%-------------------------------------------- % % Package pgfplots, library for smith charts. % % Copyright 2010 by Christian Feuersänger. % % This program is free software: you can redistribute it and/or modify % it under the terms of the GNU General Public License as published by % the Free Software Foundation, either version 3 of the License, or % (at your option) any later version. % % This program is distributed in the hope that it will be useful, % but WITHOUT ANY WARRANTY; without even the implied warranty of % MERCHANTABILITY or FITNESS FOR A PARTICULAR PURPOSE. See the % GNU General Public License for more details. % % You should have received a copy of the GNU General Public License % along with this program. If not, see . % % A smithchart maps the complex halfplane % H subset \C, % H := [0,infty] x [-infty,infty] % =~ \{ z = a+ j *b | a >=0, b \in \R } % % to the unit circle. % % A number z = a+jb is mapped to r(z) = (z-1) / (z+1) which is, per % definition, in the 2d unit circle. % % Grid lines (i.e. a==const or b==const) are mapped on circles. % % In PGFPlots, the a=Re(z) is the x axis and b = Im(z) is the y axis. % % - CARTESIAN INPUT % - tick/grid coordinates are from % - input coordinates can be either from H or (perhaps preferred) from % the unit circle. % this "preferred" needs to be discussed. % - the transformed data range is the unit circle (or a sequeezed variant) % - in order to compute limits etc., I should accept data in H. this % should simplify the logic to determine ticks etc considerably. % problem: this transformation appears to be quite difficult (?) % -> r(z) = (z-1)/(z+1) % in complex arithmetics (but the G-tutorial.pdf says something % about these circle equations!?) % % www.amanogawa.com/archive/docs/G-tutorial.pdf % % % Idea: % - work on H % - transform whereever necessary % - implement all pgfplots wrinkles in analogy to polar axes % - provide support for normalized input coords (combined with % untransformed limits or something like that) \pgfplotsdefineaxistype{smithchart}{% \pgfplots@smithchartaxis@activate }% \newif\ifpgfplotspointisinsmithchartCS \newif\ifpgfplots@smithchart@showorigin \newif\ifpgfplots@smithchart@mirrored \pgfplotsset{ /pgfplots/xgrid each nth passes y/.initial=,% format: CSV list, each entry of the form ' | ':' | 'if <' | ':' 'if <' ' /pgfplots/xgrid each nth passes y start/.initial=0, /pgfplots/ygrid each nth passes x/.initial=, /pgfplots/ygrid each nth passes x start/.initial=0, % /pgfplots/xgrid stop at y/.initial=,% individual stop map of the form ' ':' ', separated by white space /pgfplots/ygrid stop at x/.initial=, % % FIXME : this is undocumented: /pgfplots/smithchart mirrored/.is if=pgfplots@smithchart@mirrored, /pgfplots/smithchart mirrored/.default=true, % % this boolean may only be used inside of \addplot. It will be % ignored otherwise. /pgfplots/is smithchart cs/.is if=pgfplotspointisinsmithchartCS, /pgfplots/is smithchart cs/.default=true, /pgfplots/show origin/.is if=pgfplots@smithchart@showorigin, /pgfplots/show origin/.default=true, /pgfplots/show origin code/.code={% \path[draw=black,fill=white] (0pt,0pt) circle (2.5pt); \path[fill=black] (0pt,0pt) circle (0.5pt); }, /pgfplots/every smithchart axis/.style={ grid=both, xmin=0, xmax=16000,% FIXME : more is not possible because some code uses the \pgfplots@xmin@reg registers... (ticks) ymin=-16000,ymax=16000, scaled ticks=false, % never draw the \cdot 10^4 labels major tick style={draw=black}, xtick align=center, ytick align=center, every axis title shift=1.2\baselineskip, legend style={anchor=center}, }, /pgfplots/default smithchart xtick/.code=, /pgfplots/default smithchart ytick/.code=, /pgfplots/default smithchart xytick/.code=, /pgfplots/smithchart ticks by size/.code 2 args={% \ifdim#1<14cm \pgfkeysalso{/pgfplots/few smithchart ticks}% \else \ifdim#1<20cm \pgfkeysalso{/pgfplots/many smithchart ticks}% \else \pgfkeysalso{/pgfplots/dense smithchart ticks}% \fi \fi }, /pgfplots/few smithchart ticks*/.style={ default smithchart xtick/.style={ xtick={0.2,0.5,1,2,5}, }, default smithchart ytick/.style={ ytick={% 0,% 0.2, 0.5, 1, 2, 5,% -0.2,-0.5,-1,-2,-5}, }, default smithchart xytick/.style={ xgrid each nth passes y={2}, ygrid each nth passes x={2}, }, }, /pgfplots/few smithchart ticks/.style={/pgfplots/few smithchart ticks*}, /pgfplots/few smithchart ticks*,% use it as initial config /pgfplots/many smithchart ticks*/.style={ default smithchart xtick/.style={ xtick={ 0.1,0.2,0.3,0.4,0.5,1,1.5,2,3,4,5,10,20% }, minor xtick={0.6,0.7,0.8,0.9,1.1,1.2,1.3,1.4,1.6,1.7,1.8,1.9,2.2,2.4,2.6,2.8,3.2,3.4,3.6,3.8,4.5,6,7,8,9,50}, }, default smithchart ytick/.style={ ytick={% 0,% 0.1,0.2,...,1,1.5,2,3,4,5,10,20,% -0.1,-0.2,...,-1,-1.5,-2,-3,-4,-5,-10,-20% }, minor ytick={% 1.1,1.2,1.3,1.4,1.6,1.7,1.8,1.9,2.2,2.4,2.6,2.8,3.2,3.4,3.6,3.8,4.5,6,7,8,9,50,% -1.1,-1.2,-1.3,-1.4,-1.6,-1.7,-1.8,-1.9,-2.2,-2.4,-2.6,-2.8,-3.2,-3.4,-3.6,-3.8,-4.5,-6,-7,-8,-9,-50% }, }, default smithchart xytick/.style={ xgrid each nth passes y={1,2,4,5,10,20}, ygrid each nth passes x={1,2,3,5,10:3,20:3}, }, }, /pgfplots/many smithchart ticks/.style={ many smithchart ticks*, every axis title shift=6pt, yticklabel in circle, show origin=true, }, /pgfplots/dense smithchart ticks*/.style={ default smithchart xtick/.style={ %ygrid each nth passes x start=0, xtick={ 0.1,0.2,0.3,0.4,0.5,0.6,0.7,0.8,0.9,1,1.2,1.4,1.6,1.8,2,3,4,5,10,20% }, minor xtick={% 0.01,0.02,0.03,0.04,0.05,0.06,0.07,0.08,0.09,0.11,0.12,0.13,0.14,0.15,0.16,0.17,0.18,0.19,% 0.22,0.24,0.26,0.28,0.32,0.34,0.36,0.38,0.42,0.44,0.46,0.48,% 0.52,% 0.55,0.65,0.75,0.85,0.95,% %0.6,0.7,0.8,0.9,% 1.1,1.3,1.5,1.7,1.9,% 2.2,2.4,2.6,2.8,3.2,3.4,3.6,3.8,4.5,6,7,8,9,50}, }, default smithchart ytick/.style={ ytick={% 0,% 0.1,0.2,...,1,1.2,1.4,1.6,1.8,2,3,4,5,10,20,% -0.1,-0.2,...,-1,-1.2,-1.4,-1.6,-1.8,-2,-3,-4,-5,-10,-20% }, minor ytick={% 0.01,0.02,0.03,0.04,0.05,0.06,0.07,0.08,0.09,0.11,0.12,0.13,0.14,0.15,0.16,0.17,0.18,0.19,% 0.22,0.24,0.26,0.28,0.32,0.34,0.36,0.38,0.42,0.44,0.46,0.48,% 0.55,0.65,0.75,0.85,0.95,% 1.1,1.3,1.5,1.7,1.9,2.2,2.4,2.6,2.8,3.2,3.4,3.6,3.8,4.5,6,7,8,9,50,% -0.01,-0.02,-0.03,-0.04,-0.05,-0.06,-0.07,-0.08,-0.09,-0.11,-0.12,-0.13,-0.14,-0.15,-0.16,-0.17,-0.18,-0.19,% -0.22,-0.24,-0.26,-0.28,-0.32,-0.34,-0.36,-0.38,-0.42,-0.44,-0.46,-0.48,% -0.55,-0.65,-0.75,-0.85,-0.95,% -1.1,-1.3,-1.5,-1.7,-1.9,-2.2,-2.4,-2.6,-2.8,-3.2,-3.4,-3.6,-3.8,-4.5,-6,-7,-8,-9,-50% }, }, default