%--------------------------------------------
%
% Package pgfplots
%
% Provides a user-friendly interface to create function plots (normal
% plots, semi-logplots and double-logplots).
%
% It is based on Till Tantau's PGF package.
%
% Copyright 2007/2008 by Christian Feuersänger.
%
% This program is free software: you can redistribute it and/or modify
% it under the terms of the GNU General Public License as published by
% the Free Software Foundation, either version 3 of the License, or
% (at your option) any later version.
%
% This program is distributed in the hope that it will be useful,
% but WITHOUT ANY WARRANTY; without even the implied warranty of
% MERCHANTABILITY or FITNESS FOR A PARTICULAR PURPOSE. See the
% GNU General Public License for more details.
%
% You should have received a copy of the GNU General Public License
% along with this program. If not, see .
%
%--------------------------------------------
\newif\ifpgfplots@log@tick@isminor@tick@pos
% Checks whether the tick position given as #1.#2=log10(T) belongs to
% T=i*10^j with an integer i>1.
%
% If T=i*10^j, \ifpgfplots@log@tick@isminor@tick@pos will be set to true and
% \pgfmathresult will contain T.
%
% Otherwise, \ifpgfplots@log@tick@isminor@tick@pos will be set to false and
% pgfmathresult to #1.#2
%
% Arguments:
% #1.#2 the value log10(T)
%
% Implementation:
% if T = i*10^j, log10(T) = log10(i) + j.
% That means if log10(T) in \Z, we have T = 10^j. If not, we need to
% check wether i is an integer. Please note that log10(i) < 1.
%
% Further note: log(T) < 0 <=> j<0.
% In case j<0, we have
% #1.#2 = j + log(i)
% = - ( -j - log(i) )
% = - ( -j - 1 + (1-log(i)) )
% = #1 '.' #2 [ up to the '0.'
% that means #1 = j-1 and #2 = 1-log(i).
\def\pgfplots@is@log@tick@a@minor@tick@pos#1.#2\relax{%
\pgfmathapproxequalto@{#1.#2}{#1.0}%
\ifpgfmathcomparison
% in MOST cases, this here will be true:
\pgfplots@log@tick@isminor@tick@posfalse
\def\pgfmathresult{#1.#2}%
\else
% I guess this won't happen too often. In fact, it's a very
% special case.
\begingroup
\c@pgf@counta=#1\relax
\ifdim#1.#2pt<0pt %
\advance\c@pgf@counta by-1
\pgfmathsubtract@{1}{0.#2}%
\expandafter\pgfplots@is@log@tick@a@minor@tick@pos@IDENTIFY@LOGi\pgfmathresult\relax
\ifpgfplots@log@tick@isminor@tick@pos
\aftergroup\pgfplots@log@tick@isminor@tick@postrue
\edef\pgfmathresult{\pgfmathresult e\the\c@pgf@counta}%
\else
\aftergroup\pgfplots@log@tick@isminor@tick@posfalse
\def\pgfmathresult{#1.#2}%
\fi
\else
\pgfplots@is@log@tick@a@minor@tick@pos@IDENTIFY@LOGi0.#2\relax
\ifpgfplots@log@tick@isminor@tick@pos
\aftergroup\pgfplots@log@tick@isminor@tick@postrue
\edef\pgfmathresult{\pgfmathresult e\the\c@pgf@counta}%
\else
\aftergroup\pgfplots@log@tick@isminor@tick@posfalse
\def\pgfmathresult{#1.#2}%
\fi
\fi
\pgfmath@smuggleone\pgfmathresult
\endgroup
\fi
}
% expects a positive number.
\def\pgfplots@is@log@tick@a@minor@tick@pos@IDENTIFY@LOGi0.#1\relax{%
\pgfplots@log@tick@isminor@tick@postrue
\pgfmathapproxequalto@{0.#1}{0.3010299956639}%
\ifpgfmathcomparison
\def\pgfmathresult{2}%
\else
\pgfmathapproxequalto@{0.#1}{0.4771212547196}%
\ifpgfmathcomparison
\def\pgfmathresult{3}%
\else
\pgfmathapproxequalto@{0.#1}{0.6020599913279}%
\ifpgfmathcomparison
\def\pgfmathresult{4}%
\else
\pgfmathapproxequalto@{0.#1}{0.698970004}%
\ifpgfmathcomparison
\def\pgfmathresult{5}%
\else
\pgfmathapproxequalto@{0.#1}{0.7781512503}%
\ifpgfmathcomparison
\def\pgfmathresult{6}%
\else
\pgfmathapproxequalto@{0.#1}{0.8450980400}%
\ifpgfmathcomparison
\def\pgfmathresult{7}%
\else
\pgfmathapproxequalto@{0.#1}{0.9030899869}%
\ifpgfmathcomparison
\def\pgfmathresult{8}%
\else
\pgfmathapproxequalto@{0.#1}{0.954242509439}%
\ifpgfmathcomparison
\def\pgfmathresult{9}%
\else
\pgfplots@log@tick@isminor@tick@posfalse
\fi
\fi
\fi
\fi
\fi
\fi
\fi
\fi
}
% Checks whether we need to create a separate 'tick scale label',
% a node with ' * 10^3' on the side of the axis:
%
% PRECONDITION:
% Axis limits for #1 are given. I need their values before any data
% scale transformation has been applied.
% If
% \pgfplots@#1min@unscaled@as@float
% and
% \pgfplots@#1max@unscaled@as@float
% exist; I will use these macros.
% Otherwise, I will use \pgfplots@#1min and \pgfplots@#1max;
% assuming that no data scale transformation is active.
% FIXME : does that need further attention?
\def\pgfplots@init@scaled@tick@for#1{%
\global\def\pgfplots@glob@TMPa{0}%
\expandafter\pgfplotslistcheckempty\csname pgfplots@prepared@tick@positions@major@#1\endcsname
\ifpgfplotslistempty
% we have no tick labels. Omit the tick scale label as well!
\else
\begingroup
\ifcase\csname pgfplots@scaled@ticks@#1@choice\endcsname\relax
% CASE 0 : scaled #1 ticks=false: do nothing here.
\or
% CASE 1 : scaled #1 ticks=true:
%--------------------------------
% the \pgfplots@xmin@unscaled@as@float is set just before the data
% scale transformation is initialised.
%
% The variables are empty if there is no datascale transformation.
\expandafter\let\expandafter\pgfplots@cur@min@unscaled\csname pgfplots@#1min@unscaled@as@float\endcsname
\expandafter\let\expandafter\pgfplots@cur@max@unscaled\csname pgfplots@#1max@unscaled@as@float\endcsname
%
\ifx\pgfplots@cur@min@unscaled\pgfutil@empty
\edef\pgfplots@loc@TMPa{\csname pgfplots@#1min\endcsname}%
\expandafter\pgfmathfloatparsenumber\expandafter{\pgfplots@loc@TMPa}%
\let\pgfplots@cur@min@unscaled=\pgfmathresult
\edef\pgfplots@loc@TMPa{\csname pgfplots@#1max\endcsname}%
\expandafter\pgfmathfloatparsenumber\expandafter{\pgfplots@loc@TMPa}%
\let\pgfplots@cur@max@unscaled=\pgfmathresult
\fi
%
\expandafter\pgfmathfloat@decompose@E\pgfplots@cur@min@unscaled\relax\pgfmathfloat@a@E
\expandafter\pgfmathfloat@decompose@E\pgfplots@cur@max@unscaled\relax\pgfmathfloat@b@E
\pgfplots@init@scaled@tick@normalize@exponents
\ifnum\pgfmathfloat@b@E<\pgfmathfloat@a@E
\pgfmathfloat@b@E=\pgfmathfloat@a@E
\fi
\xdef\pgfplots@glob@TMPa{\pgfplots@scale@ticks@above@exponent}%
\ifnum\pgfplots@glob@TMPa<\pgfmathfloat@b@E
% ok, scale it:
\multiply\pgfmathfloat@b@E by-1
\xdef\pgfplots@glob@TMPa{\the\pgfmathfloat@b@E}%
\else
\xdef\pgfplots@glob@TMPa{\pgfplots@scale@ticks@below@exponent}%
\ifnum\pgfplots@glob@TMPa>\pgfmathfloat@b@E
% ok, scale it:
\multiply\pgfmathfloat@b@E by-1
\xdef\pgfplots@glob@TMPa{\the\pgfmathfloat@b@E}%
\else
% no scaling necessary:
\xdef\pgfplots@glob@TMPa{0}%
\fi
\fi
\or
% CASE 2 : scaled #1 ticks=base 10:
%--------------------------------
\c@pgf@counta=\csname pgfplots@scaled@ticks@#1@arg\endcsname\relax
%\multiply\c@pgf@counta by-1
\xdef\pgfplots@glob@TMPa{\the\c@pgf@counta}%
\or
% CASE 3 : scaled #1 ticks=real:
%--------------------------------
\pgfmathfloatparsenumber{\csname pgfplots@scaled@ticks@#1@arg\endcsname}%
\global\let\pgfplots@glob@TMPa=\pgfmathresult
\or
% CASE 4 : scaled #1 ticks=manual:
\expandafter\global\expandafter\let\expandafter\pgfplots@glob@TMPa\csname pgfplots@scaled@ticks@#1@arg\endcsname
\fi
\endgroup
\fi
\expandafter\let\csname pgfplots@tick@scale@#1\endcsname=\pgfplots@glob@TMPa%
}
% Handles the case that one of the limits is 0 (or unbounded, although
% that might not be a use-case at all).
%
% Note that 0 = 0*10^A (naturally). In this case, A can be undefined,
% and we want to use B's exponent (only) for the decision here.
%
% INPUT:
% - \pgfplots@cur@min@unscaled,
% - \pgfplots@cur@max@unscaled,
% - \pgfmathfloat@a@E
% - \pgfmathfloat@b@E
%
% Output:
% normalized values of \pgfmathfloat@a@E and \pgfmathfloat@b@E
\def\pgfplots@init@scaled@tick@normalize@exponents{%
\pgfmathfloatgetflags\pgfplots@cur@min@unscaled\pgfmathfloat@a@S
\pgfmathfloatgetflags\pgfplots@cur@max@unscaled\pgfmathfloat@b@S
\ifcase\pgfmathfloat@a@S%
% min = 0.
\ifcase\pgfmathfloat@b@S
% max =0
% normalize to 0 * 10^0 !
\pgfmathfloat@a@E=0 %
\pgfmathfloat@b@E=0 %
\or
% max > 0
% since 0 = 0 * 10^A for any A, tick scaling is based on
% B only.
\pgfmathfloat@a@E=\pgfmathfloat@b@E
\or
% max < 0
\pgfmathfloat@a@E=\pgfmathfloat@b@E
\else
% max is unbounded. normalize exponent to something
% useful:
\pgfmathfloat@a@E=0 %
\pgfmathfloat@b@E=0 %
\fi
\or
% min>0
\ifcase\pgfmathfloat@b@S
% max =0
% since 0 = 0 * 10^B for any B, tick scaling is based on
% A only.
\pgfmathfloat@b@E=\pgfmathfloat@a@E
\or
% max > 0
\or
% max < 0
\else
% max is unbounded. normalize exponent to something
% useful:
\pgfmathfloat@b@E=\pgfmathfloat@a@E
\fi
\or
% min<0
\ifcase\pgfmathfloat@b@S
% max =0
% since 0 = 0 * 10^B for any B, tick scaling is based on
% A only.
\pgfmathfloat@b@E=\pgfmathfloat@a@E
\or
% max > 0
\or
% max < 0
\else
% max is unbounded. normalize exponent to something
% useful:
\pgfmathfloat@b@E=\pgfmathfloat@a@E
\fi
\else
% min is unbounded:
% normalize somehow.
\pgfmathfloat@a@E=0 %
\pgfmathfloat@b@E=0 %
\fi
}
% x-axis tick labels for #1th tick
% #1: the axis (x,y or z)
% #2: the value
% #3,#4+#5: arguments for \pgfplotspointonorientedsurfaceabwithbshift
% #5: ticknumber
\def\pgfplots@show@ticklabel#1#2(#3,#4+#5)#6{%
\begingroup%
\csname ifpgfplots@#1ticklabel@interval\endcsname
% Special case for the INTERVAL feature:
% we have to do additional work here.
\pgfmathparse{#3}%
\edef\pgfplots@show@ticklabel@coord@x@new{\pgfmathresult}%
\pgfmathparse{#4}%
\edef\pgfplots@show@ticklabel@coord@y@new{\pgfmathresult}%
%
\pgfplots@show@ticklabel@{#1}{#2}%
\let\nexttick=\tick
\ifx\pgfplots@show@ticklabel@LASTTICK\pgfutil@empty
% its the first call. Simply remember arguments and wait
% for interval boundary before proceeding.
