%--------------------------------------------
%
% Package pgfplots
%
% Provides a user-friendly interface to create function plots (normal
% plots, semi-logplots and double-logplots).
%
% It is based on Till Tantau's PGF package.
%
% Copyright 2010 by Christian Feuersänger.
%
% This program is free software: you can redistribute it and/or modify
% it under the terms of the GNU General Public License as published by
% the Free Software Foundation, either version 3 of the License, or
% (at your option) any later version.
%
% This program is distributed in the hope that it will be useful,
% but WITHOUT ANY WARRANTY; without even the implied warranty of
% MERCHANTABILITY or FITNESS FOR A PARTICULAR PURPOSE. See the
% GNU General Public License for more details.
%
% You should have received a copy of the GNU General Public License
% along with this program. If not, see .
%
%--------------------------------------------
% 1. OVERVIEW
%
% Plot handlers are extended versions of the plot handlers of PGF with
% backwards compatibility.
%
% To remind ourselfes: PGF plot handlers work like this
% \pgfplotstreamstart
% \pgfplotstreampoint{...}
% \pgfplotstreampoint{...}
% \pgfplotstreampoint{...}
% \pgfplotstreampoint{...}
% \pgfplotstreamend
%
% and that's it.
%
% PGFPlots plot handlers also contain these three macros. The tasks
% are (of course) the same. In addition, they support a set of further
% macros for every plot handler:
%
% \pgfplotsplothandlersurveystart
% \pgfplotsplothandlersurveypoint
% \pgfplotsplothandlersurveyend
%
% and serialization methods
% \pgfplotsplothandlerserializepointto
% \pgfplotsplothandlerdeserializepointfrom
% \pgfplotsplothandlerserializestateto
% \pgfplotsplothandlerdeserializepointfrom
%
% in addition, there are utility macros
% \pgfplotsplothandlersurveydifflen#1#2
% \pgfplotsplothandlersurveypointattime#1#2#3
%
% The idea is as follows:
% During \addplot, PGFPLots performs a survey phase. Survey means:
% nothing will be drawn, only stats will be collected. In this phase,
% the \pgfplotsplothandlersurvey* methods will be invoked; followed by
% a serialization.
%
% Then, when every plot has been surveyed, PGFPlots calls
% \pgfplotsplothandlerdeserializestatefrom{}
% \pgfplotstreamstart
% foreach {
% \pgfplotsplothandlerdeserializepointfrom{}
% apply data transformations
% handle plot marks
% \pgfplotstreampoint{\pgfplotsqpointxy{}{
% Furthermore, it remembers the <\macro> such that it can be
% deserialized later.
% Then, the survey phase ends. The main point of interest is the
% \pgfplotsplothandlersurveypoint routine, especially its
% communication with the axis. It is described below.
%
% POSTCONDITION:
% - the state of the axis is now aware of the new plot (limits,
% stacking, ...).
% - The plot's survey state is stored using its serialized
% representation.
%
% THE VISUALIZATION PHASE:
% FIXME
%
% 2.1 The API of an axis
%
% As described above, the coordinate input routine fires a lot of
% \pgfplots@coord@stream@coord commands, which, in turn, invoke
% \pgfplotsplothandlersurveypoint. Somehow this should update the
% axis' state to reflect each point. But the 'data point' is a rather
% abstract thing. Usually, it will contain at least (x,y) (or maybe z)
% coordinates. But it may be more complex.
%
% So, the coordinate input routine provides whatever the user has
% chosen. Let's assume, we are using \addplot table. Then, we can
% access every cell in the current row (using \thisrow{} for
% example). The plot handler knows how to extract its information from
% this state. In general, the following steps are taken:
% - the plot handler assembles coordinates.
% - every assembled coordinate should be reported to the axis by
% defining \pgfplots@current@point@[xyz] to its coordinates and
% calling
% \pgfplotsaxisparsecoordinate{}
% This will apply coordinate filters, parse the single coordinates
% and apply high level transformations and any logarithms.
% It is some sort of advanced coordinate parser which works only for
% (x,y) or for (x,y,z).
% It yields (x,y,z). But the axis might need to change its
% components! Thus, you also need to call
% \pgfplotsaxispreparecoordinate{}.
% This will, for example, apply the "stack plots" feature or the
% 'data cs' feature.
%
% If necessary, the plot handler calls
% \pgfplotsaxisparsecoordinate{} and
% \pgfplotsaxispreparecoordinate{} multiple times, once for each
% encountered coordinate.
%
% It might occasionally be too much to call
% \pgfplotsaxispreparecoordinate.
%
% It might happen that a coordinate filter discards a coordinate.
% This is returned in the \ifpgfplotsaxisparsecoordinateok boolean
% and has to be checked by the plot handler.
%
% - the plot handler knows which of the coordinates contribute to the
% final plot. It invokes
% \ifpgfplotsaxisparsecoordinateok
% \pgfplotsaxisupdatelimitsforcoordinate{}{}{}
% \fi
% for each of these coordinates. This has to be done for final
% coordinates only, i.e. after \pgfplotsaxispreparecoordinate.
%
% - eventually, the plot handler is satisfied and considers a data
% point as "readily surveyed". It is allowed if this does *not*
% happen inside of \pgfplotsplothandlersurveypoint, but it must
% happen before \pgfplotsplothandlersurveyend is finished.
%
% The plot handler invokes \pgfplotsaxisdatapointsurveyed.
% This tells the axis that it can perform its own surveying tasks
% (see below) and furthermore, that it can serialize the data point.
% Consequently, it will invoke
% \pgfplotsplothandlerserializepointto{<\macro>}
% and it will remember that \macro internally. This serialization is
% employed to place plot marks and to apply z buffering techniques
% (that's why it is done by the axis and not by the plot handler on
% its own).
%
% The axis does its own surveying task, initiated by
% \pgfplotsaxisdatapointsurveyed (which is, turn, invoked by the
% plot handler). This command handles the |point meta| feature, that
% is: it queries the |point meta| input source and updates the meta
% limits. Furthermore, the error bar feature is processed at this
% point (using the final data point's (x,y,z) coordinates as basis).
% The |xtick=data| feature is also prepared at this stage.
%
% - Later, the coordinate input routine invokes
% \pgfplots@coord@stream@end indicating the end-of-input. This will
% finalize the survey phase.
%
% A simple example looks like this:
% \pgfplotsplothandlersurveystart: does nothing in the simple example.
% \pgfplotsplothandlersurveypoint:
% parses the input format somehow to get (x,y,z) in raw, symbolic format
% calls \pgfplotsaxisparsecoordinate
% calls \pgfplotsaxispreparecoordinate
% calls \ifpgfplotsaxisparsecoordinateok \pgfplotsaxisupdatelimitsforcoordinate{}{}{}
% which allows to change the current plot style from within API
% functions. It sets and remembers them for the
% visualization phase.
%
% \pgfplotsaxisupdatelimitsforpointmeta{ },
% provided there is a point meta input handler (which is numeric).
% Otherwise, the command is equal to \relax.
%
%
% 3. Details about the VISUALIZATION phase
%
% The visualization phase consists of
%
% \pgfplotstreamstart
% foreach serialized coordinate {
% pgfplots calls \pgfplotsplothandlerdeserializestatefrom{}
% if coordinate is empty ("unbounded")
% pgfplots call \pgfplotsplothandlervisualizejump
% else
% pgfplots calls \pgfplotsaxisvisphasetransformcoordinate
% pgfplots calls \pgfplotsaxisvisphasepreparedatapoint
% pgfplots calls either \pgfplotsqpointxyz or \pgfplotsqpointxy
% fi
% \pgfplotstreampoint
% }
% \pgfplotstreamend
%
% User defined plot handlers might need to invoke
% \pgfplotsaxisvisphasetransformcoordinate on their own.
%
% During the visualization phase, the following macros can be used:
%
% - \pgfplotsaxisvisphasetransformpointmeta to set up point meta.
% Use this only if there *is* point meta, see
% \pgfplotsaxisifhaspointmeta{}{}.
%
% - \pgfplotsaxisvisphasegetpoint
% does not take arguments. It takes the current point as input and
% sets \pgf@x, \pgf@y to the final result.
%
% 4. API Functions of pgfplots to work with the visualization phases
%
% \pgfplotsifissurveyphase{}{}
% \pgfplotsifisvisualizationphase{}{}
%
% \pgfplotsaxisfilteredcoordsaway
% This macro expands to '1' if all points have been surveyed
% successfully. It expands to '0' if at least one point has been
% filtered away (for whatever reasons). This does not apply to
% jumps.
% \pgfplotsaxisplothasjumps
% This macro expands to '1' if the current plot has jumps and '0'
% if not.During the visualization phase, a jump is usually indicated
% by an empty coordinate.
% \pgfplotsaxisplothasunboundedpointmeta
% This macro expands to '1' if the current plot has a point with
% unbounded point meta and '0'
% if not. Currently used by some plot handlers as synomym for
% "visualize a jump"
\def\pgfplotssurveyphaseinputclass{direct}
\def\pgfplotsplothandlers@tikz@with@snap@to@nearest{%
\pgfplothandlerdiscard,%
\pgfplothandlermark,%
\pgfplothandlermarklisted,%
\pgfplothandlerxbar,%
\pgfplothandlerybar,%
\pgfplothandlerxbarinterval,%
\pgfplothandlerybarinterval%
}%
\def\pgfplotsplothandlers@tikz@std{%
\pgfplothandlerdiscard,%
\pgfplothandlermark,%
\pgfplothandlermarklisted,%
\pgfplothandlerxbar,%
\pgfplothandlerybar,%
\pgfplothandlerxbarinterval,%
\pgfplothandlerybarinterval,%
\pgfplothandlerlineto,%
\pgfplothandlercurveto,%
\pgfplothandlerconstantlineto,%
\pgfplothandlerconstantlinetomarkright,%
\pgfplothandlerconstantlinetomarkmid,%
\pgfplothandlerpolarcomb,%
\pgfplothandlerjumpmarkmid,%
\pgfplothandlerjumpmarkleft,%
\pgfplothandlerjumpmarkright%
}%
% Defines \pgfplotsretval to be the csname for the BACKUP of plot
% handler #1.
%
% For example:
% \pgfplotsplothandlers@get@tikz@backup@name{\pgfplothandlerlineto}
% will return \pgfplotsretval={\\pgfplothandlerlineto@tikz}
% (up to \escapechar)
\def\pgfplotsplothandlers@get@tikz@backup@name#1{%
\begingroup
%\escapechar=-1 % drop the leading backslash
\expandafter\gdef\expandafter\pgfplotsretval\expandafter{\csname \string#1@tikz\endcsname}%
\pgfmath@smuggleone\pgfplotsretval
\endgroup
}%
% Takes the CURRENT \tikz@plot@handler and checks if it is an UNPATCHED tikz plot
% handler. If so, it replaced it with the correct patched version.
%
% The motivation is that uf \tikz@plot@handler has been set outside of
% an axis, it will not reflect the most recent changes (which are only
% applied within an axis).
\def\pgfplotsplothandlers@init@map@to@patched@versions{%
% iterate through all tikz plot handlers...
\expandafter\pgfplotsutilforeachcommasep\expandafter{\pgfplotsplothandlers@tikz@std}%
\as\pgfplots@loc@TMPa{%
% ... get the name of the backup (see \pgfplotsplothandlers@init)
\expandafter\pgfplotsplothandlers@get@tikz@backup@name\pgfplots@loc@TMPa
\expandafter\ifx\pgfplotsretval\tikz@plot@handler
% AH! \tikz@plot@handler is the same as some backup name!
% Replace it:
\expandafter\let\expandafter\tikz@plot@handler\pgfplots@loc@TMPa
\fi
}%
}%
\def\pgfplotsplothandlers@init{%
\def\pgfplotsplothandlers@init@##1{%
\pgfplotsutil@add@to@macro##1{%
\let\pgfplotsplothandlersurveydifflen=\pgfplotsplothandlersurveydifflen@snaptonearest
\let\pgfplotsplothandlersurveypointattime=\pgfplotsplothandlersurveypointattime@snaptonearest
}%
}%
\def\pgfplotsplothandlers@init@@##1{%
% create backup:
%
% if ##1 = \pgfplothandlerlineto, this defines
% \pgfplothandlerlineto@tikz as backup.
\pgfplotsplothandlers@get@tikz@backup@name{##1}%
\expandafter\let\pgfplotsretval=##1%
%
%
% assign more suitable names:
\pgfplotsutil@add@to@macro##1{%
\begingroup
\escapechar=-1 % drop the leading backslash
\edef\pgfplotsplothandlername{\string##1}%
\pgfmath@smuggleone\pgfplotsplothandlername
\endgroup
%
\def\pgfplotsplothandlerLUAfactory{function(axis, pointmetainputhandler) return pgfplots.GenericPlothandler.new("\pgfplotsplothandlername", axis,pointmetainputhandler) end}%
\def\pgfplotsplothandlerLUAvisualizerfactory{pgfplots.defaultPlotVisualizerFactory}%
}%
}%
% Patch all TikZ plot handlers:
% this here also creates backups
\expandafter\pgfplotsutilforeachcommasep\expandafter{\pgfplotsplothandlers@tikz@std}%
\as\pgfplots@loc@TMPa{%
\expandafter\pgfplotsplothandlers@init@@\expandafter{\pgfplots@loc@TMPa}%
}%
%
% Patch only selected ones:
\expandafter\pgfplotsutilforeachcommasep\expandafter{\pgfplotsplothandlers@tikz@with@snap@to@nearest}%
\as\pgfplots@loc@TMPa{%
\expandafter\pgfplotsplothandlers@init@\expandafter{\pgfplots@loc@TMPa}%
}%
%
\if1\b@pgfplots@compat@bar@width@units
\else
\def\pgfplotbarwidth{\pgfplots@bar@width@not@in@context}%
\def\pgfplotbarshift{\pgfplots@bar@shift@not@in@context}%
\pgfplotsutil@add@to@macro\pgfplothandlerxbar{%
\def\pgfplotbarwidth{\pgfplots@xbar@width}%
\def\pgfplotbarshift{\pgfplots@xbar@shift}%
}%
\pgfplotsutil@add@to@macro\pgfplothandlerybar{%
\def\pgfplotbarwidth{\pgfplots@ybar@width}%
\def\pgfplotbarshift{\pgfplots@ybar@shift}%
}%
\fi
%
\pgfplotsplothandlers@init@map@to@patched@versions
%
}%
\def\pgfplots@xbar@width{pgfplotsxbarwidth}
\def\pgfplots@ybar@width{pgfplotsybarwidth}
\def\pgfplots@xbar@shift{pgfplotsxbarshift}
\def\pgfplots@ybar@shift{pgfplotsybarshift}
\def\pgfplots@bar@width@not@in@context{pgfplotsbarwidthgeneric}
\def\pgfplots@bar@shift@not@in@context{pgfplotsbarshiftgeneric}
\pgfplotsmathdeclarepseudoconstant{pgfplotsxbarwidth}{\pgfplots@bar@mathparse@{y}{bar width}}%
\pgfplotsmathdeclarepseudoconstant{pgfplotsybarwidth}{\pgfplots@bar@mathparse@{x}{bar width}}%
\pgfplotsmathdeclarepseudoconstant{pgfplotsxbarshift}{\pgfplots@bar@mathparse@{y}{bar shift}}%
\pgfplotsmathdeclarepseudoconstant{pgfplotsybarshift}{\pgfplots@bar@mathparse@{x}{bar shift}}%
\pgfplotsmathdeclarepseudoconstant{pgfplotsbarwidthgeneric}{\pgfplots@bar@mathparse@{N}{bar width}}%
\pgfplotsmathdeclarepseudoconstant{pgfplotsbarshiftgeneric}{\pgfplots@bar@mathparse@{N}{bar shift}}%
\def\pgfplots@bar@mathparse@#1#2{%
\pgfmathparse{\pgfkeysvalueof{/pgf/#2}}%
\ifpgfmathunitsdeclared
\else
\edef\pgfplots@bar@direction@choice@{#1}%
\if N\pgfplots@bar@direction@choice@%
\if a\pgfplots@bar@direction@choice
\else
\if x\pgfplots@bar@direction@choice
\def\pgfplots@bar@direction@choice@{y}%
\else
\if y\pgfplots@bar@direction@choice
\def\pgfplots@bar@direction@choice@{x}%
\else
\pgfplotsthrow{invalid argument}{\pgfplots@bar@direction@choice@}{Sorry, the value of 'bar direction' is invalid}\pgfeov%
\fi
\fi
\fi
\fi
\if N\pgfplots@bar@direction@choice@%
\pgfplots@bar@mathparse@error{#1}{#2}%
\else
\let\pgfplots@loc@TMPa=\pgfmathresult
\csname pgfplotstransformdirection\pgfplots@bar@direction@choice@\endcsname{\pgfplots@loc@TMPa}%
\let\pgfplots@loc@TMPa=\pgfmathresult
\if\pgfplots@bar@direction@choice@ x%
\pgfqpointxy@orig{\pgfplots@loc@TMPa}{0}%
\edef\pgfmathresult{\pgf@sys@tonumber\pgf@x}%
\else
\pgfqpointxy@orig{0}{\pgfplots@loc@TMPa}%
\edef\pgfmathresult{\pgf@sys@tonumber\pgf@y}%
\fi
%\edef\pgfplots@loc@TMPa{{\pgf@sys@tonumber\pgf@x}{\pgf@sys@tonumber\pgf@y}}%
%\expandafter\pgfmathveclen@\pgfplots@loc@TMPa
\fi
\fi
}%
\def\pgfplots@bar@mathparse@error#1#2{%
\pgfplotsthrow{invalid argument}{\pgfplots@bar@direction@choice@}{Sorry, the value '#2=\pgfkeysvalueof{/pgf/#2}' is given in terms of a unit -- but I do not know which axis! Next steps: either (a) set one of 'xbar' or 'ybar' before evaluating the value of '#2' or (b) define 'bar direction=x or y'}\pgfeov%
}%
% Resets the plot handler routines.
