% Copyright 2008/2009 by Christian Feuersaenger % % This file may be distributed and/or modified % % 1. under the LaTeX Project Public License and/or % 2. under the GNU General Public License. % % See the file doc/generic/pgf/licenses/LICENSE for more details. \newif\ifpgfmathfloatparseactive \newif\ifpgfmathfloat@scaleactive % public macro which invokes '#1' if the fpu is installed and ready and '#2' % otherwise. \def\pgflibraryfpuifactive#1#2{% \ifpgfmathfloatparseactive #1% \else #2% \fi }% \pgfqkeys{/pgf}{ % enable the FPU parser if it is not yet active % % It will be deactivated after the current TeX group fpu/.is choice, fpu/true/.code={% \ifpgfmathfloatparseactive \else \pgfutil@ifundefined{pgfmathdeclarefunction}{% % Ohoh - we are running on a TeX distribution with % PGF 2.00 which doesn't have the new math engine. % I can provide special treatment here, provided that % all float commands are still able to run (that means % more information needs to be copied from the pgf cvs % to pgf 2.00 - for example pgfmathfloat.code.tex). % % I employ this to work with pgfplots and pgf 2.00 % using all new features. \pgfmathfloat@parser@install@pgf@two@null@null% }{% \pgfmathfloat@parser@install% }% \pgfmathfloatparseactivetrue % improve compatibility with Marks FP library: \pgfkeysalso{/pgf/fixed point arithmetic/.prefix style={/pgf/fpu=false}}% \fi },% fpu/false/.code={% \ifpgfmathfloatparseactive \pgfmathfloat@uninstall% \pgfmathfloatparseactivefalse \fi },% fpu/.default=true, % Use this to introduce a result scaling. % Every expression in which the prefix '*' occurs % will be multiplied with the result and converted to fixed point % representation. fpu/scale results/.code={% \ifpgfmathfloatparseactive \pgfmathparse{#1}% \else \pgfmathfloatparsenumber{#1}% \fi \let\pgfmathfloatscale=\pgfmathresult% },% % determines the output format of each complete expression parsing % process. If 'scale results' is active, 'fixed' is assumed % automatically. fpu/output format/.is choice, fpu/output format/float/.code= {\let\pgfmathfloatparse@output=\relax}, fpu/output format/sci/.code= {\def\pgfmathfloatparse@output{\pgfmathfloattosci@{\pgfmathresult}}}, fpu/output format/fixed/.code= {\def\pgfmathfloatparse@output{\pgfmathfloattofixed@{\pgfmathresult}}}, fpu/output format/float, } \pgfmathfloatcreate{1}{1.0}{0}\let\pgfmathfloatscale=\pgfmathresult % This is the replacement parser invocation. % It does two things which are different to \pgfmathparse: % 1. it disables any dimension dependand scalings, % 2. it implements the 'scale results' feature. \def\pgfmathfloatparse{% \begingroup% % disable any dimension-dependant scalings: \let\pgfmathpostparse=\relax% \pgfmath@catcodes% \pgfmath@quickparsefalse% \pgfmathfloatparse@} % for pgf 2.00 : \def\pgfmathfloatparse@pgf@two@null@null{% \pgfmath@quickparsefalse% \pgfmathfloatparse@} \def\pgfmathfloatparse@#1{% \edef\pgfmathfloat@expression{#1}% \expandafter\pgfmathfloatparse@@\pgfmathfloat@expression\pgfmathfloat@ \ifpgfmathfloat@scaleactive \expandafter\pgfmathfloatmultiply@\expandafter{\pgfmathresult}{\pgfmathfloatscale} \pgfmathfloattofixed{\pgfmathresult}% \else \pgfmathfloatparse@output \fi } \def\pgfmathfloat@char@asterisk{*} \def\pgfmathfloatparse@@#1#2\pgfmathfloat@{% \def\pgfmathfloat@test{#1}% \ifx\pgfmathfloat@test\pgfmathfloat@char@asterisk% \def\pgfmathfloat@expression{#2}% \pgfmathfloat@scaleactivetrue \fi% \expandafter\pgfmathparse@\expandafter{\pgfmathfloat@expression}% % \endgroup provided by \pgfpathmarse@end } % Crude handling of file plots % \pgfkeys{/pgf/fpu/.cd, scale file plot x/.code=\pgfmathfloatparse{#1}\edef\pgfmathfloatplotscalex{\pgfmathresult*}, scale file plot y/.code=\pgfmathfloatparse{#1}\edef\pgfmathfloatplotscaley{\pgfmathresult*}, scale file plot z/.code=\pgfmathfloatparse{#1}\edef\pgfmathfloatplotscalez{\pgfmathresult*} } \def\pgfmathfloat@uninstall@appendcmd#1{% \expandafter\gdef\expandafter\pgfmathfloat@uninstall\expandafter{\pgfmathfloat@uninstall #1}% }% % If the uninstall command is already assembled, it will skip the % uninstall assemblation. \def\pgfmathfloat@plots@checkuninstallcmd{% \pgfutil@ifundefined{pgfmathfloat@uninstall}{% \global\let\pgfmathfloat@uninstall=\pgfutil@empty }{% % We already HAVE an uninstall command (prepared globally). % So: don't waste time assembling one! \def\pgfmathfloat@uninstall@appendcmd##1{}% \def\pgfmathfloat@prepareuninstallcmd##1{}% }% }% % This assembles an uninstall command globally ON FIRST USAGE. % See \pgfmathfloat@plots@checkuninstallcmd \def\pgfmathfloat@prepareuninstallcmd#1{% % and store backup information (globally - I don't want to do that % all the time when the FPU is used!): \expandafter\global\expandafter\let\csname pgfmathfloat@backup@\string#1\endcsname=#1% \expandafter\gdef\expandafter\pgfmathfloat@uninstall\expandafter{\pgfmathfloat@uninstall \expandafter\let\expandafter#1\csname pgfmathfloat@backup@\string#1\endcsname% }% } \def\pgfmathfloat@install#1=#2{% \pgfmathfloat@prepareuninstallcmd{#1}% \let#1=#2% } \def\pgfmathfloat@install@unimplemented#1{% \expandafter\pgfmathfloat@prepareuninstallcmd\csname pgfmath@#1@\endcsname% \expandafter\def\csname pgfmath#1@\endcsname##1{\pgfmathfloat@notimplemented{#1}}% } \def\pgfmathfloat@plots@install{% \let\pgfmathfloatplotscalex=\pgfutil@empty \let\pgfmathfloatplotscaley=\pgfutil@empty \let\pgfmathfloatplotscalez=\pgfutil@empty \pgfmathfloat@install\pgf@parsexyline=\pgfmathfloat@parsexyline% \pgfmathfloat@install\pgf@parsexyzline=\pgfmathfloat@parsexyzline% } \def\pgfmathfloat@parsexyline#1 #2 #3\pgf@stop{% \edef\pgfmathfloat@marshal{% \noexpand\pgfplotstreampoint{\noexpand\pgfpointxy{\pgfmathfloatplotscalex#1}{\pgfmathfloatplotscaley#2}}% }% \pgfmathfloat@marshal% } \def\pgfmathfloat@parsexyzline#1 #2 #3 #4\pgf@stop{% \edef\pgfmathfloat@marshal{% \noexpand\pgfplotstreampoint{% \noexpand\pgfpointxyz{\pgfmathfloatplotscalex#1}{\pgfmathfloatplotscaley#2}{\pgfmathfloatplotscalez#3}% }% }% \pgfmathfloat@marshal% } % \def\pgfmathfloat@parser@install@functions{% % Install float