\else
% acquire options of first interval boundary:
\pgfplots@show@ticklabel@LASTTICK
% compute new node position:
\pgfmathparse{0.5*(\pgfplots@show@ticklabel@coord@x + \pgfplots@show@ticklabel@coord@x@new)}%
\let\pgfplots@show@ticklabel@coord@x=\pgfmathresult%
\pgfmathparse{0.5*(\pgfplots@show@ticklabel@coord@y + \pgfplots@show@ticklabel@coord@y@new)}%
\let\pgfplots@show@ticklabel@coord@y=\pgfmathresult%
\let\ticknum=\pgfplots@show@ticklabel@num\relax%
\let\tick=\pgfplots@show@ticklabel@tick%
\pgfplots@show@ticklabel@@{#1}
{\pgfplotspointonorientedsurfaceabwithbshift{\pgfplots@show@ticklabel@coord@x}{\pgfplots@show@ticklabel@coord@y}{#5}}%
\fi
\xdef\pgfplots@show@ticklabel@LASTTICK{%
\noexpand\def\noexpand\pgfplots@show@ticklabel@tick{\nexttick}%
\noexpand\def\noexpand\pgfplots@show@ticklabel@coord@x{\pgfplots@show@ticklabel@coord@x@new}%
\noexpand\def\noexpand\pgfplots@show@ticklabel@coord@y{\pgfplots@show@ticklabel@coord@y@new}%
\noexpand\edef\noexpand\pgfplots@show@ticklabel@num{#6}%
}%
\else
\let\ticknum=#6\relax%
\pgfplots@show@ticklabel@{#1}{#2}%
\pgfplots@show@ticklabel@@{#1}{\pgfplotspointonorientedsurfaceabwithbshift{#3}{#4}{#5}}%
\fi
\endgroup
}
% #1: the axis (x,y or z)
% #2: the location where to place it.
\def\pgfplots@show@ticklabel@@#1#2{%
% Typeset the label!
\pgfinterruptboundingbox
% What makes this complicated is the 'ticklabel cs' feature.
% What we need is to compute the MAXIMUM LENGTH over each tick
% label IN DIRECTION OF THE OUTER NORMAL.
%
% This needs to
% 1. enable bounding box computation even in case of
% 'overlay',
% 2. projection of the bounding box in direction of the outer
% normal,
% 3. update of the bounding box if 'overlay' is not active.
\begingroup
%
% prepare step (1.):
\pgfkeysalso{%
/tikz/every node/.append code={%
\ifpgf@relevantforpicturesize
\gdef\pgfplots@show@ticklabel@@update@BB{1}%
\else
\gdef\pgfplots@show@ticklabel@@update@BB{0}%
\fi
\pgf@relevantforpicturesizetrue
}%
}%
%
% Compute and remember the position '#2':
\pgf@process{#2}%
\edef\pgfplots@ticklabel@at@x{\the\pgf@x}%
\edef\pgfplots@ticklabel@at@y{\the\pgf@y}%
%
% ok, generate the label!
\node at (\pgfplots@ticklabel@at@x,\pgfplots@ticklabel@at@y) {\csname pgfplots@#1ticklabel\endcsname};%
%
% compute the label's dimensions, step (2.):
\pgfplots@ticklabel@maxtickdimen@updateforcurrentpath
{#1}
{\pgf@x=\pgfplots@ticklabel@at@x\space\pgf@y=\pgfplots@ticklabel@at@y\space}%%
%
% prepare step (3.): update of bounding box:
\if\pgfplots@show@ticklabel@@update@BB1%
\xdef\pgfplots@glob@TMPa{%
\pgf@xa=\the\pgf@picminx\space
\pgf@xb=\the\pgf@picminy\space
\pgf@ya=\the\pgf@picmaxx\space
\pgf@yb=\the\pgf@picmaxy\space
\noexpand\pgf@protocolsizes{\pgf@xa}{\pgf@xb}%
\noexpand\pgf@protocolsizes{\pgf@ya}{\pgf@yb}%
\noexpand\pgf@resetpathsizes
}%
\else
\global\let\pgfplots@glob@TMPa=\relax
\fi
\endgroup
\endpgfinterruptboundingbox
\begingroup
\pgfplots@glob@TMPa
\endgroup
}%
% TICK LABEL DIMENSION CONTROL
%
% The following framework is supposed to accumulate the value for
% \pgfplotsvalueoflargesttickdimen.
%
% It works like this:
%
% \pgfplots@ticklabel@maxtickdimen@reset{#1}
% \pgfplots@ticklabel@maxtickdimen@prepare@for@normalvec{#1}{}
% ...
% \pgfplots@ticklabel@maxtickdimen@updateforcurrentpath{#1}
% \pgfplots@ticklabel@maxtickdimen@updateforcurrentpath{#1}
% \pgfplots@ticklabel@maxtickdimen@updateforcurrentpath{#1}
% ...
% \pgfplots@ticklabel@maxtickdimen@finish{#1}
%
% -> then, \pgfplotsvalueoflargesttickdimen expands to the largest
% distance from a tick's coordinate to its tick label bounding box in
% direction of the outer normal vector.
\def\pgfplots@ticklabel@maxtickdimen@reset#1{%
\expandafter\gdef\csname pgfplots@maxtickdimen@#1\endcsname{0pt}%
\expandafter\gdef\csname pgfplots@maxtickdimen@extrashift@#1\endcsname{0pt}%
}%
% Adds the extra shift '#2' along the normal vector for axis '#1'.
\def\pgfplots@ticklabel@maxtickdimen@extrashift#1#2{%
\begingroup
\afterassignment\pgfplots@gobble@until@relax
\pgf@xa=#2pt\relax
\advance\pgf@xa by\csname pgfplots@maxtickdimen@extrashift@#1\endcsname\relax
\expandafter\xdef\csname pgfplots@maxtickdimen@extrashift@#1\endcsname{\the\pgf@xa}%
\endgroup
}
% Finalizes the maxtickdimen computation.
%
% This applies any extra shifts (including '#1ticklabel shift').
\def\pgfplots@ticklabel@maxtickdimen@finish#1{%
\pgfkeysgetvalue{/pgfplots/#1ticklabel shift}\pgfmathresult
\ifx\pgfmathresult\pgfutil@empty
\else
\pgfplots@ticklabel@maxtickdimen@extrashift{#1}{\pgfkeysvalueof{/pgfplots/#1ticklabel shift}}%
\fi
\begingroup
\pgf@xa=\csname pgfplots@maxtickdimen@extrashift@#1\endcsname\relax
\advance\pgf@xa by \csname pgfplots@maxtickdimen@#1\endcsname\relax
\expandafter\xdef\csname pgfplots@maxtickdimen@#1\endcsname{\the\pgf@xa}%
\endgroup
}%
%
% #1: the axis (x,y or z)
% #2: the normal vector
\def\pgfplots@ticklabel@maxtickdimen@prepare@for@normalvec#1#2{%
\pgf@process{#2}%
\edef\pgfplots@loc@vector@to@outside{\pgf@x=\the\pgf@x\space\pgf@y=\the\pgf@y\space}%
% Identify the corner point of the ticklabel bounding box which
% shall be used:
\ifdim\pgf@x>0sp
\ifdim\pgf@y>0sp
% NORTH EAST
\def\pgfplots@loc@ticklabel@bb@corner{\pgf@x=\pgf@picmaxx\pgf@y=\pgf@picmaxy}%
\else
% SOUTH EAST
\def\pgfplots@loc@ticklabel@bb@corner{\pgf@x=\pgf@picmaxx\pgf@y=\pgf@picminy}%
\fi
\else
\ifdim\pgf@y>0sp
% NORTH WEST
\def\pgfplots@loc@ticklabel@bb@corner{\pgf@x=\pgf@picminx\pgf@y=\pgf@picmaxy}%
\else
% SOUTH WEST
\def\pgfplots@loc@ticklabel@bb@corner{\pgf@x=\pgf@picminx\pgf@y=\pgf@picminy}%
\fi
\fi
}%
% #1: the axis (x,y or z)
% #2: the point from where dimension shall be computed (the 'at'
% argument of the tick label)
\def\pgfplots@ticklabel@maxtickdimen@updateforcurrentpath#1#2{%
\pgfplotsscalarproductofvectors
{\pgfplots@loc@vector@to@outside}%
{\pgfpointdiff
{#2\pgf@pos@transform\pgf@x\pgf@y}%
{\pgfplots@loc@ticklabel@bb@corner}}%
\ifdim\pgf@x>\csname pgfplots@maxtickdimen@#1\endcsname\relax
\expandafter\xdef\csname pgfplots@maxtickdimen@#1\endcsname{\the\pgf@x}%
\fi
}%
% Expands to the largest distance of a tick position to its tick label
% bounding box in direction of the outer unit normal vector.
%
% It does also include the value of the 'ticklabel shift' key.
%
% This function assumes that
% \pgfplots@ticklabel@maxtickdimen@reset{#1}
% \pgfplots@ticklabel@maxtickdimen@prepare@for@normalvec{#1}{}
% ...
% \pgfplots@ticklabel@maxtickdimen@updateforcurrentpath{#1}
% \pgfplots@ticklabel@maxtickdimen@updateforcurrentpath{#1}
% \pgfplots@ticklabel@maxtickdimen@updateforcurrentpath{#1}
% ...
% \pgfplots@ticklabel@maxtickdimen@finish{#1}
% has been invoked completely.
%
% #1: either x,y or z. It denotes the axis for which the ticks are
% requested.
\def\pgfplotsvalueoflargesttickdimen#1{%
\csname pgfplots@maxtickdimen@#1\endcsname
}%
% Just like \pgfplotsqpointoutsideofaxis, but this one here uses the
% axis on which tick labels will be drawn.
%
% #1: one of x, y or z.
% #2: the coordinate on the tick axis designated by '#1'.
% #3: a scale (a dimen) in which the point is moved in direction of
% the outward normal vector of the axis.
%
% @see \pgfplotsqpointoutsideofaxis
\def\pgfplotsqpointoutsideofticklabelaxis#1#2#3{%
\pgfplotsqpointoutsideofaxis{\csname pgfplots@#1ticklabelaxisspec\endcsname}{#2}{#3}%
}%
\def\pgfplotsqpointoutsideofticklabelaxisrel#1#2#3{%
%\message{using \string\pgfplotsqpointoutsideofaxisrel{\csname pgfplots@#1ticklabelaxisspec\endcsname}{#2}{#3}^^J}%
\pgfplotsqpointoutsideofaxisrel{\csname pgfplots@#1ticklabelaxisspec\endcsname}{#2}{#3}%
}%
\def\pgfplotsqpointoutsideofticklabelaxistransformed#1#2#3{%
\pgfplotsqpointoutsideofaxistransformed{\csname pgfplots@#1ticklabelaxisspec\endcsname}{#2}{#3}%
}%
% Expands to the three-character-identification for the axis
% containing tick labels for axis #1.
%
% #1: either x, y or z.
\def\pgfplotsticklabelaxisspec#1{\csname pgfplots@#1ticklabelaxisspec\endcsname}%
% The unit outer normal vector for axis #1.
% #1: one of x, y or z.
\def\pgfplotspointouternormalvectorofticklabelaxis#1{%
\pgfplotspointouternormalvectorofaxis{\csname pgfplots@#1ticklabelaxisspec\endcsname}%
}
% Defines \tick by applying any necessary math to the (possibly
% transformed) tick value #2.
%
% #1: axis (x or y)
% #2: tick value.
