%% %% This is file `pst-func.tex', %% %% IMPORTANT NOTICE: %% %% Package `pst-func.tex' %% %% Herbert Voss %% %% This program can be redistributed and/or modified under the terms %% of the LaTeX Project Public License Distributed from CTAN archives %% in directory macros/latex/base/lppl.txt. %% %% DESCRIPTION: %% `pst-func' is a PSTricks package to plot special functions %% %% For a ChangeLog go the the end %% \csname PSTfuncLoaded\endcsname \let\PSTfuncLoaded\endinput % Requires PSTricks, pst-node, pst-xkey \ifx\PSTricksLoaded\endinput\else\input pstricks.tex\fi \ifx\PSTnodesLoaded\endinput\else\input pst-plot.tex\fi \ifx\PSTricksAddLoaded\endinput\else\input pstricks-add.tex\fi \ifx\PSTXKeyLoaded\endinput\else\input pst-xkey.tex \fi % \edef\PstAtCode{\the\catcode`\@} \catcode`\@=11\relax % interface to the `xkeyval' package \pst@addfams{pst-func} \def\fileversion{0.52} \def\filedate{2008/03/21} \message{`PST-func' v\fileversion, \filedate\space (hv)} % \pstheader{pst-func.pro} \pstheader{pst-math.pro}% for GAMMALN % \define@key[psset]{pst-func}{xShift}{\def\psk@xShift{#1}} \psset[pst-func]{xShift=0} % \define@key[psset]{pst-func}{cosCoeff}{\def\psk@cosCoeff{#1}} \define@key[psset]{pst-func}{sinCoeff}{\def\psk@sinCoeff{#1}} \psset[pst-func]{cosCoeff=0,sinCoeff=1} % coeff=a0 a1 a2 a3 ... % \def\psFourier{\@ifnextchar[{\psFourier@i}{\psFourier@i[]}} \def\psFourier@i[#1]#2#3{{% \pst@killglue \psset{#1} \psplot{#2}{#3}{% /type (cos) def /Fourier { aload length /n exch def n -1 roll 2 div n 1 roll % a0/2 n 1 sub -1 0 { /i exch def i x mul 180 mul 3.141592 div type (sin) eq {sin}{cos} ifelse mul n 1 roll } for n 1 sub -1 1 { pop add } for } def [\psk@cosCoeff] Fourier /type (sin) def [0 \psk@sinCoeff] Fourier add }% }\ignorespaces} % \define@key[psset]{pst-func}{coeff}{\def\psk@coeff{#1}} \define@key[psset]{pst-func}{Abbreviation}{\def\psk@Deriviation{#1}}% compatibility \define@key[psset]{pst-func}{Derivation}{\def\psk@Derivation{#1}} \define@boolkey[psset]{pst-func}[Pst@]{markZeros}[true]{} \define@key[psset]{pst-func}{epsZero}{\def\psk@epsZero{#1}} \define@key[psset]{pst-func}{dZero}{\def\psk@dZero{#1}} \define@key[psset]{pst-func}{zeroLineTo}{\def\psk@zeroLineTo{#1}} \define@key[psset]{pst-func}{zeroLineColor}{\pst@getcolor{#1}\psk@zeroLineColor} \newdimen\psk@zeroLineWidth \define@key[psset]{pst-func}{zeroLineWidth}{\pssetlength\psk@zeroLineWidth{#1}} \define@key[psset]{pst-func}{zeroLineStyle}{% \@ifundefined{psls@#1}% {\@pstrickserr{Line style `#1' not defined}\@eha}% {\edef\psk@zeroLineStyle{#1}}% } \psset[pst-func]{% coeff=0 1, % coeff=a0 a1 a2 a3 ... Derivation=0, % 0 is the original function markZeros=false,% no dots for the zeros epsZero=0.1, % the distance between two zero points dZero=0.1, % the distance of the x value for scanning the function zeroLineTo=-1, % a line to the value of the lineTo's Derivation (-1= none) zeroLineStyle=dashed,% zeroLineWidth=0.5\pslinewidth,% zeroLineColor=black}% % \def\psPolynomial{\pst@object{psPolynomial}} \def\psPolynomial@i#1#2{% \begin@OpenObj \@nameuse{beginplot@\psplotstyle}% \gdef\psplot@init{}% \@nameuse{testqp@\psplotstyle}% \addto@pscode{% tx@FuncDict begin /coeff [ \psk@coeff ] def /x0 #1 def /x1 #2 def /dx x1 x0 sub \psk@plotpoints\space div def /Derivation \psk@Derivation\space def \ifPst@markZeros gsave \pst@number\psk@zeroLineWidth SLW \pst@usecolor\psk@zeroLineColor \psk@epsZero\space \psk@dZero\space FindZeros pstZeros aload length { /xZero exch def xZero \pst@number\psxunit mul /xPixel exch def \psk@dotsize \@nameuse{psds@\psk@dotstyle}% xPixel 0 Dot \psk@zeroLineTo\space 0 ge { % line to function \psk@lineTo xPixel 0 moveto xZero coeff \psk@zeroLineTo\space FuncValue \pst@number\psyunit mul xPixel exch L \@nameuse{psls@\psk@zeroLineStyle} } if } repeat grestore \fi /x x0 def /xy { x \psk@xShift\space sub coeff Derivation FuncValue \pst@number\psyunit mul x \pst@number\psxunit mul exch } def xy moveto }% \if@pst% lines and dots \psPolynomial@ii% \else% curves \psPolynomial@iii% \fi% \end@OpenObj \ignorespaces} % \def\psPolynomial@ii{% \addto@pscode{% xy \@nameuse{beginqp@\psplotstyle} \psk@plotpoints { xy \@nameuse{doqp@\psplotstyle} /x x dx add def } repeat xy \@nameuse{doqp@\psplotstyle} end }% \@nameuse{endqp@\psplotstyle}% } \def\psPolynomial@iii{% curves \addto@pscode{% mark /n 2 def \psk@plotpoints { xy n 2 roll /n n 2 add def /x x dx add def } repeat /x x1 def xy n 2 roll end }% \@nameuse{endplot@\psplotstyle}% } % % Bessel 2004-06-08 % Manuel Luque, Herbert Voss % Look at the end for some more documentation about the algorithm % \define@key[psset]{pst-func}{constI}{\def\psk@constI{#1 }} \define@key[psset]{pst-func}{constII}{\def\psk@constII{#1 }} \psset{constI=1,constII=0} % \def\psBessel{\@ifnextchar[{\psBessel@i}{\psBessel@i[]}} \def\psBessel@i[#1]#2#3#4{{%%% #2 = n \pst@killglue \psset{plotpoints=500}% \psset{#1}% \parametricplot{#3}{#4}{% /J1 0 def /k { 57.29577951 mul } def /xBessel t k def 0 0.1 180 { /tB exch k def /J1 J1 0.1 xBessel tB sin mul tB #2\space mul sub cos mul add def } for t J1 180 div \psk@constI mul \psk@constII add }% }\ignorespaces} % \define@key[psset]{pst-func}{sigma}{\def\psk@sigma{#1 }} \define@key[psset]{pst-func}{mue}{\def\psk@mue{#1 }} \define@key[psset]{pst-func}{nue}{\def\psk@nue{#1 }} \psset[pst-func]{sigma=0.5,mue=0,nue=1} % \def\psGauss{\@ifnextchar[{\psGauss@i}{\psGauss@i[]}} \def\psGauss@i[#1]#2#3{{% \pst@killglue% \psset{plotpoints=200}% \psset{#1}% \psplot{#2}{#3}{% Euler x \psk@mue sub dup mul 2 div \psk@sigma dup mul div neg exp 1.0 \psk@sigma div TwoPi sqrt div mul% }% }\ignorespaces} % \define@key[psset]{pst-func}{Simpson}{\def\psk@Simpson{#1 }} \psset[pst-func]{Simpson=5} % \def\psGaussI{\pst@object{psGaussI}} \def\psGaussI@i#1#2{% \begin@OpenObj% \addto@pscode{ /a #1 def /dx #2 #1 sub \psk@plotpoints\space