commands... % \pgfmathfloat@install\pgfmathadd@=\pgfmathfloatadd@% \pgfmathfloat@install\pgfmathsubtract@=\pgfmathfloatsubtract@% \pgfmathfloat@install\pgfmathneg@=\pgfmathfloatneg@% \pgfmathfloat@install\pgfmathmultiply@=\pgfmathfloatmultiply@% \pgfmathfloat@install\pgfmathdivide@=\pgfmathfloatdivide@% \pgfmathfloat@install\pgfmathabs@=\pgfmathfloatabs@% \pgfmathfloat@install\pgfmathround@=\pgfmathfloatround@% \pgfmathfloat@install\pgfmathfloor@=\pgfmathfloatfloor@% \pgfmathfloat@install\pgfmathmod@=\pgfmathfloatmod@% \pgfmathfloat@install\pgfmathmax@=\pgfmathfloatmax@% \pgfmathfloat@install\pgfmathmin@=\pgfmathfloatmin@% \pgfmathfloat@install\pgfmathsin@=\pgfmathfloatsin@% \pgfmathfloat@install\pgfmathcos@=\pgfmathfloatcos@% \pgfmathfloat@install\pgfmathtan@=\pgfmathfloattan@% \pgfmathfloat@install\pgfmathdeg@=\pgfmathfloatdeg@% \pgfmathfloat@install\pgfmathrad@=\pgfmathfloatrad@% \pgfmathfloat@install\pgfmathatan@=\pgfmathfloatatan@% \pgfmathfloat@install\pgfmathasin@=\pgfmathfloatasin@% \pgfmathfloat@install\pgfmathacos@=\pgfmathfloatacos@% \pgfmathfloat@install\pgfmathcot@=\pgfmathfloatcot@% \pgfmathfloat@install\pgfmathsec@=\pgfmathfloatsec@% \pgfmathfloat@install\pgfmathcosec@=\pgfmathfloatcosec@% \pgfmathfloat@install\pgfmathexp@=\pgfmathfloatexp@% \pgfmathfloat@install\pgfmathln@=\pgfmathfloatln@% \pgfmathfloat@install\pgfmathsqrt@=\pgfmathfloatsqrt@% \pgfmathfloat@install\pgfmath@pi=\pgfmathfloatpi@% \pgfmathfloat@install\pgfmathpi=\pgfmathfloatpi@% \pgfmathfloat@install\pgfmathe@=\pgfmathfloate@% \pgfmathfloat@install\pgfmathe=\pgfmathfloate@% \pgfmathfloat@install\pgfmathlessthan@=\pgfmathfloatlessthan@% \pgfmathfloat@install\pgfmathgreaterthan@=\pgfmathfloatgreaterthan@% \pgfmathfloat@install\pgfmathpow@=\pgfmathfloatpow@ \pgfmathfloat@install\pgfmathrand@=\pgfmathfloatrand@ \pgfmathfloat@install\pgfmathrand=\pgfmathfloatrand@ \pgfmathfloat@install\pgfmathrnd@=\pgfmathfloatrnd@ \pgfmathfloat@install\pgfmathrnd=\pgfmathfloatrnd \pgfmathfloat@install\pgfmathtrue@=\pgfmathfloattrue@ \pgfmathfloat@install\pgfmathfalse@=\pgfmathfloatfalse@ \pgfmathfloat@install\pgfmathnot@=\pgfmathfloatnot@ \pgfmathfloat@install\pgfmathhex@=\pgfmathfloathex@ \pgfmathfloat@install\pgfmathHex@=\pgfmathfloatHex@ \pgfmathfloat@install\pgfmathoct@=\pgfmathfloatoct@ \pgfmathfloat@install\pgfmathbin@=\pgfmathfloatbin@ \pgfmathfloat@install\pgfmathand@=\pgfmathfloatand@ \pgfmathfloat@install\pgfmathor@=\pgfmathfloator@ \pgfmathfloat@install\pgfmathfactorial@=\pgfmathfloatfactorial@ \pgfmathfloat@install@unimplemented{ceil}% \pgfmathfloat@install@unimplemented{frac}% \pgfmathfloat@install@unimplemented{log2}% \pgfmathfloat@install@unimplemented{log10}% \pgfmathfloat@install@unimplemented{veclen}% \pgfmathfloat@install@unimplemented{equalto}% \pgfmathfloat@install@unimplemented{random}% \pgfmathfloat@install@unimplemented{setseed}% \pgfmathfloat@install@unimplemented{Mod}% \pgfmathfloat@install@unimplemented{real}% \pgfmathfloat@install@unimplemented{notequal}% \pgfmathfloat@install@unimplemented{sinh}% \pgfmathfloat@install@unimplemented{cosh}% \pgfmathfloat@install@unimplemented{tanh}% % \pgfmathfloat@install@unimplemented{atan2}% % \pgfmathfloat@install@unimplemented{height}% % % \pgfmathfloat@install\pgfmathscientific=\pgfmathfloatscientific% } \def\pgfmathfloat@parser@install{% \pgfmathfloat@plots@checkuninstallcmd \pgfmathfloat@plots@install% \pgfmathfloat@parser@install@functions % % % % The following methods actually enable the parser to work with % the internal floating point number representation. % % The idea is as follows: % 1. Every operand must be given in internal float representation. % 2. The internal float repr can be distinguished by a normal % number. This is accomplished by introducing a new "exponent" % token. % 3. The stack-push-operation checks whether the argument is a % float. If not, it is parsed properly before pushing it. \pgfmath@tokens@make{exponent}{\pgfmathfloat@POSTFLAGSCHAR}% \pgfmathfloat@uninstall@appendcmd{% \expandafter\let\csname pgfmath@token@exponent@\pgfmathfloat@POSTFLAGSCHAR\endcsname=\relax }% \let\pgfmath@basic@parse@exponent=\pgfmath@parse@exponent% \let\pgfmath@basic@stack@push@operand=\pgfmath@stack@push@operand \pgfmathfloat@install\pgfmath@stack@push@operand=\pgfmathfloat@stack@push@operand \pgfmathfloat@install\pgfmath@parse@exponent=\pgfmathfloat@parse@float@or@exponent % \pgfmathfloat@install\pgfmathparse=\pgfmathfloatparse% }% \def\pgfmathfloat@defineadapter@for@pgf@two@null@null@ONEARG#1{% \edef\pgfmathfloat@loc@TMPa{% \noexpand\def\expandafter\noexpand\csname pgfmath@parsefunction@#1\endcsname{% \noexpand\let\noexpand\pgfmath@parsepostgroup\expandafter\noexpand\csname pgfmath@parsefunction@#1@\endcsname% \noexpand\expandafter\noexpand\pgfmath@parse@}% \noexpand\def\expandafter\noexpand\csname pgfmath@parsefunction@#1@\endcsname{% \noexpand\expandafter\expandafter\noexpand\csname pgfmath#1@\endcsname\noexpand\expandafter{\noexpand\pgfmathresult}% \noexpand\pgfmath@postfunction% }% }% \pgfmathfloat@loc@TMPa }% \def\pgfmathfloat@parser@install@pgf@two@null@null{% \pgfmathfloat@plots@checkuninstallcmd \pgfmathfloat@plots@install% \pgfmathfloat@parser@install@functions \let\pgfmathrand@=\pgfmath@basic@rand@ \pgfmathfloat@install\pgfmathmax@=\pgfmathfloatmaxtwo% \pgfmathfloat@install\pgfmathmin@=\pgfmathfloatmintwo% \pgfmathfloat@defineadapter@for@pgf@two@null@null@ONEARG{factorial}% \pgfmathfloat@defineadapter@for@pgf@two@null@null@ONEARG{hex}% \pgfmathfloat@defineadapter@for@pgf@two@null@null@ONEARG{bin}% \pgfmathfloat@defineadapter@for@pgf@two@null@null@ONEARG{oct}% % % The following methods actually enable the parser to work with % the internal floating point number representation. % % The idea is as follows: % 1. Every operand must be given in internal float representation. % 2. The internal float repr can be distinguished by a normal % number. This is accomplished by introducing a new "exponent" % token. % 3. The stack-push-operation checks whether the argument is a % float. If not, it is parsed properly before pushing it. \let\pgfmath@basic@parsedecimalpoint=\pgfmath@parsedecimalpoint% \let\pgfmath@basic@stack@push@operand=\pgfmath@stackpushoperand \pgfmathfloat@install\pgfmath@stackpushoperand=\pgfmathfloat@stack@push@operand \pgfmathfloat@install\pgfmath@parsedecimalpoint=\pgfmathfloat@parsedecimalpoint@pgf@two@null@null \pgfmathfloat@install\pgfmath@endparse=\pgfmathfloat@endparse@pgf@two@null@null \pgfmathfloat@install\pgfmath@endparsegroup=\pgfmathfloat@endparsegroup@pgf@two@null@null \pgfmathfloat@install\pgfmath@postfunction=\pgfmathfloat@postfunction@pgf@two@null@null \pgfmathfloat@install\pgfmath@@parseoperandgroup=\pgfmathfloat@@parseoperandgroup % \pgfmathfloat@install\pgfmathparse=\pgfmathfloatparse@pgf@two@null@null% }% %%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%% % % Hacks to the basic level pgf math engine: % % WARNING: These methods rely heavily on the internal float representation! %%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%% % for pgf2.00 : \def\pgfmathfloat@parsedecimalpoint@pgf@two@null@null#1{% \expandafter\ifx\pgfmathfloat@POSTFLAGSCHAR#1% check whether it is a float \let\pgfmath@next=\pgfmathfloat@return@float@pgf@two@null@null% \else \def\pgfmath@next{\pgfmath@basic@parsedecimalpoint#1}% \fi \pgfmath@next } % for pgf2.00: \def\pgfmathfloat@return@float@pgf@two@null@null#1]{% \edef\pgfmathresult{\the\c@pgfmath@parsecounta\pgfmathfloat@POSTFLAGSCHAR#1]}% \let\pgfmath@resulttemp=\pgfmathresult \pgfmath@parseoperator% }% % for pgf2.00: \def\pgfmathfloat@endparse@pgf@two@null@null#1\pgfmath@empty{% \pgfmath@processalloperations% \pgfmath@stackpop{\pgfmathresult}% % delete the final unit scalings \pgfmath@smuggleone{\pgfmathresult}% \endgroup% \ignorespaces% } % for