pst@killglue % \addbefore@par{fontscale=40,PSfont=Times-Roman}% \use@par \pst@Verb{ /FunctionA \ifPst@algebraic (#3) tx@AlgToPs begin AlgToPs end cvx \else {#3} \fi def /FunctionB \ifPst@algebraic (#4) tx@AlgToPs begin AlgToPs end cvx \else {#4} \fi def \ifPst@Newton % --------------------------- Newton-Verfahren --- TS 05.2014 /eps 1e-6 def % eps für (f(x+eps)-f(x))/eps /x0 #1 def % Startwert wird vorgegeben /Xend x0 def { /xe x0 eps add def % xe=x+eps /x x0 def % x nun x0 setzen, damit f(x0) berechnet werden kann /func0 FunctionA FunctionB sub def % func0=F(x0)-FB(x0) func0 0 eq {exit} if % wenn func0 = 0 -> exit /x xe def % x xe setzen /func1 FunctionA FunctionB sub def % func1=F(xe)-FB(xe) /Xend x0 func0 eps mul func1 func0 sub div sub def % Xend=x0-(func0*eps)/(func1-func0) /x Xend def % x wird nun Xend /funcend FunctionA FunctionB sub def % funcend=F(Xend)-FB(Xend) funcend abs 1e-6 le {exit} if % Wenn funcend < 1e-6 -> exit /x0 Xend def % sonst x0 = Xend und } loop % die Schleife beginnt mit x0 = Xend /xM Xend def \else % -------------------- Intervallhalbierungsverfahren von Manuel L. /Xinf #1 def % linker Wert des Intervalls, in dem die Nullstelle gesucht wird /Xsup #2 def % linker Wert des Intervalls, in dem die Nullstelle gesucht wird { /xM Xinf Xsup add 2 div def % Mittelwert -> Mitte des Intervalls ist xM2 /x Xinf def % Variable x wird als linker Wert festgelegt /F_1 FunctionA FunctionB sub def % Definition der Differenzfunktion F_1 an der Stelle x=Xinf2 /x xM def % Variable x wird als Mittelwert festgelegt /F_M FunctionA FunctionB sub def % Definition der Differenzfunktion F_M an der Stelle x=xM2 F_M 0 eq {exit} if % Ist F_M = 0 => fertig F_1 F_M mul 0 ge {/Xinf xM def} {/Xsup xM def} ifelse % F_1 * F_M > 0 (F_1 und F_M haben gleiches VZ) => neuer linker x-Wert = xM2 Xinf Xsup sub abs 1e-6 le {exit} if } loop % Die Schleife endet, wenn die Differenz von linkem und rechtem Wert < 10^-6 \fi /x xM def FunctionA /yM exch def % x wird Mittelwert und an dieser Stelle die Funktion berechnet und als yM2 definiert }% \pnode(! xM yM){#5}% \addto@pscode{ \ifPst@onlyNode \else /dec \psk@decimals\space def % Anzahl der Dezimahlen für x /ydec \psk@ydecimals\space def % Anzahl der Dezimalen für y /symb { /Symbol findfont \psk@fontscale\space scalefont setfont } bind def % Symbolschrift für Klammer und senkrechten Strich /schrift { \psk@PSfont findfont \psk@fontscale scalefont setfont } bind def % Schrift für die Ergebnisse /TiefSchrift { /Symbol findfont \psk@fontscale 1.6 div scalefont setfont } bind def % Schrift für tiefergestellte Buchstaben /spdx \psk@fontscale 4 div def % Abstand, der mit der Schriftgöße skaliert ist /spdy \psk@fontscale 15 div def % Abstand, der mit der Schriftgöße skaliert ist /Wert { 10 dec exp mul round 10 dec exp div dec 0 eq {cvi 15 string cvs} {15 string cvs } ifelse % x-Wert runden und als string ablegen \ifPst@comma dot2comma \fi show } def % gegebenenfalls Komma statt Punkt und Ergebnis anzeigen /yWert { 10 ydec exp mul round 10 ydec exp div ydec 0 eq {cvi 15 string cvs} {15 string cvs } ifelse % y-Wert runden und als string ablegen \ifPst@comma dot2comma \fi show } def % gegebenenfalls Komma statt Punkt und Ergebnis anzeigen /FunctionA \ifPst@algebraic (#3) tx@AlgToPs begin AlgToPs end cvx \else {#3} \fi def /FunctionB \ifPst@algebraic (#4) tx@AlgToPs begin AlgToPs end cvx \else {#4} \fi def \ifPst@Newton /eps 1e-6 def /x0 #1 def /Xend x0 def { /xe x0 eps add def /x x0 def /func0 FunctionA FunctionB sub def func0 0 eq {exit} if /x xe def /func1 FunctionA FunctionB sub def /Xend x0 func0 eps mul func1 func0 sub div sub def /x Xend def /funcend FunctionA FunctionB sub def funcend abs 1e-6 le {exit} if /x0 Xend def } loop /xM Xend def \else /Xinf #1 def /Xsup #2 def { /xM Xinf Xsup add 2 div def /x Xinf def /F_1 FunctionA FunctionB sub def /x Xsup def /F_2 FunctionA FunctionB sub def /x xM def /F_M FunctionA FunctionB sub def F_M 0 eq {exit} if F_1 F_M mul 0 ge {/Xinf xM def} {/Xsup xM def} ifelse Xinf Xsup sub abs 1e-6 le {exit} if } loop \fi /x xM def FunctionA /yM exch def \ifPst@originV 0 0 \else xM \psk@xShift\space add \pst@number\psxunit mul yM \psk@yShift\space add \pst@number\psyunit mul \fi \pst@usecolor\pslinecolor \ifPst@PrintCoord moveto schrift (\psk@func@PointName) show 0 spdy 2 mul neg rmoveto TiefSchrift (\psk@postString) show 0 spdy 3 mul rmoveto symb (\string\050) show 0 spdy neg rmoveto schrift xM Wert spdx 3 div spdy rmoveto symb (\string\174) show spdx 3 div spdy neg rmoveto yM yWert 0 spdy rmoveto symb (\string\051) show \else \ifPst@onlyYVal moveto schrift yM yWert \else moveto schrift xM Wert \fi \fi\fi}% \ifPst@markZeros \psdot(#5)\fi \endgroup\use@pscode\ignorespaces }% % \catcode`\@=\PstAtCode\relax % %% END: pst-func.tex \endinput %