\def\pgfplots@show@ticklabel@#1#2{%
\csname ifpgfplots@apply@datatrafo@#1\endcsname
\pgfplotscoordmath{#1}{datascaletrafo inverse}{#2}%
\ifcase\csname pgfplots@scaled@ticks@#1@choice\endcsname
\or
\expandafter\pgfmathfloatshift@\expandafter{\pgfmathresult}{\csname pgfplots@tick@scale@#1\endcsname}%
\or
\expandafter\pgfmathfloatshift@\expandafter{\pgfmathresult}{\csname pgfplots@tick@scale@#1\endcsname}%
\or
\expandafter\pgfmathfloatdivide@\expandafter{\pgfmathresult}{\csname pgfplots@tick@scale@#1\endcsname}%
\or
% scaled #1 ticks=manual. Invoke manual tick scaling code:
\expandafter\let\expandafter\pgfplots@loc@TMPa\csname pgfplots@tick@scale@#1\endcsname
\begingroup
\pgfkeys{/pgf/fpu=true}%
\expandafter\pgfplots@loc@TMPa\expandafter{\pgfmathresult}%
\pgfmath@smuggleone\pgfmathresult
\endgroup
\pgfmathfloatparsenumber\pgfmathresult%
\fi
% .. and this here provides \tick as fixed point repr:
\expandafter\pgfmathfloattofixed\expandafter{\pgfmathresult}%
\let\tick=\pgfmathresult
\else
\edef\tick{#2}%
\pgfplots@if{pgfplots@#1islinear}{%
\ifnum\csname pgfplots@scaled@ticks@#1@choice\endcsname=0
\else
\pgfmathfloatparsenumber{#2}%
\ifnum\csname pgfplots@scaled@ticks@#1@choice\endcsname=3
\expandafter\pgfmathfloatdivide@\expandafter{\pgfmathresult}{\csname pgfplots@tick@scale@#1\endcsname}%
\else
\expandafter\pgfmathfloatshift@\expandafter{\pgfmathresult}{\csname pgfplots@tick@scale@#1\endcsname}%
\fi
\expandafter\pgfmathfloattofixed\expandafter{\pgfmathresult}%
\let\tick=\pgfmathresult
\fi
}{}%
\fi
\pgfplots@coord@inv@trafo@apply{#1}{\tick}%
\let\tick=\pgfmathresult
}%
\def\pgfplots@user@ticklabel@list@x{%
\pgfplotslistselectorempty\ticknum\of\pgfplots@xticklabels\to\tick
\tick
}
\def\pgfplots@user@ticklabel@list@y{%
\pgfplotslistselectorempty\ticknum\of\pgfplots@yticklabels\to\tick
\tick
}
\def\pgfplots@user@ticklabel@list@z{%
\pgfplotslistselectorempty\ticknum\of\pgfplots@zticklabels\to\tick
\tick
}
\def\pgfplots@user@extra@ticklabel@list@x{%
\pgfplotslistselectorempty\ticknum\of\pgfplots@extra@xticklabels\to\tick
\tick
}
\def\pgfplots@user@extra@ticklabel@list@y{%
\pgfplotslistselectorempty\ticknum\of\pgfplots@extra@yticklabels\to\tick
\tick
}
\def\pgfplots@user@extra@ticklabel@list@z{%
\pgfplotslistselectorempty\ticknum\of\pgfplots@extra@zticklabels\to\tick
\tick
}
\def\pgfplots@limit@max@reg#1{%
\if\pgfkeysvalueof{/pgfplots/#1 dir/value}n%
\csname pgfplots@#1max@reg\endcsname
\else
\csname pgfplots@#1min@reg\endcsname
\fi
}%
\def\pgfplots@limit@min@reg#1{%
\if\pgfkeysvalueof{/pgfplots/#1 dir/value}n%
\csname pgfplots@#1min@reg\endcsname
\else
\csname pgfplots@#1max@reg\endcsname
\fi
}%
% Check if a label does not cross the x-axis
\def\pgfplots@ytick@check@tickshow{%
\pgfplots@tickshowtrue
\if\pgfplots@yaxislinesnum2% center
\ifcase\pgfplots@xaxislinesnum\relax
\pgfplotsmath@ifapproxequal@dim
{\pgfplots@tmpa}{\pgfplots@limit@min@reg{y}}
{\pgfplots@loc@tick@placement@tolerance}
{%
\pgfplots@tickshowfalse
}{}%
\pgfplotsmath@ifapproxequal@dim
{\pgfplots@tmpa}{\pgfplots@limit@max@reg{y}}
{\pgfplots@loc@tick@placement@tolerance}
{%
\pgfplots@tickshowfalse
}{}%
\or
\pgfplotsmath@ifapproxequal@dim
{\pgfplots@tmpa}{\pgfplots@limit@min@reg{y}}
{\pgfplots@loc@tick@placement@tolerance}
{%
\pgfplots@tickshowfalse
}{%
}%
\or
\pgfplotsmath@ifapproxequal@dim
{\pgfplots@tmpa}{\pgfplots@logical@ZERO@y pt}
{\pgfplots@loc@tick@placement@tolerance}
{%
\pgfplots@tickshowfalse
}{}%
\or
\pgfplotsmath@ifapproxequal@dim
{\pgfplots@tmpa}{\pgfplots@limit@max@reg{y}}
{\pgfplots@loc@tick@placement@tolerance}
{%
\pgfplots@tickshowfalse
}{}%
\fi
\fi
}
\def\pgfplots@ztick@check@tickshow{%
\pgfplots@tickshowtrue
\if\pgfplots@zaxislinesnum2% center
\pgfplotsmath@ifapproxequal@dim
{\pgfplots@tmpa}{\pgfplots@logical@ZERO@z pt}
{\pgfplots@loc@tick@placement@tolerance}
{%
\pgfplots@tickshowfalse
}{}%
\fi
}%
% Fills the macros
% \pgfplots@tick@LOWER@b \pgfplots@tick@end@a
% \pgfplots@tick@UPPER@b \pgfplots@tick@end@b
% with coordinates such that
% (\pgfplots@tick@LOWER@b,\pgfplots@tmpa) -- (\pgfplots@tick@end@a,\pgfplots@tmpa)
% produces a correct tick line.
%
% The '@b' variant is only used in case of \pgfplots@ytickposnum = 0
%
% #1 : the current axis (x or y).
% #2 : the current tick width
%
\def\pgfplots@prepare@tick@offsets@for@#1#2{%
%
% FIXME : this stuff was ok for 2D.
% For 3D, it works only for the cases of boxed axes or centered
% axis lines.
\ifcase\csname pgfplots@#1tickposnum\endcsname\relax
% both
%(\pgfplots@xcoordminTEX-\pgfplots@tick@offset, \pgfplots@tmpa) -- ++( #2, 0pt)
\edef\pgfplots@tick@LOWER@b{\csname pgfplots@\pgfplotspointonorientedsurfaceB min\endcsname}%
%
%(\pgfplots@xcoordmaxTEX+\pgfplots@tick@offset, \pgfplots@tmpa) -- ++(-#2, 0pt)
\edef\pgfplots@tick@UPPER@b{\csname pgfplots@\pgfplotspointonorientedsurfaceB max\endcsname}%
\or
% left
% (\pgfplots@xcoordminTEX-\pgfplots@tick@offset, \pgfplots@tmpa) -- ++( #2, 0pt);
\edef\pgfplots@tick@LOWER@b{\csname pgfplots@\pgfplotspointonorientedsurfaceB min\endcsname}%
\or
% center
% (\pgfplots@ZERO@x -\pgfplots@tick@offset, \pgfplots@tmpa) -- ++( #2, 0pt);
\edef\pgfplots@tick@LOWER@b{\csname pgfplots@logical@ZERO@\pgfplotspointonorientedsurfaceB \endcsname}%
\or
% right
% (\pgfplots@xcoordmaxTEX+\pgfplots@tick@offset, \pgfplots@tmpa) -- ++(-#2, 0pt);
\edef\pgfplots@tick@UPPER@b{\csname pgfplots@\pgfplotspointonorientedsurfaceB max\endcsname}%
\else
% FALL BACK. never used, I guess?
% (\pgfplots@xcoordminTEX-\pgfplots@tick@offset, \pgfplots@tmpa) -- ++( #2, 0pt);
\edef\pgfplots@tick@LOWER@b{\csname pgfplots@\pgfplotspointonorientedsurfaceB min\endcsname}%
\fi
%
\ifcase\csname pgfplots@#1tickalignnum\endcsname\relax
\def\pgfplots@tick@offset{0}%
\or
\edef\pgfplots@tick@offset{#2}%
\or
\pgfmathmultiply@{0.5}{#2}%
\let\pgfplots@tick@offset=\pgfmathresult%
\fi
%
\edef\pgfplots@tick@LOWER@shiftbeg{-\pgfplots@tick@offset}%
\pgfmathadd@{\pgfplots@tick@LOWER@shiftbeg}{#2}%
\let\pgfplots@tick@LOWER@shiftend=\pgfmathresult
%
\edef\pgfplots@tick@UPPER@shiftbeg{\pgfplots@tick@offset}%
\pgfmathsubtract@{\pgfplots@tick@UPPER@shiftbeg}{#2}%
\let\pgfplots@tick@UPPER@shiftend=\pgfmathresult
%
% Assemble the \pgfplots@drawticklines@for@placecomputedtick
% command.
\def\pgfplots@drawticklines@for@placecomputedtick{%
\if\pgfplots@drawticklines@for@placecomputedtick@LOWEROK1%
\pgfpathmoveto{\pgfplotspointonorientedsurfaceabwithbshift{\pgfplots@curtickpos}{\pgfplots@tick@LOWER@b}{\pgfplots@tick@LOWER@shiftbeg pt}}%
\pgfpathlineto{\pgfplotspointonorientedsurfaceabwithbshift{\pgfplots@curtickpos}{\pgfplots@tick@LOWER@b}{\pgfplots@tick@LOWER@shiftend pt}}%
\fi
\if\pgfplots@drawticklines@for@placecomputedtick@UPPEROK1%
\pgfpathmoveto{\pgfplotspointonorientedsurfaceabwithbshift{\pgfplots@curtickpos}{\pgfplots@tick@UPPER@b}{\pgfplots@tick@UPPER@shiftbeg pt}}%
\pgfpathlineto{\pgfplotspointonorientedsurfaceabwithbshift{\pgfplots@curtickpos}{\pgfplots@tick@UPPER@b}{\pgfplots@tick@UPPER@shiftend pt}}%
\fi
}%
%\message{place computed tick: LOWEROK=\pgfplots@drawticklines@for@placecomputedtick@LOWEROK; UPPEROK=\pgfplots@drawticklines@for@placecomputedtick@UPPEROK.}%
}%
\newif\ifpgfplots@needsminorloop
\def\pgfplots@draw@tick@scale@label@for#1{%
\csname ifpgfplots@#1islinear\endcsname
\begingroup
\def\pgfplots@temp@isbaseten{0}%
\ifcase\csname pgfplots@scaled@ticks@#1@choice\endcsname
\global\let\pgfplots@glob@TMPa=\pgfutil@empty
\or
\xdef\pgfplots@glob@TMPa{\csname pgfplots@tick@scale@#1\endcsname}%
\def\pgfplots@temp@isbaseten{1}%
\or
\xdef\pgfplots@glob@TMPa{\csname pgfplots@tick@scale@#1\endcsname}%
\def\pgfplots@temp@isbaseten{1}%
\or
\xdef\pgfplots@glob@TMPa{\csname pgfplots@tick@scale@#1\endcsname}%
% real:
\or
% manual:
\global\def\pgfplots@glob@TMPa{dummyargument}%
\fi
\if1\pgfplots@temp@isbaseten
\expandafter\c@pgf@counta\pgfplots@glob@TMPa\relax
\multiply\c@pgf@counta by-1
\ifnum\c@pgf@counta=0\relax
\global\let\pgfplots@glob@TMPa=\pgfutil@empty
\else
\xdef\pgfplots@glob@TMPa{\the\c@pgf@counta}%
\fi
\fi
\endgroup
\ifx\pgfplots@glob@TMPa\pgfutil@empty
\else
\begingroup
\pgfkeysgetvalue{/pgfplots/#1tick scale label code/.@cmd}\pgfplots@loc@TMPa
\ifx\pgfplots@loc@TMPa\pgfplots@empty@command@key
\else
\edef\pgfplots@tick@scale@labels{\noexpand\pgfplots@invoke@pgfkeyscode{/pgfplots/#1tick scale label code/.@cmd}{\pgfplots@glob@TMPa}}%
%
\pgfplots@change@pgfpoints@to@descriptioncs
%
\node[%
/pgfplots/every tick label,%
/pgfplots/every #1 tick label,%
/pgfplots/every #1 tick scale label]
{\pgfplots@tick@scale@labels};
\fi
\endgroup
\fi
\fi
}
% Check if the current tick position, stored in \pgfplots@tmpa,
% does not cross the y-axis.
%
% This is just a special case for centered axis lines.
\def\pgfplots@xtick@check@tickshow{%
\pgfplots@tickshowtrue
\if\pgfplots@xaxislinesnum2% center
\ifcase\pgfplots@yaxislinesnum\relax
\pgfplotsmath@ifapproxequal@dim
{\pgfplots@tmpa}{\pgfplots@limit@min@reg{x}}
{\pgfplots@loc@tick@placement@tolerance}
{%
\pgfplots@tickshowfalse
}{}%
\pgfplotsmath@ifapproxequal@dim
{\pgfplots@tmpa}{\pgfplots@limit@max@reg{x}}
{\pgfplots@loc@tick@placement@tolerance}
{%
\pgfplots@tickshowfalse
}{}%
\or
\pgfplotsmath@ifapproxequal@dim
{\pgfplots@tmpa}{\pgfplots@limit@min@reg{x}}
{\pgfplots@loc@tick@placement@tolerance}
{%
\pgfplots@tickshowfalse
}{}%
\or
\pgfplotsmath@ifapproxequal@dim
{\pgfplots@tmpa}{\pgfplots@logical@ZERO@x pt}
{\pgfplots@loc@tick@placement@tolerance}
{%
\pgfplots@tickshowfalse
}{}%
\or
\pgfplotsmath@ifapproxequal@dim
{\pgfplots@tmpa}{\pgfplots@limit@max@reg{x}}
{\pgfplots@loc@tick@placement@tolerance}
{%
\pgfplots@tickshowfalse
}{}%
\fi
\fi
}
% Draws extra ticks including grid lines, tick lines and tick labels
% along the current oriented surface.