pgf2.00: \def\pgfmathfloat@endparsegroup@pgf@two@null@null{% \pgfmath@processalloperations% \pgfmath@stackpop{\pgfmathresult}% % eliminated register usage here... \pgfmath@smuggleone{\pgfmathresult}% \endgroup% \pgfmath@parsepostgroup% } % for pgf2.00: \def\pgfmathfloat@postfunction@pgf@two@null@null{% \let\pgfmath@parsepostgroup\pgfmath@parseoperator% \ifnum\pgfmath@sign1<0 \pgfmathfloatneg@{\pgfmathresult}% \let\pgfmath@sign\pgfutil@empty \fi \pgfmath@parseoperator} % for pgf2.00: \def\pgfmathfloat@@parseoperandgroup{% \let\pgfmath@postparsegroup\pgfmath@parseoperator% \ifnum\pgfmath@sign1<0 \pgfmathfloatneg@{\pgfmathresult}% \let\pgfmath@sign\pgfutil@empty \fi \pgfmath@parseoperator% } % PRECONDITION: % either % e % ^ % -> read the exponent. % or % \pgfmathfloat@POSTFLAGSCHAR % ^ % -> we have a parsed floating point number -> read it. \def\pgfmathfloat@parse@float@or@exponent{% \if\pgfmath@token \pgfmathfloat@POSTFLAGSCHAR% % Ok, we actually HAVE a pre-parsed floating point number! % Return it. \expandafter\pgfmathfloat@return@float\expandafter\pgfmath@token@next \else % We have a standard number in scientific format. Parse it. \expandafter\pgfmath@basic@parse@exponent \fi }% \def\pgfmathfloat@return@float#1]{% \edef\pgfmathresult{\pgfmath@number \pgfmathfloat@POSTFLAGSCHAR#1]}% \expandafter\pgfmath@basic@stack@push@operand\expandafter{\pgfmathresult}% \pgfmath@parse@@operator% }% % This extends the functionality of the basic level operand stack: it % assures every element on the stack is a float. \def\pgfmathfloat@stack@push@operand#1{% \pgfutil@ifnextchar\bgroup{% \let\pgfmathfloat@stack@push@operand@list@=\pgfutil@empty \pgfmathfloat@stack@push@operand@list }{% \pgfmathfloat@stack@push@operand@single }% #1\relax }% \def\pgfmathfloat@stack@push@operand@single#1\relax{% \expandafter\pgfutil@in@\pgfmathfloat@POSTFLAGSCHAR{#1}% \ifpgfutil@in@ \pgfmath@basic@stack@push@operand{#1}% \else \pgfmathfloatparsenumber{#1}% \expandafter\pgfmath@basic@stack@push@operand\expandafter{\pgfmathresult}% \fi }% \def\pgfmathfloat@stack@push@operand@GOBBLE#1\relax{}% \def\pgfmathfloat@stack@push@operand@list#1{% \expandafter\pgfutil@in@ \pgfmathfloat@POSTFLAGSCHAR{#1}% \ifpgfutil@in@ \expandafter\def\expandafter\pgfmathfloat@stack@push@operand@list@\expandafter{% \pgfmathfloat@stack@push@operand@list@{#1}% }% \else \pgfmathfloatparsenumber{#1}% \begingroup \toks0=\expandafter{\pgfmathfloat@stack@push@operand@list@}% \toks1=\expandafter{\pgfmathresult}% \xdef\pgfmathfloat@glob@TMP{\the\toks0 {\the\toks1}}% \endgroup \let\pgfmathfloat@stack@push@operand@list@=\pgfmathfloat@glob@TMP \fi \pgfutil@ifnextchar\relax{% \expandafter\pgfmath@basic@stack@push@operand\expandafter{\pgfmathfloat@stack@push@operand@list@}% \pgfmathfloat@stack@push@operand@GOBBLE }{% \pgfmathfloat@stack@push@operand@list }% }% %%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%% % % --- END --- Hacks to the basic level pgf math engine % %%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%% %%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%% % % Here starts the implementation of the floating point % routines. % % They can be used even if the FPU parser is not active. % %%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%% % Remember the basic math commands. They will be invoked as subroutines in floating point routines. \let\pgfmath@basic@add@=\pgfmathadd@ \let\pgfmath@basic@subtract@=\pgfmathsubtract@ \let\pgfmath@basic@multiply@=\pgfmathmultiply@ \let\pgfmath@basic@divide@=\pgfmathdivide@ \let\pgfmath@basic@abs@=\pgfmathabs@ \let\pgfmath@basic@round@=\pgfmathround@ \let\pgfmath@basic@rand@=\pgfmathrand@ \let\pgfmath@basic@rnd@=\pgfmathrnd@ \let\pgfmath@basic@setseed@=\pgfmathsetseed@ \let\pgfmath@basic@random@=\pgfmathrandom@ \let\pgfmath@basic@floor@=\pgfmathfloor@ \let\pgfmath@basic@ceil@=\pgfmathceil@ \let\pgfmath@basic@mod@=\pgfmathmod@ \let\pgfmath@basic@max@=\pgfmathmax@ \let\pgfmath@basic@min@=\pgfmathmin@ \let\pgfmath@basic@sin@=\pgfmathsin@ \let\pgfmath@basic@cos@=\pgfmathcos@ \let\pgfmath@basic@tan@=\pgfmathtan@ \let\pgfmath@basic@deg@=\pgfmathdeg@ \let\pgfmath@basic@rad@=\pgfmathrad@ \let\pgfmath@basic@atan@=\pgfmathatan@ \let\pgfmath@basic@asin@=\pgfmathasin@ \let\pgfmath@basic@acos@=\pgfmathacos@ \let\pgfmath@basic@cot@=\pgfmathcot@ \let\pgfmath@basic@sec@=\pgfmathsec@ \let\pgfmath@basic@cosec@=\pgfmathcosec@ \let\pgfmath@basic@pow@=\pgfmathpow@ \let\pgfmath@basic@exp@=\pgfmathexp@ \let\pgfmath@basic@ln@=\pgfmathln@ \let\pgfmath@basic@sqrt@=\pgfmathsqrt@ \let\pgfmath@basic@@pi=\pgfmath@pi \let\pgfmath@basic@veclen@=\pgfmathveclen@ \let\pgfmath@basic@e@=\pgfmathe@ \let\pgfmath@basic@lessthan@=\pgfmathlessthan@ \let\pgfmath@basic@greaterthan@=\pgfmathgreaterthan@ \let\pgfmath@basic@equalto@=\pgfmathequalto@ \let\pgfmath@basic@true@=\pgfmathtrue@ \let\pgfmath@basic@false@=\pgfmathfalse@ \def\pgfmathfloatscientific#1#2{% \edef\pgfmathresult{#1e#2}% \expandafter\pgfmathfloatparsenumber\expandafter{\pgfmathresult}% } % Compares #1 with #2 and sets \pgfmathresult either to 1.0 or 0.0. % % It also sets the boolean \ifpgfmathfloatcomparison (globally. \def\pgfmathfloatlessthan@#1#2{% %\def\pgfmathfloatlessthan#1#2#3\and#4#5#6{% \global\pgfmathfloatcomparisonfalse \begingroup \expandafter\pgfmathfloat@decompose#1\relax\pgfmathfloat@a@S\pgfmathfloat@a@M\pgfmathfloat@a@E \expandafter\pgfmathfloat@decompose#2\relax\pgfmathfloat@b@S\pgfmathfloat@b@M\pgfmathfloat@b@E \ifcase\pgfmathfloat@a@S % x = 0 -> (x y >0) \ifnum1=\pgfmathfloat@b@S \global\pgfmathfloatcomparisontrue \fi \or % x > 0 -> (x ( y > 0 && |x| < |y|) ) \ifnum1=\pgfmathfloat@b@S % y>0: \pgfmathfloatlessthan@positive \fi \or % x < 0 -> (x (y >= 0 || |x| > |y|) ) \ifnum2=\pgfmathfloat@b@S % 'y<0': \pgfmathfloatgreaterthan@positive \else \global\pgfmathfloatcomparisontrue \fi \else \pgfmath@error{Sorry, 'pgfmathfloatlessthan@{#1}{#2}' not yet supported.