%
% This is necessary before installing a new plot handler!
\def\pgfplotsresetplothandler{%
\let\pgfplotsplothandlersurveystart=\pgfplotsplothandlersurveystart@default
\let\pgfplotsplothandlerLUAfactory=\pgfplotsplothandlerLUAfactory@default
\let\pgfplotsplothandlerLUAvisualizerfactory=\pgfplotsplothandlerLUAvisualizerfactory@default
\let\pgfplotsplothandlername=\pgfplotsplothandlername@default
\let\pgfplotsplothandlersurveyend=\pgfplotsplothandlersurveyend@default
\let\pgfplotsplothandlersurveypoint=\pgfplotsplothandlersurveypoint@default
\let\pgfplotsplothandlerpointtokeys=\pgfplotsplothandlerpointtokeys@default
\let\pgfplotsplothandlerserializepointto=\pgfplotsplothandlerserializepointto@default
\let\pgfplotsplothandlerdeserializepointfrom=\pgfplotsplothandlerdeserializepointfrom@default
\let\pgfplotsplothandlerserializestateto=\pgfplotsplothandlerserializestateto@default
\let\pgfplotsplothandlerdeserializestatefrom=\pgfplotsplothandlerdeserializestatefrom@default
\let\pgfplotsplothandlervisualizejump=\pgfplotsplothandlervisualizejump@default
\let\pgfplotsplothandlernotifyscanlinecomplete=\relax
\let\pgfplotsplothandlersurveydifflen=\pgfplotsplothandlersurveydifflen@default
\let\pgfplotsplothandlersurveypointattime=\pgfplotsplothandlersurveypointattime@default
\let\pgfplotsplothandlertransformslopedattime=\pgfplotsplothandlertransformslopedattime@default
\let\pgfplotsplothandlerifcurrentpointcanbefirstlast=\pgfplotsplothandlerifcurrentpointcanbefirstlast@default
%
\let\pgfplotsplothandlersurveybeforesetpointmeta=\pgfplotsplothandlersurveybeforesetpointmeta@default
\let\pgfplotsplothandlersurveyaftersetpointmeta=\pgfplotsplothandlersurveyaftersetpointmeta@default
}%
\def\pgfplotsplothandlersurveybeforesetpointmeta@default{}
\def\pgfplotsplothandlersurveyaftersetpointmeta@default{}
% \pgfplotsplothandlersurveystart
\def\pgfplotsplothandlersurveystart@default{}%
% \pgfplotsplothandlername
\def\pgfplotsplothandlername@default{%
[tikz@plot@handler: \meaning\pgf@plotstreamstart]%
}%
% This should expand to a LUA function which takes the axis and the point
% meta handler.
% Use empty if there is none.
\def\pgfplotsplothandlerLUAfactory@default{}%
% This should expand to a LUA function which takes an instance of
% Plothandler and which should return a PlotVisualizer.
% Use empty if there is none.
%
% @see LUA: pgfplots.PlotVisualizer
\def\pgfplotsplothandlerLUAvisualizerfactory@default{}%
% \pgfplotsplothandlerifcurrentpointcanbefirstlast : can be used to
% check if the current point of a plot handler can be the global first
% or last segment.
% It will execute #1 if that is the case and #2 if not.
\def\pgfplotsplothandlerifcurrentpointcanbefirstlast@default#1#2{#1}%
% \pgfplotsplothandlersurveyend
% Called at the end of each survey phase.
\def\pgfplotsplothandlersurveyend@default{}
% A callback which will be called as soon as a scanline is complete.
%
% The callback can differ from plot handler to plot handler; its
% purpose is to update data structures.
%
% Implementational note for those who _call_ the callback: the
% The callback will be triggered by the 'empty line' handling, see
% \pgfplotsscanlinelengthinitzero. However, a coordinate generator can
% safely invoke it directly. It must not be invoked twice for the same
% scanline.
%
% FIXME: only 'empty line=scanline' currently calls this callback!
\let\pgfplotsplothandlernotifyscanlinecomplete=\relax%
% \pgfplotsplothandlersurveypoint is called for each encountered data
% point.
%
% The data point as such is available using the current state of any
% macros which are assigned during the survey phase (during \addplot).
% This includes any table macros etc.
% PGFPlots stores the x,y and z coordinates into \pgfplots@current@point@[xyz].
% The point meta coordinate is in \pgfplots@current@point@meta.
%
% Note that since any currently assigned macro can be used here, the
% new DV engine of PGF is also valid (and will be supported
% eventually). This DV engine stores data point entries in keys,
% namely those in the key path /data point. See the pgf manual.
\def\pgfplotsplothandlersurveypoint@default{%
\ifpgfplots@LUA@backend@supported
\pgfplots@LUA@survey@point
\else
\pgfplotsplothandlersurveypoint@default@
\fi
}%
\def\pgfplotsplothandlersurveypoint@default@{%
% reset it. NOTE: this migh be done multiple times. But better one
% too much than one too few...
\def\pgfplots@set@perpointmeta@done{0}%
%
\pgfplotsplothandlersurveypoint@default@noreset@of@pointmeta
}%
\def\pgfplotsplothandlersurveypoint@default@noreset@of@pointmeta{%
\pgfplotsaxisparsecoordinate
\pgfplotsaxispreparecoordinate
\ifpgfplotsaxisparsecoordinateok
\pgfplotsaxisupdatelimitsforcoordinate\pgfplots@current@point@x\pgfplots@current@point@y\pgfplots@current@point@z
\fi
\pgfplotsaxisdatapointsurveyed
}%
% \pgfplotsplothandlerserializepointto{<\macro>}
% should save a complete data point to <\macro> such that it can be
% de-serialized later.
%
% #1: a macro name. Will be filled with (expandable) data.
% The format can be arbitrary, but you should be able to extra it.
%
% @PRECONDITION
% this macro will be invoked in a context where the current data
% point has been processed completely, including any preparations.
% The required data which should be saved depends on the plot
% handler. Usually, all plot handlers require
% \pgfplots@current@point@[xyz] and \pgfplots@current@point@meta.
% This macro should only assign keys which have been defined or
% validated by any of the plot handler relevant methods (including
% the de-serialization or survey methods).
\def\pgfplotsplothandlerserializepointto@default#1{%
% Store normalized point for list:
% We need
% xi,yi,zi;
% where zi may be empty.
%
% Note that per-point meta information is stored in
% \pgfplotsaxisserializedatapoint .
\edef#1{\pgfplots@current@point@x,\pgfplots@current@point@y,\pgfplots@current@point@z}%
}%
% \pgfplotsplothandlerdeserializepointfrom{<\macro>}
% the counterpart for \pgfplotsplothandlerserializepointto.
% It restores the state as it was before the serialization.
%
% #1: the serialized information.
\def\pgfplotsplothandlerdeserializepointfrom@default#1{%
\expandafter\pgfplotsplothandlerdeserializepointfrom@default@#1\relax
}%
% \pgfplotsplothandlerpointtokeys{}
%
% Takes the current point and copies its values to a set of keys.
%
% For example, if the current point has the three coordinates x=1,
% y=2, z=3,
% \pgfplotsplothandlerpointtokeys{/data point/first/}
% will define the keys
% /data point/first/x/.initial=1
% /data point/first/y/.initial=2
% /data point/first/z/.initial=3
%
\def\pgfplotsplothandlerpointtokeys@default#1{%
\pgfkeyslet{#1/x}\pgfplots@current@point@x
\pgfkeyslet{#1/y}\pgfplots@current@point@y
\pgfkeyslet{#1/z}\pgfplots@current@point@z
}%
\def\pgfplotsplothandlerdeserializepointfrom@default@#1,#2,#3\relax{%
\def\pgfplots@current@point@x{#1}%
\def\pgfplots@current@point@y{#2}%
\def\pgfplots@current@point@z{#3}%
}%
% \pgfplotsplothandlerserializestateto{<\macro>}
% should save the state of the current plot handler such that it can
% be de-serialized later.
%
% The state does usually NOT contain a coordinate stream, this is
% accomplished by \pgfplotsplothandlerserializepointto.
%
% #1: a macro name. Can be filled with anything, including
% non-expandable macro invocations.
\def\pgfplotsplothandlerserializestateto@default#1{%
\def#1{}%
}%
%
\def\pgfplotsplothandlerdeserializestatefrom@default#1{%
#1%
}%
\def\pgfplotsplothandlervisualizejump@default{%
\pgfplotstreamend
\pgfplotstreamstart
}%
% \pgfplotsplothandlersurveypointattime#1#2#3
%
% sets the current environment to a point which is between points #2
% and #3, using the fraction #1.
%
% #1 a fraction (a number between 0 and 1) in the format of
% \pgfplotscoordmath{default}
% #2 a serialized point denoting the start
% #3 a serialized point denoting the end
%
% In other words: #1 = 0.0 should result in #2 and #1 = 1.0 should
% result in #3.
%
% POSTCONDITION: the current point will be set to the point
% in-between. The current point is set in terms of logical coordinates
% (i.e. \pgfplots@current@point@x and its variants)
\def\pgfplotsplothandlersurveypointattime@default#1#2#3{%
\begingroup
\pgfplotsplothandlerdeserializepointfrom{#2}%
\let\pgfplots@last@x=\pgfplots@current@point@x
\let\pgfplots@last@y=\pgfplots@current@point@y
\let\pgfplots@last@z=\pgfplots@current@point@z
\pgfplotsplothandlerdeserializepointfrom{#3}%
%
\def\pgfplots@loc@TMPa##1{%
\pgfplotscoordmath{##1}{op}{subtract}{{\csname pgfplots@current@point@##1\endcsname}{\csname pgfplots@last@##1\endcsname}}%
\let\pgfplots@diff=\pgfmathresult
\pgfplotscoordmath{##1}{parsenumber}{#1}%
\pgfplotscoordmath{##1}{op}{multiply}{{\pgfmathresult}{\pgfplots@diff}}%
\pgfplotscoordmath{##1}{op}{add}{{\csname pgfplots@last@##1\endcsname}{\pgfmathresult}}%
\expandafter\let\csname pgfplots@current@point@##1\endcsname=\pgfmathresult
}%
\pgfplots@loc@TMPa x%
\pgfplots@loc@TMPa y%
\ifpgfplots@curplot@threedim
\pgfplots@loc@TMPa z%
\fi
\xdef\pgfplots@glob@TMPb{%
\noexpand\def\noexpand\pgfplots@current@point@x{\pgfplots@current@point@x}%
\noexpand\def\noexpand\pgfplots@current@point@y{\pgfplots@current@point@y}%
\noexpand\def\noexpand\pgfplots@current@point@z{\pgfplots@current@point@z}%
}%
\endgroup
\pgfplots@glob@TMPb
}%
% \pgfplotsplothandlersurveydifflen#1#2
%
% computes the length between two points which are given in logical
% coordinates.
% #1 a serialized point
% #2 a serialized point
%
% The return value is assigned to \pgfmathresult in
% \pgfplotscoordmath{default} format.
\def\pgfplotsplothandlersurveydifflen@default#1#2{%
\begingroup
\pgfplotsplothandlerdeserializepointfrom{#1}%
\let\pgfplots@last@x=\pgfplots@current@point@x
\let\pgfplots@last@y=\pgfplots@current@point@y
\let\pgfplots@last@z=\pgfplots@current@point@z
\pgfplotsplothandlerdeserializepointfrom{#2}%
\pgfplotscoordmathparsemacro{default}\pgfplots@last@x
\pgfplotscoordmathparsemacro{default}\pgfplots@last@y
\pgfplotscoordmathparsemacro{default}\pgfplots@current@point@x
\pgfplotscoordmathparsemacro{default}\pgfplots@current@point@y
\ifpgfplots@curplot@threedim
\pgfplotscoordmathparsemacro{default}\pgfplots@last@z
\pgfplotscoordmathparsemacro{default}\pgfplots@current@point@z
\fi
\pgfplotscoordmath{default}{op}{subtract}{{\pgfplots@current@point@x}{\pgfplots@last@x}}%
\pgfplotscoordmath{default}{op}{multiply}{{\pgfmathresult}{\pgfmathresult}}%
\let\pgfplots@diff@x=\pgfmathresult
\pgfplotscoordmath{default}{op}{subtract}{{\pgfplots@current@point@y}{\pgfplots@last@y}}%
\pgfplotscoordmath{default}{op}{multiply}{{\pgfmathresult}{\pgfmathresult}}%
\let\pgfplots@diff@y=\pgfmathresult
\pgfplotscoordmath{default}{op}{add}{{\pgfplots@diff@x}{\pgfplots@diff@y}}%
\let\pgfplots@len=\pgfmathresult
\ifpgfplots@curplot@threedim
\pgfplotscoordmath{default}{op}{subtract}{{\pgfplots@current@point@z}{\pgfplots@last@z}}%
\pgfplotscoordmath{default}{op}{multiply}{{\pgfmathresult}{\pgfmathresult}}%
\let\pgfplots@diff@z=\pgfmathresult
\pgfplotscoordmath{default}{op}{add}{{\pgfplots@len}{\pgfplots@diff@z}}%
\let\pgfplots@len=\pgfmathresult
\fi
\pgfplotscoordmath{default}{op}{sqrt}{{\pgfplots@len}}%
\pgfmath@smuggleone\pgfmathresult
\endgroup
}%
% \pgfplotsplothandlertransformslopedattime{}{}{}
%
% Installs a PGF rotation matrix such that it fits the gradient of the
% current plot segment between and .
%
% #1: a fraction such that 0.0 is and 1.0 is
% #2: the point (a macro containing the result of \pgfplotsplothandlerserializepointto)
% #3: the point (a macro containing the result of \pgfplotsplothandlerserializepointto)
%
\def\pgfplotsplothandlertransformslopedattime@default#1#2#3{%
\pgf@process{%
\pgfplotsplothandlerdeserializepointfrom{#2}%
\pgfplotsaxisvisphasegetpoint
}%
\pgf@xa=\pgf@x% xb/yb = start point
\pgf@ya=\pgf@y%
\pgf@process{%
\pgfplotsplothandlerdeserializepointfrom{#3}%
\pgfplotsaxisvisphasegetpoint
}%
\advance\pgf@x by-\pgf@xa%
\advance\pgf@y by-\pgf@ya%
\ifpgfallowupsidedownattime%
\else%
\ifdim\pgf@x<0pt%
\pgf@x=-\pgf@x%
\pgf@y=-\pgf@y%
\fi%
\fi%
\pgfpointnormalised{}% x/y = normalised vector
\pgf@ya=-\pgf@y%
\pgftransformcm%
{\pgf@sys@tonumber{\pgf@x}}{\pgf@sys@tonumber{\pgf@y}}%
{\pgf@sys@tonumber{\pgf@ya}}{\pgf@sys@tonumber{\pgf@x}}{\pgfpointorigin}%
}%
\pgfplotsresetplothandler
% The following two methods constitutes implementations for
% 'node[pos=]' which do not interpolate. They only snap to
% the nearest coordinate.
%
% For example, \addplot[scatter] ... node[pos=0.5] {} should use a
% unit distance and should not interpolate between scatter points.
\def\pgfplotsplothandlersurveydifflen@snaptonearest#1#2{%
% FIXME : this implies that #1 and #2 are "adjacent" in the
% coordinate stream!
\pgfplotscoordmath{default}{one}%
}%
\def\pgfplotsplothandlersurveypointattime@snaptonearest#1#2#3{%
\pgfplotscoordmath{default}{parsenumber}{0.5}%
\let\pgfplots@loc@TMPa=\pgfmathresult
\pgfplotscoordmath{default}{parsenumber}{#1}%
\pgfplotscoordmath{default}{if less than}{\pgfmathresult}{\pgfplots@loc@TMPa}{%
\pgfplotsplothandlerdeserializepointfrom{#2}%
}{%
\pgfplotsplothandlerdeserializepointfrom{#3}%
}%
}%
% ==================================
% Defines
% - a generic update limits routine,
% \pgfplotsaxisupdatelimitsforcoordinate#1#2#3
% if #3 is empty, it will assume a 2d point, otherwise a 3d point
% and the axis will be three dimensional as well.
% During \addplot, this auto-detection will be disabled in favor of
% the '\addplot3' versus' \addplot' syntax.
%
\def\pgfplots@prepare@axis@API{%
\pgfplots@curplot@threedimtrue
\pgfplots@prepare@axis@API@
\let\pgfplotsaxisupdatelimitsforcoordinatethreedim=\pgfplotsaxisupdatelimitsforcoordinate@
\let\pgfplotsaxisparsecoordinatethreedim=\pgfplotsaxisparsecoordinate@
%
\pgfplots@curplot@threedimfalse
\pgfplots@prepare@axis@API@
\let\pgfplotsaxisupdatelimitsforcoordinatetwodim=\pgfplotsaxisupdatelimitsforcoordinate@
\let\pgfplotsaxisparsecoordinatetwodim=\pgfplotsaxisparsecoordinate@
%
\def\pgfplotsaxisupdatelimitsforcoordinate##1##2##3{%
\pgfplots@ifempty{##3}{%
\pgfplotsaxisupdatelimitsforcoordinatetwodim{##1}{##2}{}%
}{%
\global\pgfplots@threedimtrue
\pgfplotsaxisupdatelimitsforcoordinatethreedim{##1}{##2}{##3}%
}%
}%
\def\pgfplotsaxisparsecoordinate{%
\ifx\pgfplots@current@point@z\pgfutil@empty
\pgfplotsaxisparsecoordinatetwodim
\else
\global\pgfplots@threedimtrue
\pgfplotsaxisparsecoordinatethreedim%
\fi
}%
}%
\def\pgfplots@prepare@axis@API@{%
\begingroup
%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%
\let\E=\noexpand
% Setup Just-In-Time-Macro Compilation:
% I compile a set of macros which is highly optimized for this
% particular axis configuration.