smithchart xytick/.style={ xgrid each nth passes y={0.2 if < 0.2001,0.5 if < 0.50001,1 if < 1.001,2,4,5,10,20}, ygrid each nth passes x={0.2 if < 0.2001,0.52 if < 0.52001,1 if < 1.001,2,3,5,10:3,20:3}, }, }, /pgfplots/dense smithchart ticks/.style={ yticklabel in circle, every axis title shift=6pt, dense smithchart ticks*, show origin=true, every major grid/.style={black!60}, }, /pgfplots/yticklabel in circle/.style={ ytick align=inside, yticklabel style={ rotate=90, sloped like y axis={% execute for upside down={\tikzset{anchor=north east}}, %allow upside down, reset nontranslations=false}, anchor=south west, %font=\tiny, } }, yticklabel around circle/.style={ ytick align=center, yticklabel style={ rotate=90, sloped like y axis={% execute for upside down={\tikzset{anchor=south west}}, %allow upside down, reset nontranslations=false}, anchor=south east, %font=\tiny, } }, yticklabel around circle*/.style={ ytick align=center, yticklabel style={ rotate=90, sloped like y axis={% execute for upside down={\tikzset{anchor=north west}}, %allow upside down, reset nontranslations=false}, anchor=north east, %font=\tiny, } } } \def\pgfplots@smithchartaxis@activate{% \def\axisdefaultwidth{207pt}% \def\axisdefaultheight{207pt}% \let\pgfplotsqpointxy@cart=\pgfplotsqpointxy \let\pgfplotsqpointxy=\pgfplotsqpointxy@smithchartaxis \let\pgfplotsqpointxy@orthogonal=\pgfplotsqpointxy \def\pgfplotsqpointxyz##1##2##3{\pgfplotsqpointxy{##1}{##2}}% FIXME \let\pgfplotspointouternormalvectorofaxis@=\pgfplotspointouternormalvectorofaxis@smithchartaxis \def\pgfplotspointouternormalvectorofaxis@ifdependson@v##1##2##3{##2}% \def\pgfplots@drawticklines@INSTALLCLIP@onorientedsurf##1{}% \let\pgfplots@drawgridlines@INSTALLCLIP@onorientedsurf=\pgfplots@drawgridlines@INSTALLCLIP@onorientedsurf@smithchartaxis \def\pgfplots@visphase@notify@changeofcanvaslimits##1{}% \def\pgfplots@avoid@empty@axis@range@for##1{}% \def\pgfplotsaxisifcontainspoint##1##2{##1}% \let\pgfplots@set@default@size@options=\pgfplots@set@default@size@options@smithchart% % \def\b@pgfplots@smithchart@defaultticks@x{0}% \def\b@pgfplots@smithchart@defaultticks@y{0}% \let\pgfplots@assign@default@tick@foraxis=\pgfplots@assign@default@tick@foraxis@smithchart \def\pgfplots@checkisuniformLINEARtick##1##2{% % don't do anything here. I suppose it is useless and is a % waste of time for many ticks. \global\pgfplots@isuniformtickfalse }% \let\pgfplots@clippath@prepare@for@axistype=\pgfplots@clippath@prepare@for@axistype@smithchartaxis % % invalid range: do not clear plots. simply assign default limits. \let\pgfplots@handle@invalid@range@defaultlimits=\pgfplots@handle@invalid@range@defaultlimits@smithchart% \def\pgfplots@handle@invalid@range{\pgfplots@handle@invalid@range@defaultlimits}% % \let\pgfplotspointonorientedsurfaceabwithbshift=\pgfplotspointonorientedsurfaceabwithbshift@smithchartaxis \let\pgfplots@draw@axis@is@prepared=\pgfplots@draw@axis@is@prepared@smithchartaxis \let\pgfplots@drawgridlines@onorientedsurf@fromto=\pgfplots@drawgridlines@onorientedsurf@fromto@smithchart \let\pgfplots@drawaxis@innerlines@onorientedsurf=\pgfplots@drawaxis@innerlines@onorientedsurf@smithchart \let\pgfplots@drawaxis@outerlines@separate@onorientedsurf=\pgfplots@drawaxis@outerlines@separate@onorientedsurf@smithchartaxis \let\pgfplotspoint@initialisation@axes=\pgfplotspoint@initialisation@axes@smithchart% \let\pgfplotspoint@initialisation@units=\pgfplotspoint@initialisation@units@smithchart \expandafter\def\expandafter\pgfplots@create@axis@descriptions@\expandafter{% \pgfplots@create@axis@descriptions@ \ifpgfplots@smithchart@showorigin \pgfkeysvalueof{/pgfplots/show origin code/.@cmd}\pgfeov% \fi }% \def\axisdefaultheight{\axisdefaultwidth}% \let\pgfplots@BB@for@plotbox@get@unit@scales@for@limits=\pgfplots@BB@for@plotbox@get@unit@scales@for@limits@smithchart %\let\pgfplots@limits@ready=\pgfplots@limits@ready@smithchart %\let\pgfplots@show@ticklabel@=\pgfplots@show@ticklabel@@smithchart %\def\pgfplots@xtick@disable@last@tick{0}% \let\pgfplots@xtick@check@tickshow=\pgfplots@xtick@check@tickshow@smithchart% \let\pgfplots@ytick@check@tickshow=\pgfplots@ytick@check@tickshow@smithchart% \let\pgfplots@set@options@sanitize=\relax \let\pgfplots@set@options@sanitizemode=\relax \let\pgfplotscoordmathnotifydatascalesetfor=\pgfplotscoordmathnotifydatascalesetfor@smithchart % \expandafter\def\expandafter\pgfplots@notify@options@are@set\expandafter{% \pgfplots@notify@options@are@set \pgfplotsset{% separate axis lines,% is smithchart cs=false,% xtick pos=left, ytick pos=left, axis x line*=center, disabledatascaling, }% \def\pgfplots@xtickposnum{2}% % \ifx\pgfplots@xtick\pgfutil@empty \def\b@pgfplots@smithchart@defaultticks@x{1}% \fi \ifx\pgfplots@ytick\pgfutil@empty \def\b@pgfplots@smithchart@defaultticks@y{1}% \fi \pgfplotscoordmath{default}{parsenumber}{0.002}% \let\pgfplots@almost@zero@thresh=\pgfmathresult }% \def\pgfplots@xticklabel@pos{}% \def\pgfplots@yticklabel@pos{}% \def\pgfplots@zticklabel@pos{}% \def\pgfplots@init@ticklabelaxisspecfor##1##2{}% \def\pgfplots@init@ticklabelaxisspec@twodim@for##1##2{}% \def\pgfplotspointonorientedsurfaceabmatchaxisline@warn##1{}% clear warning. It works for smith charts. \def\pgfplots@xticklabelaxisspec{v20}% \def\pgfplots@yticklabelaxisspec{0v0}% \def\pgfplots@zticklabelaxisspec{00v}% % % cartesian cs \tikzdeclarecoordinatesystem{cartesian}{\edef\pgfplots@loc@TMPa{##1}\expandafter\pgfplotspointcartesian@\pgfplots@loc@TMPa\pgfplots@coord@end}% % % % Special treatment for % \pgfplots@prepare@tick@coordlists@for: make sure we don't need % to use the register arithmetics in \pgfplots@xmin@reg and its % variants! I want an UNRESTRICTED max data range! \def\pgfplots@prepare@tick@coordlists@for@assign##1=##2{\edef##1{##2}}% \def\pgfplots@prepare@tick@coordlists@for@advance##1by##2{% % THIS IS NEVER USED (at the time of this writing). \edef\pgfplots@loc@TMPa{##2}% \pgfplotscoordmath{default}{parsenumber}{##1}% \pgfplotscoordmath{default}{op}{add}{{\pgfmathresult}{\pgfplots@loc@TMPa}}% \pgfplotscoordmath{default}{tofixed}{\pgfmathresult}% \let##1=\pgfmathresult }% \def\pgfplots@prepare@tick@coordlists@for@tofixed##1{\edef\pgfmathresult{##1}}% \def\pgfplots@prepare@tick@coordlists@for@handletolerance##1{}% does