div def /b a dx add def /scx { \pst@number\psxunit mul } def /scy { \pst@number\psyunit mul } def tx@FuncDict begin /Sigma 1 \psk@sigma div TwoPi sqrt div def /SFunc {% x on Stack Euler exch \psk@xShift\space sub dup mul 2 div Sigma dup mul div neg exp Sigma mul } def end a scx 0 moveto \psk@plotpoints 1 sub { a b \psk@Simpson % a b M on Styack tx@FuncDict begin Simpson I end % y value on stack scy b scx exch lineto /b b dx add def } repeat stroke }% \end@OpenObj% } % \def\psSi{\pst@object{psSi}} \def\psSi@i#1#2{% \begin@OpenObj% \addto@pscode{ /x #1 def /dx #2 #1 sub \psk@plotpoints\space div def /scx { \pst@number\psxunit mul } def /scy { \pst@number\psyunit mul } def x scx x tx@FuncDict begin Si end scy moveto \psk@plotpoints 1 sub { x dup scx exch tx@FuncDict begin Si end scy lineto /x x dx add def } repeat stroke }% \end@OpenObj% } \def\pssi{\pst@object{pssi}} \def\pssi@i#1#2{% \begin@OpenObj% \addto@pscode{ /x #1 def /dx #2 #1 sub \psk@plotpoints\space div def /scx { \pst@number\psxunit mul } def /scy { \pst@number\psyunit mul } def x scx x tx@FuncDict begin si end scy moveto \psk@plotpoints 1 sub { x dup scx exch tx@FuncDict begin si end scy lineto /x x dx add def } repeat stroke }% \end@OpenObj% } % \def\psCi{\pst@object{psCi}} \def\psCi@i#1#2{% \begin@OpenObj% \addto@pscode{ /x #1 def /dx #2 #1 sub \psk@plotpoints\space div def /scx { \pst@number\psxunit mul } def /scy { \pst@number\psyunit mul } def x scx x tx@FuncDict begin Ci end scy moveto \psk@plotpoints 1 sub { x dup scx exch tx@FuncDict begin Ci end scy lineto /x x dx add def } repeat stroke }% \end@OpenObj% } \def\psci{\pst@object{psci}} \def\psci@i#1#2{% \begin@OpenObj% \addto@pscode{ /x #1 def /dx #2 #1 sub \psk@plotpoints\space div def /scx { \pst@number\psxunit mul } def /scy { \pst@number\psyunit mul } def x scx x tx@FuncDict begin ci end scy moveto \psk@plotpoints 1 sub { x dup scx exch tx@FuncDict begin ci end scy lineto /x x dx add def } repeat stroke }% \end@OpenObj% } % \define@key[psset]{pst-func}{PSfont}{\def\psk@PSfont{/#1 }} \define@key[psset]{pst-func}{valuewidth}{\def\psk@valuewidth{#1 }} \define@key[psset]{pst-func}{fontscale}{\def\psk@fontscale{#1 }} \psset[pst-func]{PSfont=Times-Roman,fontscale=10,valuewidth=10} % \def\psPrintValue{\pst@object{psPrintValue}} \def\psPrintValue@i#1{% \begin@SpecialObj \addto@pscode{ gsave \psk@PSfont findfont \psk@fontscale scalefont setfont #1 \psk@valuewidth string cvs 0 0 moveto show grestore }% \end@SpecialObj% } % % Integrals 2006-01-16 % Jose-Emilio Vila-Forcen, Herbert Voss % \def\psCumIntegral{\pst@object{psCumIntegral}} \def\psCumIntegral@i#1#2#3{% \begin@OpenObj% \addto@pscode{ /a #1 def /dx #2 #1 sub \psk@plotpoints\space div def /b a dx add def /scx { \pst@number\psxunit mul } def /scy { \pst@number\psyunit mul } def tx@FuncDict begin /SFunc { #3 } def end a scx 0 moveto \psk@plotpoints 1 sub { a b \psk@Simpson % a b M on Styack