%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%% %%% This file is a copy of some part of PGF/Tikz. %%% It has been copied here to provide : %%% - compatibility with older PGF versions %%% - availability of PGF contributions by Christian Feuersaenger %%% which are necessary or helpful for pgfplots. %%% %%% For reasons of simplicity, I have copied the whole file, including own contributions AND %%% PGF parts. The copyrights are as they appear in PGF. %%% %%% Note that pgfplots has compatible licenses. %%% %%% This copy has been modified in the following ways: %%% - nested \input commands have been updated %%% % % Support for the contents of this file will NOT be done by the PGF/TikZ team. % Please contact the author and/or maintainer of pgfplots (Christian Feuersaenger) if you need assistance in conjunction % with the deployment of this patch or partial content of PGF. Note that the author and/or maintainer of pgfplots has no obligation to fix anything: % This file comes without any warranty as the rest of pgfplots; there is no obligation for help. %%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%% %%% Date of this copy: Fr 14. Feb 21:37:39 CET 2014 %%% % Copyright 2008 by Mark Wibrow % % This file may be distributed and/or modified % % 1. under the LaTeX Project Public License and/or % 2. under the GNU Free Documentation License. % % See the file doc/generic/pgf/licenses/LICENSE for more details. % Note: at the time of this writing, the library has quadratic runtime. % Experimentally, it performed well while computing ~12 intersections of two % plots, each with 600 samples. It failed when the number of samples exceeded 700. \usepgflibrary{fpu} \newcount\pgf@intersect@solutions \newif\ifpgf@intersect@sort \newif\ifpgf@intersect@sort@by@second@path \def\pgfintersectionsortbyfirstpath{% \pgf@intersect@sorttrue% \pgf@intersect@sort@by@second@pathfalse% } \def\pgfintersectionsortbysecondpath{% \pgf@intersect@sorttrue% \pgf@intersect@sort@by@second@pathtrue% } % #1: the index. It starts at 1 and ends with \pgfintersectionsolutions (inclusive). % Invalid values will implicitly result in the origin. \def\pgfpointintersectionsolution#1{% \ifnum#1<1\relax% \pgfpoint@intersect@solution@orgin% \else% \ifnum#1>\pgfintersectionsolutions\relax% \pgfpoint@intersect@solution@orgin% \else% \csname pgfpoint@intersect@solution@#1\endcsname% \fi% \fi% } % Gets the segment indices of solution #1. % % #1: the solution index (i.e. the same argument as in \pgfpointintersectionsolution) % #2: [output] a macro name which will contain the segment index of the first path which contains the solution % #3: [output] a macro name which will contain the segment index of the second path which contains the solution % % Example: \pgfintersectiongetsolutionsegmentindices{0}{\first}{\second} % % -> \first may be 0 if point #0 is in the 0'th segment % -> \second may be 42 if point #0 is in the 42'th segment % % The "segment index" is actually close to the "time" of the solution. % If a solution is at "time" 42.2, it will have segment index 42. \def\pgfintersectiongetsolutionsegmentindices#1#2#3{% \ifnum#1<1\relax% \let#2=\pgfutil@empty \let#3=\pgfutil@empty \else% \ifnum#1>\pgfintersectionsolutions\relax% \let#2=\pgfutil@empty \let#3=\pgfutil@empty \else% \def\pgf@temp##1##2##3##4{% \edef#2{##1}% \edef#3{##2}% }% \expandafter\let\expandafter\pgf@tempb\csname pgf@intersect@solution@props@#1\endcsname \expandafter\pgf@temp\pgf@tempb \fi% \fi% }% % Gets the time indices of solution #1. % % #1: the solution index (i.e. the same argument as in \pgfpointintersectionsolution) % #2: [output] a macro name which will contain the time of the first path which contains the solution % It will never be empty. % #3: [output] a macro name which will contain the time of the second path which contains the solution % It will never be empty. % % Example: \pgfintersectiongetsolutiontimes{0}{\first}{\second} % % -> \first may be 0.5 if point #0 is in just in the middle of the path % -> \second may be 42.8 if