%
% See \pgfplots@drawticklines@onorientedsurf@ for a description of the
% oriented surface.
%
% #1 : tick position list
\def\pgfplots@draw@extra@ticks@onorientedsurf{%
\expandafter\pgfplots@draw@extra@ticks@onorientedsurf@\pgfplotspointonorientedsurfaceA
}%
% #1: axis (x or y)
% #2: tick position list
\def\pgfplots@draw@extra@ticks@onorientedsurf@#1#2{%
\begingroup
\def\pgfplots@scaled@ticks@x@choice{0}%
\def\pgfplots@scaled@ticks@y@choice{0}%
\def\pgfplots@scaled@ticks@z@choice{0}%
\csname pgfplots@#1minorticksfalse\endcsname
\csname pgfplots@#1minorgridsfalse\endcsname
\expandafter\let\expandafter\pgfplots@ticklabel@pos@orig\csname pgfplots@#1ticklabel@pos\endcsname%
\expandafter\let\expandafter\axis@TMP\csname pgfplots@extra@#1ticklabel\endcsname
\expandafter\let\csname pgfplots@#1ticklabel\endcsname=\axis@TMP
% \pgfplotsset{/pgfplots/every extra #1 tick}%
% use a scope here such that line width and draw color can be set.
\scope[/pgfplots/.cd,/pgfplots/every extra #1 tick]
\expandafter\let\expandafter\pgfplots@ticklabel@pos@\csname pgfplots@#1ticklabel@pos\endcsname
\ifx\pgfplots@ticklabel@pos@\pgfplots@ticklabel@pos@orig
\else
\pgfplots@init@ticklabelaxisspec
\fi
\pgfplots@prepare@tick@coordlists@for{#1}{#2}%
\pgfplots@drawgridlines@onorientedsurf%
\pgfplots@drawticklines@onorientedsurf%
\pgfplots@drawticklabels@onorientedsurf%
\endscope
\endgroup
}
% Computes final major and minor tick positions into global lists
% \pgfplots@prepared@tick@positions@major@x
% and
% \pgfplots@prepared@tick@positions@minor@x.
%
% Both lists contain entries of the form {}{}
% @see \pgfplots@prepared@tick@pos@unpack
%
% #1: the axis
% #2: the tick list.
%
% PRECONDITION:
% - \pgfplots@determinedefaultvalues has been executed.
% That means particularly that \pgfplots@[xy][min,max] are available in TeX point
% range (after datascaling and logs).
% POSTCONDITION:
% - the lists
% \pgfplots@prepared@tick@positions@major@x
% \pgfplots@prepared@tick@positions@major@tickindices@x
% \pgfplots@prepared@tick@positions@minor@x
% are ready.
\def\pgfplots@prepare@tick@coordlists@for#1#2{%
\begingroup
\expandafter\let\expandafter\ifpgfplots@islinear\csname ifpgfplots@#1islinear\endcsname
\expandafter\let\expandafter\ifpgfplots@minorticks\csname ifpgfplots@#1minorticks\endcsname
\expandafter\let\expandafter\ifpgfplots@minorgrids\csname ifpgfplots@#1minorgrids\endcsname
% these lists need to be global such that I can fill them inside
% of \foreach statements. And, yes: I have also added a TeX group
% on my own (but that's not the problem).
\global\pgfplotslistnewempty\pgfplots@prepared@tick@positions@major
%\global\pgfplotslistnewempty\pgfplots@prepared@tick@positions@major@tickindices
\global\pgfplotslistnewempty\pgfplots@prepared@tick@positions@minor
%
\pgfplots@prepare@tick@coordlists@for@handletolerance#1%
%
\edef\pgfplots@loc@TMPa{#2}%
\ifx\pgfplots@loc@TMPa\pgfutil@empty
\else
\ifpgfplots@minorticks
\pgfplots@needsminorlooptrue
\else
\ifpgfplots@minorgrids
\pgfplots@needsminorlooptrue
\else
\pgfplots@needsminorloopfalse
\fi
\fi
\pgfkeysgetvalue{/pgfplots/minor #1tick}\pgfplots@minor@tick@list
\ifx\pgfplots@minor@tick@list\pgfutil@empty
\else
\pgfplots@needsminorloopfalse
\fi
%
\ifpgfplots@needsminorloop
\ifpgfplots@islinear
\pgfkeysgetvalue{/pgfplots/minor #1 tick num}\pgfplots@minor@tick@num
\begingroup
\c@pgf@counta=\pgfplots@minor@tick@num\relax
\advance\c@pgf@counta by1\relax
\pgfplots@tmpa=\csname pgfplots@tick@distance@#1\endcsname pt %
\divide\pgfplots@tmpa by\c@pgf@counta
\edef\pgfmathresult{\pgf@sys@tonumber{\pgfplots@tmpa}}%
\pgfmath@smuggleone\pgfmathresult
\endgroup
\let\pgfplots@minor@tick@dist=\pgfmathresult
\else
\def\pgfplots@minor@tick@num{9}%
\fi
\fi
%
% Prepare the [xy]tick[min|max] key processing:
\let\pgfplots@checktickminmax=\pgfutil@empty
\expandafter\ifx\csname pgfplots@#1tickmin\endcsname\pgfutil@empty
\else
\expandafter\def\expandafter\pgfplots@checktickminmax\expandafter{%
\pgfplots@checktickminmax
\pgfplots@prepare@tick@coordlists@for@checktickmin#1%
}%
\fi
\expandafter\ifx\csname pgfplots@#1tickmax\endcsname\pgfutil@empty
\else
\expandafter\def\expandafter\pgfplots@checktickminmax\expandafter{%
\pgfplots@checktickminmax
\pgfplots@prepare@tick@coordlists@for@checktickmax#1%
}%
\fi
%
%
\gdef\pgfplots@glob@TMPa{0}%
\foreach \x in {#2} {%
\let\pgfplots@ticknum=\pgfplots@glob@TMPa
%
\pgfplots@prepare@tick@coordlists@for@assign\pgfplots@tmpa=\x
\csname pgfplots@#1tick@check@tickshow\endcsname
\pgfplots@prepare@tick@coordlists@for@checkdatalimits#1%
\pgfplots@checktickminmax
%
\ifpgfplots@tickshow
\edef\x{{\pgfplots@ticknum}{\x}}%
\expandafter\pgfplotslistpushbackglobal\x\to\pgfplots@prepared@tick@positions@major
%\expandafter\pgfplotslistpushbackglobal\pgfplots@ticknum\to\pgfplots@prepared@tick@positions@major@tickindices
\fi
% X-Axis ticks bottom and top
\ifpgfplots@needsminorloop
% SEE BELOW for the 'minor #1tick' feature -- it has a
% separate loop.
\foreach \pgfplots@i in {1,...,\pgfplots@minor@tick@num} {%
\ifpgfplots@islinear
\pgfmathmultiply@{\pgfplots@i}{\pgfplots@minor@tick@dist}%
\else
% in log:
% log( i*10^k ) = log\pgfplots@i + k\log10 -> draw ticks for i=1..9
\pgfplotscoordmath{#1}{log unsigned int}{\pgfplots@i}%
\pgfplotscoordmath{#1}{tofixed}{\pgfmathresult}%
\fi
\pgfplots@prepare@tick@coordlists@for@advance\pgfplots@tmpa by\pgfmathresult
\pgfplots@tickshowtrue
\pgfplots@prepare@tick@coordlists@for@checkdatalimits#1%
\pgfplots@checktickminmax
\ifpgfplots@tickshow
\pgfplots@prepare@tick@coordlists@for@tofixed\pgfplots@tmpa
\c@pgf@counta=\pgfplots@ticknum\relax
\advance\c@pgf@counta by\pgfplots@i\relax
\edef\x{{\the\c@pgf@counta}{\pgfmathresult}}%
\expandafter\pgfplotslistpushbackglobal\x\to\pgfplots@prepared@tick@positions@minor
\fi
}%
\fi
\pgfplotsutil@advancestringcounter\pgfplots@ticknum
% carry \ticknum outside of this scope:
\global\let\pgfplots@glob@TMPa=\pgfplots@ticknum
}%
%
\ifx\pgfplots@minor@tick@list\pgfutil@empty
\else
% handle the 'minor #1tick' feature:
\def\pgfplots@loc@TMPa{\foreach \x in }%
\expandafter\pgfplots@loc@TMPa\expandafter{\pgfplots@minor@tick@list} {%
\let\pgfplots@ticknum=\pgfplots@glob@TMPa
%
\pgfplots@prepare@tick@coordlists@for@assign\pgfplots@tmpa=\x
\pgfplots@tickshowtrue
\pgfplots@prepare@tick@coordlists@for@checkdatalimits#1%
\pgfplots@checktickminmax
\ifpgfplots@tickshow
\edef\x{{\pgfplots@ticknum}{\x}}%
\expandafter\pgfplotslistpushbackglobal\x\to\pgfplots@prepared@tick@positions@minor
\fi
\pgfplotsutil@advancestringcounter\pgfplots@ticknum
% carry \ticknum outside of this scope:
\global\let\pgfplots@glob@TMPa=\pgfplots@ticknum
}%
\fi
\fi
\endgroup
\expandafter\let\csname pgfplots@prepared@tick@positions@minor@#1\endcsname=\pgfplots@prepared@tick@positions@minor
\expandafter\let\csname pgfplots@prepared@tick@positions@major@#1\endcsname=\pgfplots@prepared@tick@positions@major
%\expandafter\let\csname pgfplots@prepared@tick@positions@major@tickindices@#1\endcsname=\pgfplots@prepared@tick@positions@major@tickindices
\global\let\pgfplots@prepared@tick@positions@major=\relax
%\global\let\pgfplots@prepared@tick@positions@major@tickindices=\relax
\global\let\pgfplots@prepared@tick@positions@minor=\relax
}%
% The following set of macros can be used to replace the TeX register
% arithmetics used to speed up the computations inside of
% \pgfplots@prepare@tick@coordlists@for by something different.
%
% FIXME : that is no clean programming! Perhaps a new math class
% should be used here, and implemented during the complete tick
% preparation!?
%
% Keep in mind that these tick positions are in "transformed
% range", i.e. they are expected to be in the range -16000...16000. At
% the time of this modification, only the smithchart lib needs special
% handling here... does this justify a re-design?
\def\pgfplots@prepare@tick@coordlists@for@assign#1=#2{%
#1=#2pt
}%
\def\pgfplots@prepare@tick@coordlists@for@advance#1by#2{%
\advance#1 by#2 pt %
}%
\def\pgfplots@prepare@tick@coordlists@for@tofixed#1{%
\edef\pgfmathresult{\pgf@sys@tonumber{#1}}%
}%
\def\pgfplots@prepare@tick@coordlists@for@handletolerance#1{%
\afterassignment\pgfplots@gobble@until@relax
\pgfplots@tmpa=\pgfkeysvalueof{/pgfplots/#1tick placement tolerance}pt\relax
\pgfplots@tmpa=\csname pgfplots@#1@inverseveclength\endcsname\pgfplots@tmpa
\edef\pgfplots@loc@tick@placement@tolerance{\the\pgfplots@tmpa}%
%
\advance\csname pgfplots@#1min@reg\endcsname by-\pgfplots@tmpa
\advance\csname pgfplots@#1max@reg\endcsname by\pgfplots@tmpa
}%
\def\pgfplots@prepare@tick@coordlists@for@checktickmin#1{%
\ifdim\pgfplots@tmpa<\csname pgfplots@#1tickmin\endcsname pt
\pgfplots@tickshowfalse
\fi
}%
\def\pgfplots@prepare@tick@coordlists@for@checktickmax#1{%
\ifdim\pgfplots@tmpa>\csname pgfplots@#1tickmax\endcsname pt
\pgfplots@tickshowfalse
\fi
}%
\def\pgfplots@prepare@tick@coordlists@for@checkdatalimits#1{%
\ifdim\pgfplots@tmpa<\csname pgfplots@#1min@reg\endcsname
\pgfplots@tickshowfalse
\else
\ifdim\pgfplots@tmpa>\csname pgfplots@#1max@reg\endcsname
\pgfplots@tickshowfalse
\fi
\fi
}%
% Unpacks entries of the \pgfplots@prepared@tick@positions@* lists.