tx@FuncDict begin Simpson I end % y value on stack scy b scx exch lineto /b b dx add def } repeat % stroke }% % \psk@fillstyle% % \pst@stroke% \end@OpenObj% } % \def\psIntegral{\pst@object{psIntegral}} \def\psIntegral@i#1#2(#3,#4)#5{% \begin@OpenObj% \addto@pscode{ /a #3 def /dx #4 #3 sub \psk@plotpoints\space div def /b #4 def /aa #1 def /dd #2 #1 sub \psk@plotpoints\space div def /t aa dd add def /scx { \pst@number\psxunit mul } def /scy { \pst@number\psyunit mul } def tx@FuncDict begin /SFunc { t #5 } def end a b \psk@Simpson % a b M on Stack tx@FuncDict begin Simpson I end % y value on stack scy t scx exch moveto /t t dd add def \psk@plotpoints 1 sub { a b \psk@Simpson % a b M on Stack tx@FuncDict begin Simpson I end % y value on stack scy t scx exch lineto /t t dd add def } repeat % stroke }% % \psk@fillstyle% % \pst@stroke% \end@OpenObj% } % \def\psConv{\@ifnextchar[{\psConv@i}{\psConv@i[]}} \def\psConv@i[#1]#2#3(#4,#5)#6#7{% \psIntegral[#1]{#2}{#3}(#4,#5){pop pop x #6\space x t neg add #7\space mul}% }% % \define@boolkey[psset]{pst-func}[Pst@]{printValue}[true]{} \define@key[psset]{pst-func}{barwidth}{\def\psFunc@barwidth{#1 }}% a factor, not a dimen \psset[pst-func]{printValue=false,barwidth=1} % \def\psBinomial{\pst@object{psBinomial}} \def\psBinomial@i#1#2{\psBinomial@ii#1,,,\@nil{#2}}% \def\psBinomial@ii#1,#2,#3,#4\@nil#5{% \def\pst@tempA{#2}% \ifx\pst@tempA\@empty \psBinomial@iii{0}{#1}{#1}{#5}% \else \def\pst@tempA{#3}% \ifx\pst@tempA\@empty\psBinomial@iii{#1}{#2}{#2}{#5}% \else\psBinomial@iii{#1}{#2}{#3}{#5}\fi \fi}% \def\psBinomial@iii#1#2#3#4{% \begin@OpenObj% \addto@pscode{ /scx { \pst@number\psxunit mul } def /scy { \pst@number\psyunit mul } def /m #1 def /n #2 def /N #3 def /p #4 def /dx \psFunc@barwidth 2 div def /q 1 p sub def /kOld dx neg m add def kOld scx 0 moveto % starting point 0 1 m 1 sub { /k exch def % save loop variable k 0 eq { /Y q N exp def } { /Y Y N k sub 1 add mul k div p mul q div def } ifelse } for m 1 n { % n-m+1 times /k exch def % save loop variable k 0 eq { /Y q N exp def } { /Y Y N k sub 1 add mul k div p mul q div def } ifelse % recursive definition kOld scx Y scy L k dx add scx Y scy L \ifPst@markZeros k dx add scx 0 L kOld 1 add scx 0 L \fi \ifPst@printValue gsave \psk@PSfont findfont \psk@fontscale scalefont setfont Y \psk@valuewidth string cvs k scx \psk@fontscale 2 div add Y scy \pst@number\pslabelsep add moveto 90 rotate show grestore \fi /kOld kOld 1 add def } for \ifPst@markZeros\else k dx add scx 0 L \fi % last line down to x-axis }% % \psk@fillstyle% % \pst@stroke% \end@OpenObj% }% % \def\psBinomialN{\pst@object{psBinomialN}} \def\psBinomialN@i#1#2{% \leavevmode \pst@killglue \begingroup \use@par \init@pscode \def\cplotstyle{curve}% \ifx\psplotstyle\cplotstyle \@nameuse{beginplot@\psplotstyle} \fi% \addto@pscode{ \ifx\psplotstyle\cplotstyle /Curve true def \else /Curve false def \fi /scx { \pst@number\psxunit