%
% \pgfplotsaxisupdatelimitsforcoordinate
% Updates the current x and y limits for point (#1,#2).
%
% To eliminate all those case distinctions, it is created with
% 'edef' and a lot of '\noexpand' calls here:
%
%
% The point coordinates are given in floating point format (FIXME)
%
% Please note that if user specified limits are given, automatic
% limits are only applied to points which fall into the user specified
% clipping region.
%
% PRECONDITIONS:
% - the input coordinates have been parsed correctly (floating point
% format for linear axis, log applied for logarithmic ones)
%
% Arguments:
% #1,#2,#3 the x,y and z coordinate. z is ignored for 2d plots.
\xdef\pgfplotsaxisupdatelimitsforcoordinate@##1##2##3{%
%\E\tracingmacros=2\E\tracingcommands=2
%\E\pgfplots@message{Updating limits for (##1,##2) ...}%
%
% VIM SEARCH PATTERN:
% [^E]\zs\\\ze[^E]
% -> this finds '\' which is neither '\E' nor is it prefixed
% by 'E'.
%
%
%
\E\pgfplots@update@limits@for@one@point@ISCLIPPEDfalse
% check whether we need to clip limits:
\ifpgfplots@clip@limits
\ifpgfplots@autocompute@xmin
\else
\ifpgfplots@xislinear
\E\pgfmathfloatlessthan@{##1}{\E\pgfplots@xmin}%
\E\ifpgfmathfloatcomparison
\E\pgfplots@update@limits@for@one@point@ISCLIPPEDtrue
\E\fi
\else
\E\pgfplotsmathlessthan{##1}{\E\pgfplots@xmin}%
\E\ifpgfmathfloatcomparison
\E\pgfplots@update@limits@for@one@point@ISCLIPPEDtrue
\E\fi
\fi
\fi
\ifpgfplots@autocompute@xmax
\else
\ifpgfplots@xislinear
\E\pgfmathfloatlessthan@{\E\pgfplots@xmax}{##1}%
\E\ifpgfmathfloatcomparison
\E\pgfplots@update@limits@for@one@point@ISCLIPPEDtrue
\E\fi
\else
\E\pgfplotsmathlessthan{\E\pgfplots@xmax}{##1}%
\E\ifpgfmathfloatcomparison
\E\pgfplots@update@limits@for@one@point@ISCLIPPEDtrue
\E\fi
\fi
\fi
\ifpgfplots@autocompute@ymin
\else
\ifpgfplots@yislinear
\E\pgfmathfloatlessthan@{##2}{\E\pgfplots@ymin}%
\E\ifpgfmathfloatcomparison
\E\pgfplots@update@limits@for@one@point@ISCLIPPEDtrue
\E\fi
\else
\E\pgfplotsmathlessthan{##2}{\E\pgfplots@ymin}%
\E\ifpgfmathfloatcomparison
\E\pgfplots@update@limits@for@one@point@ISCLIPPEDtrue
\E\fi
\fi
\fi
\ifpgfplots@autocompute@ymax
\else
\ifpgfplots@yislinear
\E\pgfmathfloatlessthan@{\E\pgfplots@ymax}{##2}%
\E\ifpgfmathfloatcomparison
\E\pgfplots@update@limits@for@one@point@ISCLIPPEDtrue
\E\fi
\else
\E\pgfplotsmathlessthan{\E\pgfplots@ymax}{##2}%
\E\ifpgfmathfloatcomparison
\E\pgfplots@update@limits@for@one@point@ISCLIPPEDtrue
\E\fi
\fi
\fi
\ifpgfplots@curplot@threedim
\ifpgfplots@autocompute@zmin
\else
\ifpgfplots@zislinear
\E\pgfmathfloatlessthan@{##3}{\E\pgfplots@zmin}%
\E\ifpgfmathfloatcomparison
\E\pgfplots@update@limits@for@one@point@ISCLIPPEDtrue
\E\fi
\else
\E\pgfplotsmathlessthan{##3}{\E\pgfplots@zmin}%
\E\ifpgfmathfloatcomparison
\E\pgfplots@update@limits@for@one@point@ISCLIPPEDtrue
\E\fi
\fi
\fi
\ifpgfplots@autocompute@zmax
\else
\ifpgfplots@zislinear
\E\pgfmathfloatlessthan@{\E\pgfplots@zmax}{##3}%
\E\ifpgfmathfloatcomparison
\E\pgfplots@update@limits@for@one@point@ISCLIPPEDtrue
\E\fi
\else
\E\pgfplotsmathlessthan{\E\pgfplots@zmax}{##3}%
\E\ifpgfmathfloatcomparison
\E\pgfplots@update@limits@for@one@point@ISCLIPPEDtrue
\E\fi
\fi
\fi
\fi
\fi
%
%
%
% Update limits:
\E\ifpgfplots@update@limits@for@one@point@ISCLIPPED
\E\else
\ifpgfplots@autocompute@xmin
\ifpgfplots@xislinear
\E\pgfplotsmathfloatmin{\E\pgfplots@xmin}{##1}%
\E\global\E\let\E\pgfplots@xmin=\E\pgfmathresult
\else
\E\pgfplotsmathmin{\E\pgfplots@xmin}{##1}%
\E\global\E\let\E\pgfplots@xmin=\E\pgfmathresult
\fi
\fi
\ifpgfplots@autocompute@xmax
\ifpgfplots@xislinear
\E\pgfplotsmathfloatmax{\E\pgfplots@xmax}{##1}%
\E\global\E\let\E\pgfplots@xmax=\E\pgfmathresult
\else
\E\pgfplotsmathmax{\E\pgfplots@xmax}{##1}%
\E\global\E\let\E\pgfplots@xmax=\E\pgfmathresult
\fi
\fi
\ifpgfplots@autocompute@ymin
\ifpgfplots@yislinear
\E\pgfplotsmathfloatmin{\E\pgfplots@ymin}{##2}%
\E\global\E\let\E\pgfplots@ymin=\E\pgfmathresult
\else
\E\pgfplotsmathmin{\E\pgfplots@ymin}{##2}%
\E\global\E\let\E\pgfplots@ymin=\E\pgfmathresult
\fi
\fi
\ifpgfplots@autocompute@ymax
\ifpgfplots@yislinear
\E\pgfplotsmathfloatmax{\E\pgfplots@ymax}{##2}%
\E\global\E\let\E\pgfplots@ymax=\E\pgfmathresult
\else
\E\pgfplotsmathmax{\E\pgfplots@ymax}{##2}%
\E\global\E\let\E\pgfplots@ymax=\E\pgfmathresult
\fi
\fi
\ifpgfplots@curplot@threedim
\ifpgfplots@autocompute@zmin
\ifpgfplots@zislinear
\E\pgfplotsmathfloatmin{\E\pgfplots@zmin}{##3}%
\E\global\E\let\E\pgfplots@zmin=\E\pgfmathresult
\else
\E\pgfplotsmathmin{\E\pgfplots@zmin}{##3}%
\E\global\E\let\E\pgfplots@zmin=\E\pgfmathresult
\fi
\fi
\ifpgfplots@autocompute@zmax
\ifpgfplots@zislinear
\E\pgfplotsmathfloatmax{\E\pgfplots@zmax}{##3}%
\E\global\E\let\E\pgfplots@zmax=\E\pgfmathresult
\else
\E\pgfplotsmathmax{\E\pgfplots@zmax}{##3}%
\E\global\E\let\E\pgfplots@zmax=\E\pgfmathresult
\fi
\fi
\fi
\E\fi
%
% Compute data range:
\ifpgfplots@autocompute@all@limits
% the data range will be acquired simply from the axis
% range, see below!
\else
% Attention: it is only done for linear axis!
\ifpgfplots@xislinear
\E\pgfplotsmathfloatmin{\E\pgfplots@data@xmin}{##1}%
\E\global\E\let\E\pgfplots@data@xmin=\E\pgfmathresult
\E\pgfplotsmathfloatmax{\E\pgfplots@data@xmax}{##1}%
\E\global\E\let\E\pgfplots@data@xmax=\E\pgfmathresult
\fi
\ifpgfplots@yislinear
\E\pgfplotsmathfloatmin{\E\pgfplots@data@ymin}{##2}%
\E\global\E\let\E\pgfplots@data@ymin=\E\pgfmathresult
\E\pgfplotsmathfloatmax{\E\pgfplots@data@ymax}{##2}%
\E\global\E\let\E\pgfplots@data@ymax=\E\pgfmathresult
\fi
\ifpgfplots@curplot@threedim
\ifpgfplots@zislinear
\E\pgfplotsmathfloatmin{\E\pgfplots@data@zmin}{##3}%
\E\global\E\let\E\pgfplots@data@zmin=\E\pgfmathresult
\E\pgfplotsmathfloatmax{\E\pgfplots@data@zmax}{##3}%
\E\global\E\let\E\pgfplots@data@zmax=\E\pgfmathresult
\fi
\fi
\fi
%\E\pgfplots@message{Updated limits: (\E\pgfplots@xmin,\E\pgfplots@ymin) rectangle (\E\pgfplots@xmax,\E\pgfplots@ymax).}%
%
%\E\tracingmacros=0\E\tracingcommands=0
}%
%
% A routine which parses a coordinate.
% Here, 'coordinate' means (x,y) for a two dimensional plot and
% '(x,y,z)' for a three dimensional one.
%
% The preparation consists of
% - filtering.
% - coordinate parsing and high level transformations.
% - logs.
%
% It might happen that \pgfplotsaxisparsecoordinate is called
% multiple times for a single data "point" (for example, a quiver
% point might call it for the point where the vector starts and
% where the vector ends).
%
% @PRECONDITION
% - the plot's survey phase is running (has already been started)
% - \pgfplots@current@point@[xyz] contains the coordinates of the
% point. I assume they are unparsed.
%
%
% @POSTCONDITION
% - the axis' state will be updated.
% - the \pgfplots@current@point@[xyz] macros will contain parsed data.
% - \ifpgfplotsaxisparsecoordinateok will be true if and only
% if the data point has not been filtered away. If it has been
% filtered away, \pgfplots@current@point@[xyz] will be empty.
% - \pgfplots@current@point@[xyz]@unfiltered contain unparsed
% data.
%
% @see \pgfplotsaxispreparecoordinate
% @see \pgfplotsaxisdatapointsurveyed
\xdef\pgfplotsaxisparsecoordinate@{%
% These things are necessary for error bars and are available
% as public results in math parser invocations (for meta and
% filters)
\E\let\E\pgfplots@current@point@x@unfiltered=\E\pgfplots@current@point@x
\E\let\E\pgfplots@current@point@y@unfiltered=\E\pgfplots@current@point@y
\E\let\E\pgfplots@current@point@z@unfiltered=\E\pgfplots@current@point@z
\E\def\E\pgfplots@unbounded@dir{}%
%
\E\pgfplots@invoke@prefilter
%
\E\expandafter\E\pgfplots@prepare@xcoord\E\expandafter{\E\pgfplots@current@point@x}%
\E\expandafter\E\pgfplots@invoke@filter\E\expandafter{\E\pgfmathresult}{x}%
\E\let\E\pgfplots@current@point@x=\E\pgfmathresult
%
\E\expandafter\E\pgfplots@prepare@ycoord\E\expandafter{\E\pgfplots@current@point@y}%
\E\expandafter\E\pgfplots@invoke@filter\E\expandafter{\E\pgfplots@current@point@y}{y}%
\E\let\E\pgfplots@current@point@y=\E\pgfmathresult
%
\ifpgfplots@curplot@threedim
\E\expandafter\E\pgfplots@prepare@zcoord\E\expandafter{\E\pgfplots@current@point@z}%
\E\expandafter\E\pgfplots@invoke@filter\E\expandafter{\E\pgfplots@current@point@z}{z}%
\E\let\E\pgfplots@current@point@z=\E\pgfmathresult
\fi
%
\E\pgfplots@invoke@filter@xyz
%
\E\ifx\E\pgfplots@current@point@x\E\pgfutil@empty
\E\else
% parse for numbers. Note that this might cause
% unnecessary overhead of logs (which are already
% normalized unless someone provided filters). But do it
% anyway to ensure that filters produce valid output.
\E\pgfplotscoordmath{x}{parsenumber}{\E\pgfplots@current@point@x}%
\E\let\E\pgfplots@current@point@x=\E\pgfmathresult
\E\pgfplotscoordmath{x}{if is bounded}{\E\pgfplots@current@point@x}%
{}%
{% this clears nan, inf and -inf points.
\E\let\E\pgfplots@current@point@x=\E\pgfutil@empty
\E\def\E\pgfplots@unbounded@dir{x}%
}%
\E\fi
%
\E\ifx\E\pgfplots@current@point@y\E\pgfutil@empty
\E\else
\E\pgfplotscoordmath{y}{parsenumber}{\E\pgfplots@current@point@y}%
\E\let\E\pgfplots@current@point@y=\E\pgfmathresult
\E\pgfplotscoordmath{y}{if is bounded}{\E\pgfplots@current@point@y}%
{}%
{% this clears nan, inf and -inf points.
\E\let\E\pgfplots@current@point@y=\E\pgfutil@empty
\E\def\E\pgfplots@unbounded@dir{y}%
}%
\E\fi
%
\ifpgfplots@curplot@threedim
%
\E\ifx\E\pgfplots@current@point@z\E\pgfutil@empty
\E\else
\E\pgfplotscoordmath{z}{parsenumber}{\E\pgfplots@current@point@z}%
\E\let\E\pgfplots@current@point@z=\E\pgfmathresult
\E\pgfplotscoordmath{z}{if is bounded}{\E\pgfplots@current@point@z}%
{}%
{% this clears nan, inf and -inf points.
\E\let\E\pgfplots@current@point@z=\E\pgfutil@empty
\E\def\E\pgfplots@unbounded@dir{z}%
}%
\E\fi
\fi
%
% check if coordinates are bounded:
\E\pgfplotsaxisparsecoordinateoktrue
\E\ifx\E\pgfplots@current@point@x\E\pgfutil@empty
\E\pgfplotsaxisparsecoordinateokfalse
\E\else
\E\ifx\E\pgfplots@current@point@y\E\pgfutil@empty
\E\pgfplotsaxisparsecoordinateokfalse
\E\else
\ifpgfplots@curplot@threedim
\E\ifx\E\pgfplots@current@point@z\E\pgfutil@empty
\E\pgfplotsaxisparsecoordinateokfalse
\E\fi
\fi
\E\fi
\E\fi
%
}%
%
\endgroup
}%
% ==================================
% The quiver plot handler.
% It draws a lot of arrows.
% Its input is (x_i,y_i); (u_i,v_i) for data point i and it draws a
% vector in direction (u_i,v_i) starting from (x_i,y_i) .
% It also supports 3D arrows (involving z_i and w_i).
\newif\ifpgfplots@quiver@usetikz
\newif\ifpgfplots@quiver@updatelimits
\pgfplotsset{
% The 'quiver' plot handler for two- and three dimensional plots.
%
% User Interface:
% use /pgfplots/quiver to enable the plot handler.
% Then, provide `quiver/u value' or `quiver/u' to
% tell where to find the 'x' coordinates of the vectors, and similarly
% for 'v' and 'w' instead of 'u'.
quiver/.code={%
\let\tikz@plot@handler=\pgfplotsplothandlerquiver
\pgfqkeys{/pgfplots/quiver}{quiver legend,#1}%
},%
quiver/u value*/.initial=0,
quiver/v value*/.initial=0,
quiver/w value*/.initial=0,
quiver/u value is expr/.initial=0,
quiver/v value is expr/.initial=0,
quiver/w value is expr/.initial=0,
quiver/quiver legend/.style={
/pgfplots/legend image code/.code={%
\draw[x=0.6cm,y=0cm,z=0pt,##1,
/pgfplots/quiver/before arrow/.add code={}{
% quiver is a pgfplots-specific plot-handler. We need to
% fix the additional input data somehow.
%
% this is an *absolute* coordinate, interpreted
% relative to 'x', 'y', 'z'
\def\pgfplots@quiver@u{1}%
\def\pgfplots@quiver@v{1}%
\def\pgfplots@quiver@w{1}%
},%
]
plot coordinates {
(0cm,0cm)
};%
}%
},
quiver/u filter/.code=,
quiver/v filter/.code=,
quiver/w filter/.code=,
quiver/u filter/.expression/.code=\pgfplots@install@filter@expression{quiver/u filter}{#1},
quiver/v filter/.expression/.code=\pgfplots@install@filter@expression{quiver/v filter}{#1},
quiver/w filter/.expression/.code=\pgfplots@install@filter@expression{quiver/w filter}{#1},
quiver/u value/.code =\pgfplots@set@source@for{quiver/u}{#1}{0},%
quiver/u/.code =\pgfplots@set@source@for{quiver/u}{#1}{1},%
quiver/v value/.code =\pgfplots@set@source@for{quiver/v}{#1}{0},%
quiver/v/.code =\pgfplots@set@source@for{quiver/v}{#1}{1},%
quiver/w value/.code =\pgfplots@set@source@for{quiver/w}{#1}{0},%
quiver/w/.code =\pgfplots@set@source@for{quiver/w}{#1}{1},%
quiver/before arrow/.code=,
quiver/after arrow/.code=,
quiver/every arrow/.style={},
quiver/arrow color/.initial=,
quiver/scale arrows/.initial=1,
quiver/update limits/.is if=pgfplots@quiver@updatelimits,
quiver/update limits=true,
quiver/colored/.code={%
\def\pgfplots@loc@TMPa{#1}%
\ifx\pgfplots@loc@TMPa\pgfutil@empty
\else
\pgfkeyslet{/pgfplots/quiver/arrow color}\pgfplots@loc@TMPa
\pgfkeysalso{/pgfplots/set point meta if empty=f(x)}%
\fi
},%
quiver/colored/.default=mapped color,
}%
\def\pgfplots@set@source@for#1#2#3{%
\pgfkeyssetvalue{/pgfplots/#1 value*}{#2}%
\pgfkeyssetvalue{/pgfplots/#1 is expr}{#3}%
}%
% To be used to create a simple parser for keys initialised by
% \pgfplots@set@source@for:
%
% #1: the key path (relative to /pgfplots/) of the data.