%
% Defines \pgfplots@tick to be the actual tick position and
% \pgfplots@ticknum to be its index.
%
% Usage:
% \expandafter\pgfplots@prepared@tick@pos@unpack\entry
\def\pgfplots@prepared@tick@pos@unpack#1#2{%
\def\pgfplots@tick{#2}%
\def\pgfplots@ticknum{#1}%
}
% Draws grid lines at the a-positions of the currently set oriented
% surface.
%
% Tick positions are taken out of the already precomputed list
% \pgfplots@prepared@tick@positions@major@...
%
% See \pgfplots@drawticklines@onorientedsurf@ for a description of the
% oriented surface.
%
% #1 : the verbatim axis name (either 'x' or 'y')
% #2 : the index of the axis (either 0 or 1)
\def\pgfplots@drawgridlines@onorientedsurf{%
\expandafter\pgfplots@drawgridlines@onorientedsurf@\pgfplotspointonorientedsurfaceA
}%
\def\pgfplots@drawgridlines@onorientedsurf@#1{%
\pgfplots@if{pgfplots@shownothingof@\pgfplotspointonorientedsurfaceB}{%
\relax
}{%
\begingroup
\pgfplots@ifgridlines@onorientedsurf@should@be@drawn{%
\expandafter\let\expandafter\pgfplots@prepared@tick@positions@major@\csname pgfplots@prepared@tick@positions@major@#1\endcsname
\expandafter\let\expandafter\pgfplots@prepared@tick@positions@minor@\csname pgfplots@prepared@tick@positions@minor@#1\endcsname
\pgfplots@loop@CONTINUEfalse
\pgfplots@if{pgfplots@#1majorgrids}{\pgfplots@loop@CONTINUEtrue}{}%
\pgfplots@if{pgfplots@#1minorgrids}{\pgfplots@loop@CONTINUEtrue}{}%
\ifpgfplots@loop@CONTINUE
% I support only ONE layer for both, minor and major
% grid lines -- no distinction! I am lazy... FIXME
\pgfplotsgetlayerforstyle{%
every axis grid,%
every minor grid,%
every axis #1 grid,%
every major grid,%
every minor #1 grid,%
every major #1 grid%
}%
\pgfplotsonlayer{\pgfplotsretval}{#1 grid style}%
\scope
\pgfplots@drawgridlines@INSTALLCLIP@onorientedsurf#1%
%
\pgfplots@if{pgfplots@#1minorgrids}{%
\draw[%
/pgfplots/every axis grid,
/pgfplots/every minor grid,
/pgfplots/every axis #1 grid,
/pgfplots/every minor #1 grid]%
\pgfextra
\pgfplotslistforeach\pgfplots@prepared@tick@positions@minor@\as\pgfplots@curgridpos{%
\expandafter\pgfplots@prepared@tick@pos@unpack\pgfplots@curgridpos
\pgfplots@drawgridlines@onorientedsurf@fromto\pgfplots@tick
}%
\endpgfextra;
}{}%
%
\pgfplots@if{pgfplots@#1majorgrids}{%
\draw[%
/pgfplots/every axis grid,
/pgfplots/every major grid,
/pgfplots/every axis #1 grid,
/pgfplots/every major #1 grid]%
\pgfextra
\pgfplotslistforeach\pgfplots@prepared@tick@positions@major@\as\pgfplots@curgridpos{%
\expandafter\pgfplots@prepared@tick@pos@unpack\pgfplots@curgridpos
\pgfplots@drawgridlines@onorientedsurf@fromto\pgfplots@tick
}%
\endpgfextra;
}{}%
%
\endscope
\endpgfplotsonlayer
\fi
}{}%
\endgroup
}%
}
% Should draw a single grid line on the actual oriented surface.
% #1 the value of the grid line.
%
% PRECONDITION
% \pgfplots@ticknum contains the index of the current tick.
\def\pgfplots@drawgridlines@onorientedsurf@fromto#1{%
\pgfpathmoveto{\pgfplotspointonorientedsurfaceab{#1}{\csname pgfplots@\pgfplotspointonorientedsurfaceB min\endcsname}}%
\pgfpathlineto{\pgfplotspointonorientedsurfaceab{#1}{\csname pgfplots@\pgfplotspointonorientedsurfaceB max\endcsname}}%
}%
% Draws ticks on the currently active "oriented surface".
%
% The oriented surface is two dimensional and has been initialised
% with \pgfplotspointonorientedsurfaceabsetupfor*** somehow.
%
% The idea is now the following:
% - the tick positions change along the FIRST coordinate of this
% surface:
%
% x ---- x ---- x ---- x
% --> FIRST -->
%
% - the tick lines are drawn along the SECOND coordinate of this
% surface:
%
% | ---- | ---- | ---- | | SECOND
% | | | | v
%
% for example,
% \pgfplotspointonorientedsurfaceab@setupfor@xyZ{1}
% \pgfplots@drawticklines@onorientedsurf
% will draw ticks at x-positions designated by \pgfplots@xtick. The
% small tick lines will be drawn along the y axis. For each processed
% point, the z coordinate will be fixed to '1'.
%
% Another example:
% \pgfplotspointonorientedsurfaceab@setupfor@yxZ{-1}
% \pgfplots@drawticklines@onorientedsurf
% will draw ticks at y-positions designated by \pgfplots@ytick. The
% small tick lines will be drawn along the x axis. For each processed
% point, the z coordinate will be fixed to '-1'.
%
% Tick positions are taken out of the already precomputed list
% \pgfplots@prepared@tick@positions@major@...
\def\pgfplots@drawticklines@onorientedsurf{%
\expandafter\pgfplots@drawticklines@onorientedsurf@\pgfplotspointonorientedsurfaceA
}%
\def\pgfplots@drawticklines@INSTALLCLIP@onorientedsurf#1{%
\pgfplots@drawtickgridlines@INSTALLCLIP@onorientedsurf{#1}%
}%
\def\pgfplots@drawgridlines@INSTALLCLIP@onorientedsurf#1{%
\pgfplots@drawtickgridlines@INSTALLCLIP@onorientedsurf{#1}%
}%
% Avoids tick lines which are too thick by introducing a clipping
% region. Tick lines (and grid lines) won't extend to the left or
% right of axis #1.
\def\pgfplots@drawtickgridlines@INSTALLCLIP@onorientedsurf#1{%
\pgfinterruptboundingbox%
\begingroup
% the case ||e_b|| == 0 should never happen here! Should be
% caught before entering this routine.
\let\pgfplots@loc@LENGTH=\pgfmathresult
\expandafter\let\expandafter\pgfplots@loc@MIN\csname pgfplots@\pgfplotspointonorientedsurfaceB min\endcsname
\expandafter\let\expandafter\pgfplots@loc@MAX\csname pgfplots@\pgfplotspointonorientedsurfaceB max\endcsname
\pgfpathmoveto{\pgfplotspointonorientedsurfaceabwithbshift{\csname pgfplots@#1min\endcsname}{\pgfplots@loc@MIN}{-5cm}}%
\pgfpathlineto{\pgfplotspointonorientedsurfaceabwithbshift{\csname pgfplots@#1max\endcsname}{\pgfplots@loc@MIN}{-5cm}}%
\pgfpathlineto{\pgfplotspointonorientedsurfaceabwithbshift{\csname pgfplots@#1max\endcsname}{\pgfplots@loc@MAX}{5cm}}%
\pgfpathlineto{\pgfplotspointonorientedsurfaceabwithbshift{\csname pgfplots@#1min\endcsname}{\pgfplots@loc@MAX}{5cm}}%
\pgfusepath{clip}%
\endgroup
\endpgfinterruptboundingbox%
}%
\def\pgfplots@drawticklines@onorientedsurf@#1{%
\pgfplots@if{pgfplots@shownothingof@\pgfplotspointonorientedsurfaceB}{%
\relax
}{%
\begingroup
\pgfplots@ifaxisline@B@onorientedsurf@should@be@drawn{0}{%
\def\pgfplots@drawticklines@for@placecomputedtick@LOWEROK{1}%
}{%
\def\pgfplots@drawticklines@for@placecomputedtick@LOWEROK{0}%
}%
\pgfplots@ifaxisline@B@onorientedsurf@should@be@drawn{1}{%
\def\pgfplots@drawticklines@for@placecomputedtick@UPPEROK{1}%
}{%
\def\pgfplots@drawticklines@for@placecomputedtick@UPPEROK{0}%
}%
\if\pgfkeysvalueof{/pgfplots/\pgfplotspointonorientedsurfaceB\space dir/value}r%
% local special handling for reversed axes: exchange
% meaning of 'left' and 'right' here.
%
% the rest of the pgfplots code does that automatically because
% there, tickposnum is relevant to determine the axes
% which contains tick labels. And this algorithm checks
% for reversed axes implicitly.
%
\if1\csname pgfplots@\pgfplotspointonorientedsurfaceA tickposnum\endcsname
\expandafter\def\csname pgfplots@\pgfplotspointonorientedsurfaceA tickposnum\endcsname{3}%
\else
\if3\csname pgfplots@\pgfplotspointonorientedsurfaceA tickposnum\endcsname
\expandafter\def\csname pgfplots@\pgfplotspointonorientedsurfaceA tickposnum\endcsname{1}%
\fi
\fi
\fi
\ifcase\csname pgfplots@\pgfplotspointonorientedsurfaceA tickposnum\endcsname\relax
% both
\or
% lower
\def\pgfplots@drawticklines@for@placecomputedtick@UPPEROK{0}%
\or
% center
\def\pgfplots@drawticklines@for@placecomputedtick@UPPEROK{0}%
\or
% upper
\def\pgfplots@drawticklines@for@placecomputedtick@LOWEROK{0}%
\else
% never used?
\def\pgfplots@drawticklines@for@placecomputedtick@UPPEROK{0}%
\fi
\expandafter\let\expandafter\pgfplots@prepared@tick@positions@major@\csname pgfplots@prepared@tick@positions@major@#1\endcsname
\expandafter\let\expandafter\pgfplots@prepared@tick@positions@minor@\csname pgfplots@prepared@tick@positions@minor@#1\endcsname
%
% There is only ONE layer for both, minor and major
% tick lines -- no distinction!
\pgfplotsgetlayerforstyle{%
every tick,%
every minor tick,%
every #1 tick,%
every major tick,%
every minor #1 tick,%
every major #1 tick%
}%
\pgfplotsonlayer{\pgfplotsretval}{#1tick style}%
\scope
\pgfplots@drawticklines@INSTALLCLIP@onorientedsurf#1
%
\pgfplots@if{pgfplots@#1minorticks}{%
\draw[%
/pgfplots/every tick,
/pgfplots/every minor tick,
/pgfplots/every #1 tick,
/pgfplots/every minor #1 tick]%
\pgfextra
\pgfmathparse{\pgfplots@subtickwidth}%
\let\pgfplots@subtickwidth@=\pgfmathresult
\let\pgfplots@subtickwidth@=\pgfmathresult
\let\pgfplots@subtickwidth=\pgfmathresult
\pgfplots@prepare@tick@offsets@for@{#1}{\pgfplots@subtickwidth@}%
\pgfplotslistforeach\pgfplots@prepared@tick@positions@minor@\as\pgfplots@curtickpos{%
\expandafter\pgfplots@prepared@tick@pos@unpack\pgfplots@curtickpos
\let\pgfplots@curtickpos=\pgfplots@tick
\pgfplotspointouternormalvectorofaxissetv{}{\pgfplots@curtickpos}%
\pgfplots@drawticklines@for@placecomputedtick
}%
\endpgfextra;
}{}%
%
\pgfplots@if{pgfplots@#1majorticks}{%
\draw[%
/pgfplots/every tick,
/pgfplots/every major tick,
/pgfplots/every #1 tick,
/pgfplots/every major #1 tick]%
\pgfextra
\pgfmathparse{\pgfplots@tickwidth}%
\let\pgfplots@tickwidth@=\pgfmathresult
\let\pgfplots@tickwidth@=\pgfmathresult
\let\pgfplots@tickwidth=\pgfmathresult
\pgfplots@prepare@tick@offsets@for@{#1}{\pgfplots@tickwidth@}%
\pgfplotslistforeach\pgfplots@prepared@tick@positions@major@\as\pgfplots@curtickpos{%
\expandafter\pgfplots@prepared@tick@pos@unpack\pgfplots@curtickpos
\let\pgfplots@curtickpos=\pgfplots@tick
\pgfplotspointouternormalvectorofaxissetv{}{\pgfplots@curtickpos}%
\pgfplots@drawticklines@for@placecomputedtick
}%
\endpgfextra;
}{}%
%
\endscope
\endpgfplotsonlayer
\endgroup
}%
}
% Draws tick labels at the positions of the currently set oriented
% surface.