mul } def /scy { \pst@number\psyunit mul } def /N #1 def /p #2 def % probability /q 1 p sub def /E N p mul def /sigma E q mul sqrt def % variant /dx 1.0 sigma div 2 div def /xOld dx neg E sub sigma div def /xEnd xOld neg dx add scx def Curve { /Coors [xOld dx sub scx 0] def }% saves the coordinates for curve { xOld scx 0 moveto } % starting point ifelse 0 1 N { % N times /k exch def % save loop variable k 0 eq { /Y q N exp def } { /Y Y N k sub 1 add mul k div p mul q div def } ifelse % recursive definition /x k E sub sigma div dx add def /y Y sigma mul def % normalize Curve { x dx sub scx y scy Coors aload length 2 add array astore /Coors exch def} { xOld scx y scy L x scx y scy L \ifPst@markZeros x scx 0 L \fi % } ifelse \ifPst@printValue gsave \psk@PSfont findfont \psk@fontscale scalefont setfont y \psk@valuewidth string cvs x dx sub scx \psk@fontscale 2 div add y scy \pst@number\pslabelsep add moveto 90 rotate show grestore \fi /xOld x def } for Curve { [ xEnd 0 Coors aload pop } if % showpoints on top of the stack }% \ifx\psplotstyle\cplotstyle\@nameuse{endplot@\psplotstyle}\else% \psk@fillstyle% \pst@stroke% \fi% \use@pscode% \endgroup% \ignorespaces% } % \def\psPoisson{\pst@object{psPoisson}}% with contributions from Gerry Coombes \def\psPoisson@i#1#2{\psPoisson@ii#1,,\@nil{#2}}% \def\psPoisson@ii#1,#2,#3\@nil#4{% \def\pst@tempA{#2}% \ifx\pst@tempA\@empty\psPoisson@iii{0}{#1}{#4}\else \psPoisson@iii{#1}{#2}{#4}\fi}% \def\psPoisson@iii#1#2#3{% M N lambda \begin@OpenObj% \addto@pscode{ /scx { \pst@number\psxunit mul } def /scy { \pst@number\psyunit mul } def /M #1 def /N #2 def /lambda #3 def /elambda Euler #3 neg exp def % e^-lambda /dx \psFunc@barwidth 2 div def /kOld dx neg M add def % addition of M here kOld scx 0 moveto % starting point /Y elambda def % start value 0 1 M 1 sub { % skip over first M-1 rectangles /k exch def % whilst recursing probabilities k 0 eq { /Y elambda def }{ /Y Y lambda mul k div def } ifelse } for % nothing happens if M=0 M 1 N { % N-M+1 times /k exch def % save loop variable k 0 eq { /Y elambda def }{ /Y Y lambda mul k div def } ifelse kOld scx Y scy L k dx add scx Y scy L \ifPst@markZeros k dx add scx 0 L \fi \ifPst@printValue gsave \psk@PSfont findfont \psk@fontscale scalefont setfont Y \psk@valuewidth string cvs k scx \psk@fontscale 2 div add Y scy \pst@number\pslabelsep add moveto 90 rotate show grestore \fi /kOld kOld 1 add def } for \ifPst@markZeros\else k dx add scx 0 L \fi % last line down to x-axis }% % \psk@fillstyle % \pst@stroke \end@OpenObj% } % \define@key[psset]{pst-func}{alpha}{\pst@checknum{#1}\psk@alpha } % gamma \define@key[psset]{pst-func}{beta}{\pst@checknum{#1}\psk@beta } % gamma \psset[pst-func]{alpha=0.5,beta=0.5} % \def\psGammaDist{\pst@object{psGammaDist}} \def\psGammaDist@i#1#2{% \ifdim#1pt<\z@ \psframebox*{\color{red}!!!\#1 must be greater than 0!!!