% Can be empty in which case /pgfplots/#2 is used to access data.
% #2: the key name of the data
% #3: a macro name which be will defined to be a parser for the data.
%
% The parser will check whether the '#2 is expr' key is set.
% Furthermore, it defines /data point/#2 to be the result.
%
% Example:
% \pgfplots@set@source@for{hist/data}{...}
%
% ->
% \pgfplots@prepare@source@parser@for{hist/}{data}\parser
%
% then, invoking \parser
% will define \pgfmathresult to be the argument provided to
% \pgfplots@set@source@for.
\def\pgfplots@prepare@source@parser@for#1#2#3{%
\pgfkeyslet{/data point/#1#2}\pgfutil@empty%
%
\pgfkeysgetvalue{/pgfplots/#1#2 value*}\pgfplots@loc@TMPa
\ifx\pgfplots@loc@TMPa\pgfutil@empty
% assume the '/data point/#1#2' is set by some input
% routine.
% Invoke math parser in this case.
\pgfkeyssetvalue{/pgfplots/#1#2 is expr}{1}%
\else
\pgfkeyslet{/data point/#1#2}\pgfplots@loc@TMPa
\fi
\def#3{%
\edef\pgfmathresult{\pgfkeysvalueof{/data point/#1#2}}%
%\message{parse coordinate #1#2 (\pgfmathresult) ...^^J}%
}%
%
%
\pgfkeysifdefined{/pgfplots/#1#2 coord trafo/.@cmd}{%
\pgfkeysgetvalue{/pgfplots/#1#2 coord trafo/.@cmd}\pgfplots@loc@TMPa
\ifx\pgfplots@loc@TMPa\pgfplots@empty@command@key
\else
\t@pgfplots@toka=\expandafter{#3}%
\t@pgfplots@tokb={%
\def\pgfplots@loc@TMPa{\pgfkeysvalueof{/pgfplots/#1#2 coord trafo/.@cmd}}%
\expandafter\pgfplots@loc@TMPa\expandafter{\pgfmathresult}\pgfeov%
}%
\t@pgfplots@tokc={%
\ifx\pgfmathresult\pgfutil@empty
\else
\pgfmathfloatparsenumber{\pgfmathresult}%
\fi
}%
\edef#3{%
\the\t@pgfplots@toka
\the\t@pgfplots@tokb
\the\t@pgfplots@tokc
}%
\fi
}{}%
%
\t@pgfplots@toka=\expandafter{#3}%
\if1\pgfkeysvalueof{/pgfplots/#1#2 is expr}%
\t@pgfplots@tokc={%
\ifx\pgfmathresult\pgfutil@empty
\else
\pgfmathparse{\pgfmathresult}%
\fi
}%
\else
\t@pgfplots@tokc={%
\ifx\pgfmathresult\pgfutil@empty
\else
\pgfmathfloatparsenumber{\pgfmathresult}%
\fi
}%
\fi
\edef#3{%
\the\t@pgfplots@toka
\the\t@pgfplots@tokc
}%
%
\pgfkeysgetvalue{/pgfplots/#1#2 filter/.@cmd}\pgfplots@loc@TMPa
\ifx\pgfplots@loc@TMPa\pgfplots@empty@command@key
\else
\t@pgfplots@toka=\expandafter{#3}%
\t@pgfplots@tokb={%
\def\pgfplots@loc@TMPa{\pgfkeysvalueof{/pgfplots/#1#2 filter/.@cmd}}%
\expandafter\pgfplots@loc@TMPa\expandafter{\pgfmathresult}\pgfeov%
}%
\t@pgfplots@tokc={%
\ifx\pgfmathresult\pgfutil@empty
\else
\pgfmathfloatparsenumber{\pgfmathresult}%
\fi
}%
\edef#3{%
\the\t@pgfplots@toka
\the\t@pgfplots@tokb
\the\t@pgfplots@tokc
}%
\fi
%
\iftrue
\t@pgfplots@toka=\expandafter{#3}%
\t@pgfplots@tokc={%
%\message{parse coordinate (#1#2) = \pgfmathresult.^^J}%
}%
\edef#3{%
\the\t@pgfplots@toka
\the\t@pgfplots@tokc
}%
\fi
}%
% Invokes /pgfplots/#1 coord inv trafo on \pgfmathresult if that key
% exists.
% #1 the argument is in float (will become the 'default' coordmath
% eventually).
%
% On output, it should either '#1' if there was no coord inv trafo or
% the result of the trafo.
\def\pgfplots@coord@trafo@inv@for#1{%
\def\pgfplots@loc@TMPb{/pgfplots/#1 coord inv trafo/.@cmd}%
\pgfkeysifdefined{\pgfplots@loc@TMPb}{%
\pgfkeysgetvalue{\pgfplots@loc@TMPb}\pgfplots@loc@TMPa
\ifx\pgfplots@loc@TMPa\pgfplots@empty@command@key
\else
\pgfmathfloattofixed{\pgfmathresult}%
\expandafter\pgfplots@loc@TMPa\expandafter{\pgfmathresult}\pgfeov
\fi
}{}%
}
% Like \pgfplots@coord@trafo@inv@for, but for the normal trafo
% direction
\def\pgfplots@coord@trafo@for#1{%
\def\pgfplots@loc@TMPb{/pgfplots/#1 coord trafo/.@cmd}%
\pgfkeysifdefined{\pgfplots@loc@TMPb}{%
\pgfkeysgetvalue{\pgfplots@loc@TMPb}\pgfplots@loc@TMPa
\ifx\pgfplots@loc@TMPa\pgfplots@empty@command@key
\else
\expandafter\pgfplots@loc@TMPa\expandafter{\pgfmathresult}\pgfeov
\fi
}{}%
}
\def\pgfplotsplothandlerquiver{%
\pgfplotsresetplothandler
\let\pgf@plotstreamstart=\pgfplotsplothandlervisbegin@quiver
\let\pgfplotsplothandlersurveystart=\pgfplotsplothandlersurveystart@quiver
\let\pgfplotsplothandlersurveypoint=\pgfplotsplothandlersurveypoint@quiver
\let\pgfplotsplothandlerserializepointto=\pgfplotsplothandlerserializepointto@quiver
\let\pgfplotsplothandlerdeserializepointfrom=\pgfplotsplothandlerdeserializepointfrom@quiver
\let\pgfplotsplothandlerpointtokeys=\pgfplotsplothandlerpointtokeys@quiver
\let\pgfplotsplothandlerquiver@vis@hook=\pgfutil@empty
\def\pgfplotsplothandlername{quiver}%
%
\ifpgfplots@xislinear \else \pgfplotsplothandlerquivererror \fi
\ifpgfplots@yislinear \else \pgfplotsplothandlerquivererror\fi
\pgfplotsifcurplotthreedim{%
\ifpgfplots@zislinear \else \pgfplotsplothandlerquivererror \fi
}{}%
}%
\def\pgfplotsplothandlerquivererror{\pgfplots@error{Sorry, quiver plots for logarithmic axes are not yet implemented. In fact, the implementation does something -- but it will probably change in future releases. Contact the mailing list if you have questions}}%
\def\pgfplotsplothandlersurveystart@quiver{%
\pgfkeysgetvalue{/pgfplots/quiver/scale arrows}\pgfplots@quiver@scale
\ifx\pgfplots@quiver@scale\pgfutil@empty
\else
\def\pgfplots@loc@TMPa{1}%
\ifx\pgfplots@loc@TMPa\pgfplots@quiver@scale
\let\pgfplots@quiver@scale=\pgfutil@empty
\else
\pgfmathparse{\pgfplots@quiver@scale}%
\pgfmathfloatparsenumber\pgfplots@quiver@scale
\let\pgfplots@quiver@scale=\pgfmathresult
\fi
\fi
%
\pgfplots@prepare@source@parser@for@quiver u\pgfplots@quiver@prepare@u%
\pgfplots@prepare@source@parser@for@quiver v\pgfplots@quiver@prepare@v%
\pgfplots@prepare@source@parser@for@quiver w\pgfplots@quiver@prepare@w%
}%
\def\pgfplots@prepare@source@parser@for@quiver#1#2{%
\pgfplots@prepare@source@parser@for{quiver/}{#1}{#2}%
\t@pgfplots@toka=\expandafter{#2}%
\t@pgfplots@tokb=\expandafter{\csname pgfplots@quiver@#1\endcsname}%
\edef#2{%
\the\t@pgfplots@toka
\noexpand\let\the\t@pgfplots@tokb=\noexpand\pgfmathresult
\ifx\pgfplots@quiver@scale\pgfutil@empty
\else
\noexpand\pgfmathfloatmultiply@{\pgfplots@quiver@scale}{\the\t@pgfplots@tokb}%
\noexpand\let\the\t@pgfplots@tokb=\noexpand\pgfmathresult
\fi
}%
}%
\def\pgfplotsplothandlersurveypoint@quiver{%
\pgfplots@quiver@prepare@u
\pgfplots@quiver@prepare@v
\pgfplotsifcurplotthreedim{%
\pgfplots@quiver@prepare@w
}{%
\let\pgfplots@quiver@w=\pgfutil@empty
}%
\pgfplotsaxisparsecoordinate
\pgfplotsaxispreparecoordinate
\ifpgfplotsaxisparsecoordinateok
\pgfplotsaxisupdatelimitsforcoordinate\pgfplots@current@point@x\pgfplots@current@point@y\pgfplots@current@point@z
%
\pgfmathadd@{\pgfplots@quiver@u}{\pgfplots@current@point@x}%
\let\pgfplots@quiver@u=\pgfmathresult
\pgfmathadd@{\pgfplots@quiver@v}{\pgfplots@current@point@y}%
\let\pgfplots@quiver@v=\pgfmathresult
\pgfplotsifcurplotthreedim{%
\pgfmathadd@{\pgfplots@quiver@w}{\pgfplots@current@point@z}%
\let\pgfplots@quiver@w=\pgfmathresult
}{}%
\ifpgfplots@quiver@updatelimits
\pgfplotsaxisupdatelimitsforcoordinate\pgfplots@quiver@u\pgfplots@quiver@v\pgfplots@quiver@w
\fi
\fi
\pgfplotsaxisdatapointsurveyed
}%
\def\pgfplotsplothandlerserializepointto@quiver#1{%
\edef#1{\pgfplots@current@point@x,\pgfplots@current@point@y,\pgfplots@current@point@z>\pgfplots@quiver@u,\pgfplots@quiver@v,\pgfplots@quiver@w}%
}%
\def\pgfplotsplothandlerdeserializepointfrom@quiver#1{%
\expandafter\pgfplotsplothandlerdeserializepointfrom@quiver@#1\relax
}%
\def\pgfplotsplothandlerdeserializepointfrom@quiver@#1,#2,#3>#4,#5,#6\relax{%
\def\pgfplots@current@point@x{#1}%
\def\pgfplots@current@point@y{#2}%
\def\pgfplots@current@point@z{#3}%
\def\pgfplots@quiver@u{#4}%
\def\pgfplots@quiver@v{#5}%
\def\pgfplots@quiver@w{#6}%
}%
\def\pgfplotsplothandlerpointtokeys@quiver#1{%
\pgfplotsplothandlerpointtokeys@default
\pgfkeyslet{#1/u}\pgfplots@quiver@u
\pgfkeyslet{#1/v}\pgfplots@quiver@v
\pgfkeyslet{#1/w}\pgfplots@quiver@w
}%
\def\pgfplotsplothandlervisbegin@quiver{%
\def\pgfplots@quiver@has@handled@point@meta{0}%
\pgfkeysgetvalue{/pgfplots/quiver/arrow color}\pgfplots@quiver@color
\ifx\pgfplots@quiver@color\pgfutil@empty
\else
% prepare the color data and define 'mapped color':
\def\pgfplots@quiver@has@handled@point@meta{1}%
\expandafter\def\expandafter\pgfplotsplothandlerquiver@vis@hook\expandafter{%
\pgfplotsplothandlerquiver@vis@hook
\pgfplotsaxisvisphasetransformpointmeta
\pgfplotscolormapdefinemappedcolor{\pgfplotspointmetatransformed}%
}%
% SEE BELOW AS WELL FOR HOW TO ENABLE THE COLOR.
\fi
%
%
\pgfkeysgetvalue{/pgfplots/quiver/every arrow/.@cmd}\pgfplots@quiver@everyarrow
\ifx\pgfplots@quiver@everyarrow\pgfplots@empty@style@key
% use PGF basic level methods to set the 'arrow color':
\ifx\pgfplots@quiver@color\pgfutil@empty
\else
\expandafter\def\expandafter\pgfplotsplothandlerquiver@vis@hook\expandafter{%
\pgfplotsplothandlerquiver@vis@hook
\pgfsetstrokecolor{\pgfkeysvalueof{/pgfplots/quiver/arrow color}}%
% for arrow heads:
\pgfsetfillcolor{\pgfkeysvalueof{/pgfplots/quiver/arrow color}}%
}%
\fi
\else
% 'every arrow' should provide a high level user interface.
% Use tikz instead of pgf. This is slower, but more powerful.
\pgfplots@quiver@usetikztrue
\pgfplotsaxisifhaspointmeta{%
% ASSERT(mapped color is available)
\if0\pgfplots@quiver@has@handled@point@meta%
% -> define mapped color
\expandafter\def\expandafter\pgfplotsplothandlerquiver@vis@hook\expandafter{%
\pgfplotsplothandlerquiver@vis@hook
\pgfplotsaxisvisphasetransformpointmeta
\pgfplotscolormapdefinemappedcolor{\pgfplotspointmetatransformed}%
}%
\def\pgfplots@quiver@has@handled@point@meta{1}%
\fi
}{}%
% use tikz methods to set the 'arrow color':
\ifx\pgfplots@quiver@color\pgfutil@empty
\else
\t@pgfplots@toka=\expandafter{\pgfplots@quiver@color}%
\edef\pgfplots@loc@TMPa{\noexpand\pgfkeysalso{/pgfplots/quiver/every arrow/.prefix style={\the\t@pgfplots@toka}}}%
\pgfplots@loc@TMPa
\fi
\fi
%
\global\let\pgf@plotstreampoint=\pgfplotsplothandlerquiver@vis%
\global\let\pgf@plotstreamspecial=\pgfutil@gobble%
\global\let\pgf@plotstreamend=\relax
}%
\def\pgfplotsplothandlerquiver@vis#1{%
\pgfkeysvalueof{/pgfplots/quiver/before arrow/.@cmd}\pgfeov
\pgfplotsplothandlerquiver@vis@hook
\ifpgfplots@quiver@usetikz
\edef\pgfplotsplothandler@quiver@point{\global\pgf@x=\the\pgf@x\space\global\pgf@y=\the\pgf@y\space}%
\draw[/pgfplots/quiver/every arrow] \pgfextra{\pgfplotsplothandlerquiver@vis@path{\pgfplotsplothandler@quiver@point}};
\else
\pgfplotsplothandlerquiver@vis@path{#1}%
\pgfusepath{stroke}%
\fi
\pgfkeysvalueof{/pgfplots/quiver/after arrow/.@cmd}\pgfeov
}%
\def\pgfplotsplothandlerquiver@vis@path#1{%
\pgfpathmoveto{#1}%
\pgfplotsaxisvisphasetransformcoordinate\pgfplots@quiver@u\pgfplots@quiver@v\pgfplots@quiver@w
\pgfpathlineto{%
\pgfplotsifcurplotthreedim{%
\pgfplotsqpointxyz\pgfplots@quiver@u\pgfplots@quiver@v\pgfplots@quiver@w
}{%
\pgfplotsqpointxy\pgfplots@quiver@u\pgfplots@quiver@v
}%
}%
}%
\newif\ifpgfplotsplothandlerhistogram@intervals
\newif\ifpgfplotsplothandlerhistogram@cumulative
\newif\ifpgfplotsplothandlerhistogram@density
\pgfplotsset{
hist/.code={%
\let\tikz@plot@handler=\pgfplotsplothandlerhistogram
\pgfqkeys{/pgfplots/hist}{#1}%
},
hist/data value/.code =\pgfplots@set@source@for{hist/data}{#1}{0},%
hist/data/.code =\pgfplots@set@source@for{hist/data}{#1}{1},%
hist/data filter/.code=,
hist/data filter/.expression/.code=\pgfplots@install@filter@expression{hist/data filter}{#1},
hist/data value=\pgfkeysvalueof{/data point/y},
% hist/data=y,
hist/data min/.initial=\pgfkeysvalueof{/pgfplots/xmin},
hist/data max/.initial=\pgfkeysvalueof{/pgfplots/xmax},
hist/bins/.initial=10,
hist/intervals/.is if=pgfplotsplothandlerhistogram@intervals,
hist/intervals/.default=true,
hist/intervals=true,
hist/cumulative/.is if=pgfplotsplothandlerhistogram@cumulative,
hist/cumulative/.default=true,
hist/density/.is if=pgfplotsplothandlerhistogram@density,
hist/density/.default=true,
hist/density=false,
hist/handler/.style={/tikz/ybar interval},
hist/symbolic coords/.style={%
/pgfplots/symbolic coords={hist/data}{A,B,C,D,E,F,G,H,I,J},
/pgfplots/symbolic coords={x}{A,B,C,D,E,F,G,H,I,J},
},%
}%
\def\pgfplotsplothandlerhistogram{%
\pgfplotsresetplothandler
\def\pgf@plotstreamstart{%
\pgfplotsset{/pgfplots/hist/handler}%
\pgfplotsresetplothandler
\tikz@plot@handler
\pgf@plotstreamstart
}%
%
% let \pgfplotsplothandlername to the one of the handler.