point #0 is in the 42'th segment (compare % \pgfintersectiongetsolutionsegmentindices) and is at 80% of the % 42'th segment % % Note that the precise time inside of a segment may be unavailable % (currently, it is only computed for curveto paths and not % necessarily for lineto). If the precise time is unavailable, this % call will return the value of % \pgfintersectiongetsolutionsegmentindices (which is a % "coarse-grained" time). \def\pgfintersectiongetsolutiontimes#1#2#3{% \ifnum#1<1\relax% \let#2=\pgfutil@empty \let#3=\pgfutil@empty \else% \ifnum#1>\pgfintersectionsolutions\relax% \let#2=\pgfutil@empty \let#3=\pgfutil@empty \else% \def\pgf@temp##1##2##3##4{% \edef#2{##3}% \edef#3{##4}% % % check for fallback to segment indices: \ifx#2\pgfutil@empty \edef#2{##1}\fi \ifx#3\pgfutil@empty \edef#3{##2}\fi }% \expandafter\let\expandafter\pgf@tempb\csname pgf@intersect@solution@props@#1\endcsname \expandafter\pgf@temp\pgf@tempb \fi% \fi% }% \def\pgfpoint@intersect@solution@orgin{% \begingroup% \pgftransforminvert% \pgfpointorigin% \pgf@pos@transform{\pgf@x}{\pgf@y}% \global\pgf@x=\pgf@x% \global\pgf@y=\pgf@y% \endgroup% } % #1 code which assigns the first path using \pgfsetpath. % #2 code which assigns the second path using \pgfsetpath. % % On output, the points, their properties, and the number of points are set. % Use \pgfintersectionsolutions which expands to the number of intersections \long\def\pgfintersectionofpaths#1#2{% \begingroup% \pgfinterruptpath% #1% \pgfgetpath\pgf@intersect@path@a% \global\let\pgf@intersect@path@temp=\pgf@intersect@path@a% \endpgfinterruptpath% \endgroup% \let\pgf@intersect@path@a=\pgf@intersect@path@temp% % \begingroup% \pgfinterruptpath% #2% \pgfgetpath\pgf@intersect@path@b% \global\let\pgf@intersect@path@temp=\pgf@intersect@path@b% \endpgfinterruptpath% \endgroup% \let\pgf@intersect@path@b=\pgf@intersect@path@temp% % \pgf@intersect@solutions=0\relax% \pgf@intersect@path@reset@a % \ifpgf@intersect@sort@by@second@path% \let\pgf@intersect@temp=\pgf@intersect@path@a% \let\pgf@intersect@path@a=\pgf@intersect@path@b% \let\pgf@intersect@path@b=\pgf@intersect@temp% \fi% % \pgfprocessround\pgf@intersect@path@a\pgf@intersect@path@a% \pgfprocessround\pgf@intersect@path@b\pgf@intersect@path@b% % \let\pgf@intersect@token@after=\pgf@intersect@path@process@a% \expandafter\pgf@intersectionofpaths\pgf@intersect@path@a\pgf@stop% \edef\pgfintersectionsolutions{\the\pgf@intersect@solutions}% \pgfmathloop% \ifnum\pgfmathcounter>\pgfintersectionsolutions\relax% \else% \pgfutil@namelet{pgfpoint@intersect@solution@\pgfmathcounter}% {pgfpoint@g@intersect@solution@\pgfmathcounter}% \edef\pgf@marshal{\noexpand\pgf@intersection@set@properties{\csname pgfpoint@g@intersect@solution@\pgfmathcounter @props\endcsname}}% \pgf@marshal \ifpgf@intersect@sort% \pgfutil@namelet{pgf@intersect@solution@\pgfmathcounter @time@a}% {pgf@g@intersect@solution@\pgfmathcounter @time@a}% \fi% \repeatpgfmathloop% \ifpgf@intersect@sort% \pgfintersectionsolutionsortbytime% \fi% } \def\pgf@intersection@set@properties#1{% \pgfutil@namedef{pgf@intersect@solution@props@\pgfmathcounter}{#1}% }% % #1 a global name prefix to store properties. \def\pgf@intersection@store@properties#1{% % we store the time offsets as well and make them available programmatically: % note that \pgf@intersect@time@a and \pgf@intersect@time@b may be empty. % % However, \pgf@intersect@time@offset and % \pgf@intersect@time@offset@b are *always* valid. In fact,they % resemble a part of the time: it holds % 0 <= \pgf@intersect@time@a < 1 % and \pgf@intersect@time@offset > 0. % % If we have an intersection in segment 42 of path A, % \pgf@intersect@time@offset will be 42. The time inside of that % segment is given as number in the interval [0,1]. If it is 0.3, % the total time will be 42.3 and that number will be stored as % \pgf@intersect@time@a. % \expandafter\xdef\csname #1@props\endcsname{{\pgf@intersect@time@offset}{\pgf@intersect@time@offset@b}{\pgf@intersect@time@a}{\pgf@intersect@time@b}}% } \def\pgf@intersectionofpaths#1{% \ifx#1\pgf@stop% \let\pgf@intersect@next=\relax% \else% \ifx#1\pgfsyssoftpath@movetotoken% \let\pgf@intersect@next=\pgf@intersect@token@moveto% \else% \ifx#1\pgfsyssoftpath@linetotoken% \let\pgf@intersect@next=\pgf@intersect@token@lineto% \else% \ifx#1\pgfsyssoftpath@closepathtoken% \let\pgf@intersect@next=\pgf@intersect@token@lineto% \else% \ifx#1\pgfsyssoftpath@curvetosupportatoken% \let\pgf@intersect@next=\pgf@intersect@token@curveto% \else% \ifx#1\pgfsyssoftpath@rectcornertoken% \let\pgf@intersect@next=\pgf@intersect@token@rect% \fi% \fi% \fi% \fi% \fi% \fi% \pgf@intersect@next} \def\pgf@intersect@token@moveto#1#2{% \def\pgfpoint@intersect@start{\pgfqpoint{#1}{#2}}% \pgf@intersectionofpaths% } \def\pgf@intersect@token@lineto#1#2{% \def\pgfpoint@intersect@end{\pgfqpoint{#1}{#2}}% \def\pgf@intersect@type{line}% \pgf@intersect@token@after% } \def\pgf@intersect@token@curveto#1#2\pgfsyssoftpath@curvetosupportbtoken#3#4\pgfsyssoftpath@curvetotoken#5#6{% \def\pgfpoint@intersect@firstsupport{\pgfqpoint{#1}{#2}}% \def\pgfpoint@intersect@secondsupport{\pgfqpoint{#3}{#4}}% \def\pgfpoint@intersect@end{\pgfqpoint{#5}{#6}}% \def\pgf@intersect@type{curve}% \pgf@intersect@token@after% } \def\pgf@intersect@token@rect#1#2\pgfsyssoftpath@rectsizetoken#3#4{% \pgf@xa=#1\relax% \advance\pgf@xa by#3\relax% \pgf@ya=#2\relax% \advance\pgf@ya by#4\relax% \edef\pgf@marshal{% \noexpand\pgfsyssoftpath@movetotoken{#1}{#2}% \noexpand\pgfsyssoftpath@linetotoken{#1}{\the\pgf@ya}% \noexpand\pgfsyssoftpath@linetotoken{\the\pgf@xa}{\the\pgf@ya}% \noexpand\pgfsyssoftpath@linetotoken{\the\pgf@xa}{#2}% \noexpand\pgfsyssoftpath@closepathtoken{#1}{#2}% }% \expandafter\pgf@intersectionofpaths\pgf@marshal% } \def\pgf@intersect@path@process@a{% \pgf@intersect@path@getpoints@a% \let\pgf@intersect@token@after=\pgf@intersect@path@process@b% \pgf@intersect@path@reset@b \expandafter\pgf@intersectionofpaths\pgf@intersect@path@b\pgf@stop% \let\pgfpoint@intersect@start=\pgfpoint@intersect@end@a% \let\pgf@intersect@token@after=\pgf@intersect@path@process@a% \c@pgf@counta=\pgf@intersect@time@offset\relax% \advance\c@pgf@counta by1\relax% \edef\pgf@intersect@time@offset{\the\c@pgf@counta}% \pgf@intersectionofpaths% } \def\pgf@intersect@path@reset@a{% \def\pgf@intersect@time@offset{0}% \def\pgf@intersect@time@a{}% }% \def\pgf@intersect@path@reset@b{% \def\pgf@intersect@time@offset@b{0}% \def\pgf@intersect@time@b{}% }% \def\pgf@intersect@path@getpoints@a{% \let\pgfpoint@intersect@start@a=\pgfpoint@intersect@start% \let\pgfpoint@intersect@end@a=\pgfpoint@intersect@end% \let\pgfpoint@intersect@firstsupport@a=\pgfpoint@intersect@firstsupport% \let\pgfpoint@intersect@secondsupport@a=\pgfpoint@intersect@secondsupport% \let\pgf@intersect@type@a=\pgf@intersect@type% } \def\pgf@intersect@path@process@b{% \pgf@intersect@path@getpoints@b% \csname pgf@intersect@\pgf@intersect@type@a @and@\pgf@intersect@type@b\endcsname% \let\pgfpoint@intersect@start=\pgfpoint@intersect@end@b% \c@pgf@counta=\pgf@intersect@time@offset@b\relax% \advance\c@pgf@counta by1\relax% \edef\pgf@intersect@time@offset@b{\the\c@pgf@counta}% \pgf@intersectionofpaths} \def\pgf@intersect@path@getpoints@b{% \let\pgfpoint@intersect@start@b=\pgfpoint@intersect@start% \let\pgfpoint@intersect@end@b=\pgfpoint@intersect@end% \let\pgfpoint@intersect@firstsupport@b=\pgfpoint@intersect@firstsupport% \let\pgfpoint@intersect@secondsupport@b=\pgfpoint@intersect@secondsupport% \let\pgf@intersect@type@b=\pgf@intersect@type% } \def\pgf@intersect@line@and@line{% \pgf@intersectionoflines{\pgfpoint@intersect@start@a}{\pgfpoint@intersect@end@a}% {\pgfpoint@intersect@start@b}{\pgfpoint@intersect@end@b}% }% \def\pgf@intersect@line@and@curve{% \pgf@intersectionoflineandcurve% {\pgf@process{\pgfpoint@intersect@start@a}}{\pgf@process{\pgfpoint@intersect@end@a}}% {\pgf@process{\pgfpoint@intersect@start@b}}{\pgf@process{\pgfpoint@intersect@firstsupport@b}}% {\pgf@process{\pgfpoint@intersect@secondsupport@b}}{\pgf@process{\pgfpoint@intersect@end@b}}% } \def\pgf@intersect