%
% Tick positions are taken out of the already precomputed list
% \pgfplots@prepared@tick@positions@major@...
%
% For 2D axes, this task is relatively simple:
% we iterate through every prepared major tick position and place a
% tick label. Open points, however, are the question whether to use
% the RIGHT or the LEFT axis line on the current oriented surface:
%
% direction 'b' (second oriented)
% |-------------------------|
% | |
% | |
% | |direction 'a' (first oriented)
% | |
% | |
% | |
% |-------------------------|
% Left Right
%
% Given the axis line which shall contain the labels, we have to
% decide how to align the tick label nodes: on the left or on the
% right? Of course, we want to align them such that they are "outside"
% of the figure! That's simple as well: "Left axis line => outside
% means left", "Right axis line => outside means right".
%
% That's all, basically.
%
% For 3D axes, all these points are basically ... the same!
% Now it can happen that the current oriented surface shall
% not contain ANY tick label. In that case, we do nothing.
% Furthermore, the "outside" direction (i.e. the anchoring of the
% label nodes) is a little bit more difficult.
%
%
% See \pgfplots@drawticklines@onorientedsurf@ for a description of the
% oriented surface.
\def\pgfplots@drawticklabels@onorientedsurf{%
\expandafter\pgfplots@drawticklabels@onorientedsurf@\pgfplotspointonorientedsurfaceA
}
\def\pgfplots@drawticklabels@onorientedsurf@#1{%
\begingroup
\expandafter\let\expandafter\pgfplots@prepared@tick@positions@major@\csname pgfplots@prepared@tick@positions@major@#1\endcsname
% check whether
% - we need to place tick labels on the LEFT side,
% - we need to place tick labels on the RIGHT side,
% - we don't need tick labels for the current surface at all:
\pgfplotspointonorientedsurfaceabmatchaxisline{\csname pgfplots@#1ticklabelaxisspec\endcsname}{\pgfplots@ticklabelside}%
\ifx\pgfplots@ticklabelside\pgfutil@empty
% SKIP. The current oriented surface shall not get tick labels
% for #1.
\else
\pgfplots@if{pgfplots@#1majorticks}{%
\pgfplots@if{pgfplots@#1islinear}{%
\pgfplots@init@scaled@tick@for{#1}%
}{\relax}%
\begingroup
\pgfplotsgetlayerforstyle{every tick label,every #1 tick label}%
\pgfplotsonlayer\pgfplotsretval{#1tick label style}%
\pgfkeysalso{/tikz/every node/.append style={/pgfplots/every tick label,/pgfplots/every #1 tick label}}%
\pgfplots@drawticklabels@onorientedsurf@prepareanchor#1%
%
\pgfplotsmath@ifzero{\csname pgfplots@\pgfplotspointonorientedsurfaceB @veclength\endcsname}{%
\def\pgfplots@tick@offset{0}%
}{%
\ifcase\csname pgfplots@#1tickalignnum\endcsname\relax
\def\pgfmathresult{0}%
\or
\pgfmathparse{\pgfplots@tickwidth}%
\or
\pgfmathmultiply{0.5}{\pgfplots@tickwidth}%
\fi
\let\pgfplots@tick@offset=\pgfmathresult
\pgfplots@ticklabel@maxtickdimen@extrashift{#1}{\pgfplots@tick@offset}%
%\pgfmathmultiply@{\pgfplots@tick@offset}{\csname pgfplots@\pgfplotspointonorientedsurfaceB @inverseveclength\endcsname}%
\let\pgfplots@tick@offset=\pgfmathresult
}%
%
\if2\csname pgfplots@#1axislinesnum\endcsname % Centered axis lines?
\expandafter\let\expandafter\pgfplots@tick@origin\csname pgfplots@logical@ZERO@\pgfplotspointonorientedsurfaceB\endcsname%
% FIXME : that stuff here does not respect
% '[xyz]tickpos num' keys!
\pgfplots@tickposchoiceb%<-- backw. compat, is usually empty.
\if r\pgfkeysvalueof{/pgfplots/\pgfplotspointonorientedsurfaceB\space dir/value}%
% special handling for reversed axes.
\pgfmathmultiply{-1}{\pgfplots@tick@offset}%
\let\pgfplots@tick@offset=\pgfmathresult
\fi
\edef\pgfplots@tick@offset{-\pgfplots@tick@offset}%
%\pgfmathsubtract@{\pgfplots@tick@origin}{\pgfplots@tick@offset}%
\else
\if0\pgfplots@ticklabelside
\expandafter\let\expandafter\pgfplots@tick@origin\csname pgfplots@\pgfplotspointonorientedsurfaceB min\endcsname%
\pgfplots@tickposchoiceb%<-- backw. compat, is usually empty.
%\pgfmathsubtract@{\pgfplots@tick@origin}{\pgfplots@tick@offset}%
\edef\pgfplots@tick@offset{-\pgfplots@tick@offset}%
\else
\if1\pgfplots@ticklabelside
\expandafter\let\expandafter\pgfplots@tick@origin\csname pgfplots@\pgfplotspointonorientedsurfaceB max\endcsname%
\pgfplots@tickposchoicea%<-- backw. compat, is usually empty.
%\pgfmathadd@{\pgfplots@tick@origin}{\pgfplots@tick@offset}%
\else
% FIXME : ticklabelside == 2 is, in principle,
% a valid choice. It is the case handled with
% "if 2 == pgfplots@#1axislinesnum" above,
% isn't it!?
\expandafter\let\expandafter\pgfplots@tick@origin\csname pgfplots@logical@ZERO@\pgfplotspointonorientedsurfaceB\endcsname%
% FIXME : is that correct!?
\pgfplots@tickposchoiceb%<-- backw. compat, is usually empty.
%\pgfmathsubtract@{\pgfplots@tick@origin}{\pgfplots@tick@offset}%
%\edef\pgfplots@tick@offset{-\pgfplots@tick@offset}%
%
\if2\pgfplots@ticklabelside
\else
% Should never happen.
\pgfplots@error{Internal logic error during tick label placement (got placement character '\pgfplots@ticklabelside').
Please report this as a bug or verify your input arguments to #1ticklabel pos.}%
\fi
\fi
\fi
\fi
%\let\pgfplots@tick@origin=\pgfmathresult%
\edef\pgfplots@tick@offset{\pgfplots@tick@offset pt}%
%
% make sure the \pgfmathlogtologten method works even for
% non-standard 'log basis #1':
\def\pgfmathlogtologten@{\pgfplotscoordmath{#1}{log to log 10}}%
%
\xdef\pgfplots@show@ticklabel@LASTTICK{}%
\pgfplotslistforeachungrouped\pgfplots@prepared@tick@positions@major@\as\pgfplots@curtickpos{%
\expandafter\pgfplots@prepared@tick@pos@unpack\pgfplots@curtickpos
\let\pgfplots@curtickpos=\pgfplots@tick
%\expandafter\pgfplotslistpopfront\csname pgfplots@prepared@tick@positions@major@tickindices@#1\endcsname\to\pgfplots@ticknum
\pgfplotspointouternormalvectorofaxissetv{}{\pgfplots@curtickpos}%
\pgfplots@show@ticklabel
{#1}{\pgfplots@curtickpos}(\pgfplots@curtickpos,\pgfplots@tick@origin+\pgfplots@tick@offset)%
{\pgfplots@ticknum}%
}%
\pgfplots@ticklabel@maxtickdimen@finish{#1}%
\endpgfplotsonlayer
\endgroup
\pgfplots@draw@tick@scale@label@for #1%
}%
{\relax}% if...@major==false
\fi
\endgroup
}
% This here does the main work for any tick label ANCHORING.
%
% FIXME : the new 'near ticklabel' anchors are now the default method
% to place tick labels.
%
% This feature here can be used to disable this anchoring, i.e. set
% 'ticklabel anchor=tikz' to use a stupid heuristics.
%
% There are actually two choices:
% Choice 1: near ticklabel
% This choice places tick labels fully automatic outside of the
% figure, all on a line which is parallel to the axis which
% contains the corresponding tick labels.
%
% Since we are currently working on a restricted surface, we have
% three direction related to that surface:
% 'a': this is the direction in which tick positions are known.
% 'b': the 'orthogonal' axis to 'a' which is also in the surface.
% 'n': the surface normal.
% Now, the idea for tick labels is to place them at
% SCALE_b * b + SCALE_n * n,
% where the SCALE_[bn] numbers are choosen such that the label is
% outside of the axis.
%
% The offset is simply added to the transformation matrix (as a
% shift).
%
% Choice 2: tikz.
% This is more or less a backwards compatibility feature. It does
% not change the transformation matrix. It simply sets the 'at' key
% of each node to the tick position and prepares the correct anchors
% for the TikZ '\node' commands.
% That's all here.
%
% PRECONDITION:
% - called inside of \pgfplots@drawticklabels@onorientedsurf@
% POSTCONDITION:
% - defines
% - \pgfplots@tickposchoicea
% if called, sets keys such that tick labels are RIGHT (TOP) of
% the axis,
%
% - \pgfplots@tickposchoiceb
% if called, sets keys such that tick labels are LEFT
% (BOTTOM) of the axis,
\def\pgfplots@drawticklabels@onorientedsurf@prepareanchor#1{%
\if\csname pgfplots@ticklabel@anchor@#1\endcsname0%
% auto is the same as 'near ticklabel':
\expandafter\def\csname pgfplots@ticklabel@anchor@#1\endcsname{1}%
\fi
\ifcase\csname pgfplots@ticklabel@anchor@#1\endcsname%
% 0: doesn't happen, see above.
\or
% 1: near ticklabel.
% The following code contains automatically
% aligned tick labels (especially for 3D axes).
% see the manual for the |near ticklabel| anchors.
\pgfkeys{/tikz/anchor=near #1ticklabel}%
%
% process the (optional) ticklabel distance:
\begingroup
\pgfkeysgetvalue{/pgfplots/#1ticklabel shift}\pgfmathresult
\ifx\pgfmathresult\pgfutil@empty
\else
\afterassignment\pgfplots@gobble@until@relax
\pgf@xa=\pgfkeysvalueof{/pgfplots/#1ticklabel shift}pt\relax
\multiply\pgf@xa by-1 % the direction vector points to the INSIDE. the shift should have opposite sign.
\edef\pgfmathresult{\pgf@sys@tonumber\pgf@xa}%
\fi
\pgfmath@smuggleone\pgfmathresult
\endgroup
\let\pgfplots@loc@TMPc=\pgfmathresult
\ifx\pgfplots@loc@TMPc\pgfutil@empty
\else
\pgfplotspointouternormalvectorofaxis@ifdependson@v{\pgfplotsticklabelaxisspec{#1}}{%
\tikzset{every node/.append code={%
\tikz@addtransform{%
\pgftransformshift{%
\pgfplotspointouternormalvectorofticklabelaxis{#1}%
\pgfqpointscale{-\pgfplots@loc@TMPc}{}%
}%
}%
}%
}%
}{%
\pgftransformshift{%
\pgfplotspointouternormalvectorofticklabelaxis{#1}%
\pgfqpointscale{-\pgfplots@loc@TMPc}{}%
}%
}%
\fi
%
% these things are irrelevant here:
\let\pgfplots@tickposchoicea=\pgfutil@empty
\let\pgfplots@tickposchoiceb=\pgfutil@empty
\or
% 2: tikz.
% We simply prepare the default anchor.
% Actually, this code is just for backwards compatibility -
% there may be people who prefer to set anchors. The
% 'near ticklabel' implementation is much more general, however.
\if\pgfplotspointonorientedsurfaceB x
\def\pgfplots@tickposchoicea{\tikzset{right}}%
\def\pgfplots@tickposchoiceb{\tikzset{left}}%
\else
\if\pgfplotspointonorientedsurfaceB y
\def\pgfplots@tickposchoicea{\tikzset{above}}%
\def\pgfplots@tickposchoiceb{\tikzset{below}}%
\else
\def\pgfplots@tickposchoicea{\tikzset{anchor=north east}}%
\def\pgfplots@tickposchoiceb{\tikzset{anchor=south east}}%
\fi
\fi
\fi
\pgfplots@ticklabel@maxtickdimen@prepare@for@normalvec
{#1}%
{\pgfplotspointouternormalvectorofticklabelaxis{#1}}%
}%
\newif\ifpgfplots@checkuniform@isfirst
% Checks whether the argument to xtick or ytick is a UNIFORM tick
% sequence.
%
% A uniform tick sequence is 0,...,10 and 3,4,5 and -5,-4,-2 but
% NOT 0,2,4 or 4,10.