} \else \addbefore@par{plotpoints=500,alpha=0.5,beta=0.5}% \begin@OpenObj \psplot{#1}{#2}{ \psk@beta x mul \psk@alpha exp x div Euler \psk@beta neg x mul \psk@alpha GAMMALN sub exp mul} \end@OpenObj% \fi% \ignorespaces% } % \def\psBetaDist{\pst@object{psBetaDist}} \def\psBetaDist@i#1#2{% \ifdim#1pt<\z@ \psframebox*{\color{red}!!!\#1 must be greater than 0!!!} \else \addbefore@par{plotpoints=200,alpha=1,beta=1}% \begin@OpenObj \psplot{#1}{#2}{ \psk@beta \psk@alpha add GAMMA \psk@beta GAMMA \psk@alpha GAMMA mul div 1 x sub \psk@beta 1.0 sub exp mul x \psk@alpha 1.0 sub exp mul } \end@OpenObj% \fi% \ignorespaces% } % \def\psChiIIDist{\pst@object{psChiIIDist}} \def\psChiIIDist@i#1#2{% \addbefore@par{plotpoints=500,nue=1}% \begin@OpenObj % \ifdim\psk@nue pt<\z@ \psframebox*{\color{red}!!!nue must be greater than 0!!!} % \else \psplot{#1}{#2}{% x 2 div \psk@nue 2 div exp x div Euler -0.5 x mul \psk@nue 2 div GAMMALN sub exp mul }% % \fi% \end@OpenObj% \ignorespaces% } % \def\psTDist{\pst@object{psTDist}} \def\psTDist@i#1#2{% \leavevmode \pst@killglue \begingroup \addbefore@par{plotpoints=500}% \use@par \ifdim\psk@nue pt<\z@ \psframebox*{\color{red}!!!nue must be greater than 0!!!} \else \psplot{#1}{#2}{ 1 x 2 exp \psk@nue div 1 add \psk@nue 1 add 2 div exp div \psk@nue Pi mul sqrt div Euler \psk@nue 1 add 2 div GAMMALN \psk@nue 2 div GAMMALN sub exp mul }% \fi% \endgroup% \ignorespaces% } % \def\psFDist{\pst@object{psFDist}} \def\psFDist@i#1#2{% \ifdim#1pt<\z@ \psframebox*{\color{red}!!!\#1 must be greater than 0!!!} \else \leavevmode \pst@killglue \begingroup \addbefore@par{plotpoints=500,mue=1}% \use@par \psplot{#1}{#2}{ x \psk@mue mul \psk@nue div dup \psk@mue 2 div exp x div exch 1 add \psk@mue \psk@nue add 2 div exp div Euler \psk@mue \psk@nue add 2 div GAMMALN \psk@mue 2 div GAMMALN sub \psk@nue 2 div GAMMALN sub exp mul }% \endgroup% \fi% \ignorespaces% } % % Superellipese / Lamefunction \define@key[psset]{pst-func}{radiusA}{\pst@getlength{#1}\pst@radiusA} \define@key[psset]{pst-func}{radiusB}{\pst@getlength{#1}\pst@radiusB} \psset[pst-func]{radiusA=1,radiusB=1} % \def\psLame{\pst@object{psLame}} \def\psLame@i#1{% \leavevmode \pst@killglue \begingroup \addbefore@par{plotpoints=200}% \use@par \parametricplot{0}{360}{% t cos dup mul 1 #1\space div exp \pst@radiusA \pst@number\psxunit div mul t 90 gt { t 270 lt { neg } if } if t sin dup mul 1 #1\space div exp \pst@radiusB \pst@number\psyunit div mul t 180 gt { neg } if } \endgroup\ignorespaces} % % For polar plots %\define@boolkey[psset]{pst-func}[PstAdd@]{polarplot}[true]{} %\define@boolkey[psset]{pst-func}[PstAdd@]{algebraic}[true]{} %\psset[pst-func]{polarplot=false,algebraic=false} % \def\psplotImp{\pst@object{psplotImp}}% 20060420 \def\psplotImp@i(#1,#2)(#3,#4)#5{% \begin@OpenObj% \addto@pscode{ /xMin #1 def /xMax #3 def /yMin #2 def /yMax #4 def \ifPst@polarplot /@PolarAlgPlot (#5) tx@addDict begin AlgParser end cvx def /Func { /phi y x atan def /r x y Pyth def \ifPst@algebraic @PolarAlgPlot \else #5 \fi } def \else /Func \ifPst@algebraic (#5) tx@addDict begin AlgParser end cvx \else { #5 } \fi def \fi /xPixel xMax xMin sub \pst@number\psxunit mul round cvi def /yPixel yMax yMin sub \pst@number\psyunit mul round cvi def /dx xMax xMin sub xPixel div def /dy yMax yMin sub yPixel div def /setpixel { dy div exch dx div exch \pst@number\pslinewidth 2 div 0 360 arc fill } bind def % /VZ true def % suppose that F(x,y)>=0 /x xMin def /y yMin def Func 0.0 lt { /VZ false def } if % erster Wert xMin dx 1.5 div xMax { /x exch def yMin dy 1.5 div yMax { /y exch def Func 0 lt { VZ { x y setpixel /VZ false def} if } { VZ {}{ x y setpixel /VZ true def } ifelse } ifelse } for } for % /x xMin def /y yMin def Func 0.0 lt { /VZ false def } if % erster Wert yMin dy 1.5 div yMax { /y exch def xMin dx 1.5 div xMax { /x exch def Func 0 lt { VZ { x y setpixel /VZ false def} if } { VZ {}{ x y setpixel /VZ true def } ifelse } ifelse } for } for }% \end@OpenObj% } % \def\psVolume{\pst@object{psVolume}}% 2007-06-23 \def\psVolume@i(#1,#2)#3#4{% \leavevmode \pst@killglue \begingroup \use@par \psplot[fillstyle=none]{#1}{#2}{#4}% original function \psplot[fillstyle=none]{#1}{#2}{#4 neg}% mirrored at the x-axis \multido{\iA=1+1}{#3}{% run it #3 times with increment \A \pscustom{% to get a closed filled ellipse \code{ % the PS code /dX #2 #1 sub #3 div def % delta x, the step /Start dX \iA\space 1 sub mul #1 add def % xStart /End Start dX add def % xEnd=xStart+dX /Height End Start add 2 div /x ED #4 def } % height=f(x) % x is the mean between Start+End \psellipticarc(!Start 0)(! Height 8 div Height){90}{270} % draw the first falf of the ellipse \rlineto(! dX 0)% draw a line in x-direction \psellipticarc(!End 0)(! Height 8 div Height){270}{90} % draw the other half of the ellipse \rlineto(!dX neg 0)}}% draw a line in negative x-direction \psset{fillstyle=none} \psellipse(#2,0)(!#2 dup #1 sub #3 div 2 div sub /x ED #4 dup 8 div exch)% draw again the ellipse to get the borderline. \psset{plotstyle=line,linestyle=dashed, plotpoints=40,dotstyle=*,dotsize=0.5pt} \psplot{#1}{#2}{#4}\psplot{#1}{#2}{#4 neg} % draw again the curves to get the borderline \endgroup% \ignorespaces% } \def\tx@BezierShowPoints{ tx@Dict begin /Points ED BezierShowPoints end } \def\pst@BezierType{2 } % the default % \def\psBezier#1{% % allowed order is 1 ... 9 \ifnum#1>0 \ifnum#1<10 \def\pst@BezierType{#1 }\fi\fi% \pst@object{psBezier}} \def\psBezier@i{% \pst@getarrows{% \addbefore@par{plotpoints=200}% \begin@OpenObj \pst@getcoors[\psBezier@ii% }} \def\psBezier@ii{% \addto@pscode{% \psk@plotpoints % step for Bezier T=0,0+epsilon,0+i*epsilon,...,1 \pst@BezierType % type of the Bezier curve 2,3,4,... tx@FuncDict begin BezierCurve Points end \ifshowpoints \tx@BezierShowPoints \else pop \fi }% \end@OpenObj} % % \catcode`\@=\PstAtCode\relax % %% END: pst-func.tex \endinput %