@curve@and@line{% \pgf@intersectionofcurveandline% {\pgf@process{\pgfpoint@intersect@start@a}}{\pgf@process{\pgfpoint@intersect@firstsupport@a}}% {\pgf@process{\pgfpoint@intersect@secondsupport@a}}{\pgf@process{\pgfpoint@intersect@end@a}}% {\pgf@process{\pgfpoint@intersect@start@b}}{\pgf@process{\pgfpoint@intersect@end@b}}% } \def\pgf@intersect@curve@and@curve{% \pgf@intersectionofcurves% {\pgf@process{\pgfpoint@intersect@start@a}}{\pgf@process{\pgfpoint@intersect@firstsupport@a}}% {\pgf@process{\pgfpoint@intersect@secondsupport@a}}{\pgf@process{\pgfpoint@intersect@end@a}}% {\pgf@process{\pgfpoint@intersect@start@b}}{\pgf@process{\pgfpoint@intersect@firstsupport@b}}% {\pgf@process{\pgfpoint@intersect@secondsupport@b}}{\pgf@process{\pgfpoint@intersect@end@b}}% } \def\pgfintersectionoflines#1#2#3#4{% \pgf@intersect@solutions=0\relax% \pgf@intersectionoflines{#1}{#2}{#3}{#4}% } \def\pgf@intersectionoflines#1#2#3#4{% \pgf@iflinesintersect{#1}{#2}{#3}{#4}% {% \pgfextract@process\pgf@intersect@solution@candidate{% \pgfpointintersectionoflines{\pgfpoint@intersect@start@a}{\pgfpoint@intersect@end@a}% {\pgfpoint@intersect@start@b}{\pgfpoint@intersect@end@b}% }% \pgf@ifsolution@duplicate{\pgf@intersect@solution@candidate}{% % ah - we a duplicate. Apparently, we have a hit on an % endpoint. }{% \global\advance\pgf@intersect@solutions by1\relax% \expandafter\global\expandafter\let\csname pgfpoint@g@intersect@solution@\the\pgf@intersect@solutions\endcsname=\pgf@intersect@solution@candidate \ifpgf@intersect@sort% \pgf@xc=\pgf@x% \pgf@yc=\pgf@y% \pgf@process{\pgfpointdiff{\pgfpoint@intersect@start@a}{\pgfpoint@intersect@end@a}}% \edef\pgf@marshal{% \noexpand\pgfmathveclen@{\pgfmath@tonumber{\pgf@xa}}{\pgfmath@tonumber{\pgf@ya}}% }% \pgf@marshal% \let\pgf@intersect@length@a=\pgfmathresult% \pgf@process{\pgfpointdiff{\pgfpoint@intersect@start@a}{\pgfqpoint{\pgf@xc}{\pgf@yc}}}% \edef\pgf@marshal{% \noexpand\pgfmathveclen@{\pgfmath@tonumber{\pgf@x}}{\pgfmath@tonumber{\pgf@y}}% }% \pgf@marshal% \pgfmathdivide@{\pgfmathresult}{\pgf@intersect@length@a}% \pgf@x=\pgfmathresult pt\relax% \advance\pgf@x by\pgf@intersect@time@offset pt\relax% \edef\pgf@intersect@time@a{\pgfmath@tonumber{\pgf@x}}% \expandafter\global\expandafter\let\csname pgf@g@intersect@solution@\the\pgf@intersect@solutions @time@a\endcsname= \pgf@intersect@time@a \else \let\pgf@intersect@time@a=\pgfutil@empty \fi% \let\pgf@intersect@time@b=\pgfutil@empty \pgf@intersection@store@properties{pgfpoint@g@intersect@solution@\the\pgf@intersect@solutions}% }% % }{}% } % Test if two lines L1 and L2 intersect. % % #1 - first point P1 on L1. % #2 - second point P2 on L1. % #3 - first point P3 on L2. % #2 - second point P4 on L2. % #5 - code executed if intersection occurs. % #6 - code executed if intersection does no occur. % % Let L1 be represented by P1+(P2-P1)s where 0<=s<=1 % Let L2 be represented by P3+(P4-P3)t where 0<=t<=1 % % Then L1 and L2 intersect at % % s = |x2-x1 x3-x1| / |x4-x3 x2-x1| % |y2-y1 y3-y1| |y4-y3 y2-y1| % % t = |x4-x3 x3-x1| / |x4-x3 x2-x1| % |y4-y3 y3-y1| |y4-y3 y2-y1| % % with 0<=s,t<=1 % % s and t do not need to be calculated: % % Let s = A / C and t = B / C % % Then 0<=s<=1 if !(C=0) && ((A=0) || ((A>0) && !(CA))) % 0<=t<=1 if !(C=0) && ((B=0) || ((B>0) && !(CB))) % \newif\ifpgf@s \newif\ifpgf@t \def\pgfiflinesintersect#1#2#3#4{% \begingroup% \pgf@iflinesintersect{\pgf@process{#1}}{\pgf@process{#2}}{\pgf@process{#3}}{\pgf@process{#4}}% {\aftergroup\pgfutil@firstoftwo}{\aftergroup\pgfutil@secondoftwo}% \endgroup% } \def\pgf@iflinesintersect#1#2#3#4{% #4\relax% \pgf@xc=\pgf@x% \pgf@yc=\pgf@y% #3\relax% \advance\pgf@xc by-\pgf@x% \advance\pgf@yc by-\pgf@y% \pgf@xb=\pgf@x% \pgf@yb=\pgf@y% #2\relax% \pgf@xa=\pgf@x% \pgf@ya=\pgf@y% #1\relax% \advance\pgf@xa by-\pgf@x% \advance\pgf@ya by-\pgf@y% \advance\pgf@xb by-\pgf@x% \advance\pgf@yb by-\pgf@y% % % xc = x4-x3; yc=y4-y3; % xb = x3-x1; yb=y3-y1; % xa = x2-x1; ya=y2-y1; % % % Normalise a little. 