% Note that \pgfplotsplothandlername is the *visualization* layer
\begingroup
\pgfplotsset{/pgfplots/hist/handler}%
\pgfplotsresetplothandler
\tikz@plot@handler
\xdef\pgfplots@glob@TMPa{\pgfplotsplothandlername}%
\endgroup
\let\pgfplotsplothandlername=\pgfplots@glob@TMPa%
%
\let\pgfplotsplothandlersurveypoint=\pgfplotsplothandlersurveypoint@hist
\let\pgfplotsplothandlersurveystart=\pgfplotsplothandlersurveystart@hist
\let\pgfplotsplothandlersurveyend=\pgfplotsplothandlersurveyend@hist
}%
\def\pgfplotsplothandlersurveystart@hist{%
\pgfplots@prepare@source@parser@for{hist/}{data}{\pgfplotsplothandlerhistogram@parse}%
%
\pgfkeysgetvalue{/pgfplots/hist/data min}\pgfmathresult
\edef\pgfmathresult{\pgfmathresult}%
\ifx\pgfmathresult\pgfutil@empty\else
\pgfplots@coord@trafo@for{hist/data}%
\fi
\edef\pgfplotsplothandlerhistogram@datamin{\pgfmathresult}%
%
\pgfkeysgetvalue{/pgfplots/hist/data max}\pgfmathresult
\edef\pgfmathresult{\pgfmathresult}%
\ifx\pgfmathresult\pgfutil@empty\else
\pgfplots@coord@trafo@for{hist/data}%
\fi
\edef\pgfplotsplothandlerhistogram@datamax{\pgfmathresult}%
%
\ifx\pgfplotsplothandlerhistogram@datamin\pgfutil@empty
\pgfmathfloatcreate{1}{1.0}{2147483645}%
\let\pgfplotsplothandlerhistogram@datamin=\pgfmathresult
\def\pgfplotsplothandlerhistogram@datamin@autocompute{1}%
\else
\pgfmathfloatparsenumber{\pgfplotsplothandlerhistogram@datamin}%
\let\pgfplotsplothandlerhistogram@datamin=\pgfmathresult
\def\pgfplotsplothandlerhistogram@datamin@autocompute{0}%
\fi
\ifx\pgfplotsplothandlerhistogram@datamax\pgfutil@empty
\pgfmathfloatcreate{2}{1.0}{2147483645}%
\let\pgfplotsplothandlerhistogram@datamax=\pgfmathresult
\def\pgfplotsplothandlerhistogram@datamax@autocompute{1}%
\else
\pgfmathfloatparsenumber{\pgfplotsplothandlerhistogram@datamax}%
\let\pgfplotsplothandlerhistogram@datamax=\pgfmathresult
\def\pgfplotsplothandlerhistogram@datamax@autocompute{0}%
\fi
%
\edef\pgfplotsplothandlerhistogram@Nfixed{\pgfkeysvalueof{/pgfplots/hist/bins}}%
\c@pgf@counta=\pgfplotsplothandlerhistogram@Nfixed\relax
\advance\c@pgf@counta by-1
\edef\pgfplotsplothandlerhistogram@Nmax{\the\c@pgf@counta}%
%
\pgfmathfloatparsenumber{\pgfplotsplothandlerhistogram@Nfixed}%
\let\pgfplotsplothandlerhistogram@N=\pgfmathresult
%
\pgfplotsapplistXnewempty\pgfp@hist@@
\def\c@pgfplotsplothandlerhistogram@num{0}%
\c@pgfplots@coordindex=0
}%
\def\pgfplotsplothandlersurveypoint@hist@limits{%
\if1\pgfplotsplothandlerhistogram@datamin@autocompute
\pgfplotsmathfloatmin{\pgfplots@current@point@data}{\pgfplotsplothandlerhistogram@datamin}%
\let\pgfplotsplothandlerhistogram@datamin=\pgfmathresult
\fi
%
\if1\pgfplotsplothandlerhistogram@datamax@autocompute
\pgfplotsmathfloatmax{\pgfplots@current@point@data}{\pgfplotsplothandlerhistogram@datamax}%
\let\pgfplotsplothandlerhistogram@datamax=\pgfmathresult
\fi
}%
\def\pgfplotsplothandlersurveypoint@hist{%
% Note that at this point, the coordinate filtering does NOT
% apply. Perhaps it should...
\pgfplotsplothandlerhistogram@parse
\let\pgfplots@current@point@data=\pgfmathresult
%
\ifx\pgfplots@current@point@data\pgfutil@empty
\else
\pgfmathfloatiffinite\pgfplots@current@point@data{%
\pgfplotsplothandlersurveypoint@hist@limits
%
\pgfplotsutil@advancestringcounter\c@pgfplotsplothandlerhistogram@num
%
% store parsed result.
\edef\pgfmathresult{{\pgfplots@current@point@data}}%
\expandafter\pgfplotsapplistXpushback\expandafter{\pgfmathresult}\to\pgfp@hist@@
}{%
}%
\fi
\advance\c@pgfplots@coordindex by1
}%
\def\pgfplotsplothandlersurveyend@hist{%
\ifnum\c@pgfplotsplothandlerhistogram@num>0
\expandafter\pgfplotsplothandlersurveyend@hist@
\fi
}%
\def\pgfplotsplothandlersurveyend@hist@{%
\pgfmathfloatsubtract@{\pgfplotsplothandlerhistogram@datamax}{\pgfplotsplothandlerhistogram@datamin}%
\let\pgfplotsplothandlerhistogram@range=\pgfmathresult
\pgfmathfloatdivide@{\pgfplotsplothandlerhistogram@range}{\pgfplotsplothandlerhistogram@N}%
\let\pgfplotsplothandlerhistogram@h=\pgfmathresult
\pgfmathfloatreciprocal@{\pgfplotsplothandlerhistogram@h}%
\let\pgfplotsplothandlerhistogram@invh=\pgfmathresult
%
\pgfplotsarraynewempty{pgfp@hist}%
\pgfplotsarrayresize{pgfp@hist}{\pgfplotsplothandlerhistogram@Nfixed}%
\pgfplotsarrayforeachungrouped{pgfp@hist}\as\pgfplots@hist@count{%
\pgfplotsarrayset{\pgfplotsarrayforeachindex}\of{pgfp@hist}\to{0}%
}%
%
\pgfplotsapplistXlet\pgfplots@hist@data=\pgfp@hist@@
\pgfplotsapplistXnewempty\pgfp@hist@@
\expandafter\pgfplotsplothandlersurveyend@hist@loop\pgfplots@hist@data\pgfplots@EOI
\let\pgfplots@hist@data=\relax
%
% Calculate total count
\c@pgf@counta=0
\pgfplotsarrayforeachungrouped{pgfp@hist}\as\pgfplots@hist@count{%
\advance\c@pgf@counta by\pgfplots@hist@count\relax
\def\pgfplots@loc@TMPa{\pgfplotsarrayset{\pgfplotsarrayforeachindex}\of{pgfp@hist}\to}%
}%
\pgfmathfloatparsenumber{\the\c@pgf@counta}%
\let\pgfp@hist@totalcount=\pgfmathresult
\pgfmathfloatreciprocal@{\pgfp@hist@totalcount}%
\let\pgfp@hist@totalcount@inv=\pgfmathresult
%
\ifpgfplotsplothandlerhistogram@cumulative
\c@pgf@counta=0
\pgfplotsarrayforeachungrouped{pgfp@hist}\as\pgfplots@hist@count{%
\advance\c@pgf@counta by\pgfplots@hist@count\relax
\def\pgfplots@loc@TMPa{\pgfplotsarrayset{\pgfplotsarrayforeachindex}\of{pgfp@hist}\to}%
\ifpgfplotsplothandlerhistogram@density
\pgfmathfloatparsenumber{\the\c@pgf@counta}%
\pgfmathfloatmultiply@{\pgfmathresult}{\pgfp@hist@totalcount@inv}%
\pgfmathfloattosci@{\pgfmathresult}%
\expandafter\pgfplots@loc@TMPa\expandafter{\pgfmathresult}%
\else
\expandafter\pgfplots@loc@TMPa\expandafter{\the\c@pgf@counta}%
\fi
}%
\fi%
%
%% Density histogram
% Divide count in each bin by (totalcount*range/bins)
\ifpgfplotsplothandlerhistogram@density
\ifpgfplotsplothandlerhistogram@cumulative
\else
\pgfmathfloatmultiply@{\pgfp@hist@totalcount@inv}{\pgfplotsplothandlerhistogram@invh}%
\let\pgfp@hist@totalcount@times@h@inv=\pgfmathresult
% FIXME : this here is a patch suggestion for
% https://sourceforge.net/tracker/?func=detail&atid=1060656&aid=3609245&group_id=224188
%
% FIXME : this line would actually compute relative frequencies...
% might not be too bad at all, but is no density
%\let\pgfp@hist@totalcount@times@h@inv=\pgfp@hist@totalcount@inv
\pgfplotsarrayforeachungrouped{pgfp@hist}\as\pgfplots@hist@count{%
\pgfmathfloatparsenumber{\pgfplots@hist@count}%
\pgfmathfloatmultiply@{\pgfmathresult}{\pgfp@hist@totalcount@times@h@inv}%
\pgfmathfloattosci@{\pgfmathresult}%
\def\pgfplots@loc@TMPa{\pgfplotsarrayset{\pgfplotsarrayforeachindex}\of{pgfp@hist}\to}%
\expandafter\pgfplots@loc@TMPa\expandafter{\pgfmathresult}%
}%
\fi
\fi
%
%% End density histogram
\pgfplots@curplot@threedimfalse
%
\pgfplotsset{/pgfplots/hist/handler}%
\pgfplotsresetplothandler
\tikz@plot@handler
%
\pgfplotsplothandlersurveystart
%
\let\pgfplots@current@point@z=\pgfutil@empty
\pgfplotsarrayforeachungrouped{pgfp@hist}\as\pgfplots@hist@count{%
\pgfplotsplothandlerhistgetintervalstartfor\pgfplotsarrayforeachindex
\pgfplotsplothandlerhist@invtrafo
\let\pgfplots@current@point@x\pgfmathresult%
\let\pgfplots@current@point@y\pgfplots@hist@count%
%\message{Survey point (\pgfplots@current@point@x,\pgfplots@current@point@y)^^J}%
\pgfplotsplothandlersurveypoint
}%
\ifpgfplotsplothandlerhistogram@intervals
% replicate last count.
\let\pgfmathresult\pgfplotsplothandlerhistogram@datamax%
\pgfplotsplothandlerhist@invtrafo
\let\pgfplots@current@point@x\pgfmathresult%
\let\pgfplots@current@point@y\pgfplots@hist@count%
%\message{Survey point (\pgfplots@current@point@x,\pgfplots@current@point@y)^^J}%
\pgfplotsplothandlersurveypoint
\fi
%
\pgfplotsplothandlersurveyend
}
\def\pgfplotsplothandlerhist@invtrafo{%
% This here might be inefficient, because
% there needs to be a compatible "x coord trafo" as well -- and
% that transformation will (most likely) do the very same thing as
% the hist/data coord trafo.
%
% But I did not find a way to combine the transformations
% automatically without resorting to hackery.
%
% And: the performance impact might (hopefully) be small...
\pgfplots@coord@trafo@inv@for{hist/data}%
}%
\def\pgfplotsplothandlersurveyend@hist@loop#1{%
\def\pgfplots@loc@TMPa{#1}%
\ifx\pgfplots@loc@TMPa\pgfplots@EOI
\else
\pgfplotsplothandlerhistgetbinfor@{#1}%
\expandafter\pgfplotsplothandlerhistadvancebin\expandafter{\pgfmathresult}%
%
\expandafter\pgfplotsplothandlersurveyend@hist@loop
\fi
}%
\def\pgfplotsplothandlerhistadvancebin#1{%
\pgfplotsarrayselect{#1}\of{pgfp@hist}\to\pgfplots@loc@TMPa%
\pgfplotsutil@advancestringcounter\pgfplots@loc@TMPa
\pgfplotsarrayletentry{#1}\of{pgfp@hist}=\pgfplots@loc@TMPa
}%
\def\pgfplotsplothandlerhistgetintervalstartfor#1{%
\pgfmathfloatparsenumber{#1}%
\expandafter\pgfplotsplothandlerhistgetintervalstartfor@\expandafter{\pgfmathresult}%
}%
\def\pgfplotsplothandlerhistgetintervalstartfor@#1{%
\pgfmathfloatmultiply@{\pgfplotsplothandlerhistogram@h}{#1}%
\expandafter\pgfmathfloatadd@\expandafter{\pgfmathresult}{\pgfplotsplothandlerhistogram@datamin}%
}%
\def\pgfplotsplothandlerhistgetbinfor#1{%
\pgfmathfloatparsenumber{#1}%
\expandafter\pgfplotsplothandlerhistgetbinfor@\expandafter{\pgfmathresult}%
}%
\def\pgfplotsplothandlerhistsettol#1{%
\begingroup
\pgfmathfloatparsenumber{#1}%
\global\let\pgfplotsplothandlerhisttol@parsed=\pgfmathresult
\endgroup
}%
\pgfplotsplothandlerhistsettol{1e-4}%
\def\pgfplotsplothandlerhistgetbinfor@#1{%
\pgfmathfloatsubtract@{#1}{\pgfplotsplothandlerhistogram@datamin}%
\expandafter\pgfmathfloatmultiply@\expandafter{\pgfmathresult}{\pgfplotsplothandlerhistogram@invh}%
\expandafter\pgfmathfloatadd@\expandafter{\pgfmathresult}{\pgfplotsplothandlerhisttol@parsed}%
\pgfmathfloattofixed{\pgfmathresult}%
\afterassignment\pgfplots@gobble@until@relax
\c@pgf@counta=\pgfmathresult\relax
\ifnum\pgfplotsplothandlerhistogram@Nfixed>\c@pgf@counta
\ifnum\c@pgf@counta<0
\def\pgfmathresult{0}%
\else
\def\pgfmathresult{\the\c@pgf@counta}%
\fi
\else
\let\pgfmathresult=\pgfplotsplothandlerhistogram@Nmax
\fi
}%
%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%5
%
% Contour plots
%
%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%5
\newif\ifpgfplotsplothandlercontour@labels
\newif\ifpgfplotsplothandlercontour@filled
\def\pgfplotsplothandlercontour@axis@set@inverse#1#2#3#4{%
\pgfplotsutilifstringequal{#1}{#4}{%
\expandafter\def\csname pgfplotsplothandlercontour@axis@inv@#4\endcsname{x}%
}{%
\pgfplotsutilifstringequal{#2}{#4}{%
\expandafter\def\csname pgfplotsplothandlercontour@axis@inv@#4\endcsname{y}%
}{%
\pgfplotsutilifstringequal{#3}{#4}{%
\expandafter\def\csname pgfplotsplothandlercontour@axis@inv@#4\endcsname{z}%
}{%
\pgfplotsthrow{invalid argument}{\pgfplots@loc@TMPa}{Sorry, the choice axes={#1}{#2}{#3} is illegal. Please use only values x, y, and z and ensure that there is a 1:1 correspondence}\pgfeov%
}%
}%
}%
}
\pgfplotsset{
contour prepared/.code={%
\let\tikz@plot@handler=\pgfplotsplothandlercontourprepared
\pgfqkeys{/pgfplots/contour}{%
every contour plot,%
#1,%
}%
},
contour prepared filled/.style={%
/pgfplots/contour prepared={draw color=mapped color!80!black,labels=false,filled=true},
},
contour filled/.code={%
\pgfqkeys{/pgfplots/contour}{%
every filled contour plot,%
/pgfplots/surf,%
/pgfplots/shader=interp,%
/pgfplots/colormap access=const,%
#1,%
}%
\let\tikz@plot@handler=\pgfplotsplothandlercontourfilled
},
% FIXME : should use \tikz@plot@handler instead of just the
% visualization thing!
contour/handler/.style={/tikz/sharp plot},
contour prepared format/.is choice,
contour prepared format/standard/.code= {\def\pgfplotsplothandlercontourprepared@format{s}},
contour prepared format/matlab/.code= {\def\pgfplotsplothandlercontourprepared@format{m}},
contour prepared format/standard,
contour/draw color/.initial=mapped color,
contour/fill color/.initial=mapped color,
contour/label distance/.initial=70pt,
contour/label node code/.code={%
\node {\pgfmathprintnumber{#1}};
},%
contour/labels/.is if=pgfplotsplothandlercontour@labels,
contour/labels=true,
%
% XXX : this here is dead code... it has been superseded by
% \pgfplotsplothandlercontourfilled:
contour/filled/.is if=pgfplotsplothandlercontour@filled,
contour/filled/.default=true,
% EXPERIMENTAL: WILL CHANGE EVENTUALLY!
% this is (only) used for contour filled:
% data limits={(xmin,ymin,zmin,cmin) (xmax,ymax,ymax,cmax}
contour/data limits/.initial=,% FIXME EXPERIMENTAL
contour/every filled contour plot/.style={
/pgfplots/area legend,
},
contour/every contour plot/.style={
/pgfplots/legend image post style={sharp plot},
},
contour/every contour label/.style={%
sloped,%
transform shape,%
inner sep=2pt,
font=\scriptsize,
every node/.style={mapped color!50!black,fill=white},%
/pgf/number format/relative*={\pgfplotspointmetarangeexponent},%
%every node/.style={yshift=10pt},%
},
contour/labels over line/.style={
/pgfplots/contour/every contour label/.append style={%
every node/.append style={%
fill=none,
anchor=base,
yshift=1pt,
},
},
},
contour/contour label style/.style={
/pgfplots/contour/every contour label/.append style={#1}},
%
%
% Styles to actually *compute* the contour.