%
% Furthermore, any NON-integer tick arguments are also assumed to be
% NOT uniform.
%
% INPUT:
% #1: a tick argument (i.e. something which can be put to
% \foreach \x in {#1})
%
% OUTPUT:
% \pgfplots@isuniformticktrue
% or
% \pgfplots@isuniformtickfalse
% depending on the check.
% This variable will be set globally.
\def\pgfplots@checkisuniformLOGtick#1{%
\begingroup
\global\pgfplots@isuniformticktrue
\pgfplots@checkuniform@isfirsttrue
\foreach \x in {#1}{%
\pgfmathmultiply@\x\reciproclogten
\let\cur=\pgfmathresult
% check whether
% \cur - last == 1 (last = \pgfplots@glob@TMPb)
\ifpgfplots@checkuniform@isfirst
\global\pgfplots@checkuniform@isfirstfalse
\else
\pgfmathsubtract@\cur\pgfplots@glob@TMPb%
\pgfmathapproxequalto@\pgfmathresult{1.0}%
\ifpgfmathcomparison
\else
\global\pgfplots@isuniformtickfalse
\breakforeach
\fi
\fi
\global\let\pgfplots@glob@TMPb=\cur
}%
\endgroup
}
% Checks whether the linear tick sequence #1 is a uniform tick.
%
% It also assigns pgfplots@tick@distance@#1 as the distance.
%
% see \pgfplots@checkisuniformLOGtick for details.
%
% #1: a tick sequence (expanded)
% #2: a macro which will be filled with the tick distance. This is
% only valid if \pgfplots@isuniformticktrue.
\def\pgfplots@checkisuniformLINEARtick#1#2{%
\begingroup
\global\pgfplots@isuniformticktrue
\pgfplots@checkuniform@isfirsttrue
\global\let\pgfplots@glob@TMPb=\pgfutil@empty
\global\def\pgfplots@glob@TMPa{1}%
\foreach \x in {#1}{%
\ifx\pgfplots@glob@TMPb\pgfutil@empty
\else
\pgfmathsubtract@\x\pgfplots@glob@TMPb
\ifpgfplots@checkuniform@isfirst
% remember first distance h = x_1 - x_0
\global\let\pgfplots@glob@TMPa=\pgfmathresult
\global\pgfplots@checkuniform@isfirstfalse
\else
% check whether x_i - x_{i-1} = h
\pgfmathapproxequalto@\pgfmathresult\pgfplots@glob@TMPa%
\ifpgfmathcomparison
\else
\global\pgfplots@isuniformtickfalse
\breakforeach
\fi
\fi
\fi
\global\let\pgfplots@glob@TMPb=\x%
}%
\endgroup
\let#2=\pgfplots@glob@TMPa
}
% helper method which computes log10*\x foreach \x in {#1}.
% The result will be \xdef'ed into #2.
%
% #1: the ticks
% #2: the output macro
% #3: the axis
\def\pgfplots@compute@tick@times@logten#1\to#2#3{%
\global\let#2=\pgfutil@empty
\foreach \pgfplots@loc@TMPb in {#1} {%
\pgfplotscoordmath{#3}{log to display log}{\pgfplots@loc@TMPb}%
\pgfplotscoordmath{#3}{tofixed}{\pgfmathresult}%
\ifx#2\pgfutil@empty
\xdef#2{\pgfmathresult}%
\else
\xdef#2{#2,\pgfmathresult}%
\fi
}%
}
% Computes tick positions using the current axis limits.
%
% Parameters:
% /pgfplots/max space between ticks
% Determines the maximum space which is not filled by at least one
% tick label (approximate, there is some rounding internally)
% /pgfplots/try min ticks
% see manual
%
% Idea:
% We want ticks at each
% { i*H, i in \Z }.
% Of course, there shouldn't be TOO MUCH ticks.
%
% Our heuristics is to set
% desirednumticks = round(ACTUAL WIDTH / (max space between ticks) )
% and generate H = (axis range) / (desirednumticks).
%
% Since not all step sizes H look well, restrict H to a set of allowed
% step sizes such as
% { 1, 1/2, 1/5, 1/10 },
% or, to be more precise:
% { 1*10^e, 2*10^e, 5*10^e }
% -> round to the nearest matching number!
% This yields H (for example as 2*10^e). Then, compute i*H, i \in \Z
%
% The data scaling transformation T(x) makes things more complicated.
% Now, T(x) = q * x - p and we need to check for problems with large
% numbers:
% - q* H = ( T(Max) - T(Min) ) / desirednumticks = q * (Max - Min) / desirednumticks.
% - Using floating point arithmetics, (Max-Min)/desirednumticks (unscaled!)
% is analysed to restrict H to {1*10^e, 2*10^e, 5*10^e}.
% - So, we get q * H (we can't use the 'p' shift of the affine trafo here).
% - The next problem is to compute { I*H, I in \Z } because
% I = trunc( Min / H ) = trunc( ( T(Min) + p ) / (q*H) ).
% This can be seen by Min = I*H + rest and thus T(Min) = I*q*H + q*rest -p.
% The Problem: (T(min)+p ) / (q*H) can be TOO BIG for pgfmath.
% -> for the data scaling case, I will use floating point
% arithmetics to compute that last step.
% I will acquire \pgfplots@[xy]min@unscaled@as@float here.
%
%
%
%
%
% For log-plots,
% H in { j*log(10), j=1,2,3,... }
% where the usual case should be j = 1.
%
% Then, the resulting tick is
% TICK={MIN,MIN+H,...,MAX}
% where
% MIN = I*H
% is chosen such that
% axis minimum limit = I*H + rest; |rest| < H.
%
% Again, log plots follow a slightly different approach: here,
% MIN = I * log(10)
% is chosen such that
% axis minimum limit = I*log(10) + rest; |rest| < log(10)
% while H = j*log(10), j>=1.
%
%
% PRECONDITION:
% - limits are correct
% - axis width/height is set correctly
%
% POSTCONDITION:
% - Tick for axis #1 is assigned
% - \ifpgfplots@determinedefaultvalues@needs@check@uniformtick is set
%
% REMARKS:
% - this algorithms works also if the data range has been transformed
% with a LINEAR transformation.
% ATTENTION: as of 2008-05-15, the scaling trafo is AFFINE LINEAR.
% That means we have to eliminate the 'affine' shifting before the
% algorithms works correctly.
\def\pgfplots@assign@default@tick@foraxis#1{%
\begingroup
% Shortcut-names:
\expandafter\let\expandafter\ifpgfplots@is@datascaled\csname ifpgfplots@apply@datatrafo@#1\endcsname
% Attention here: use UNSHIFTET scalings, see remark above
\expandafter\let\expandafter\ifpgfplots@cur@is@linear\csname ifpgfplots@#1islinear\endcsname
%
\let\desirednumticks=\c@pgf@countd
\let\Wr=\pgf@xc
\Wr=\csname pgfplotspoint#1axislength\endcsname\relax
% r = max place without ticks in pt -> choose desirednumticks >= W/r
\divide\Wr by\axisdefaulttickwidth\relax
\afterassignment\pgfplots@gobble@until@relax
\desirednumticks=\the\Wr\relax
\advance\desirednumticks by1
\csname ifpgfplots@#1islinear\endcsname
\ifnum\axisdefaulttryminticks>\desirednumticks\relax
\desirednumticks=\axisdefaulttryminticks\relax
\fi
\else
\ifnum\pgfplots@default@try@minticks@log>\desirednumticks\relax
\desirednumticks=\pgfplots@default@try@minticks@log\relax
\fi
\expandafter\ifx\csname pgfplots@#1tickten\endcsname\pgfutil@empty
\else
% log plot and tickten-option: provide special processing.
\edef\pgfplots@loc@TMPa{\csname pgfplots@#1tickten\endcsname}%
\expandafter\pgfplots@compute@tick@times@logten\pgfplots@loc@TMPa\to\pgfplots@glob@TMPa{#1}%
\expandafter\let\csname pgfplots@#1tick\endcsname=\pgfplots@glob@TMPa
\fi
\fi
\ifpgfplots@cur@is@linear
\else
\pgfplotscoordmath{#1}{parsenumber}{1}%
\let\pgfplots@loc@TMPa=\pgfmathresult
\pgfplotscoordmath{#1}{log from display log}{\pgfplots@loc@TMPa}%
\pgfplotscoordmath{#1}{tofixed}{\pgfmathresult}%
\let\pgfplots@loc@log@from@display@log@scale=\pgfmathresult
%
\pgfplotscoordmath{#1}{log to display log}{\pgfplots@loc@TMPa}%
\pgfplotscoordmath{#1}{tofixed}{\pgfmathresult}%
\let\pgfplots@loc@log@to@display@log@scale=\pgfmathresult
\fi
%
\expandafter\ifx\csname pgfplots@#1tick\endcsname\pgfutil@empty
% Ok, we have either log or linear axis and need default
% ticks MIN,MIN+H,...,MAX.
\let\MINH=\pgf@xa
\let\H=\pgf@xb
\let\MAX=\pgf@ya
\let\MIN=\pgf@yb
% compute step size 'H':
\MAX=\csname pgfplots@#1max\endcsname pt %
\advance\MAX by0.001pt % avoid round errors
%\expandafter\MIN\the\c@pgf@counta pt
\MIN=\csname pgfplots@#1min\endcsname pt %
\H=\MAX
\advance\H by-\MIN
\ifdim\H<0pt \H=-1\H \fi
%\message{Axis limit #1: [\the\MIN:\the\MAX], diff = \the\H.^^J}%
\c@pgf@counta=\desirednumticks
\advance\c@pgf@counta by-1 %
\divide\H by\c@pgf@counta
%\message{determining ticks for #1-axis: Wr := (width/max space between ticks) = \the\Wr, desirednumticks=max(\axisdefaulttryminticks, trunc(Wr)) = \the\desirednumticks, H#1=(axis range/(desirednumticks-1)) = \the\H^^J}%
%
% SEARCH for the NEXT FEASABLE H.
\edef\Hmacro{\pgf@sys@tonumber\H}%
\ifpgfplots@cur@is@linear
% CASE LINEAR AXIS
\ifpgfplots@is@datascaled
% This here works if the scaling trafo is linear.
\pgfplotscoordmath{#1}{datascaletrafo noshift inverse}{\Hmacro}%
\let\Hmacro=\pgfmathresult
\else
\pgfmathfloatparsenumber{\Hmacro}%
\let\Hmacro=\pgfmathresult
\fi
%\message{Got T^{-1}(H#1) = \Hmacro^^J}%
%
\pgfplots@assign@default@tick@foraxis@normalizetickdist#1\Hmacro
\let\Hmacro=\pgfmathresult
%
%\message{snapped-to-nicest = \Hmacro^^J}%
\aftergroup\pgfplots@isuniformticktrue
% The following code is carried out in floating point
% arithmetics because it requires large data ranges.
%
% I want to compute MIN@new := I*H where I is chosen
% such that MIN = I*H + rest with rest < H.
% The problem is the possibly large range of MIN. I
% can't work completely in the transformed datarange,
% so numbers get too large.
%
% So, compute I := int( MIN / H ) (integer truncation)
% in float arithmetics and then MIN@new := I*H
\pgfmathfloatdivide@{\csname pgfplots@#1min@unscaled@as@float\endcsname}{\Hmacro}%
\pgfmathfloatint@{\pgfmathresult}%
\pgfmathfloatmultiply@{\pgfmathresult}{\Hmacro}%
\let\MIN@new=\pgfmathresult
% Ok, we are ready.
% Now, convert everything into the fixed point data
% range:
\ifpgfplots@is@datascaled
\pgfplotscoordmath{#1}{datascaletrafo}{\MIN@new}%
\MIN=\pgfmathresult pt
\pgfplotscoordmath{#1}{datascaletrafo noshift}{\Hmacro}%
\H=\pgfmathresult pt
\else
\pgfmathfloattofixed\MIN@new
\MIN=\pgfmathresult pt
\pgfmathfloattofixed\Hmacro
\H=\pgfmathresult pt
\fi
%
% And, since we have used finite precision, I is most
% likely to be large. So: subtract one H. In the worst
% case, this produces one tick position too much (but
% it won't be printed).
\advance\MIN by-\H\relax
\else
% CASE LOG AXIS
%
% search for the "best" H= j* log(10), j an integer.
%
% And prefer j=1 if that is possible (otherwise minor
% ticks are not useful).