16384 may not be a robust choice. % \c@pgf@counta=\pgf@xa\divide\c@pgf@counta by16384\relax% \c@pgf@countb=\pgf@xb\divide\c@pgf@countb by16384\relax% \c@pgf@countc=\pgf@ya\divide\c@pgf@countc by16384\relax% \c@pgf@countd=\pgf@yb\divide\c@pgf@countd by16384\relax% \multiply\c@pgf@counta by\c@pgf@countd% \multiply\c@pgf@countc by\c@pgf@countb% \advance\c@pgf@counta by-\c@pgf@countc% \pgfutil@tempcnta=\c@pgf@counta% % \c@pgf@counta=\pgf@xc\divide\c@pgf@counta by16384\relax% \c@pgf@countc=\pgf@yc\divide\c@pgf@countc by16384\relax% \multiply\c@pgf@countd by\c@pgf@counta% \multiply\c@pgf@countb by\c@pgf@countc% \advance\c@pgf@countd by-\c@pgf@countb% \pgfutil@tempcntb=\c@pgf@countd% % \c@pgf@countb=\pgf@xa\divide\c@pgf@countb by16384\relax% \c@pgf@countd=\pgf@ya\divide\c@pgf@countd by16384\relax% \multiply\c@pgf@counta by\c@pgf@countd% \multiply\c@pgf@countc by\c@pgf@countb% \advance\c@pgf@counta by-\c@pgf@countc% % \pgf@sfalse% \pgf@tfalse% \ifnum\c@pgf@counta=0\relax% \else% \ifnum\pgfutil@tempcnta=0\relax% \pgf@strue% \else% \ifnum\pgfutil@tempcnta>0\relax% \ifnum\c@pgf@counta<\pgfutil@tempcnta% \else% \pgf@strue% \fi% \else% \ifnum\c@pgf@counta>\pgfutil@tempcnta% \else% \pgf@strue% \fi% \fi% \fi% \ifnum\pgfutil@tempcntb=0\relax% \pgf@ttrue% \else% \ifnum\pgfutil@tempcntb>0\relax% \ifnum\c@pgf@counta<\pgfutil@tempcntb% \else% \pgf@ttrue% \fi% \else% \ifnum\c@pgf@counta>\pgfutil@tempcntb% \else% \pgf@ttrue% \fi% \fi% \fi% \fi% \let\pgf@intersect@next=\pgfutil@secondoftwo% \ifpgf@s% \ifpgf@t% \let\pgf@intersect@next=\pgfutil@firstoftwo% \fi% \fi% \pgf@intersect@next% } \def\pgfintersectionoflineandcurve#1#2#3#4#5#6{% \pgf@intersect@solutions=0\relax% \pgf@intersectionoflineandcurve{#1}{#2}{#3}{#4}{#5}{#6}% } \def\pgf@intersectionoflineandcurve#1#2#3#4#5#6{% \pgf@intersectionofcurves% {\pgf@process{#1}}% {% \pgf@process{% \pgfpointadd{#1\relax\pgf@x=0.666666\pgf@x\pgf@y=0.666666\pgf@y}% {#2\relax\pgf@x=0.333333\pgf@x\pgf@y=0.333333\pgf@y}% }% }% {% \pgf@process{% \pgfpointadd{#1\relax\pgf@x=0.333333\pgf@x\pgf@y=0.333333\pgf@y}% {#2\relax\pgf@x=0.666666\pgf@x\pgf@y=0.666666\pgf@y}% }% }% {\pgf@process{#2}}% {\pgf@process{#3}}% {\pgf@process{#4}}% {\pgf@process{#5}}% {\pgf@process{#6}}% }% \def\pgf@intersectionofcurveandline#1#2#3#4#5#6{% \pgf@intersectionofcurves% {\pgf@process{#1}}% {\pgf@process{#2}}% {\pgf@process{#3}}% {\pgf@process{#4}}% {\pgf@process{#5}}% {% \pgf@process{% \pgfpointadd{#5\relax\pgf@x=0.666666\pgf@x\pgf@y=0.666666\pgf@y}% {#6\relax\pgf@x=0.333333\pgf@x\pgf@y=0.333333\pgf@y}% }% }% {% \pgf@process{% \pgfpointadd{#5\relax\pgf@x=0.333333\pgf@x\pgf@y=0.333333\pgf@y}% {#6\relax\pgf@x=0.666666\pgf@x\pgf@y=0.666666\pgf@y}% }% }% {\pgf@process{#6}}% }% \def\pgfintersectiontolerance{0.1pt} \def\pgfintersectiontolerancefactor{0.1} % Find the intersections of two bezier curves. % % #1 - #4 = curve 1. % #5 - #8 = curve 2. % #9 = the solution number. % % There is no guarantee of ordering of solutions. If there are % no solutions, the origin is returned. % \def\pgfpointintersectionofcurves#1#2#3#4#5#6#7#8#9{% \pgf@intersect@solutions=0\relax% \pgf@intersectionofcurves% {\pgf@process{#1}}{\pgf@process{#2}}{\pgf@process{#3}}{\pgf@process{#4}}% {\pgf@process{#5}}{\pgf@process{#6}}{\pgf@process{#7}}{\pgf@process{#8}}% \pgfpointintersectionsolution{#9}% } % Return any intersection points of two curves C1 and C2. % No order can be guaranteed for the solutions. % % #1, #2, #3, #4 - the points on C1 % #5, #6, #7, #8 - the points on C2 % % Returns: % % \pgf@intersect@solutions - the number of solutions. % \pgfpointintersectionsolution{} - the point for soultion S. % % (Sort of) use: % % intersection(C1,C2) % S = {}; % intersection'(C1,C2); % return S; % % intersection'(C1,C2) % B1 = boundingbox(C1); % B2 = boundingbox(C2); % if intersect(B1,B2) % if (B1.width < q) and (B1.height < q) and % (B2.width < q) and (B2.height < q) % S = S + {average_of_all_points(B1,B2)}; \\ is there a better choice? % else % Q = subdivideLeft(C1); % R = subdivideRight(C1); % intersection'(C2,Q); % intersection'(C2,R); % % where q is a small value (tolerance). % \def\pgfintersectionofcurves#1#2#3#4#5#6#7#8{% \pgf@intersect@solutions=0\relax% \pgf@intersectionofcurves% {\pgf@process{#1}}{\pgf@process{#2}}{\pgf@process{#3}}{\pgf@process{#4}}% {\pgf@process{#5}}{\pgf@process{#6}}{\pgf@process{#7}}{\pgf@process{#8}}% }% \def\pgf@intersectionofcurves#1#2#3#4#5#6#7#8{% \begingroup% \dimendef\pgf@time@a=2\relax% \dimendef\pgf@time@aa=4\relax% \dimendef\pgf@time@b=6\relax% \dimendef\pgf@time@bb=8\relax% \pgf@time@a=0pt\relax% \pgf@time@aa=1pt\relax% \pgf@time@b=0pt\relax% \pgf@time@bb=1pt\relax% \let\pgf@intersect@subdivide@curve=\pgf@intersect@subdivide@curve@b% \let\pgf@curve@subdivde@after=\pgf@@intersectionofcurves% \pgf@@intersectionofcurves{#1}{#2}{#3}{#4}{#5}{#6}{#7}{#8}% \endgroup% } \def\pgf@@intersectionofcurves#1#2#3#4#5#6#7#8{% \pgf@intersect@boundingbox@reset% \pgf@intersect@boundingbox@update{#1}% \pgf@intersect@boundingbox@update{#2}% \pgf@intersect@boundingbox@update{#3}% \pgf@intersect@boundingbox@update{#4}% % (\pgf@xa, \pgf@ya) is lower-left % (\pgf@xb, \pgf@yb) is upper-right \edef\pgf@intersect@boundingbox@b{% \noexpand\pgf@x=\the\pgf@xa% \noexpand\pgf@y=\the\pgf@ya% \noexpand\pgf@xa=\the\pgf@xb% \noexpand\pgf@ya=\the\pgf@yb% }% \pgf@intersect@boundingbox@reset% \pgf@intersect@boundingbox@update{#5}% \pgf@intersect@boundingbox@update{#6}% \pgf@intersect@boundingbox@update{#7}% \pgf@intersect@boundingbox@update{#8}% \edef\pgf@intersect@boundingbox@a{% \noexpand\pgf@xb=\the\pgf@xa% \noexpand\pgf@yb=\the\pgf@ya% \noexpand\pgf@xc=\the\pgf@xb% \noexpand\pgf@yc=\the\pgf@yb% }% \pgf@intersect@boundingbox@a% \pgf@intersect@boundingbox@b% % check if the two bounding boxes overlap: \ifdim\pgf@xa<\pgf@xb% \else% \ifdim\pgf@x>\pgf@xc% \else% \ifdim\pgf@ya<\pgf@yb% \else% \ifdim\pgf@y>\pgf@yc% \else% % compute DIFFERENCE vectors: \advance\pgf@xc by-\pgf@xb% \advance\pgf@yc by-\pgf@yb% \advance\pgf@xa by-\pgf@x% \advance\pgf@ya by-\pgf@y% \let\pgf@intersect@subdivde=\relax% % check if both difference vectors are point wise % less than tolerance (i.e. |v|_infty < eps ). % That means that both bounding boxes are "small enough" \ifdim\pgf@xc<\pgfintersectiontolerance\relax% \ifdim\pgf@xa<\pgfintersectiontolerance\relax% \ifdim\pgf@yc<\pgfintersectiontolerance\relax% \ifdim\pgf@ya<\pgfintersectiontolerance\relax% \pgfextract@process\pgf@intersect@solution@candidate{% % set (x,y) = mean(the 4 points of the two bounding boxes): \pgf@intersect@boundingbox@a% \pgf@intersect@boundingbox@b% \pgf@x=0.25\pgf@x% \advance\pgf@x by0.25\pgf@xa% \advance\pgf@x by0.25\pgf@xb% \advance\pgf@x by0.25\pgf@xc% \pgf@y=0.25\pgf@y% \advance\pgf@y by0.25\pgf@ya% \advance\pgf@y by0.25\pgf@yb% \advance\pgf@y by0.25\pgf@yc% }% % We must avoid duplicate solutions. \let\pgf@intersect@subdivde=\pgf@stop% \pgf@ifsolution@duplicate\pgf@intersect@solution@candidate{}% {% \global\advance\pgf@intersect@solutions by1\relax% \begingroup \advance\pgf@time@a by\pgf@time@aa% \divide\pgf@time@a by2\relax% \advance\pgf@time@a by\pgf@intersect@time@offset pt\relax% \edef\pgf@intersect@time@a{\pgfmath@tonumber{\pgf@time@a}}% % \advance\pgf@time@b by\pgf@time@bb% \divide\pgf@time@b by2\relax% \advance\pgf@time@b by\pgf@intersect@time@offset@b pt\relax% \edef\pgf@intersect@time@b{\pgfmath@tonumber{\pgf@time@b}}% % \pgf@intersection@store@properties{pgfpoint@g@intersect@solution@\the\pgf@intersect@solutions}% \expandafter\global\expandafter\let% \csname pgfpoint@g@intersect@solution@\the\pgf@intersect@solutions\endcsname=% \pgf@intersect@solution@candidate% \ifpgf@intersect@sort% \expandafter\xdef% \csname pgf@g@intersect@solution@\the\pgf@intersect@solutions @time@a\endcsname% {\pgf@intersect@time@a}% \fi% \endgroup }% \fi% \fi% \fi% \fi% \ifx\pgf@intersect@subdivde\pgf@stop% \else% \pgf@intersect@subdivide@curve{#1}{#2}{#3}{#4}{#5}{#6}{#7}{#8}% \fi% \fi% \fi% \fi% \fi% } \def\pgf@intersect@subdivide@curve@b#1#2#3#4#5#6#7#8{% \begingroup% \advance\pgf@time@bb by\pgf@time@b\relax% \divide\pgf@time@bb