% These are mostly placeholders here: As long as the
% algorithm is not ready, we have to resort to external tools.
%
% Shared parameters:
contour/number/.initial=5,
contour/levels/.initial=,
contour/levels from colormap/.initial=,
%
%
contour/contour dir/.is choice,
contour/contour dir/x/.style={/pgfplots/contour/axes={y}{z}{x}},
contour/contour dir/y/.style={/pgfplots/contour/axes={x}{z}{y}},
contour/contour dir/z/.style={/pgfplots/contour/axes={x}{y}{z}},
contour/axes/.code args={#1#2#3}{%
\edef\pgfplotsplothandlercontour@axis@x{#1}%
\edef\pgfplotsplothandlercontour@axis@y{#2}%
\edef\pgfplotsplothandlercontour@axis@z{#3}%
%
\edef\pgfplots@loc@TMPa{{\pgfplotsplothandlercontour@axis@x}{\pgfplotsplothandlercontour@axis@y}{\pgfplotsplothandlercontour@axis@z}}%
%
\expandafter\pgfplotsplothandlercontour@axis@set@inverse\pgfplots@loc@TMPa{x}%
\expandafter\pgfplotsplothandlercontour@axis@set@inverse\pgfplots@loc@TMPa{y}%
\expandafter\pgfplotsplothandlercontour@axis@set@inverse\pgfplots@loc@TMPa{z}%
%
},%
contour/contour dir=z,
%
%
% Interface to external tools:
contour external/.code={%
\edef\tikz@plot@handler{\noexpand\pgfplotsplothandlercontourexternal}%
\pgfqkeys{/pgfplots/contour external}{%
every contour plot,%
#1%
}%
},
contour external/scanline marks/.is choice,
contour external/scanline marks/false/.code={\def\pgfplotsplothandlercontourexternal@scanlinemode{0}},
contour external/scanline marks/if in input/.code={\def\pgfplotsplothandlercontourexternal@scanlinemode{1}},
contour external/scanline marks/required/.code={\def\pgfplotsplothandlercontourexternal@scanlinemode{2}},
contour external/scanline marks/true/.code={\def\pgfplotsplothandlercontourexternal@scanlinemode{2}},
contour external/scanline marks/if in input,
contour external/output point meta/.initial=,
contour external/file/.initial=,% auto-generate
contour external/script extension/.initial=script,
contour external/script/.initial=,% not yet initialised
contour external/cmd/.initial=,% not yet initialised
contour external/.search also=/pgfplots/contour,
contour gnuplot/.style={
contour external={%
scanline marks=required,
script={
unset surface;
\ifx\thecontourlevels\empty
set cntrparam levels \thecontournumber;
\else
set cntrparam levels discrete \thecontourlevels;
\fi
set contour;
set table \"\outfile\";
splot \"\infile\";
},
cmd={gnuplot \"\script\"},%
#1,%
},
},
}%
\def\pgfplotsplothandlercontourprepared{%
\pgfplotsresetplothandler
\pgfplotsset{empty line=jump}%
\let\pgf@plotstreamstart=\pgfplotsplothandlervisstart@contour
\let\pgfplotsplothandlersurveystart=\pgfplotsplothandlersurveystart@contour
\let\pgfplotsplothandlersurveyend=\pgfplotsplothandlersurveyend@contour
\let\pgfplotsplothandlersurveypoint=\pgfplotsplothandlersurveypoint@contour
\if m\pgfplotsplothandlercontourprepared@format
\let\pgfplotsplothandlersurveystart=\pgfplotsplothandlersurveystart@contourmatlabformat
\let\pgfplotsplothandlersurveypoint=\pgfplotsplothandlersurveypoint@contourmatlabformat
\pgfplotsaxisifhaspointmeta{}{%
\pgfplotsset{/pgfplots/point meta=explicit}%
}%
\fi
\pgfplotsplothandlercontour@prepare@point@meta
\def\pgfplotsplothandlersurveybeforesetpointmeta{%
% ensure that 'point meta=z' respects 'axes={y}{z}{x}' -- it
% should assign the 'x' coordinate as point meta!
% To this end, we have to convert to reordered axes
% temporarily.
\pgfplotsplothandlersurveypoint@contour@axes@std@to@reordered
\pgfplotsplothandlersurveybeforesetpointmeta@default
}%
\def\pgfplotsplothandlersurveyaftersetpointmeta{%
\pgfplotsplothandlersurveyaftersetpointmeta@default
% ... and undo the reordering after point meta has been set:
\pgfplotsplothandlersurveypoint@contour@axes@reordered@to@std
}%
\def\pgfplotsplothandlername{contour prepared}%
}%
\def\pgfplotsplothandlersurveystart@contour{%
\pgfplotsplothandlersurveystart@default
%
\pgfplotsplothandlersurveypoint@contour@prepare@axes x%
\pgfplotsplothandlersurveypoint@contour@prepare@axes y%
\pgfplotsplothandlersurveypoint@contour@prepare@axes z%
}%
\def\pgfplotsplothandlercontour@prepare@point@meta{%
\ifpgfplots@curplot@threedim
\pgfplotsset{/pgfplots/set point meta if empty=z}%
\else
\pgfplotsaxisifhaspointmeta{}{%
\pgfkeysgetvalue{/pgfplots/table/meta index}\pgfplots@loc@TMPa
\ifx\pgfplots@loc@TMPa\pgfutil@empty
% FIXME : this here is reasonable, but it should be sanity checked!
\pgfkeyssetvalue{/pgfplots/table/meta index}{2}%
\fi
\pgfplotsset{/pgfplots/set point meta if empty=explicit}%
}%
%\pgfplots@error{Sorry, 'contour external' requires \string\addplot3 (or a non-empty `point meta' used as label data)}%
\fi
\def\pgfplotsplothandlercontour@empty@pointmeta@error@@{0}%
}%
\def\pgfplotsplothandlercontour@empty@pointmeta@error{%
\if0\pgfplotsplothandlercontour@empty@pointmeta@error@@
\def\pgfplotsplothandlercontour@empty@pointmeta@error@@{1}%
\def\pgfplots@current@point@meta{0}%
\pgfplotsthrow{invalid argument}{\pgfplots@current@point@meta}{Sorry, contour plots require non--empty `point meta'. Please use '\string\addplot3[contour ...] together with 'view={0}{90}' or provide a valid 'point meta=' (for example `=z'?)}\pgfeov%
\fi
}%
\def\pgfplotsplothandlersurveystart@contourmatlabformat{%
\def\c@pgfplotsplothandlercontourprepared@matlabformat@cur{0}%
\def\c@pgfplotsplothandlercontourprepared@matlabformat@count{0}%
\pgfmathfloatparsenumber{nan}%
\let\pgfplotsplothandlercontourprepared@matlabformat@meta=\pgfmathresult
%
\pgfplotsplothandlersurveystart@contour
}
\def\pgfplotsplothandlersurveypoint@contourmatlabformat{%
\ifnum\c@pgfplotsplothandlercontourprepared@matlabformat@cur=\c@pgfplotsplothandlercontourprepared@matlabformat@count\relax
\pgfmathfloatparsenumber{\pgfplots@current@point@y}%
\pgfmathfloattoint\pgfmathresult
\let\c@pgfplotsplothandlercontourprepared@matlabformat@count=\pgfmathresult
\def\c@pgfplotsplothandlercontourprepared@matlabformat@cur{0}%
%
\pgfmathfloatparsenumber{\pgfplots@current@point@x}%
\let\pgfplots@loc@TMPa=\pgfplotsplothandlercontourprepared@matlabformat@meta
\let\pgfplotsplothandlercontourprepared@matlabformat@meta=\pgfmathresult
%
\ifx\pgfplots@loc@TMPa\pgfplotsplothandlercontourprepared@matlabformat@meta
% oh. We have two successive segments of the SAME contour
% level. Call the jump handler:
\pgfplotsscanlinecomplete
\fi
%
\else
\let\pgfplots@current@point@z=\pgfplotsplothandlercontourprepared@matlabformat@meta
\let\pgfplots@current@point@meta=\pgfplotsplothandlercontourprepared@matlabformat@meta
\pgfplotsplothandlersurveypoint@contour
\pgfplotsutil@advancestringcounter\c@pgfplotsplothandlercontourprepared@matlabformat@cur
\fi
}%
\def\pgfplotsplothandlersurveypoint@contour{%
%
\pgfplotsplothandlersurveypoint@contour@axes@reordered@to@std
%
\pgfplotsplothandlersurveypoint@default
}
\def\pgfplotsplothandlersurveyend@contour{%
\pgfplotsplothandlercontour@init@limits
\ifx\pgfplotsplothandlercontour@limits@low@meta\pgfutil@empty
\else
\pgfplotsaxisupdatelimitsforpointmeta\pgfplotsplothandlercontour@limits@low@meta
\fi
}%
\def\pgfplotsplothandlervisstart@contour{%
%
\ifpgfplotsplothandlercontour@labels
\pgfkeysgetvalue{/pgfplots/contour/label distance}\pgfplotsplothandlercontour@labeldist
\pgfmathparse{\pgfplotsplothandlercontour@labeldist}%
\edef\pgfplotsplothandlercontour@labeldist{\pgfmathresult pt}%
%
\pgfplotsapplistXnewempty\pgfplotsplothandlercontour@storedlabels
\let\pgfplotsplothandlercontour@handlesplinesegment=\pgfplotsplothandlercontour@handlesplinesegment@forlabels
\else
\def\pgfplotsplothandlercontour@handlesplinesegment##1##2##3{}%
\fi
%
\ifpgfplotsplothandlercontour@filled
\pgfseteorule
\let\pgfplotsplothandlercontour@sequence@sort@cmp=\pgfutil@empty
\pgfplotsapplistXnewempty\pgfplotsplothandlercontour@stored@lastcontourpath
\pgfplotsplothandlercontour@init@limits
\fi
%
\pgfplotsresetplothandler
\pgfplotsset{/pgfplots/contour/handler}%
\tikz@plot@handler
%
\def\pgfplotsplothandlercontour@haspendingjump{0}%
\let\pgfplotsplothandlervisualizejump=\pgfplotsplothandlercontour@jump
%
\let\pgfplotsplothandlercontour@handler@start=\pgf@plotstreamstart
\let\pgfplotsplothandlercontour@lastcontour=\pgfutil@empty
\global\let\pgf@plotstreampoint=\pgfplotsplothandlercontour@streampoint
\global\let\pgf@plotstreamend=\pgfplotsplothandlercontour@streamend
}%
\def\pgfplotsplothandlercontour@jump{%
\def\pgfplotsplothandlercontour@haspendingjump{1}%
}%
\def\pgfplotsplothandlercontour@streamend{%
\ifx\pgfplotsplothandlercontour@lastcontour\pgfutil@empty
\else
%
\def\pgfplotsplothandlercontour@haspendingjump{0}% important! (this is a different case than a jump)
\pgfplotsplothandlercontour@finishcontourline
%
\ifpgfplotsplothandlercontour@filled
\if0\pgfplotsplothandlercontour@processed@outer
\pgfplotsplothandlercontour@stream@bbcontour
\pgfplotsplothandlercontour@finishcontourline
\fi
\fi
%
\ifpgfplotsplothandlercontour@labels
\scope[/pgfplots/contour/every contour label]
\let\pgfplots@restore@drawmodes=\relax% FIXME : necessary?
\pgfplotsapplistXlet\pgfplotsplothandlercontour@storedlabels@=\pgfplotsplothandlercontour@storedlabels
\pgfplotsapplistXnewempty\pgfplotsplothandlercontour@storedlabels
\expandafter\pgfplotsplothandlercontourplacelabels\pgfplotsplothandlercontour@storedlabels@\pgfplots@EOI
\endscope
\fi
\fi
}%
\def\pgfplotsplothandlercontour@check@bbcontour{%
\ifpgfplotsplothandlercontour@filled
\if0\pgfplotsplothandlercontour@processed@outer
\pgfplotscoordmath{meta}{if less than}
{\pgfplotsplothandlercontour@act@contour}
{\pgfplotsplothandlercontour@limits@low@meta}
{%
% TRUE!
\pgfplotsplothandlercontour@stream@bbcontour@inbetween
}{}%
\fi
\fi
}%
\def\pgfplotsplothandlercontour@stream@bbcontour@inbetween{%
\def\pgfplotsplothandlercontour@processed@outer{1}%
}%
\def\pgfplotsplothandlercontour@stream@bbcontour{%
%\message{contour: processing OUTER data limit contour...}%
\def\pgfplotsplothandlercontour@haspendingjump{0}% important
%
% forbid labels:
\let\pgfplotsplothandlercontour@stream@bbcontour@oldlabelsetting=\pgfplotsplothandlercontour@handlesplinesegment
\def\pgfplotsplothandlercontour@handlesplinesegment##1##2##3{}%
%
\let\pgfplots@current@point@meta=\pgfplotsplothandlercontour@limits@low@meta
\pgfplotsplothandlercontour@streampoint{%
\pgfplotsplothandlerpointxyz
\pgfplotsplothandlercontour@limits@low@x
\pgfplotsplothandlercontour@limits@low@y
\pgfplotsplothandlercontour@limits@low@z
}%
\pgfplotsplothandlercontour@streampoint{%
\pgfplotsplothandlerpointxyz
\pgfplotsplothandlercontour@limits@high@x
\pgfplotsplothandlercontour@limits@low@y
\pgfplotsplothandlercontour@limits@low@z
}%
\pgfplotsplothandlercontour@streampoint{%
\pgfplotsplothandlerpointxyz
\pgfplotsplothandlercontour@limits@high@x
\pgfplotsplothandlercontour@limits@high@y
\pgfplotsplothandlercontour@limits@low@z
}%
\pgfplotsplothandlercontour@streampoint{%
\pgfplotsplothandlerpointxyz
\pgfplotsplothandlercontour@limits@low@x
\pgfplotsplothandlercontour@limits@high@y
\pgfplotsplothandlercontour@limits@low@z
}%
\pgfplotsplothandlercontour@streampoint{%
\pgfplotsplothandlerpointxyz
\pgfplotsplothandlercontour@limits@low@x
\pgfplotsplothandlercontour@limits@low@y
\pgfplotsplothandlercontour@limits@low@z
}%
\def\pgfplotsplothandlercontour@processed@outer{1}%
%
% restore labels:
\let\pgfplotsplothandlercontour@handlesplinesegment=\pgfplotsplothandlercontour@stream@bbcontour@oldlabelsetting
}%
\def\pgfplotsplothandlercontourplacelabels#1{%
\def\pgfplots@loc@TMPa{#1}%
\ifx\pgfplots@loc@TMPa\pgfplots@EOI
\else
%
\pgfplotsplothandlercontourplacelabels@act#1\relax
%
\expandafter\pgfplotsplothandlercontourplacelabels
\fi
}%
\def\pgfplotsplothandlercontourplacelabels@act#1,#2;#3,#4;#5\relax{%
\begingroup
\def\pgfplots@current@point@meta{#5}%
\pgfplotsaxisvisphasetransformpointmeta
\pgfplotscolormapdefinemappedcolor{\pgfplotspointmetatransformed}%
%
\pgftransformlineattime{0.5}{\pgfqpoint{#1}{#2}}{\pgfqpoint{#3}{#4}}%
\pgfkeysvalueof{/pgfplots/contour/label node code/.@cmd}#5\pgfeov
\endgroup
}%
\def\pgfplotsplothandlercontour@streampoint#1{%
\pgf@process{#1}%
% remember point:
\edef\pgfplotsplothandlercontour@act@canvas{\pgf@x=\the\pgf@x\space\pgf@y=\the\pgf@y\space}%
%
\let\pgfplotsplothandlercontour@act@contour=\pgfplots@current@point@meta
\ifx\pgfplotsplothandlercontour@act@contour\pgfutil@empty
% oh. No Z data!? That should not happen!
\pgfplotsplothandlercontour@empty@pointmeta@error
\fi
\ifx\pgfplotsplothandlercontour@lastcontour\pgfutil@empty
% oh. its the very first point.
\def\pgfplotsplothandlercontour@haspendingjump{0}% important! (this is a different case than a jump)
\pgfplotsplothandlercontour@preparenewcontourline
\else
\ifx\pgfplotsplothandlercontour@lastcontour\pgfplotsplothandlercontour@act@contour
% belongs to the same contour.
\if1\pgfplotsplothandlercontour@haspendingjump
\pgfplotsplothandlercontour@finishcontourline
\pgfplotsplothandlercontour@preparenewcontourline
\fi
\else
% oh, a new contour line.
\def\pgfplotsplothandlercontour@haspendingjump{0}% important! (this is a different case than a jump)
\pgfplotsplothandlercontour@finishcontourline
\pgfplotsplothandlercontour@check@bbcontour
\pgfplotsplothandlercontour@preparenewcontourline
\fi
\fi
%
%
% handle difference vector for label placement:
\ifx\pgfplotsplothandlercontour@lastcanvas\pgfutil@empty
\else
\pgfplotsplothandlercontour@handlesplinesegment
{\pgfplotsplothandlercontour@lastcanvas}
{\pgfplotsplothandlercontour@act@canvas}%
{\pgfplotsplothandlercontour@act@contour}%
\fi
%
\pgfplotsplothandlercontour@handler@streampoint{\pgfplotsplothandlercontour@act@canvas}%
\let\pgfplotsplothandlercontour@lastlastcanvas=\pgfplotsplothandlercontour@lastcanvas
\let\pgfplotsplothandlercontour@lastcanvas=\pgfplotsplothandlercontour@act@canvas
\let\pgfplotsplothandlercontour@lastcontour=\pgfplotsplothandlercontour@act@contour
%
\ifpgfplotsplothandlercontour@filled
\t@pgfplots@toka=\expandafter{\expandafter{\pgfplotsplothandlercontour@act@canvas}}%
\expandafter\pgfplotsapplistXpushback\expandafter\pgf@plotstreampoint\the\t@pgfplots@toka
\to\pgfplotsplothandlercontour@stored@lastcontourpath
\fi
%
\ifx\pgf@plotstreampoint\pgfplotsplothandlercontour@streampoint
\else
\let\pgfplotsplothandlercontour@handler@streampoint=\pgf@plotstreampoint
\fi
\global\let\pgf@plotstreampoint=\pgfplotsplothandlercontour@streampoint
\global\let\pgf@plotstreamend=\pgfplotsplothandlercontour@streamend
% ATTENTION : if the low level plot handler introduces extra
% levels of scopes, this *will* fail!