}{}% \fi \endgroup \ifpgfmathfloatcomparison \def\pgfmathresult{1.0}% \else \def\pgfmathresult{0.0}% \fi } \let\pgfmathfloatlessthan=\pgfmathfloatlessthan@ % compares \pgfmathfloat@a@[SME] < \pgfmathfloat@b@[SME] \def\pgfmathfloatlessthan@positive{% \ifnum\pgfmathfloat@a@E<\pgfmathfloat@b@E \global\pgfmathfloatcomparisontrue \else \ifnum\pgfmathfloat@a@E=\pgfmathfloat@b@E \ifdim\pgfmathfloat@a@M<\pgfmathfloat@b@M \global\pgfmathfloatcomparisontrue \fi \fi \fi } % compares \pgfmathfloat@a@[SME] > \pgfmathfloat@b@[SME] \def\pgfmathfloatgreaterthan@positive{% \ifnum\pgfmathfloat@a@E>\pgfmathfloat@b@E \global\pgfmathfloatcomparisontrue \else \ifnum\pgfmathfloat@a@E=\pgfmathfloat@b@E \ifdim\pgfmathfloat@a@M>\pgfmathfloat@b@M \global\pgfmathfloatcomparisontrue \fi \fi \fi } \def\pgfmathfloatgreaterthan@#1#2{\pgfmathfloatlessthan@{#2}{#1}} \let\pgfmathfloatgreaterthan=\pgfmathfloatgreaterthan@ \def\pgfmathfloatmax@#1{% \begingroup \pgfmathfloatcreate{2}{1.0}{2147483644}% \let\pgfmathmaxsofar=\pgfmathresult \pgfmathfloatmax@@#1{}% }% \def\pgfmathfloatmax@@#1{% \def\pgfmath@temp{#1}% \ifx\pgfmath@temp\pgfmath@empty% \expandafter\pgfmathfloatmax@@@% \else% \pgfmathfloatlessthan{\pgfmathmaxsofar}{#1}% \ifpgfmathfloatcomparison \edef\pgfmathmaxsofar{#1}% \fi \expandafter\pgfmathfloatmax@@% \fi% }% \def\pgfmathfloatmax@@@{% \let\pgfmathresult=\pgfmathmaxsofar \pgfmath@smuggleone{\pgfmathresult}% \endgroup }% \def\pgfmathfloatmin@#1{% \begingroup \pgfmathfloatcreate{1}{1.0}{2147483644}% \let\pgfmathminsofar=\pgfmathresult \pgfmathfloatmin@@#1{}% }% \def\pgfmathfloatmin@@#1{% \def\pgfmath@temp{#1}% \ifx\pgfmath@temp\pgfmath@empty% \expandafter\pgfmathfloatmin@@@% \else% \pgfmathfloatlessthan{#1}{\pgfmathminsofar}% \ifpgfmathfloatcomparison \edef\pgfmathminsofar{#1}% \fi \expandafter\pgfmathfloatmin@@% \fi% }% \def\pgfmathfloatmin@@@{% \let\pgfmathresult=\pgfmathminsofar \pgfmath@smuggleone{\pgfmathresult}% \endgroup }% \def\pgfmathfloatmaxtwo#1#2{% \pgfmathfloatlessthan{#1}{#2}% \ifpgfmathfloatcomparison \edef\pgfmathresult{#2}% \else \edef\pgfmathresult{#1}% \fi } \let\pgfmathfloatmax=\pgfmathfloatmaxtwo \def\pgfmathfloatmintwo#1#2{% \pgfmathfloatlessthan{#1}{#2}% \ifpgfmathfloatcomparison \edef\pgfmathresult{#1}% \else \edef\pgfmathresult{#2}% \fi } \let\pgfmathfloatmin=\pgfmathfloatmintwo % Renormalizes #1 to extended precision mantisse, meaning % 100 <= m < 1000 % instead of 1 <= m < 10. % % The 'extended precision' means we have higher accuracy when we apply pgfmath operations to mantisses. % % The input argument is expected to be a normalized floating point number; the output argument is a non-normalized floating point number (well, normalized to extended precision). % % The operation is supposed to be very fast. % % @see \pgfmathfloatsetextprecision % % There is a routine for internal usage, % \pgfmathfloattoextentedprecision@a. It also provides exponent and % sign of #1 in output arguments and may be used to increase speed. \def\pgfmathfloattoextentedprecision#1{% \begingroup \pgfmathfloattoextentedprecision@a{#1}% \pgfmathfloatcreate{\pgfmathfloat@a@S}{\pgfmathresult}{\pgfmathfloat@a@E}% \pgfmath@smuggleone\pgfmathresult \endgroup }% \def\pgfmathfloattoextentedprecision@@zero#1\pgfmathfloat@EOI{% \edef\pgfmathresult{#1}% }% \def\pgfmathfloattoextentedprecision@@one#1.#2#3\pgfmathfloat@EOI{% \edef\pgfmathresult{#1#2.#3}% }% \def\pgfmathfloattoextentedprecision@@two#1.#2#3#4\pgfmathfloat@EOI{% \edef\pgfmathresult{#1#2#3.#4}% }% \def\pgfmathfloattoextentedprecision@@three#1.#2#3#4#5\pgfmathfloat@EOI{% \edef\pgfmathresult{#1#2#3#4.#5}% }% % Sets extended precision to 10^#1. % % The different choices are % % - 0: normalization 0 <= m < 1 (disable extended precision) % - 1: normalization 10 <= m < 100 % - 2: normalization 100 <= m < 1000 (default) % - 3: normalization 1000 <= m < 10000 % % #1 is the exponent, #1 = 0,1,2 or 3. % % This setting applies to \pgfmathfloattoextentedprecision and friends. \def\pgfmathfloatsetextprecision#1{% \ifcase#1\relax \let\pgfmathfloattoextentedprecision@@=\pgfmathfloattoextentedprecision@@zero \def\pgfmathfloatextprec@shift{0}% \or \let\pgfmathfloattoextentedprecision@@=\pgfmathfloattoextentedprecision@@one \def\pgfmathfloatextprec@shift{1}% \or \let\pgfmathfloattoextentedprecision@@=\pgfmathfloattoextentedprecision@@two \def\pgfmathfloatextprec@shift{2}% \else \let\pgfmathfloattoextentedprecision@@=\pgfmathfloattoextentedprecision@@three \def\pgfmathfloatextprec@shift{3}% \fi }% \pgfmathfloatsetextprecision{2}% % Does the "hard" work for \pgfmathfloattoextentedprecision. It % provides additional outputs. % % INPUT: % #1 normalized floating point number. Maybe a macro (it will be expanded ONCE) % % OUTPUT: % - \pgfmathresult : the mantisse in extended precision % - \pgfmathfloat@a@S : the sign of #1 % - \pgfmathfloat@a@E : the exponent of #1, adjusted for extended precision % - \pgfmathfloat@a@Mtok : undefined (its contents will be destroyed. % \def\pgfmathfloattoextentedprecision@a#1{% \expandafter\pgfmathfloat@decompose@tok#1\relax\pgfmathfloat@a@S\pgfmathfloat@a@Mtok\pgfmathfloat@a@E \ifnum\pgfmathfloat@a@S<3 \advance\pgfmathfloat@a@E by-\pgfmathfloatextprec@shift\relax% compensate for shift \expandafter\pgfmathfloattoextentedprecision@@\the\pgfmathfloat@a@Mtok 000\pgfmathfloat@EOI \else \edef\pgfmathresult{#1}% \fi }% % Similar to \pgfmathfloattoextentedprecision@a, this one here fills the '@b' registers. \def\pgfmathfloattoextentedprecision@b#1{% \expandafter\pgfmathfloat@decompose@tok#1\relax\pgfmathfloat@b@S\pgfmathfloat@a@Mtok\pgfmathfloat@b@E \ifnum\pgfmathfloat@b@S<3 \advance\pgfmathfloat@b@E by-\pgfmathfloatextprec@shift\relax \expandafter\pgfmathfloattoextentedprecision@@\the\pgfmathfloat@a@Mtok 00\pgfmathfloat@EOI \else \edef\pgfmathresult{#1}% \fi }% % Addition of two floating point numbers using 8 significant digits. \def\pgfmathfloatadd@#1#2{% \begingroup % % renormalize argument to 100 <= m < 1000 for extended accuracy: \pgfmathfloattoextentedprecision@a{#1}% \let\pgfmathfloat@arga=\pgfmathresult % \pgfmathfloattoextentedprecision@b{#2}% \let\pgfmathfloat@argb=\pgfmathresult % \pgfmathfloatcomparisontrue% re-use this boolean here to handle special cases. \ifcase\pgfmathfloat@a@S \edef\pgfmathresult{#2}% \pgfmathfloatcomparisonfalse \or \or \edef\pgfmathfloat@arga{-\pgfmathfloat@arga}% \else \pgfmathfloatcomparisonfalse \pgfmathfloatcreate{\the\pgfmathfloat@a@S}{0.0}{0}% \fi \ifcase\pgfmathfloat@b@S \edef\pgfmathresult{#1}% \pgfmathfloatcomparisonfalse \or \or \edef\pgfmathfloat@argb{-\pgfmathfloat@argb}% \else \pgfmathfloatcomparisonfalse \pgfmathfloatcreate{\the\pgfmathfloat@b@S}{0.0}{0}% \fi \ifpgfmathfloatcomparison % Shift lesser mantisse to fit the larger one: \ifnum\pgfmathfloat@a@E<\pgfmathfloat@b@E \pgfmathfloatadd@shift{\pgfmathfloat@arga}{\pgfmathfloat@a@E}{\pgfmathfloat@b@E}% \else \pgfmathfloatadd@shift{\pgfmathfloat@argb}{\pgfmathfloat@b@E}{\pgfmathfloat@a@E}% \fi % add them! \pgfmath@basic@add@{\pgfmathfloat@arga}{\pgfmathfloat@argb}% % renormalize sum. This is the only part were an expensive routine comes into play: \edef\pgfmathresult{\pgfmathresult e\the\pgfmathfloat@a@E}% \expandafter\pgfmathfloatqparsenumber\expandafter{\pgfmathresult}% \fi \pgfmath@smuggleone\pgfmathresult \endgroup }% % #1= floating point number % #2= TeX code to execute if #1 == 0 % #3= TeX code to execute if #1 != 0 \def\pgfmathfloatifzero#1#2#3{% \expandafter\pgfmathfloat@decompose@F#1\relax\pgfmathfloat@a@S \ifnum\pgfmathfloat@a@S=0 #2\else#3\fi }% % #1=mantisse which needs to be shifted (with smaller exponent) % #2=smaller exponent % #3=larger exponent % % ATTENTION: this helper method DESTROYS contents of \pgfmathfloat@a@S. \def\pgfmathfloatadd@shift#1#2#3{% \pgf@xa=#1 pt% \pgfmathfloat@a@S=#3\relax \advance\pgfmathfloat@a@S by-#2\relax \ifcase\pgfmathfloat@a@S \or \divide\pgf@xa by10\relax \or \divide\pgf@xa by100\relax \or \divide\pgf@xa by1000\relax \or \divide\pgf@xa by10000\relax \or \divide\pgf@xa by10000\relax \divide\pgf@xa by10\relax \or \divide\pgf@xa by10000\relax \divide\pgf@xa by100\relax \or \divide\pgf@xa by10000\relax \divide\pgf@xa by1000\relax \or \divide\pgf@xa by10000\relax \divide\pgf@xa by10000\relax \else \pgf@xa=0pt% \fi #2=#3\relax \edef#1{\pgf@sys@tonumber\pgf@xa}% } \let\pgfmathfloatadd=\pgfmathfloatadd@ % Subtracts two floating point numbers. \def\pgfmathfloatsubtract@#1#2{% \begingroup \expandafter\pgfmathfloat@decompose@tok#2\relax\pgfmathfloat@b@S\pgfmathfloat@a@Mtok\pgfmathfloat@b@E \ifcase\pgfmathfloat@b@S \edef\pgfmathresult{#1}% \or \pgfmathfloatcreate{2}{\the\pgfmathfloat@a@Mtok}{\the\pgfmathfloat@b@E}% \let\pgfmathfloatsub@arg=\pgfmathresult \pgfmathfloatadd@{#1}{\pgfmathfloatsub@arg}% \or \pgfmathfloatcreate{1}{\the\pgfmathfloat@a@Mtok}{\the\pgfmathfloat@b@E}% \let\pgfmathfloatsub@arg=\pgfmathresult \pgfmathfloatadd@{#1}{\pgfmathfloatsub@arg}% \else \pgfmathfloatcreate{\the\pgfmathfloat@b@S}{0.0}{0}% \fi \pgfmath@smuggleone\pgfmathresult \endgroup }% \let\pgfmathfloatsubtract=\pgfmathfloatsubtract@ % Scales a floating point number #1 with a fixed point number #2 using pgfmathmultiply. % % Use this method if #2 is small number. \def\pgfmathfloatmultiplyfixed@#1#2{% \begingroup % % renormalize argument to 100 <= m < 1000 for extended accuracy: \pgfmathfloattoextentedprecision@a{#1}% \let\pgfmathfloat@arga=\pgfmathresult % \pgfmathfloatcomparisontrue% re-use this boolean here to handle special cases. \ifcase\pgfmathfloat@a@S \edef\pgfmathresult{#1}% \pgfmathfloatcomparisonfalse \or \or \edef\pgfmathfloat@arga{-\pgfmathfloat@arga}% \else \pgfmathfloatcomparisonfalse \pgfmathfloatcreate{\the\pgfmathfloat@a@S}{0.0}{0}% \fi \ifpgfmathfloatcomparison \pgfmath@basic@multiply@{\pgfmathfloat@arga}{#2}% % renormalize product. This is the only part were an expensive routine comes into play: \edef\pgfmathresult{\pgfmathresult e\the\pgfmathfloat@a@E}% \expandafter\pgfmathfloatqparsenumber\expandafter{\pgfmathresult}% \fi \pgfmath@smuggleone\pgfmathresult \endgroup }% \let\pgfmathfloatmultiplyfixed=\pgfmathfloatmultiplyfixed@ \def\pgfmathfloatmultiply@#1#2{% \begingroup \pgfmathfloatsetextprecision{1}% \edef\pgfmathfloat@arga{#1}% \pgfmathfloattoextentedprecision@a{\pgfmathfloat@arga}% \let\pgfmathfloat@arga=\pgfmathresult % \edef\pgfmathfloat@argb{#2}% \pgfmathfloattoextentedprecision@b{\pgfmathfloat@argb}% \let\pgfmathfloat@argb=\pgfmathresult % \pgfmathfloatcomparisontrue% re-use this boolean here to handle special cases. \ifcase\pgfmathfloat@a@S % 0 \pgfmathfloatcreate{0}{0.0}{0}% \pgfmathfloatcomparisonfalse \or% + \ifcase\pgfmathfloat@b@S \pgfmathfloatcreate{0}{0.0}{0}% \pgfmathfloatcomparisonfalse \or \def\pgfmathresult@S{1}% \or \def\pgfmathresult@S{2}% \else \expandafter\pgfmathfloatcreate\the\pgfmathfloat@b@S{0.0}{0}% \pgfmathfloatcomparisonfalse \fi \or% - \ifcase\pgfmathfloat@b@S \pgfmathfloatcreate{0}{0.0}{0}% \pgfmathfloatcomparisonfalse \or \def\pgfmathresult@S{2}% \or \def\pgfmathresult@S{1}% \or \pgfmathfloatcreate{3}{0.0}{0}% \pgfmathfloatcomparisonfalse \or \pgfmathfloatcreate{5}{0.0}{0}% \pgfmathfloatcomparisonfalse \or \pgfmathfloatcreate{4}{0.0}{0}% \pgfmathfloatcomparisonfalse \fi \or% nan \pgfmathfloatcreate{3}{0.0}{0}% \pgfmathfloatcomparisonfalse \or% +infty \ifcase\pgfmathfloat@b@S \pgfmathfloatcreate{0}{0.0}{0}% \pgfmathfloatcomparisonfalse \or \pgfmathfloatcreate{4}{0.0}{0}% \pgfmathfloatcomparisonfalse \or \pgfmathfloatcreate{5}{0.0}{0}% \pgfmathfloatcomparisonfalse \or \pgfmathfloatcreate{3}{0.0}{0}% \pgfmathfloatcomparisonfalse \or \pgfmathfloatcreate{4}{0.0}{0}% \pgfmathfloatcomparisonfalse \or \pgfmathfloatcreate{5}{0.0}{0}% \pgfmathfloatcomparisonfalse \fi \or% -infty \ifcase\pgfmathfloat@b@S \pgfmathfloatcreate{0}{0.0}{0}% \pgfmathfloatcomparisonfalse \or \pgfmathfloatcreate{5}{0.0}{0}% \pgfmathfloatcomparisonfalse \or \pgfmathfloatcreate{4}{0.0}{0}% \pgfmathfloatcomparisonfalse \or \pgfmathfloatcreate{3}{0.0}{0}% \pgfmathfloatcomparisonfalse \or \pgfmathfloatcreate{5}{0.0}{0}% \pgfmathfloatcomparisonfalse \or \pgfmathfloatcreate{4}{0.0}{0}% \pgfmathfloatcomparisonfalse \fi \fi \ifpgfmathfloatcomparison \pgfmath@basic@multiply@{\pgfmathfloat@arga}{\pgfmathfloat@argb}% \advance\pgfmathfloat@a@E by\pgfmathfloat@b@E % renormalize sum. This is the only part were an expensive routine comes into play: \edef\pgfmathresult{\pgfmathresult e\the\pgfmathfloat@a@E}% \expandafter\pgfmathfloatqparsenumber\expandafter{\pgfmathresult}% \expandafter\pgfmathfloat@decompose@tok\pgfmathresult\relax\pgfmathfloat@a@S\pgfmathfloat@a@Mtok\pgfmathfloat@a@E \pgfmathfloatcreate{\pgfmathresult@S}{\the\pgfmathfloat@a@Mtok}{\the\pgfmathfloat@a@E}% \fi \pgfmath@smuggleone\pgfmathresult \endgroup }% \let\pgfmathfloatmultiply=\pgfmathfloatmultiply@ % Defines \pgfmathresult to be #1 / #2 for two floating point numbers. % % It employs the basic math engine internally to divide mantissas. \def\pgfmathfloatdivide@#1#2{% \begingroup \pgfmathfloatsetextprecision{1}% is not too important, I think. After all, 0.1 <= #1/#2 < 10 or so due to normalization (no matter, which) \edef\pgfmathfloat@arga{#1}% \pgfmathfloattoextentedprecision@a{\pgfmathfloat@arga}% \let\pgfmathfloat@arga=\pgfmathresult % \edef\pgfmathfloat@argb{#2}% \pgfmathfloattoextentedprecision@b{\pgfmathfloat@argb}% \let\pgfmathfloat@argb=\pgfmathresult % \pgfmathfloatcomparisontrue% re-use this boolean here to handle special cases. \ifcase\pgfmathfloat@a@S % 0 \pgfmathfloatcreate{0}{0.0}{0}% \pgfmathfloatcomparisonfalse \or% + \ifcase\pgfmathfloat@b@S \pgfmathfloatcreate{4}{0.0}{0}% \pgfmathfloatcomparisonfalse \or \def\pgfmathresult@S{1}% \or \def\pgfmathresult@S{2}% \or \pgfmathfloatcreate{3}{0.0}{0}% \pgfmathfloatcomparisonfalse \else \pgfmathfloatcreate{0}{0.0}{0}% \pgfmathfloatcomparisonfalse \fi \or% - \ifcase\pgfmathfloat@b@S \pgfmathfloatcreate{5}{0.0}{0}% \pgfmathfloatcomparisonfalse \or \def\pgfmathresult@S{2}% \or \def\pgfmathresult@S{1}% \or \pgfmathfloatcreate{3}{0.0}{0}% \pgfmathfloatcomparisonfalse \else \pgfmathfloatcreate{0}{0.0}{0}% \pgfmathfloatcomparisonfalse \fi \or% nan \pgfmathfloatcreate{3}{0.0}{0}% \pgfmathfloatcomparisonfalse \or% +infty \ifcase\pgfmathfloat@b@S \pgfmathfloatcreate{4}{0.0}{0}% \pgfmathfloatcomparisonfalse \or \pgfmathfloatcreate{4}{0.0}{0}% \pgfmathfloatcomparisonfalse \or \pgfmathfloatcreate{5}{0.0}{0}% \pgfmathfloatcomparisonfalse \or \pgfmathfloatcreate{3}{0.0}{0}% \pgfmathfloatcomparisonfalse \or \pgfmathfloatcreate{4}{0.0}{0}% what is inf/inf ? \pgfmathfloatcomparisonfalse \or \pgfmathfloatcreate{5}{0.0}{0}% or inf/-inf ? \pgfmathfloatcomparisonfalse \fi \or% -infty \ifcase\pgfmathfloat@b@S \pgfmathfloatcreate{5}{0.0}{0}% \pgfmathfloatcomparisonfalse \or \pgfmathfloatcreate{5}{0.0}{0}% \pgfmathfloatcomparisonfalse \or \pgfmathfloatcreate{4}{0.0}{0}% \pgfmathfloatcomparisonfalse \or \pgfmathfloatcreate{3}{0.0}{0}% \pgfmathfloatcomparisonfalse \or \pgfmathfloatcreate{5}{0.0}{0}% \pgfmathfloatcomparisonfalse \or \pgfmathfloatcreate{4}{0.0}{0}% \pgfmathfloatcomparisonfalse \fi \fi \ifpgfmathfloatcomparison \pgfmath@basic@divide@{\pgfmathfloat@arga}{\pgfmathfloat@argb}% \advance\pgfmathfloat@a@E by-\pgfmathfloat@b@E % renormalize. This is the only part were an expensive float routine comes into play: \edef\pgfmathresult{\pgfmathresult e\the\pgfmathfloat@a@E}% \expandafter\pgfmathfloatqparsenumber\expandafter{\pgfmathresult}% % And re-insert the proper sign: \expandafter\pgfmathfloat@decompose@tok\pgfmathresult\relax\pgfmathfloat@a@S\pgfmathfloat@a@Mtok\pgfmathfloat@a@E \pgfmathfloatcreate{\pgfmathresult@S}{\the\pgfmathfloat@a@Mtok}{\the\pgfmathfloat@a@E}% \fi \pgfmath@smuggleone\pgfmathresult \endgroup }% \let\pgfmathfloatdivide=\pgfmathfloatdivide@ \def\pgfmathfloatreciprocal@#1{% \begingroup % FIXME optimize \edef\pgfmathfloat@loc@TMPa{#1}% \pgfmathfloatcreate{1}{1.0}{0}% \pgfmathfloatdivide@{\pgfmathresult}{\pgfmathfloat@loc@TMPa}% \pgfmath@smuggleone\pgfmathresult \endgroup }% % Computes sqrt(#1) in floating point arithmetics. % % It employs sqrt( m * 10^e ) = sqrt(m) * sqrt(10^e). \def\pgfmathfloatsqrt@#1{% \begingroup \pgfmathfloatsetextprecision{3}% \edef\pgfmathfloat@arga{#1}% \pgfmathfloattoextentedprecision@a{\pgfmathfloat@arga}% \let\pgfmathfloat@arga=\pgfmathresult % \ifcase\pgfmathfloat@a@S % 0 \pgfmathfloatcreate{0}{0.0}{0}% \or% + \pgfmath@basic@sqrt@{\pgfmathfloat@arga}% \ifodd\pgfmathfloat@a@E \ifnum\pgfmathfloat@a@E>0 \expandafter\pgfmath@basic@multiply@\expandafter{\pgfmathresult}{3.16227766}% * sqrt(10) \else \expandafter\pgfmath@basic@multiply@\expandafter{\pgfmathresult}{0.316227766}% * sqrt(0.1) \fi \fi \divide\pgfmathfloat@a@E by2 % sqrt(10^e) = 10^{e/2} (see above for odd e) % renormalize sum. This is the only part were an expensive routine comes into play: \edef\pgfmathfloat@arga{\pgfmathresult e\the\pgfmathfloat@a@E}% \pgfmathfloatqparsenumber{\pgfmathfloat@arga}% \or% - \pgfmathfloatcreate{3}{0.0}{0}% \or% nan \pgfmathfloatcreate{3}{0.0}{0}% \or% +infty \pgfmathfloatcreate{4}{0.0}{0}% \or% -infty \pgfmathfloatcreate{3}{0.0}{0}% \fi \pgfmath@smuggleone\pgfmathresult \endgroup }% \let\pgfmathfloatsqrt=\pgfmathfloatsqrt@ % Returns the integer part of the floating point number #1. % % The result is returned as floating point as well. % % This operation is not limited to TeX's range of count registers (it % works symbolly) \def\pgfmathfloatint@#1{% \begingroup \edef\pgfmathresult{#1}% \expandafter\pgfmathfloat@decompose@tok\pgfmathresult\relax\pgfmathfloat@a@S\pgfmathfloat@a@Mtok\pgfmathfloat@a@E \ifcase\pgfmathfloat@a@S % 0: nothing to do. \or% + \expandafter\pgfmathfloatint@@\the\pgfmathfloat@a@Mtok\pgfmathfloat@EOI \pgfmathfloatcreate{\the\pgfmathfloat@a@S}{\the\pgfmathfloat@a@Mtok}{\the\pgfmathfloat@a@E}% \or% - \expandafter\pgfmathfloatint@@\the\pgfmathfloat@a@Mtok\pgfmathfloat@EOI \pgfmathfloatcreate{\the\pgfmathfloat@a@S}{\the\pgfmathfloat@a@Mtok}{\the\pgfmathfloat@a@E}% \else % nothing to do \fi \pgfmath@smuggleone\pgfmathresult \endgroup }% \def\pgfmathfloatint@@#1.{% \ifnum\pgfmathfloat@a@E<0 \pgfmathfloat@a@S=0 \pgfmathfloat@a@Mtok={0.0}% \pgfmathfloat@a@E=0 \expandafter\pgfmathfloatint@@loop@gobble \else \pgfmathfloat@a@Mtok={#1.}% \pgfmathfloat@b@E=\pgfmathfloat@a@E \expandafter\pgfmathfloatint@@loop \fi }% \def\pgfmathfloatint@@loop#1{% \def\pgfmathfloatint@@loop@{#1}% \ifx\pgfmathfloatint@@loop@\pgfmathfloat@EOI \let\pgfmathfloatint@@loop@next=\relax \else \ifnum\pgfmathfloat@b@E=0 \let\pgfmathfloatint@@loop@next=\pgfmathfloatint@@loop@gobble \else \pgfmathfloat@a@Mtok=\expandafter{\the\pgfmathfloat@a@Mtok#1}% \advance\pgfmathfloat@b@E by-1 \let\pgfmathfloatint@@loop@next=\pgfmathfloatint@@loop \fi \fi \pgfmathfloatint@@loop@next }% \def\pgfmathfloatint@@loop@gobble#1\pgfmathfloat@EOI{}% \let\pgfmathfloatint=\pgfmathfloatint@ \let\pgfmathfloatfloor=\pgfmathfloatint \let\pgfmathfloatfloor@=\pgfmathfloatint@ \def\pgfmathfloat@notimplemented#1{% \pgfmath@error{Sorry, the operation '#1' has not yet been implemented in the floating point unit :-(}{}% \pgfmathfloatcreate{0}{0.0}{0}% }% % Divides or multiplies the input number by 10^#4 using an arithmetic % left/right shift. % % Input: % #1 a normalised floating point number. % #2 a positive or negative integer number denoting the shift. % % Example: % \pgfmathfloatshift{11e3}{4}% % -> pgfmathresult = 11e7 \def\pgfmathfloatshift@#1#2{% \begingroup \expandafter\pgfmathfloat@decompose@tok#1\relax\pgfmathfloat@a@S\pgfmathfloat@a@Mtok\pgfmathfloat@a@E \advance\pgfmathfloat@a@E by#2\relax \pgfmathfloatcreate{\the\pgfmathfloat@a@S}{\the\pgfmathfloat@a@Mtok}{\the\pgfmathfloat@a@E}% \pgfmath@smuggleone\pgfmathresult \endgroup } \let\pgfmathfloatshift=\pgfmathfloatshift@ % Defines \pgfmathresult to be |#1|, the absolute value of the % normalized floating point number #1. \def\pgfmathfloatabs@#1{% \begingroup \expandafter\pgfmathfloat@decompose@tok#1\relax\pgfmathfloat@a@S\pgfmathfloat@a@Mtok\pgfmathfloat@a@E \ifcase\pgfmathfloat@a@S % 0: do nothing. \or % +: ok, is positive. \or % -: multiply with -1: \pgfmathfloat@a@S=1 \or % nan: do nothing. \or % +infty: ok. \or % -infty: multiply with -1: \pgfmathfloat@a@S=4 \fi \pgfmathfloatcreate{\the\pgfmathfloat@a@S}{\the\pgfmathfloat@a@Mtok}{\the\pgfmathfloat@a@E}% \pgfmath@smuggleone\pgfmathresult \endgroup }% \let\pgfmathfloatabs=\pgfmathfloatabs@ % Computes the absolute error |#1 - #2| into \pgfmathresult. \def\pgfmathfloatabserror@#1#2{% \pgfmathfloatsubtract@{#1}{#2}% \pgfmathfloatabs@{\pgfmathresult}% }% \let\pgfmathfloatabserror=\pgfmathfloatabserror@ % Computes the relative error |#1 - #2|/|#2| into \pgfmathresult, % assuming #2 != 0. \def\pgfmathfloatrelerror@#1#2{% \pgfmathfloatsubtract@{#1}{#2}% \pgfmathfloatdivide@{\pgfmathresult}{#2}% \pgfmathfloatabs@{\pgfmathresult}% }% \let\pgfmathfloatrelerror=\pgfmathfloatrelerror@ % Computes \pgfmathresult = #1 mod #2 using truncated division. % \def\pgfmathfloatmod@#1#2{% \begingroup \pgfmathfloatdivide@{#1}{#2}% \pgfmathfloatint@{\pgfmathresult}% \let\pgfmathfloat@loc@TMPa=\pgfmathresult \pgfmathfloatmultiply@{\pgfmathfloat@loc@TMPa}{#2}% \let\pgfmathfloat@loc@TMPb=\pgfmathresult \pgfmathfloatsubtract@{#1}{\pgfmathfloat@loc@TMPb}% \pgfmath@smuggleone\pgfmathresult \endgroup } \let\pgfmathfloatmod=\pgfmathfloatmod@ % A modification of \pgfmathfloatmod@ where #3 = 1/#2 is already % known. This may be faster. \def\pgfmathfloatmodknowsinverse@#1#2#3{% \begingroup \pgfmathfloatmultiply@{#1}{#3}% \pgfmathfloatint@{\pgfmathresult}% \let\pgfmathfloat@loc@TMPa=\pgfmathresult \pgfmathfloatmultiply@{\pgfmathfloat@loc@TMPa}{#2}% \let\pgfmathfloat@loc@TMPb=\pgfmathresult \pgfmathfloatsubtract@{#1}{\pgfmathfloat@loc@TMPb}% \pgfmath@smuggleone\pgfmathresult \endgroup } \let\pgfmathfloatmodknowsinverse=\pgfmathfloatmodknowsinverse@ \def\pgfmathfloatpi@{% \pgfmathfloatcreate{1}{3.14159265358979}{0}% }% \let\pgfmathfloatpi=\pgfmathfloatpi@ \def\pgfmathfloate@{% \pgfmathfloatcreate{1}{2.71828182845905}{0}% } \let\pgfmathfloate=\pgfmathfloate@ % Converts #1 from radians to degrees. \def\pgfmathfloatdeg@#1{% \expandafter\ifx\csname pgfmfltdeg@factor\endcsname\relax % Lazy evaluation: \pgfmathfloatcreate{1}{5.72957795130823}{1}% \global\let\pgfmfltdeg@factor=\pgfmathresult \fi \pgfmathfloatmultiply@{#1}\pgfmfltdeg@factor% } \let\pgfmathfloatdeg=\pgfmathfloatdeg@ % Converts #1 from degree to radians. \def\pgfmathfloatrad@#1{% \expandafter\ifx\csname pgfmfltrad@factor\endcsname\relax % Lazy evaluation: \pgfmathfloatcreate{1}{1.74532925199433}{-2}% \global\let\pgfmfltrad@factor=\pgfmathresult \fi \pgfmathfloatmultiply@{#1}\pgfmfltrad@factor% } \let\pgfmathfloatrad=\pgfmathfloatrad@ % Computes #1(#2) where #1 is a trigonometric function, i.e. % #1(#2) = #1( #2 + r*360 ) % % #1 is a one-argument macro which assigns \pgfmathresult. \def\pgfmathfloatTRIG@#1#2{% \expandafter\ifx\csname pgfmathfloatTRIG@NUM\endcsname\relax% why not directly!??? Did not work!?? % Lazy evaluation: \pgfmathfloatcreate{1}{3.6}{2}% \global\let\pgfmathfloatTRIG@NUM=\pgfmathresult \pgfmathfloatcreate{1}{2.77777777777778}{-3}% \global\let\pgfmathfloatTRIG@NUM@INV=\pgfmathresult \fi \pgfmathfloatmodknowsinverse@{#2}{\pgfmathfloatTRIG@NUM}{\pgfmathfloatTRIG@NUM@INV}% \pgfmathfloattofixed@{\pgfmathresult}% \expandafter#1\expandafter{\pgfmathresult}% \pgfmathfloatparsenumber{\pgfmathresult}% }% \def\pgfmathfloatsin@#1{\pgfmathfloatTRIG@\pgfmath@basic@sin@{#1}} \let\pgfmathfloatsin=\pgfmathfloatsin@ \def\pgfmathfloatcos@#1{\pgfmathfloatTRIG@\pgfmath@basic@cos@{#1}} \let\pgfmathfloatcos=\pgfmathfloatcos@ \def\pgfmathfloattan@#1{% % compute sin(#1) / cos(#1) \begingroup \pgfmathfloatcos@{#1}% \let\pgfmathfloat@loc@TMPa=\pgfmathresult \pgfmathfloatsin@{#1}% \expandafter\pgfmathfloatdivide@\expandafter{\pgfmathresult}{\pgfmathfloat@loc@TMPa}% \pgfmath@smuggleone\pgfmathresult \endgroup } \let\pgfmathfloattan=\pgfmathfloattan@ \def\pgfmathfloatcot@#1{% % compute cos(#1) / sin(#1) \begingroup \pgfmathfloatsin@{#1}% \let\pgfmathfloat@loc@TMPa=\pgfmathresult \pgfmathfloatcos@{#1}% \expandafter\pgfmathfloatdivide@\expandafter{\pgfmathresult}{\pgfmathfloat@loc@TMPa}% \pgfmath@smuggleone\pgfmathresult \endgroup }% \let\pgfmathfloatcot=\pgfmathfloatcot@ \def\pgfmathfloatatan@#1{% \begingroup \expandafter\ifx\csname pgfmathfloatatan@TMP\endcsname\relax% why not directly!??? Did not work!?? \pgfmathfloatcreate{1}{1.6}{4}% \global\let\pgfmathfloatatan@TMP=\pgfmathresult \pgfmathfloatcreate{2}{1.6}{4}% \global\let\pgfmathfloatatan@TMPB=\pgfmathresult \fi \pgfmathfloatgreaterthan@{#1}{\pgfmathfloatatan@TMP}% \ifpgfmathfloatcomparison \pgfmathfloatcreate{1}{9.0}{1}% \else \pgfmathfloatlessthan{#1}{\pgfmathfloatatan@TMPB}% \ifpgfmathfloatcomparison \pgfmathfloatcreate{2}{9.0}{1}% \else \pgfmathfloattofixed@{#1}% \expandafter\pgfmath@basic@atan@\expandafter{\pgfmathresult}% \pgfmathfloatparsenumber{\pgfmathresult}% \fi \fi \pgfmath@smuggleone\pgfmathresult \endgroup }% \let\pgfmathfloatatan=\pgfmathfloatatan@ \def\pgfmathfloatsec@#1{\pgfmathfloatTRIG@\pgfmath@basic@cos@{#1}\pgfmathfloatreciprocal@{\pgfmathresult}} \let\pgfmathfloatsec=\pgfmathfloatsec@ \def\pgfmathfloatcosec@#1{\pgfmathfloatTRIG@\pgfmath@basic@sin@{#1}\pgfmathfloatreciprocal@{\pgfmathresult}} \let\pgfmathfloatcosec=\pgfmathfloatcosec@ % Expands #2 using \edef and invokes #1 with the resulting string. % % DEPRECATED % Example: % \pgfmath@y=7.9pt % \pgfmathlog@invoke@expanded\pgfmathexp@{{\pgf@sys@tonumber{\pgfmath@y}}}% % will invoke % \pgfmathexp@{7.9} \def\pgfmathlog@invoke@expanded#1#2{% \edef\pgfmath@resulttemp{#2}% \expandafter#1\pgfmath@resulttemp } \def\pgfmathfloatln@#1{% \pgfmathlog@float{#1}% \ifx\pgfmathresult\pgfutil@empty \pgfmathfloatcreate{3}{0.0}{0}% \else \pgfmathfloatparsenumber{\pgfmathresult}% \fi } \let\pgfmathfloatln=\pgfmathfloatln@ % Computes log(x) into \pgfmathresult. % % This allows numbers such at 10000000 or 5.23e-10 to be represented % properly, although TeX-registers would produce overflow/underflow % errors in these cases. % % The natural logarithm is computed using log(X*10^Y) = log(X) + log(10)*Y % % FIXME This routine is only kept for backwards compatibility! % It does not work as expected because % 1. it calls \pgfmathfloatparsenumber % 2. it returns the result as fixed point number % Use \pgfmathln@ instead! \def\pgfmathlog@#1{% \pgfmathfloatparsenumber{#1}% \pgfmathlog@float{\pgfmathresult}% } \let\pgfmathlog=\pgfmathlog@ \def\pgfmathlog@float#1{% \begingroup% % compute #1 = M*10^E with normalised mantisse M = [+-]*[1-9].XXXXX \expandafter\pgfmathfloat@decompose@tok#1\relax\pgfmathfloat@a@S\pgfmathfloat@a@Mtok\pgfmathfloat@a@E \ifnum\pgfmathfloat@a@S=1 % Now, compute log(#1) = log(M) + E*log(10) \expandafter\pgfmath@basic@ln@\expandafter{\the\pgfmathfloat@a@Mtok}% \pgfmathfloat@b@M=\pgfmathresult pt% \pgfmathfloat@a@M=2.302585pt% = log(10) \multiply\pgfmathfloat@a@M by\pgfmathfloat@a@E\relax \advance\pgfmathfloat@b@M by\pgfmathfloat@a@M \edef\pgfmathresult{\pgf@sys@tonumber{\pgfmathfloat@b@M}}% \else \let\pgfmathresult=\pgfutil@empty% \fi \pgfmath@smuggleone\pgfmathresult \endgroup% } % Computes exp(#1) in floating point. % % The algorithm employs the identity % exp(x) = exp(x - log(10^k) + log(10^k) % = 10^k exp( x - k*log 10 ) % with k choosen such that exp( x - k*log10) can be computed with the % basic level math engine. % % The precision (relative error) is between 10^{-4} and 10^{-6}. For % #1 = 700, it is even 10^{-3}. I will need to improve that someday. \def\pgfmathfloatexp@#1{% \begingroup \expandafter\pgfmathfloat@decompose@tok#1\relax\pgfmathfloat@a@S\pgfmathfloat@a@Mtok\pgfmathfloat@a@E \ifcase\pgfmathfloat@a@S % #1 = 0: \pgfmathfloatcreate{1}{1.0}{0}% \or% #1 > 0 \pgfmathfloatexp@@{#1}% \or% #1 < 0 \pgfmathfloatexp@@{#1}% \else \edef\pgfmathresult{#1}% \fi \pgfmath@smuggleone\pgfmathresult \endgroup }% \def\pgfmathfloatexp@@#1{% % Employ the identity % exp(x) = exp(x - log(10^k) + log(10^k)) = 10^k exp( x - k *log(10)) % % I'd like to have x - k*log(10) <= 1 % => compute k := int( (x - 1) * 1/log(10) ) % that should suffice since \pgfmathexp@ should be % accurate enough for those numbers. % % please note that we can do all this in TeX registers. % exp(700) is almost the maximum of double precision % anyway, and exp(16000) is certainly the largest we will % ever need. \pgfmathfloattofixed@{#1}% \pgf@xa=\pgfmathresult pt \pgf@xa=0.434294481\pgf@xa\relax \edef\pgfmathfloat@loc@TMPa{\pgf@sys@tonumber{\pgf@xa}}% \expandafter\pgfmathfloatexp@@toint\pgfmathfloat@loc@TMPa\relax \pgf@xa=2.302585092pt \multiply\pgf@xa by-\pgfmathfloat@k\relax \advance\pgf@xa by\pgfmathresult pt \edef\pgfmathfloat@loc@TMPa{\pgf@sys@tonumber{\pgf@xa}}% %\message{computing exp(\pgfmathresult) = 10^\pgfmathfloat@k * exp(\pgfmathfloat@loc@TMPa)...