by2\relax% \let\pgf@intersect@subdivide@curve=\pgf@intersect@subdivide@curve@a% \pgf@curve@subdivide@left{#5}{#6}{#7}{#8}{#1}{#2}{#3}{#4}% \endgroup% \begingroup% \advance\pgf@time@b by\pgf@time@bb\relax% \divide\pgf@time@b by2\relax% \let\pgf@intersect@subdivide@curve=\pgf@intersect@subdivide@curve@a% \pgf@curve@subdivide@right{#5}{#6}{#7}{#8}{#1}{#2}{#3}{#4}% \endgroup% } \def\pgf@intersect@subdivide@curve@a#1#2#3#4#5#6#7#8{% \begingroup% \advance\pgf@time@aa by\pgf@time@a\relax% \divide\pgf@time@aa by2\relax% \let\pgf@intersect@subdivide@curve=\pgf@intersect@subdivide@curve@b% \pgf@curve@subdivide@left{#5}{#6}{#7}{#8}{#1}{#2}{#3}{#4}% \endgroup% \begingroup% \advance\pgf@time@a by\pgf@time@aa\relax% \divide\pgf@time@a by2\relax% \let\pgf@intersect@subdivide@curve=\pgf@intersect@subdivide@curve@b% \pgf@curve@subdivide@right{#5}{#6}{#7}{#8}{#1}{#2}{#3}{#4}% \endgroup% } \def\pgf@intersect@boundingbox@reset{% \pgf@xa=16000pt\relax% \pgf@ya=16000pt\relax% \pgf@xb=-16000pt\relax% \pgf@yb=-16000pt\relax% } \def\pgf@intersect@boundingbox@update#1{% #1\relax% \ifdim\pgf@x<\pgf@xa\pgf@xa=\pgf@x\fi% \ifdim\pgf@y<\pgf@ya\pgf@ya=\pgf@y\fi% \ifdim\pgf@x>\pgf@xb\pgf@xb=\pgf@x\fi% \ifdim\pgf@y>\pgf@yb\pgf@yb=\pgf@y\fi% } % The following subroutines are part of a conversion from pgfbasic % math to FPU. This transition is necessary due to the restricted % accuracy of pgfbasic. In order to limit the error rate of the % transition pgfbasic -> FPU, I chose to % keep the old "pattern" of sorts \advance\pgf@xa by0.5\pgf@y etc and % simply adapt to some FPU call. % % The following routines constitute the "adapter": \def\pgf@float@adapter@setxy{% \pgfmathfloatparsenumber{\pgf@sys@tonumber\pgf@x}\let\pgf@fpu@x=\pgfmathresult \pgfmathfloatparsenumber{\pgf@sys@tonumber\pgf@y}\let\pgf@fpu@y=\pgfmathresult }% \def\pgf@float@adapter@mult#1=#2*#3{% \pgfmathfloatmultiplyfixed@{#3}{#2}% \let#1=\pgfmathresult }% \def\pgf@float@adapter@advance#1by#2*#3{% \pgfmathfloatmultiplyfixed@{#3}{#2}% \let\pgfutil@temp=\pgfmathresult \pgfmathfloatadd@{#1}{\pgfutil@temp}% \let#1=\pgfmathresult }% \def\pgf@float@adapter@tostring#1{% \pgfmathfloattofixed{#1}\edef#1{\pgfmathresult pt }% }% \def\pgf@curve@subdivide@left#1#2#3#4{% % % The left curve (from t=0 to t=.5) % \begingroup #1\relax% \pgfutil@tempdima=\pgf@x% \pgfutil@tempdimb=\pgf@y% \pgf@float@adapter@setxy \pgf@float@adapter@mult\pgf@fpu@xa=.5*\pgf@fpu@x \pgf@float@adapter@mult\pgf@fpu@ya=.5*\pgf@fpu@y% \pgf@float@adapter@mult\pgf@fpu@xb=.25*\pgf@fpu@x \pgf@float@adapter@mult\pgf@fpu@yb=.25*\pgf@fpu@y% \pgf@float@adapter@mult\pgf@fpu@xc=.125*\pgf@fpu@x\pgf@float@adapter@mult\pgf@fpu@yc=.125*\pgf@fpu@y% #2\relax% \pgf@float@adapter@setxy \pgf@float@adapter@advance\pgf@fpu@xa by.5*\pgf@fpu@x\pgf@float@adapter@advance\pgf@fpu@ya by.5*\pgf@fpu@y% \pgf@float@adapter@advance\pgf@fpu@xb by.5*\pgf@fpu@x\pgf@float@adapter@advance\pgf@fpu@yb by.5*\pgf@fpu@y% \pgf@float@adapter@advance\pgf@fpu@xc by.375*\pgf@fpu@x\pgf@float@adapter@advance\pgf@fpu@yc by.375*\pgf@fpu@y% #3\relax% \pgf@float@adapter@setxy \pgf@float@adapter@advance\pgf@fpu@xb by.25*\pgf@fpu@x\pgf@float@adapter@advance\pgf@fpu@yb by.25*\pgf@fpu@y% \pgf@float@adapter@advance\pgf@fpu@xc by.375*\pgf@fpu@x\pgf@float@adapter@advance\pgf@fpu@yc by.375*\pgf@fpu@y% #4\relax% \pgf@float@adapter@setxy \pgf@float@adapter@advance\pgf@fpu@xc by.125*\pgf@fpu@x\pgf@float@adapter@advance\pgf@fpu@yc by.125*\pgf@fpu@y% % \pgf@float@adapter@tostring\pgf@fpu@xa \pgf@float@adapter@tostring\pgf@fpu@ya \pgf@float@adapter@tostring\pgf@fpu@xb \pgf@float@adapter@tostring\pgf@fpu@yb \pgf@float@adapter@tostring\pgf@fpu@xc \pgf@float@adapter@tostring\pgf@fpu@yc \edef\pgf@marshal{% \noexpand\pgf@curve@subdivde@after% {\noexpand\pgf@x=\the\pgfutil@tempdima\noexpand\pgf@y=\the\pgfutil@tempdimb}% {\noexpand\pgf@x=\pgf@fpu@xa\noexpand\pgf@y=\pgf@fpu@ya}% {\noexpand\pgf@x=\pgf@fpu@xb\noexpand\pgf@y=\pgf@fpu@yb} {\noexpand\pgf@x=\pgf@fpu@xc\noexpand\pgf@y=\pgf@fpu@yc}% }% \expandafter \endgroup \pgf@marshal% } \def\pgf@curve@subdivide@right#1#2#3#4{% % % The right curve (from t=0.5 to