}%
%
% #1 : source
% #2 : target
% #3 : contour value
\def\pgfplotsplothandlercontour@handlesplinesegment@forlabels#1#2#3{%
#2%
\pgf@xb=\pgf@x
\pgf@yb=\pgf@y
#1%
\pgf@xc=\pgf@x
\pgf@yc=\pgf@y
\pgfpointdiff
{\pgf@x=\pgf@xc \pgf@y=\pgf@yc}
{\pgf@x=\pgf@xb \pgf@y=\pgf@yb}%
\edef\pgfplots@loc@TMPa{{\pgf@sys@tonumber\pgf@x}{\pgf@sys@tonumber\pgf@y}}%
\expandafter\pgfmath@basic@veclen@\pgfplots@loc@TMPa
\pgf@xa=\pgfmathresult pt
%
\advance\pgf@xa by\pgfplotsplothandlercontour@len\relax
\edef\pgfplotsplothandlercontour@len{\the\pgf@xa}%
%\message{contour(\pgfplotsplothandlercontour@act@contour): cur len=\pgfplotsplothandlercontour@len > \pgfplotsplothandlercontour@labeldist ? [segment from #1--#2];}%
\ifdim\pgf@xa>\pgfplotsplothandlercontour@labeldist\relax
\def\pgfplotsplothandlercontour@haslabel{1}%
\edef\pgfplots@loc@TMPa{{\the\pgf@xc,\the\pgf@yc;\the\pgf@xb,\the\pgf@yb;{#3}}}%
\expandafter\pgfplotsapplistXpushback\expandafter{\pgfplots@loc@TMPa}\to\pgfplotsplothandlercontour@storedlabels
\advance\pgf@xa by-\pgfplotsplothandlercontour@labeldist\relax
\edef\pgfplotsplothandlercontour@len{\the\pgf@xa\relax}%
\fi
}%
% #1: the transformed point meta of the last contour.
\def\pgfplotsplothandlercontour@filled@assert@is@sorted#1{%
\ifx\pgfplotsplothandlercontour@lastcontour\pgfutil@empty
\else
\ifx\pgfplotsplothandlercontour@sequence@sort@cmp\pgfutil@empty
% we need to determine the sorting:
\pgfplotscoordmath{float}{if less than}{\pgfplotsplothandlercontour@lastcontour}{\pgfplots@current@point@meta}{%
\def\pgfplotsplothandlercontour@sequence@sort@cmp{+}%
}{%
\pgfplotscoordmath{float}{if less than}{\pgfplots@current@point@meta}{\pgfplotsplothandlercontour@lastcontour}{%
\def\pgfplotsplothandlercontour@sequence@sort@cmp{-}%
}{%
% undecided - the contours have the same label.
}%
}%
\else
\if +\pgfplotsplothandlercontour@sequence@sort@cmp
\pgfplotscoordmath{float}{if less than}{\pgfplots@current@point@meta}{\pgfplotsplothandlercontour@lastcontour}{%
\pgfplotsplothandlercontour@filled@assert@is@sorted@fail{ASCENDING}%
}{%
}%
\else
\pgfplotscoordmath{float}{if less than}{\pgfplotsplothandlercontour@lastcontour}{\pgfplots@current@point@meta}{%
\pgfplotsplothandlercontour@filled@assert@is@sorted@fail{DESCENDING}%
}{%
}%
\fi
\fi
\fi
}%
\def\pgfplotsplothandlercontour@filled@assert@is@sorted@fail#1{%
\begingroup
\pgfplotscoordmath{float}{tostring}{\pgfplots@current@point@meta}%
\let\offending=\pgfmathresult
\pgfplotscoordmath{float}{tostring}{\pgfplotsplothandlercontour@lastcontour}%
\let\lastcontour=\pgfmathresult
\pgfplots@error{Sorry, filled contours implicitly assume that the contour levels are SORTED (in the given case, they appear to be sorted in #1 order). Please make sure your input data has sorted contour levels. The offending level is \offending; the previous contour level is \lastcontour}%
\endgroup
}
\def\pgfplotsplothandlercontour@preparenewcontourline{%
\if0\pgfplotsplothandlercontour@haspendingjump
%\message{PREPARE NEW CONTOUR LEVEL (\pgfplots@current@point@meta).}%
% a completely new level has been
% started, not due to jumps inside of one level.
%
\let\pgfplotspointmetatransformed@lastcontour=\pgfplotspointmetatransformed
% thus, we need to compute 'mapped color':
\pgfplotsaxisvisphasetransformpointmeta
\pgfplotscolormapdefinemappedcolor{\pgfplotspointmetatransformed}%
\pgfsetstrokecolor{\pgfkeysvalueof{/pgfplots/contour/draw color}}%
\ifpgfplotsplothandlercontour@filled
\pgfplotsplothandlercontour@filled@assert@is@sorted{\pgfplotspointmetatransformed@lastcontour}%
\pgfsetfillcolor{\pgfkeysvalueof{/pgfplots/contour/fill color}}%
\fi
%
% furthermore, we need to handle the 'filled' style:
\ifpgfplotsplothandlercontour@filled
\pgfplotsapplistXlet\pgfplotsplothandlercontour@stored@lastcontourpath@=\pgfplotsplothandlercontour@stored@lastcontourpath
% flush:
\pgfplotsapplistXnewempty\pgfplotsplothandlercontour@stored@lastcontourpath
%
% process it:
\ifx\pgfplotsplothandlercontour@stored@lastcontourpath@\pgfutil@empty
% oh. This here is the very first contour. Nothing to do!
\else
% ok. This here is the i'th contour level, i>0.
% Thus, we have the 'i-1'th contour stored.
% REPLICATE its path to fill the space between the (i-1)'th contour and the i'th one!
\let\pgf@plotstreamstart=\pgfplotsplothandlercontour@handler@start
\pgf@plotstreamstart
\pgfplotsplothandlercontour@stored@lastcontourpath@
\pgf@plotstreamend
\fi
\fi
\else
%\message{PREPARE NEW CONTOUR for the already begun level \pgfplots@current@point@meta.}%
\ifpgfplotsplothandlercontour@filled
\pgfplotsapplistXpushback\pgf@plotstreamstart\to\pgfplotsplothandlercontour@stored@lastcontourpath
\fi
\fi
%
\let\pgfplotsplothandlercontour@lastcanvas=\pgfutil@empty
\let\pgfplotsplothandlercontour@lastlastcanvas=\pgfutil@empty
\ifpgfplotsplothandlercontour@labels
\def\pgfplotsplothandlercontour@haslabel{0}%
%
% this here means that 20% of labeldist are already there.
% it moves the first label nearer to its start.
\pgf@xa=\pgfplotsplothandlercontour@labeldist\relax
\pgf@xa=0.2\pgf@xa
\edef\pgfplotsplothandlercontour@len{\the\pgf@xa}%
\fi
\def\pgfplotsplothandlercontour@haspendingjump{0}%
%
\pgfplotsplothandlercontour@handler@start
\let\pgfplotsplothandlercontour@handler@end=\pgf@plotstreamend
\let\pgfplotsplothandlercontour@handler@streampoint=\pgf@plotstreampoint
}%
\def\pgfplotsplothandlercontour@finishcontourline{%
\ifpgfplotsplothandlercontour@labels
\if0\pgfplotsplothandlercontour@haslabel
\ifx\pgfplotsplothandlercontour@lastlastcanvas\pgfutil@empty
\else
% force a label:
%\message{FORCING A LABEL for contour \pgfplotsplothandlercontour@lastcontour\space from (\pgfplotsplothandlercontour@lastlastcanvas --\pgfplotsplothandlercontour@lastcanvas)}%
\edef\pgfplotsplothandlercontour@len{\pgfplotsplothandlercontour@labeldist}%
\pgfplotsplothandlercontour@handlesplinesegment
{\pgfplotsplothandlercontour@lastlastcanvas}
{\pgfplotsplothandlercontour@lastcanvas}%
{\pgfplotsplothandlercontour@lastcontour}%
\fi
\fi
\fi
\pgfplotsplothandlercontour@handler@end
%
% \ifpgfplotsplothandlercontour@filled
% \pgfpathclose % FIXME this is, in general, not good enough.
% \fi
\if0\pgfplotsplothandlercontour@haspendingjump
%\message{usepath{} to finalize level \pgfplotsplothandlercontour@lastcontour.}%
% flush paths if the complete contour level is ready.
% do *not* flush paths if we have just a new part of the
% existing contour level.
%
% This makes a difference for the filled contour.
\ifpgfplotsplothandlercontour@filled
\pgfusepath{fill,stroke}%
\else
\pgfusepath{stroke}%
\fi
\else
%\message{usepath{} for level \pgfplotsplothandlercontour@lastcontour.}%
\ifpgfplotsplothandlercontour@filled
\pgfplotsapplistXpushback\pgf@plotstreamend\to\pgfplotsplothandlercontour@stored@lastcontourpath
\fi
\fi
}%
\def\pgfplotsplothandlercontour@init@limits{%
\def\pgfplotsplothandlercontour@processed@outer{0}%
\let\pgfplotsplothandlercontour@limits@low@meta=\pgfutil@empty
\let\pgfplotsplothandlercontour@limits@low@x=\pgfutil@empty
\let\pgfplotsplothandlercontour@limits@low@y=\pgfutil@empty
\let\pgfplotsplothandlercontour@limits@low@z=\pgfutil@empty
\let\pgfplotsplothandlercontour@limits@high@meta=\pgfutil@empty
\let\pgfplotsplothandlercontour@limits@high@x=\pgfutil@empty
\let\pgfplotsplothandlercontour@limits@high@y=\pgfutil@empty
\let\pgfplotsplothandlercontour@limits@high@z=\pgfutil@empty
%
\pgfkeysgetvalue{/pgfplots/contour/data limits}\pgfplots@loc@TMPa
\ifx\pgfplots@loc@TMPa\pgfutil@empty
\def\pgfplotsplothandlercontour@processed@outer{1}%
\else
\expandafter\pgfplotsplothandlercontour@init@limits@getboundingboxlow\pgfplots@loc@TMPa\pgfplots@EOI
\fi
%\message{contour: I processed data limits to MIN = (\pgfplotsplothandlercontour@limits@low@x,\pgfplotsplothandlercontour@limits@low@y,\pgfplotsplothandlercontour@limits@low@z;\pgfplotsplothandlercontour@limits@low@meta) and MAX = (\pgfplotsplothandlercontour@limits@high@x,\pgfplotsplothandlercontour@limits@high@y,\pgfplotsplothandlercontour@limits@high@z;\pgfplotsplothandlercontour@limits@high@meta).}%
}%
\def\pgfplotsplothandlercontour@init@limits@getboundingboxlow(#1,#2,#3,#4){%
\def\pgfplotsplothandlercontour@init@limits@cur{low}%
\pgfplotsplothandlercontour@init@limits@read(#1,#2,#3,#4)%
\pgfutil@ifnextchar(%
\pgfplotsplothandlercontour@init@limits@getboundingboxhigh
{\pgfplots@error{Sorry, 'data limits=(xmin,ymin,zmin,contourmin) (xmax,ymax,zmax,contourmax)' has been expected, not \pgfkeysvalueof{/pgfplots/contour/data limits}}\pgfplots@gobble@until@EOI}%
}%
\def\pgfplotsplothandlercontour@init@limits@getboundingboxhigh(#1,#2,#3,#4){%
\def\pgfplotsplothandlercontour@init@limits@cur{high}%
\pgfplotsplothandlercontour@init@limits@read(#1,#2,#3,#4)%
\pgfutil@gobble
}%
\def\pgfplotsplothandlercontour@init@limits@read(#1,#2,#3,#4){%
% FIXME : logs and trafos and user interface!
\pgfplotscoordmath{x}{parsenumber}{#1}%
\pgfplotscoordmath{x}{datascaletrafo}\pgfmathresult
\expandafter\let\csname pgfplotsplothandlercontour@limits@\pgfplotsplothandlercontour@init@limits@cur @x\endcsname=\pgfmathresult
%
\pgfplotscoordmath{y}{parsenumber}{#2}%
\pgfplotscoordmath{y}{datascaletrafo}\pgfmathresult
\expandafter\let\csname pgfplotsplothandlercontour@limits@\pgfplotsplothandlercontour@init@limits@cur @y\endcsname=\pgfmathresult
%
\ifpgfplots@curplot@threedim
\pgfplotscoordmath{z}{parsenumber}{#3}%
\pgfplotscoordmath{z}{datascaletrafo}\pgfmathresult
\expandafter\let\csname pgfplotsplothandlercontour@limits@\pgfplotsplothandlercontour@init@limits@cur @z\endcsname=\pgfmathresult
\fi
%
\pgfplotscoordmath{meta}{parsenumber}{#4}%
\expandafter\let\csname pgfplotsplothandlercontour@limits@\pgfplotsplothandlercontour@init@limits@cur @meta\endcsname=\pgfmathresult
}%
%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%
%
% contour external implementation
%
%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%
\def\pgfplotsplothandlercontourexternal{%
\pgfplotsresetplothandler
\def\pgfplotsplothandlername{contour external}%
%
\pgfplotsplothandlercontour@prepare@point@meta
%
\let\pgfplotsplothandlersurveystart=\pgfplotsplothandlersurveystart@contourexternal
\def\pgf@plotstreamstart{%
\pgfplotsplothandlercontourprepared
\pgf@plotstreamstart
}%
}%
\gdef\c@pgfplotsplothandlersurveystart@contourexternal@fileno{0}%
\def\pgfplotsplothandlersurveystart@contourexternal{%
%
\pgfkeysgetvalue{/pgfplots/contour external/file}\pgfplotsplothandlercontourexternal@file
%
\ifx\pgfplotsplothandlercontourexternal@file\pgfutil@empty
\pgfutil@ifundefined{pgfactualjobname}{%
\let\pgfplots@loc@TMPa=\jobname
}{%
% be compatible with external lib:
\let\pgfplots@loc@TMPa=\pgfactualjobname
}%
\edef\pgfplotsplothandlercontourexternal@file{\pgfplots@loc@TMPa_contourtmp\c@pgfplotsplothandlersurveystart@contourexternal@fileno}%
\pgfplotsutil@advancestringcounter@global\c@pgfplotsplothandlersurveystart@contourexternal@fileno
\fi
%
\if0\pgfplotsplothandlercontourexternal@scanlinemode
\pgfplotsset{plot to file/scanline marks/false}%
\else
\pgfplotsset{plot to file/scanline marks/if in input}% the choice 'always' is unaware of existing end-of-scanline marks
\fi
\pgfplotsplothandlertofile{\pgfplotsplothandlercontourexternal@file.dat}%
\pgfplotsplothandlersurveystart
\let\pgfplotsplothandlersurveypoint@tofile=\pgfplotsplothandlersurveypoint
\let\pgfplotsplothandlersurveyend@tofile=\pgfplotsplothandlersurveyend
\let\pgfplotsplothandlersurveypoint=\pgfplotsplothandlersurveypoint@contourexternal
\let\pgfplotsplothandlersurveyend=\pgfplotsplothandlersurveyend@contourexternal
%
\pgfplotsplothandlersurveypoint@contour@prepare@axes x%
\pgfplotsplothandlersurveypoint@contour@prepare@axes y%
\pgfplotsplothandlersurveypoint@contour@prepare@axes z%
}%
% #1: either x, y, or z
% POSTCONDITION:
% The following three macros are defined:
% \pgfplotsplothandlersurveypoint@contour@set@axes@x
% \pgfplotsplothandlersurveypoint@contour@set@axes@y
% \pgfplotsplothandlersurveypoint@contour@set@axes@z
% they take no arguments and assign their result to \pgfmathresult.