}% \pgfmath@basic@exp@{\pgfmathfloat@loc@TMPa}% \let\pgfmathfloat@loc@TMPa=\pgfmathresult \pgfmathfloatparsenumber{\pgfmathfloat@loc@TMPa}% \let\pgfmathfloat@loc@TMPa=\pgfmathresult \pgfmathfloatshift@{\pgfmathfloat@loc@TMPa}{\pgfmathfloat@k}% } % determine 'k'. This is a heuristics. The exponential series % converges best for |x| <= 1. However, the fixed point arithmetics % for tex results in best results for large |x|. Well, I'll need to % tune this here. \def\pgfmathfloatexp@@toint#1.#2\relax{% \c@pgf@counta=#1\relax \ifnum\c@pgf@counta<0 \advance\c@pgf@counta by-1 % FIXME . this is a test for optimizations. \c@pgf@countb=#2\relax \ifnum\c@pgf@countb>0 \advance\c@pgf@counta by-1 \fi \fi \edef\pgfmathfloat@k{\the\c@pgf@counta}% }% \let\pgfmathfloatexp=\pgfmathfloatexp@ \def\pgfmathfloatround@#1{% \begingroup \pgfkeysvalueof{/pgf/number format/precision/.@cmd}0\pgfeov \pgfmathfloattofixed{#1}% \pgfmathroundto{\pgfmathresult}% \pgfmathfloatparsenumber{\pgfmathresult}% \pgfmath@smuggleone\pgfmathresult \endgroup }% \def\pgfmathfloatneg@#1{% \begingroup \expandafter\pgfmathfloat@decompose@tok#1\relax\pgfmathfloat@a@S\pgfmathfloat@a@Mtok\pgfmathfloat@a@E \ifcase\pgfmathfloat@a@S\relax % 0: \edef\pgfmathresult{#1}% \or % +: \pgfmathfloatcreate{2}{\the\pgfmathfloat@a@Mtok}{\the\pgfmathfloat@a@E}% \or % -: \pgfmathfloatcreate{1}{\the\pgfmathfloat@a@Mtok}{\the\pgfmathfloat@a@E}% \or % nan: \edef\pgfmathresult{#1}% \or % +infty: \pgfmathfloatcreate{5}{\the\pgfmathfloat@a@Mtok}{\the\pgfmathfloat@a@E}% \or % -infty: \pgfmathfloatcreate{4}{\the\pgfmathfloat@a@Mtok}{\the\pgfmathfloat@a@E}% \fi \pgfmath@smuggleone\pgfmathresult \endgroup }% \def\pgfmathfloatpow@#1#2{% \begingroup% \expandafter\pgfmathfloat@decompose@tok#2\relax\pgfmathfloat@a@S\pgfmathfloat@a@Mtok\pgfmathfloat@a@E \ifcase\pgfmathfloat@a@S\relax % #1 ^ 0 = 1 \pgfmathfloatcreate{1}{1.0}{0}% \or % #2 > 0 \pgfmathfloatpow@@{#1}{#2}% \or % #2 < 0 \pgfmathfloatpow@@{#1}{#2}% \or % #2 = nan \edef\pgfmathresult{#2}% \or % #2 = inf \edef\pgfmathresult{#2}% \or % #2 = -inf \pgfmathfloatcreate{0}{0.0}{0}% \fi \pgfmath@smuggleone\pgfmathresult \endgroup }% % computes #1^#2 % PRECONDITIONS % - #2 is positive. \def\pgfmathfloatpow@@#1#2{% \pgfmathfloattofixed@{#2}% \afterassignment\pgfmath@x% \expandafter\c@pgfmath@counta\pgfmathresult pt\relax% \ifdim\pgfmath@x=0pt % % loop "manually"; we have an integer exponent! \ifnum\c@pgfmath@counta<0 \pgfmathfloatreciprocal@{#1}% \let\pgfmathfloat@loc@TMPa=\pgfmathresult \c@pgfmath@counta=-\c@pgfmath@counta \else \edef\pgfmathfloat@loc@TMPa{#1}% \fi \pgfmathfloatcreate{1}{1.0}{0}% \let\pgfmathfloat@loc@TMPb=\pgfmathresult \pgfmathloop \ifnum\c@pgfmath@counta>0\relax% \ifodd\c@pgfmath@counta% \pgfmathfloatmultiply@{\pgfmathfloat@loc@TMPb}{\pgfmathfloat@loc@TMPa}% \let\pgfmathfloat@loc@TMPb=\pgfmathresult \fi \ifnum\c@pgfmath@counta>1\relax% \pgfmathfloatmultiply@{\pgfmathfloat@loc@TMPa}{\pgfmathfloat@loc@TMPa}% \let\pgfmathfloat@loc@TMPa=\pgfmathresult \fi% \divide\c@pgfmath@counta by2\relax% \repeatpgfmathloop% \else % employ #1^#2 = exp( #2 * ln(#1) ) \pgfmathfloatln@{#1}% \let\pgfmathfloat@loc@TMPa=\pgfmathresult \edef\pgfmathfloat@loc@TMPb{#2}% \pgfmathfloatmultiply@{\pgfmathfloat@loc@TMPa}{\pgfmathfloat@loc@TMPb}% \pgfmathfloatexp@{\pgfmathresult}% \fi } \def\pgfmathfloat@definemethodfrombasic@NOARG#1{% \pgfutil@ifundefined{pgfmath@basic@#1@}{% \pgfutil@namelet{pgfmath@basic@#1@}{pgfmath#1@}% }{}% \edef\pgfmathfloat@glob@TMP{% \expandafter\noexpand\csname pgfmath@basic@#1@\endcsname \noexpand\pgfmathfloatparsenumber{\noexpand\pgfmathresult}% }% \expandafter\let\csname pgfmathfloat#1@\endcsname=\pgfmathfloat@glob@TMP% \expandafter\let\csname pgfmathfloat#1\endcsname=\pgfmathfloat@glob@TMP% }% \def\pgfmathfloat@definemethodfrombasic@ONEARG#1{% \pgfutil@ifundefined{pgfmath@basic@#1@}{% \pgfutil@namelet{pgfmath@basic@#1@}{pgfmath#1@}% }{}% \edef\pgfmathfloat@glob@TMP##1{% \noexpand\pgfmathfloattofixed{##1}% \noexpand\expandafter \expandafter\noexpand\csname pgfmath@basic@#1@\endcsname\noexpand\expandafter% {\noexpand\pgfmathresult}% \noexpand\pgfmathfloatparsenumber{\noexpand\pgfmathresult}% }% \expandafter\let\csname pgfmathfloat#1@\endcsname=\pgfmathfloat@glob@TMP% \expandafter\let\csname pgfmathfloat#1\endcsname=\pgfmathfloat@glob@TMP% }% \def\pgfmathfloat@definemethodfrombasic@TWOARGS#1{% \pgfutil@ifundefined{pgfmath@basic@#1@}{% \pgfutil@namelet{pgfmath@basic@#1@}{pgfmath#1@}% }{}% \edef\pgfmathfloat@glob@TMP##1##2{% \noexpand\pgfmathfloattofixed{##2}% \noexpand\let\noexpand\pgfmathfloat@loc@TMPa=\noexpand\pgfmathresult \noexpand\pgfmathfloattofixed{##1}% \noexpand\expandafter \expandafter\noexpand\csname pgfmath@basic@#1@\endcsname\noexpand\expandafter% {\noexpand\pgfmathresult}{\noexpand\pgfmathfloat@loc@TMPa}% \noexpand\pgfmathfloatparsenumber{\noexpand\pgfmathresult}% }% \expandafter\let\csname pgfmathfloat#1@\endcsname=\pgfmathfloat@glob@TMP% \expandafter\let\csname pgfmathfloat#1\endcsname=\pgfmathfloat@glob@TMP% }% \pgfmathfloat@definemethodfrombasic@NOARG{rand} \pgfmathfloat@definemethodfrombasic@NOARG{rnd} \pgfmathfloat@definemethodfrombasic@NOARG{false} \pgfmathfloat@definemethodfrombasic@NOARG{true} % arcsin, arccos \pgfmathfloat@definemethodfrombasic@ONEARG{asin} \pgfmathfloat@definemethodfrombasic@ONEARG{acos} \pgfmathfloat@definemethodfrombasic@ONEARG{not} \pgfmathfloat@definemethodfrombasic@ONEARG{hex} \pgfmathfloat@definemethodfrombasic@ONEARG{Hex} \pgfmathfloat@definemethodfrombasic@ONEARG{oct} \pgfmathfloat@definemethodfrombasic@ONEARG{bin} \pgfmathfloat@definemethodfrombasic@TWOARGS{and} \pgfmathfloat@definemethodfrombasic@TWOARGS{or} \pgfutil@ifundefined{pgfmathdeclarefunction}{% % special treatment: \pgfmathrand@ was not properly defined for pgf 2.00: \let\pgfmath@basic@rand=\pgfmathrand \def\pgfmathfloatrand@{% \pgfmath@basic@rand \pgfmathfloatparsenumber{\pgfmathresult}% }% % special treatment: \pgfmathrnd@ was not properly defined for pgf 2.00: \let\pgfmath@basic@rnd=\pgfmathrnd \def\pgfmathfloatrnd@{% \pgfmath@basic@rnd \pgfmathfloatparsenumber{\pgfmathresult}% }% }{} % Implements the factorial of '#1'. % This does only work if '#1 < 2^32'. \def\pgfmathfloatfactorial@#1{% \begingroup \pgfmathfloattofixed{#1}% % collect integer part into a 32 bit register: \afterassignment\pgfmath@gobbletilpgfmath@% \expandafter\c@pgfmath@counta\pgfmathresult\relax\pgfmath@% \pgfmathfloatcreate{1}{1.0}{0}% \let\pgfmathfloat@loc@TMPa=\pgfmathresult \pgfmathloop \ifnum\c@pgfmath@counta<2 % \else \expandafter\pgfmathfloatparsenumber\expandafter{\the\c@pgfmath@counta}% \expandafter\pgfmathfloatmultiply@\expandafter{\pgfmathresult}{\pgfmathfloat@loc@TMPa}% \let\pgfmathfloat@loc@TMPa=\pgfmathresult \advance\c@pgfmath@counta by-1\relax% \repeatpgfmathloop \pgfmath@smuggleone\pgfmathresult \endgroup }% \endinput