\pgfmath@basic@multiply@{\Hmacro}{\pgfplots@loc@log@from@display@log@scale}%
\let\Hmacrobaseten=\pgfmathresult
\expandafter\H\pgfmathresult pt
%\message{ [ H / log(10) = \pgfmathresult ]}%
\ifdim\H<2pt
\H=1pt
\else
\ifnum\H<1pt
\H=1pt
\else
\expandafter\pgfmathfloor\expandafter{\pgfmathresult}%
\expandafter\H\pgfmathresult pt
\fi
\fi
\ifdim\H=1pt
\aftergroup\pgfplots@isuniformticktrue
\pgfplots@isuniformticktrue
\else
\aftergroup\pgfplots@isuniformtickfalse
\pgfplots@isuniformtickfalse
\fi
%\message{final H=\pgf@sys@tonumber{\H} * log(10)}%
\H=\pgfplots@loc@log@to@display@log@scale\H
% Now, we want to activate the Tick set
% {lowest, lowest+H, ..., highest}
%
% Where
% lowest = I * log(10) + rest, |rest| < log(10).
% this is conceptionally different from the approach for
% linear axes, because H = j*log(10).
%
% remember the original xmin in MINH:
\MINH=\MIN
%
% and compute I and I*log(10) here:
\MIN=\pgfplots@loc@log@from@display@log@scale \MIN
\edef\pgfmathresult{\pgf@sys@tonumber{\MIN}}%
\pgfmathsetcount{\c@pgf@counta}{\pgfmathresult}%
\ifdim\MIN<0pt
% the truncation rounds TOWARDS 0 which is not what I want.
\advance\c@pgf@counta by-1
\fi
\MIN=\pgfplots@loc@log@to@display@log@scale pt
\multiply\MIN by\c@pgf@counta
\ifpgfplots@isuniformtick
\else
% This here is a special case to move the first tick
% near the lower axis limit.
%
% "Near" means either directly above or directly below ymin.
%
% My application example is as follows:
% Let H = 2*log(10).
% Furthermore, ymin = 3e-6, ymax= 8e-2. That means we can choose either
% 10^{-5}, 10^{-3}, 10^{-1}
% or
% 10^{-4}, 10^{-2}
% as ticks. Well, I prefer the first one.
%
% HEURISTICS: start as near to ymin as possible!
%
% We check here if we can come nearer to ymin if we
% shift the current tick by log(10):
% if( ymin - I * log(10) < 0.5*H -> use I+1, that means add log(10).
%
% that's equivalent to
% 2*(ymin - I * log(10)) - H < 0.
\advance\MINH by-\MIN
\multiply\MINH by2
\advance\MINH by-\H
%
\ifdim\MINH<0pt
\advance\MIN \pgfplots@loc@log@to@display@log@scale pt
\fi
\fi
\fi
\MINH=\MIN
\advance\MINH by\H
% Ok, now it can happen that only ONE tick label is placed in
% this range.
% That's useless, so check for it.
%
% That's the case if
% MIN < ORIGMIN && MAX < MIN+2 H
% MIN < ORIGMIN by construction (ok, MIN <= ORIGMIN by
% construction, but I don't care about this case).
% So: check only the second condition.
%\message{Got MIN=\pgf@sys@tonumber\MIN; H=\pgf@sys@tonumber\H; MAX=\pgf@sys@tonumber\MAX.^^J}%
\def\pgfplots@tick@returnval@ready{0}%
\pgfplots@tmpa=\MINH
\advance\pgfplots@tmpa by\H
\ifdim\MAX<\pgfplots@tmpa
\pgfplots@if{pgfplots@#1islinear}{%
\begingroup
\def\pgfplots@tick@returnval@ready{1}%
\pgfutil@ifundefined{pgfplots@assign@default@tick@foraxis@recurselevel}{%
\def\pgfplots@assign@default@tick@foraxis@recurselevel{1}%
}{%
\pgfplotsutil@advancestringcounter\pgfplots@assign@default@tick@foraxis@recurselevel
}%
\ifnum\pgfplots@assign@default@tick@foraxis@recurselevel<15
\c@pgf@counta=\axisdefaulttryminticks\relax
\advance\c@pgf@counta by1
\edef\axisdefaulttryminticks{\the\c@pgf@counta}%
%\message{**TOO FEW TICK LABELS FOR #1. RECURSION with try min ticks=\axisdefaulttryminticks.**^^J}%
% recurse.
\pgfplots@assign@default@tick@foraxis{#1}%
\expandafter\global\expandafter\let\expandafter\pgfplots@glob@TMPa\csname pgfplots@#1tick\endcsname
\expandafter\global\expandafter\let\expandafter\pgfplots@glob@TMPb\csname pgfplots@tick@distance@#1\endcsname
\else
\pgfplotswarning{tick computation failed}{#1}{\axisdefaulttryminticks}\pgfeov%
\def\pgfplots@tick@returnval@ready{0}%
\fi
\pgfmath@smuggleone\pgfplots@tick@returnval@ready
\endgroup
}{%
% Case logarithmic axes and too few ticks.
\aftergroup\pgfplots@isuniformtickfalse
% ok, do something special.
%
% The idea is now to place ticks at
% 10^{i*h} with properly choosen 'h'.
%
% So: apply basically the SAME code as above for linear
% axis, just everything log 10! And keep in mind that all
% coordinates are actually given as natural logarithms.
\MIN\csname pgfplots@#1min\endcsname pt
\H=\MAX
\advance\H by-\MIN
\ifdim\H<0pt \H=-1\H \fi
\H=\pgfplots@loc@log@from@display@log@scale \H
%\message{Axis limit #1: [\the\MIN:\the\MAX], diff/log(10) = \the\H.}%
\c@pgf@counta=\desirednumticks\relax
\advance\c@pgf@counta by-1
\ifnum\c@pgf@counta>2
% subtract one more. This algorithm here produces more
% ticks than the normal one which is designed for 10^i
\advance\c@pgf@counta by-1
\fi
\divide\H by\c@pgf@counta\relax
%\message{determining ticks for #1-axis: Wr := (width/max space between ticks) = \the\Wr, desirednumticks=max(\axisdefaulttryminticks, trunc(Wr)) = \the\desirednumticks, H#1=(axis range/(desirednumticks-1)) = \the\H}%
%
% SEARCH for the NEXT FEASABLE H.
\edef\Hmacro{\pgf@sys@tonumber\H}%
\pgfmathfloatparsenumber{\Hmacro}%
\pgfplots@assign@default@tick@foraxis@normalizetickdist#1\pgfmathresult
%
\expandafter\pgfmathfloattofixed\expandafter{\pgfmathresult}%
\let\Hmacro=\pgfmathresult
\H=\Hmacro pt %
% Ok, our step size h for 10^{i*h} is ready!
%\message{determined step size 10^{\Hmacro}}%
% Now, we want to activate the Tick set {10^{i*H}, i in \Z}
% compute I such that
% 10^{min} = 10^{I * H + rest}; |rest| < H
% -> I = round(xmin/H)
% -> MIN = I * H
% BUT EVERYTHING to log(10) basis!
\MIN=\pgfplots@loc@log@from@display@log@scale \MIN
\pgfmathlog@invoke@expanded\pgfmathdivide@{%
{\pgf@sys@tonumber\MIN}%
{\Hmacro}%
}%
\pgfmathsetcount{\c@pgf@counta}{\pgfmathresult}%
\ifdim\MIN<0pt
% the truncation rounds TOWARDS 0 which is not what I want.
\advance\c@pgf@counta by-1
\fi
\MIN=\H\relax
\multiply\MIN by\c@pgf@counta\relax
%
% convert back to basis 'e':
\MIN=\pgfplots@loc@log@to@display@log@scale\MIN\relax
\H=\pgfplots@loc@log@to@display@log@scale\H\relax
\MINH=\MIN\relax
\advance\MINH by\H\relax
}%
\fi
%\message{final H=\the\H.}%
\if0\pgfplots@tick@returnval@ready
\xdef\pgfplots@glob@TMPb{\pgf@sys@tonumber{\H}}%
\advance\MAX by0.5\H % avoid rounding inaccuracies:
\xdef\pgfplots@glob@TMPa{\pgf@sys@tonumber{\MIN},\pgf@sys@tonumber{\MINH},...,\pgf@sys@tonumber{\MAX}}%
\fi
\aftergroup\pgfplots@determinedefaultvalues@needs@check@uniformtickfalse
\else
\expandafter\global\expandafter\let\expandafter\pgfplots@glob@TMPa\csname pgfplots@#1tick\endcsname
\gdef\pgfplots@glob@TMPb{}% will be computed later, in 'check uniform tick'
\aftergroup\pgfplots@determinedefaultvalues@needs@check@uniformticktrue
\fi
\endgroup
\expandafter\let\csname pgfplots@#1tick\endcsname=\pgfplots@glob@TMPa
\expandafter\let\csname pgfplots@tick@distance@#1\endcsname=\pgfplots@glob@TMPb
%\message{pgfplots.sty: #1tick set to \csname pgfplots@#1tick\endcsname [#1min=\csname pgfplots@#1min\endcsname, #1max=\csname pgfplots@#1max\endcsname].}%
}
% Takes the distance between adjacent ticks as floating point number
% and returns a normalized tick distance.
%
%
% The idea is to get "nice" (human readable) distances instead of
% strange fractions or real numbers.
%
% The result will be assigned to \pgfmathresult (in float).
%
% #1 the axis (x or y or z)
% #2 the unnormalized tick distance computed so far
%
% Example:
% \pgfmathfloatparsenumber{x}{1234}
% \pgfplots@assign@default@tick@foraxis@normalizetickdist{x}{\pgfmathresult}
% \pgfmathfloatotfixed\pgfmathresult
% -->
%
% \pgfmathresult={1200}
% or something like that.
\def\pgfplots@assign@default@tick@foraxis@normalizetickdist#1#2{%
\begingroup
\let\H=\pgf@xb
\expandafter\pgfmathfloat@decompose#2\relax\pgfmathfloat@a@S\H\pgfmathfloat@a@E
% modify the mantisse:
\ifdim\H<2pt
\ifdim\H<1.5pt
\H=1.0pt
\else
\H=2.0pt
\fi
\else
\ifdim\H<4.9999pt
\ifdim\H<3.5pt
\H=2.0pt\relax
\else
\H=5.0pt\relax
\fi
\else
\ifdim\H<7.5pt
\H=5.0pt\relax
\else
\H=1.0pt\relax
\advance\pgfmathfloat@a@E by1
\fi
\fi
\fi
\pgfmathfloatcreate{\the\pgfmathfloat@a@S}{\pgf@sys@tonumber{\H}}{\the\pgfmathfloat@a@E}%
\pgfmath@smuggleone\pgfmathresult
\endgroup
}%
% Helper method for
% \pgfplots@apply@data@scale@trafo@to@options@for
% #1: the ticks
% #2: the trafo routine (not necessarily a single macro, but should
% take one arg)
% #3: the output macro name
\long\def\pgfplots@apply@data@scale@trafo@to@user@ticks#1#2\to#3{%
\let#3=\pgfutil@empty
\foreach \pgfplots@loc@TMPb in {#1} {%
\pgfmathfloatparsenumber{\pgfplots@loc@TMPb}%
#2{\pgfmathresult}%
\ifx#3\pgfutil@empty
\xdef#3{\pgfmathresult}%
\else
\xdef#3{#3,\pgfmathresult}%
\fi
}%
%
}%
% Helper method for
% \pgfplots@apply@data@scale@trafo@to@options@for
% #1: the ticks ALREADY IN FLOAT FORMAT
% #2: the trafo macro name
% #3: the output macro name
\long\def\pgfplots@apply@data@scale@trafo@to@user@ticks@isfloat#1#2\to#3{%
\let#3=\pgfutil@empty
\foreach \pgfplots@loc@TMPb in {#1} {%
#2{\pgfplots@loc@TMPb}%
\ifx#3\pgfutil@empty
\xdef#3{\pgfmathresult}%
\else
\xdef#3{#3,\pgfmathresult}%
\fi
}%
%
}%
% Adds a further, temporary anchor to every node which will be
% processed. The anchor will be named '#2'. It is placed such that
% 1. the node's center is on a line in direction of the inwards normal
% vector of the #1 ticklabel axis and the 'at' position of the node,
% 2. the node does not intrude the axis.
%
% In effect, one of the node's standard anchors (north, east, ... )
% will be placed on the line
% \draw[blue,thick,->] (xticklabel cs:0,0) -- (xticklabel cs:1,0);
%
% This command is identical to calling
% \pgfplotsdeclareborderanchorforaxis{#1}{}{#2}
%
% @REMARKS:
% - it is -by no means- necessary that any ticks or tick labels are
% drawn or defined for this method.
% - in fact, tick labels use such an anchor (the 'near #1ticklabel'
% anchor is defined in this way)
\def\pgfplotsdeclareborderanchorforticklabelaxis#1#2{%
\pgfplotsdeclareborderanchorforaxis{#1}{\pgfplotsticklabelaxisspec{#1}}{#2}%
}