t=1) % \begingroup #1\relax% \pgf@float@adapter@setxy \pgf@float@adapter@mult\pgf@float@tmpa=.125*\pgf@fpu@x\pgf@float@adapter@mult\pgf@float@tmpb=.125*\pgf@fpu@y% #2\relax% \pgf@float@adapter@setxy \pgf@float@adapter@advance\pgf@float@tmpa by.375*\pgf@fpu@x\pgf@float@adapter@advance\pgf@float@tmpb by.375*\pgf@fpu@y% \pgf@float@adapter@mult\pgf@fpu@xa=.25*\pgf@fpu@x\pgf@float@adapter@mult\pgf@fpu@ya=.25*\pgf@fpu@y% #3\relax% \pgf@float@adapter@setxy \pgf@float@adapter@advance\pgf@float@tmpa by.375*\pgf@fpu@x\pgf@float@adapter@advance\pgf@float@tmpb by.375*\pgf@fpu@y% \pgf@float@adapter@advance\pgf@fpu@xa by.5*\pgf@fpu@x\pgf@float@adapter@advance\pgf@fpu@ya by.5*\pgf@fpu@y% \pgf@float@adapter@mult\pgf@fpu@xb=.5*\pgf@fpu@x\pgf@float@adapter@mult\pgf@fpu@yb=.5*\pgf@fpu@y% #4\relax% \pgf@float@adapter@setxy \pgf@float@adapter@advance\pgf@float@tmpa by.125*\pgf@fpu@x\pgf@float@adapter@advance\pgf@float@tmpb by.125*\pgf@fpu@y% \pgf@float@adapter@advance\pgf@fpu@xa by.25*\pgf@fpu@x\pgf@float@adapter@advance\pgf@fpu@ya by.25*\pgf@fpu@y% \pgf@float@adapter@advance\pgf@fpu@xb by.5*\pgf@fpu@x\pgf@float@adapter@advance\pgf@fpu@yb by.5*\pgf@fpu@y% \let\pgf@fpu@xc=\pgf@fpu@x\let\pgf@fpu@yc=\pgf@fpu@y% % \pgf@float@adapter@tostring\pgf@float@tmpa \pgf@float@adapter@tostring\pgf@float@tmpb \pgf@float@adapter@tostring\pgf@fpu@xa \pgf@float@adapter@tostring\pgf@fpu@ya \pgf@float@adapter@tostring\pgf@fpu@xb \pgf@float@adapter@tostring\pgf@fpu@yb \pgf@float@adapter@tostring\pgf@fpu@xc \pgf@float@adapter@tostring\pgf@fpu@yc \edef\pgf@marshal{% \noexpand\pgf@curve@subdivde@after% {\noexpand\pgf@x=\pgf@float@tmpa\noexpand\pgf@y=\pgf@float@tmpb}% {\noexpand\pgf@x=\pgf@fpu@xa\noexpand\pgf@y=\pgf@fpu@ya} {\noexpand\pgf@x=\pgf@fpu@xb\noexpand\pgf@y=\pgf@fpu@yb} {\noexpand\pgf@x=\pgf@fpu@xc\noexpand\pgf@y=\pgf@fpu@yc}% }% \expandafter \endgroup \pgf@marshal% } % A solution S1 is considered a duplicate of S2, if % % |x1 - x2|f < q and |y1 - y2|f < q % % where q is a small value (tolerance). % % #1 - the solution. % \def\pgf@ifsolution@duplicate#1{% #1% \pgf@xa=\pgf@x% \pgf@ya=\pgf@y% \let\pgf@intersect@next=\pgfutil@secondoftwo% \pgfmathloop% \ifnum\pgfmathcounter>\pgf@intersect@solutions\relax% \else% \pgf@ifsolution@duplicate@{\pgfmathcounter}% \repeatpgfmathloop% \pgf@intersect@next% } \def\pgf@ifsolution@duplicate@#1{% \pgf@process{\csname pgfpoint@g@intersect@solution@#1\endcsname}% \advance\pgf@x by-\pgf@xa% \advance\pgf@y by-\pgf@ya% \ifdim\pgf@x<0pt\relax\pgf@x=-\pgf@x\fi% \ifdim\pgf@y<0pt\relax\pgf@y=-\pgf@y\fi% % \pgf@x=\pgfintersectiontolerancefactor\pgf@x% \pgf@y=\pgfintersectiontolerancefactor\pgf@y% \ifdim\pgf@x<\pgfintersectiontolerance\relax% \ifdim\pgf@y<\pgfintersectiontolerance\relax% \let\pgf@intersect@next=\pgfutil@firstoftwo% \fi% \fi% }% \newif\ifpgf@intersect@solutions@sortfinish % Sort solutions according to their time index. % \def\pgfintersectionsolutionsortbytime{% \pgf@intersect@solutions@sortfinishtrue% \pgfmathloop% \ifnum\pgfmathcounter=\pgfintersectionsolutions\relax% \else% \pgfutil@tempcnta=\pgfmathcounter% \advance\pgfutil@tempcnta by1\relax% \ifdim\csname pgf@intersect@solution@\pgfmathcounter @time@a\endcsname pt>% \csname pgf@intersect@solution@\the\pgfutil@tempcnta @time@a\endcsname pt\relax% \pgf@intersect@solutions@sortfinishfalse% % \pgfintersectionsolutionsortbytime@swap{pgfpoint@intersect@solution@\pgfmathcounter}% {pgfpoint@intersect@solution@\the\pgfutil@tempcnta}% % \pgfintersectionsolutionsortbytime@swap{pgf@intersect@solution@\pgfmathcounter @time@a}% {pgf@intersect@solution@\the\pgfutil@tempcnta @time@a}% % \pgfintersectionsolutionsortbytime@swap{pgf@intersect@solution@props@\pgfmathcounter}% {pgf@intersect@solution@props@\the\pgfutil@tempcnta}% \fi% \repeatpgfmathloop% \ifpgf@intersect@solutions@sortfinish% \else% \expandafter\pgfintersectionsolutionsortbytime% \fi% } \def\pgfintersectionsolutionsortbytime@swap#1#2{% \pgfutil@namelet{pgf@intersect@temp}{#1}% \pgfutil@namelet{#1}{#2}% \pgfutil@namelet{#2}{pgf@intersect@temp}% }% \endinput