\def\pgfplotsplothandlersurveypoint@contour@prepare@axes#1{%
\expandafter\edef\csname pgfplotsplothandlersurveypoint@contour@set@axes@#1\endcsname{%
\noexpand\let\noexpand\pgfmathresult=\expandafter\noexpand\csname pgfplots@current@point@\csname pgfplotsplothandlercontour@axis@#1\endcsname\endcsname
}%
\expandafter\edef\csname pgfplotsplothandlersurveypoint@contour@set@axes@@#1\endcsname{%
\noexpand\let\noexpand\pgfmathresult=\expandafter\noexpand\csname pgfplots@current@point@\csname pgfplotsplothandlercontour@axis@inv@#1\endcsname\endcsname
}%
%
%\message{axes #1: STD -> \expandafter\meaning\csname pgfplotsplothandlersurveypoint@contour@set@axes@#1\endcsname^^J}%
%\message{axes #1: INV -> \expandafter\meaning\csname pgfplotsplothandlersurveypoint@contour@set@axes@@#1\endcsname^^J}%
}
\def\pgfplotsplothandlersurveypoint@contour@axes@reordered@to@std{%
\pgfplotsplothandlersurveypoint@contour@set@axes@@x
\let\pgfplotsplothandlersurveypoint@contour@set@axes@x@=\pgfmathresult
%
\pgfplotsplothandlersurveypoint@contour@set@axes@@y
\let\pgfplotsplothandlersurveypoint@contour@set@axes@y@=\pgfmathresult
%
\pgfplotsplothandlersurveypoint@contour@set@axes@@z
\let\pgfplotsplothandlersurveypoint@contour@set@axes@z@=\pgfmathresult
%
\let\pgfplots@current@point@x=\pgfplotsplothandlersurveypoint@contour@set@axes@x@
\let\pgfplots@current@point@y=\pgfplotsplothandlersurveypoint@contour@set@axes@y@
\let\pgfplots@current@point@z=\pgfplotsplothandlersurveypoint@contour@set@axes@z@
}%
\def\pgfplotsplothandlersurveypoint@contour@axes@std@to@reordered{%
\pgfplotsplothandlersurveypoint@contour@set@axes@x
\let\pgfplotsplothandlersurveypoint@contour@set@axes@x@=\pgfmathresult
%
\pgfplotsplothandlersurveypoint@contour@set@axes@y
\let\pgfplotsplothandlersurveypoint@contour@set@axes@y@=\pgfmathresult
%
\pgfplotsplothandlersurveypoint@contour@set@axes@z
\let\pgfplotsplothandlersurveypoint@contour@set@axes@z@=\pgfmathresult
%
\let\pgfplots@current@point@x=\pgfplotsplothandlersurveypoint@contour@set@axes@x@
\let\pgfplots@current@point@y=\pgfplotsplothandlersurveypoint@contour@set@axes@y@
\let\pgfplots@current@point@z=\pgfplotsplothandlersurveypoint@contour@set@axes@z@
}%
\def\pgfplotsplothandlersurveypoint@contourexternal{%
% temporarily disable updates to point meta limits. They should be
% updated during the contour prepared processing.
\let\pgfplotsplothandlercontourexternal@orig@perpointlimits@limits=\pgfplots@set@perpointmeta@limits
\let\pgfplots@set@perpointmeta@limits=\relax
%
\pgfplotsaxissurveysetpointmeta
\let\pgfplots@current@point@z=\pgfplots@current@point@meta
%
\let\pgfplots@set@perpointmeta@limits=\pgfplotsplothandlercontourexternal@orig@perpointlimits@limits
%
\pgfplotsplothandlersurveypoint@contour@axes@std@to@reordered
%
%\message{contour gnuplot: collecting point (\pgfplots@current@point@x,\pgfplots@current@point@y,\pgfplots@current@point@z) [\pgfplots@current@point@meta]...}%
\pgfplotsplothandlersurveypoint@tofile
}%
{
\catcode`\`=12
\catcode`\'=12
\catcode`\"=12
\catcode`\|=12
\catcode`\;=12
\catcode`\:=12
\catcode`\#=12
\gdef\pgfplotsplothandlersurveyend@contourexternal{%
\pgfplotsplothandlersurveyend@tofile
\if2\pgfplotsplothandlercontourexternal@scanlinemode
\if0\pgfplotsplothandlertofilegeneratedscanlinemarks
\pgfplots@error{Sorry, processing the input stream did not lead to end-of-scanline markers; the generated temporary file for 'contour external' does not contain any of them (indicating that matrix structure is lost). To fix this, you have the following options:^^J - Insert end-of-scanline markers into your input data (i.e. empty lines),^^J - provide two of the three options 'mesh/rows=, mesh/cols=, mesh/num points='}%
\fi
\fi
%
\begingroup
\let\numcoords=\pgfplots@current@point@coordindex%
\pgfplotsautocompletemeshkeys
\def\"{"}%
\def\|{|}%
\def\;{;}%
\def\:{:}%
\def\#{#}%
\def\'{'}%
\def\`{`}%
\edef\ordering{\pgfplots@plot@mesh@ordering}%
\edef\infile{\pgfplotsplothandlercontourexternal@file.dat}%
\edef\outfile{\pgfplotsplothandlercontourexternal@file.table}%
\edef\script{\pgfplotsplothandlercontourexternal@file.\pgfkeysvalueof{/pgfplots/contour external/script extension}}%
\edef\thecontourlevels{\pgfkeysvalueof{/pgfplots/contour/levels}}%
\edef\thecontournumber{\pgfkeysvalueof{/pgfplots/contour/number}}%
\immediate\openout\w@pgf@writea=\script
\immediate\write\w@pgf@writea{\pgfkeysvalueof{/pgfplots/contour external/script}}%
\immediate\closeout\w@pgf@writea
%
\pgfplots@shellescape{\pgfkeysvalueof{/pgfplots/contour external/cmd}}%
\endgroup
%
%
\pgfplotsplothandlercontourprepared
% the PREPARE steps in the coord stream start/end have already
% been done. we only need to init the plot handler survey
% start/end:
\def\pgfplots@coord@stream@start{\pgfplotsplothandlersurveystart}%
\def\pgfplots@coord@stream@end{\pgfplotsplothandlersurveyend}%
\pgfkeysgetvalue{/pgfplots/contour external/output point meta}\pgfplots@loc@TMPa
\ifx\pgfplots@loc@TMPa\pgfutil@empty
\ifpgfplots@curplot@threedim
\pgfplotssetpointmetainput{z}{}%
\else
\pgfplotssetpointmetainput{explicit}{}%
\fi
\else
\expandafter\pgfplots@pgfkeys@set@point@meta@value\expandafter{\pgfplots@loc@TMPa}%
\fi
\pgfplots@addplotimpl@file@streamit{\pgfplotsplothandlercontourexternal@file.table}%
\closein\r@pgfplots@reada
}%
}
% the `plot unprocessed to file' plot handler simply copies the input data
% UNPROCESSED to an output file.
%
% I use it as helper tool for `contour gnuplot'.
%
% this cannot be combined with other plot handlers unless the other
% plot handlers controls that explicitly
%
% Immediately after the survey ends, this plot handler will set
% \pgfplotsplothandlertofilegeneratedscanlinemarks to '1' or '0'.
\pgfplotsset{
plot unprocessed to file/.code={
\edef\tikz@plot@handler{\noexpand\pgfplotsplothandlertofile{#1}}%
},
plot to file/scanline marks/.is choice,
plot to file/scanline marks/false/.code={\def\pgfplotsplothandlertofile@scanlinemarks{0}},
plot to file/scanline marks/if in input/.code={\def\pgfplotsplothandlertofile@scanlinemarks{1}},
plot to file/scanline marks/always/.code={\def\pgfplotsplothandlertofile@scanlinemarks{2}},
plot to file/scanline marks/true/.code={\def\pgfplotsplothandlertofile@scanlinemarks{2}},
plot to file/scanline marks/if in input,
plot to file/col sep/.initial=\pgfplots@SPACE,
plot to file/end-of-scanline content/.initial=,
}
\def\pgfplotsplothandlertofile#1{%
\edef\pgfplotsplothandlertofile@name{#1}%
\pgfplotsresetplothandler
\pgfplotsset{empty line=scanline}%
\let\pgfplotsplothandlersurveystart=\pgfplotsplothandlersurveystart@tofile
\def\pgfplotsplothandlername{plot to file}%
\let\pgfplotsplothandlersurveyend=\pgfplotsplothandlersurveyend@tofile
\let\pgfplotsplothandlersurveypoint=\pgfplotsplothandlersurveypoint@tofile
\let\pgfplotsplothandlernotifyscanlinecomplete=\pgfplotsplothandlernotifyscanlinecomplete@tofile
%
\if1\pgfplotsplothandlertofile@scanlinemarks
% plot to file/scanline marks=if in input
% check if we have mesh input:
\def\pgfplots@loc@TMP@has@mesh@information{0}%
\pgfkeysgetvalue{/pgfplots/mesh/rows}\pgfplots@loc@TMPa
\pgfkeysgetvalue{/pgfplots/mesh/cols}\pgfplots@loc@TMPb
\pgfkeysgetvalue{/pgfplots/mesh/num points}\pgfplots@loc@TMPc
\ifx\pgfplots@loc@TMPa\pgfutil@empty
\ifx\pgfplots@loc@TMPc\pgfutil@empty
\else
% has rows and num points:
\def\pgfplots@loc@TMP@has@mesh@information{1}%
\fi
\else
\ifx\pgfplots@loc@TMPb\pgfutil@empty
\ifx\pgfplots@loc@TMPc\pgfutil@empty
\else
% has cols and num points:
\def\pgfplots@loc@TMP@has@mesh@information{1}%
\fi
\else
% has rows,cols:
\def\pgfplots@loc@TMP@has@mesh@information{1}%
\fi
\fi
\if1\pgfplots@loc@TMP@has@mesh@information
% activate 'plot to file/scanline marks=always
% --> we have the required information!
\def\pgfplotsplothandlertofile@scanlinemarks{2}%
\fi
\fi
% NO \else here!
\if2\pgfplotsplothandlertofile@scanlinemarks
% plot to file/scanline marks=always
\pgfplotsautocompletemeshkeys%
\def\c@pgfplotsplothandlertofile@scanlinelength{0}%
\if\pgfplots@plot@mesh@ordering0%
% ordering = x varies= rowwise -> scanline is cols!
\pgfkeysgetvalue{/pgfplots/mesh/cols}\c@pgfplotsplothandlertofile@expectedscanline
\else
% ordering = y varies = colwise: scanline is rows!
\pgfkeysgetvalue{/pgfplots/mesh/rows}\c@pgfplotsplothandlertofile@expectedscanline
\fi
\fi
\pgfplotsplothandlertofile@scanlinependingfalse
\pgfkeysgetvalue{/pgfplots/plot to file/col sep}\pgfplotsplothandlertofile@colsep
\pgfkeysgetvalue{/pgfplots/plot to file/end-of-scanline content}\pgfplotsplothandlertofile@scanlinemark
%
%
\def\pgfplotsplothandlertofilegeneratedscanlinemarks{0}%
}%
\def\pgfplotsplothandlertofile@scanlinemarks@check{%
\if2\pgfplotsplothandlertofile@scanlinemarks
% plot to file/scanline marks=always
\pgfplotsutil@advancestringcounter\c@pgfplotsplothandlertofile@scanlinelength
\ifnum\c@pgfplotsplothandlertofile@scanlinelength=\c@pgfplotsplothandlertofile@expectedscanline
\def\c@pgfplotsplothandlertofile@scanlinelength{0}%
\pgfplotsplothandlernotifyscanlinecomplete@tofile
\fi
\fi
}%
\newif\ifpgfplotsplothandlertofile@scanlinepending
\def\pgfplotsplothandlernotifyscanlinecomplete@tofile{%
\if0\pgfplotsplothandlertofile@scanlinemarks
\else
\pgfplotsplothandlertofile@scanlinependingtrue
\fi
}%
\def\pgfplotsplothandlersurveypoint@tofile{%
\ifpgfplotsplothandlertofile@scanlinepending
\def\pgfplotsplothandlertofilegeneratedscanlinemarks{1}%
\immediate\write\w@pgf@writea{\pgfplotsplothandlertofile@scanlinemark}% end-of-scanline
\pgfplotsplothandlertofile@scanlinependingfalse
\fi
\pgfplotscoordmath{x}{parsenumber}{\pgfplots@current@point@x}%
\pgfplotscoordmath{x}{tostring}{\pgfmathresult}%
\let\pgfplots@current@point@x=\pgfmathresult
%
\pgfplotscoordmath{y}{parsenumber}{\pgfplots@current@point@y}%
\pgfplotscoordmath{y}{tostring}{\pgfmathresult}%
\let\pgfplots@current@point@y=\pgfmathresult
%
\ifpgfplots@curplot@threedim
\pgfplotscoordmath{z}{parsenumber}{\pgfplots@current@point@z}%
\pgfplotscoordmath{z}{tostring}{\pgfmathresult}%
\let\pgfplots@current@point@z=\pgfmathresult
\fi
%
\pgfplotsaxissurveysetpointmeta
\pgfplotsaxisifhaspointmeta{%
\pgfplotscoordmath{meta}{tostring}{\pgfplots@current@point@meta}%
\let\pgfplots@current@point@meta=\pgfmathresult
}{}%
%
\immediate\write\w@pgf@writea{%
\pgfplots@current@point@x\pgfplotsplothandlertofile@colsep
\pgfplots@current@point@y\pgfplotsplothandlertofile@colsep
\ifpgfplots@curplot@threedim\pgfplots@current@point@z\pgfplotsplothandlertofile@colsep\fi
\pgfplots@current@point@meta
}%
\advance\c@pgfplots@coordindex by1
\pgfplotsplothandlertofile@scanlinemarks@check
}%
\def\pgfplotsplothandlersurveyend@tofile{%
\immediate\closeout\w@pgf@writea
}%
\def\pgfplotsplothandlersurveystart@tofile{%
\immediate\openout\w@pgf@writea=\pgfplotsplothandlertofile@name\relax
}%
\input pgfplotsmeshplothandler.code.tex
%
%--------------------------------------------
% Implementation of 'contour filled': it is actually just a small
% wrapper around 'surf,shader=interp,colormap access=const' -- with
% dedicated color map definitions.
\def\pgfplotsplothandlercontourfilled{%
\pgfplotsplothandlermesh
\let\pgfplotsplothandlersurveyend@contourfilled@orig=\pgfplotsplothandlersurveyend
\def\pgfplotsplothandlersurveyend{%
\pgfplotsplothandlersurveyend@contourfilled@orig
\pgfplotsplothandlersurveyend@contourfilled
}%
}%
\def\pgfplotscontourfilledcolormap{internal:contourfilled}
\pgfplotscreatecolormap{\pgfplotscontourfilledcolormap}{color=(black) color=(black)}
\def\pgfplotsplothandlersurveyend@contourfilled{%
\pgfplotsplothandlersurveyaddoptions{
% ensure that the point meta of the contour makes its way into
% the colorbar and the associated color mapping.
%
% FIXME: that fails if there are more than one contours in the
% same axis (or someone else uses 'colorbar source')
colorbar source,%
%
% ensure that other plots to not "corrupt" our mapping:
point meta rel=per plot,%
}%
\def\pgfplots@contour@cm@options{%
colorbar style={%
/pgfplots/colormap access=const,
},%
}%
%
\pgfkeysgetvalue{/pgfplots/contour/levels}\pgfplots@loc@TMPa
\ifx\pgfplots@loc@TMPa\pgfutil@empty
% no levels.
% Ok, check the other keys in the order of precedence:
\pgfkeysgetvalue{/pgfplots/contour/levels from colormap}\pgfplots@loc@TMPa
\ifx\pgfplots@loc@TMPa\pgfutil@empty
% no 'levels from colormap'.
% Ok, check the other keys in the order of precedence:
\pgfkeysgetvalue{/pgfplots/contour/number}\pgfplots@loc@TMPa
\ifx\pgfplots@loc@TMPa\pgfutil@empty
% not sure if this is a use-case...
\pgfplots@log3{contour plot: skipping definition of suitable colormap (none of 'number', levels', 'levels from colormap' is set)}%
\t@pgfplots@toka=\expandafter{\pgfplots@contour@cm@options}%
\edef\pgfplots@contour@cm@options{%
\the\t@pgfplots@toka%
% just copy the current colormap to ensure that it
% has the correct name:
colormap={\pgfplotscontourfilledcolormap}{of colormap={}},%
}%
\else
% Ah -- we have a number of samples!
\t@pgfplots@toka=\expandafter{\pgfplots@contour@cm@options}%
\edef\pgfplots@contour@cm@options{%
\the\t@pgfplots@toka%
colormap={\pgfplotscontourfilledcolormap}{samples of colormap={\pgfplots@loc@TMPa}},%
}%
\fi
\else
% Ah - we want to take levels from a colormap definition!
% We only need to ensure that the colormap definition fits
% into the range [metamin:metamax]. Do that here:
\t@pgfplots@toka=\expandafter{\pgfplots@contour@cm@options}%
\t@pgfplots@tokb=\expandafter{\pgfplots@loc@TMPa}%
\edef\pgfplots@contour@cm@options{%
\the\t@pgfplots@toka%
/utils/exec={%
\noexpand\edef\noexpand\pgfplots@targetpos@restore{%
of colormap/target pos min=\pgfkeysvalueof{/pgfplots/of colormap/target pos min},%
of colormap/target pos max=\pgfkeysvalueof{/pgfplots/of colormap/target pos max},%
of colormap/target pos min/insert=\ifpgfplots@createcolormap@target@pos@includes@limits@min true\else false\fi,%
of colormap/target pos max/insert=\ifpgfplots@createcolormap@target@pos@includes@limits@max true\else false\fi,%
\if c\pgfplots@ofcolorbar@sample@for@choice
of colormap/sample for=const,%
\else
of colormap/sample for=default,%
\fi
}%
},%
of colormap/target pos min*=\pgfplots@metamin,%
of colormap/target pos max*=\pgfplots@metamax,%
of colormap/sample for=const,%
colormap={\pgfplotscontourfilledcolormap}{%
\the\t@pgfplots@tokb
},%
/utils/exec={%
\noexpand\expandafter
\noexpand\pgfkeysalso
\noexpand\expandafter{\noexpand\pgfplots@targetpos@restore}%
},%
}%
\fi
\else
% Ah - we have a list of positions for the contours!
\t@pgfplots@toka=\expandafter{\pgfplots@contour@cm@options}%
\edef\pgfplots@contour@cm@options{%
\the\t@pgfplots@toka%
colormap={\pgfplotscontourfilledcolormap}{%
of colormap={%
target pos min*=\pgfplots@metamin,
target pos max*=\pgfplots@metamax,
sample for=const,%
target pos={\pgfplots@loc@TMPa},
}%
},%
}%
\fi
%
\ifx\pgfplots@contour@cm@options\pgfutil@empty
\else
% move to "late options" such that we carry them outside of
% any \begingroup...\endgroup constructions:
\expandafter\pgfplotssetlateoptions\expandafter{\pgfplots@contour@cm@options}%
%\message{contour filled: assembled options \meaning\pgfplots@contour@cm@options^^J}%
\fi
}%