not apply to smithcharts. \def\pgfplots@prepare@tick@coordlists@for@checktickmin##1{% \pgfplotscoordmath{default}{parsenumber}{\pgfplots@tmpa}% \let\pgfplots@loc@TMPa=\pgfmathresult \pgfplotscoordmath{default}{parsenumber}{\csname pgfplots@##1tickmin\endcsname}% \let\pgfplots@loc@TMPb=\pgfmathresult \pgfplotscoordmath{default}{if less than}{\pgfplots@loc@TMPa}{\pgfplots@loc@TMPb}{% \pgfplots@tickshowfalse }{% }% }% \def\pgfplots@prepare@tick@coordlists@for@checktickmax##1{% \pgfplotscoordmath{default}{parsenumber}{\pgfplots@tmpa}% \let\pgfplots@loc@TMPa=\pgfmathresult \pgfplotscoordmath{default}{parsenumber}{\csname pgfplots@##1tickmin\endcsname}% \let\pgfplots@loc@TMPb=\pgfmathresult \pgfplotscoordmath{default}{if less than}{\pgfplots@loc@TMPb}{\pgfplots@loc@TMPa}{% \pgfplots@tickshowfalse }{% }% }% \def\pgfplots@prepare@tick@coordlists@for@checkdatalimits##1{}% I won't do this here. Smithcharts are somewhat special. }% \def\pgfplotspointcartesian@#1,#2\pgfplots@coord@end{% \pgfpointxy@orig{#1}{#2}% }% \def\pgfplotscoordmathnotifydatascalesetfor@smithchart#1{% \def\pgfplotscoordmathnotifydatascalesetfor##1{}% \edef\pgfplotscoordmathnotifydatascalesetfor@{#1}% \def\pgfplotscoordmathnotifydatascalesetfor@@{x}% \ifx\pgfplotscoordmathnotifydatascalesetfor@@\pgfplotscoordmathnotifydatascalesetfor@ \pgfplotscoordmath{#1}{datascaletrafo set params}{0}{0}% \else \def\pgfplotscoordmathnotifydatascalesetfor@@{y}% \ifx\pgfplotscoordmathnotifydatascalesetfor@@\pgfplotscoordmathnotifydatascalesetfor@ \pgfplotscoordmath{#1}{datascaletrafo set shift}{0}% \fi \fi \let\pgfplotscoordmathnotifydatascalesetfor=\pgfplotscoordmathnotifydatascalesetfor@smithchart }% % #1: the "a" value on the oriented surf % #2: the "b" value. % #3: the shift along the normal. % \def\pgfplotspointonorientedsurfaceabwithbshift@smithchartaxis#1#2#3{% % implement the shift in "b" direction explicitly: \pgfpointadd {\pgfplotspointonorientedsurfaceab{#1}{#2}}% {% \pgfplotspointonorientedsurfaceabtolinespec{v}{0}% \afterassignment\pgfplots@gobble@until@relax \pgf@xa=-#3\relax \edef\pgfplots@shift@no@unit{\pgf@sys@tonumber\pgf@xa}% \pgfqpointscale {\pgfplots@shift@no@unit} {\expandafter\pgfplotspointouternormalvectorofaxis\expandafter{\pgfplotsretval}}% }% } % Computes the complex division % (A + j B) / (C + j D) = (A C + B D + j (B C - A D) ) / (C^2 + D^2) % and assigns the result to \pgfmathresult and \pgfmathresultim . Here % 'j = sqrt{-1}' is the imaginary unit. % % #1 : A % #2 : B % #3 : C % #4 : D % % The arithmetics is performed in \pgfplotscoordmath{default} (which % uses the floating point unit in the initial configuration) % % Numbers are expected to be already parsed (i.e. you need to invoke % \pgfplotscoordmath{default}{parsenumber}{#1}% % \let\A=\pgfmathresult % before) \def\pgfplotscoordmathcomplexdivision#1#2#3#4{% \begingroup \edef\pgfplots@A{#1}% \edef\pgfplots@B{#2}% \edef\pgfplots@C{#3}% \edef\pgfplots@D{#4}% % % % ok, compute it: \pgfplotscoordmath{default}{op}{multiply}{{\pgfplots@A}{\pgfplots@C}}% \let\pgfplots@AC=\pgfmathresult \pgfplotscoordmath{default}{op}{multiply}{{\pgfplots@A}{\pgfplots@D}}% \let\pgfplots@AD=\pgfmathresult \pgfplotscoordmath{default}{op}{multiply}{{\pgfplots@B}{\pgfplots@D}}% \let\pgfplots@BD=\pgfmathresult \pgfplotscoordmath{default}{op}{multiply}{{\pgfplots@B}{\pgfplots@C}}% \let\pgfplots@BC=\pgfmathresult % \pgfplotscoordmath{default}{op}{multiply}{{\pgfplots@C}{\pgfplots@C}}% \let\pgfplots@CC=\pgfmathresult \pgfplotscoordmath{default}{op}{multiply}{{\pgfplots@D}{\pgfplots@D}}% \let\pgfplots@DD=\pgfmathresult \pgfplotscoordmath{default}{op}{add}{{\pgfplots@CC}{\pgfplots@DD}}% \pgfplotscoordmath{default}{op}{reciprocal}{{\pgfmathresult}}% \let\pgfplots@scale=\pgfmathresult % % \pgfplotscoordmath{default}{op}{add}{{\pgfplots@AC}{\pgfplots@BD}}% \pgfplotscoordmath{default}{op}{multiply}{{\pgfmathresult}{\pgfplots@scale}}% \let\pgfplots@x=\pgfmathresult % \pgfplotscoordmath{default}{op}{subtract}{{\pgfplots@BC}{\pgfplots@AD}}% \pgfplotscoordmath{default}{op}{multiply}{{\pgfmathresult}{\pgfplots@scale}}% \let\pgfplots@y=\pgfmathresult % \xdef\pgfplots@glob@TMPa{% \noexpand\def\noexpand\pgfmathresult{\pgfplots@x}% \noexpand\def\noexpand\pgfmathresultim{\pgfplots@y}% }% \endgroup \pgfplots@glob@TMPa }% \def\pgfplotsqpointxy@smithchartaxis#1#2{% \pgf@process{% \ifpgfplotspointisinsmithchartCS \def\pgfplots@x{#1}% \def\pgfplots@y{#2}% \else % compute rx + j* ry = (#1 + j * #2 -1) / (#1 + j*#2 + 1) % % I write % #1 - 1 + j * #2 = A + j * B % 1 + #1 + j * #2 = C + j * D % % -> rx + j * ry = (A + j B) / (C + j D) = (A C + B D + j (B C - A D) ) / (C^2 + D^2) \pgfplotscoordmath{default}{parsenumber}{#1}% \let\pgfplots@x=\pgfmathresult % \pgfplotscoordmath{default}{parsenumber}{#2}% \let\pgfplots@D=\pgfmathresult % \pgfplotscoordmath{default}{one}% \let\pgfplots@one=\pgfmathresult % \pgfplotscoordmath{default}{op}{add}{{\pgfplots@one}{\pgfplots@x}}% \let\pgfplots@C=\pgfmathresult % \pgfplotscoordmath{default}{op}{subtract}{{\pgfplots@x}{\pgfplots@one}}% \let\pgfplots@A=\pgfmathresult % \let\pgfplots@B=\pgfplots@D % \pgfplotscoordmathcomplexdivision\pgfplots@A\pgfplots@B\pgfplots@C\pgfplots@D \pgfplotscoordmath{default}{tofixed}{\pgfmathresult}% \let\pgfplots@x=\pgfmathresult \pgfplotscoordmath{default}{tofixed}{\pgfmathresultim}% \let\pgfplots@y=\pgfmathresult \fi % \pgfplotsqpointxy@smithchart@canvas\pgfplots@x\pgfplots@y %\message{pgfplotsqpointxy{#1}{#2} ---> (\pgfplots@x,\pgfplots@y) ---> (\the\pgf@x,\the\pgf@y)}% }% }% \def\pgfplotsqpointxy@smithchart@canvas#1#2{% \ifpgfplots@smithchart@mirrored \pgfqpointxy@orig{-#1}{#2}% \else \pgfqpointxy@orig{#1}{#2}% \fi }% \def\pgfplots@clippath@prepare@for@axistype@smithchartaxis{% \def\pgfplots@clippath@install##1{% \pgfpathellipse {\pgfplotsqpointxy@smithchart@canvas{0}{0}} {\pgfplotsqpointxy@smithchart@canvas{1}{0}} {\pgfplotsqpointxy@smithchart@canvas{0}{1}}% \pgfplots@clippath@use@{##1}% }% }% \def\pgfplotspointouternormalvectorofaxis@smithchartaxis#1#2#3\relax{% \if v#1% \pgfqpoint{0pt}{1pt}% \else \if v#2% \pgfplotspointouternormalvectorofaxisgetv{#1#2#3}% \ifx\pgfplotsretval\pgfutil@empty \def\pgfplotsretval{0}% \fi \pgfpointdiff {\pgfplotsqpointxy@smithchart@canvas{0}{0}}% {\pgfplotsqpointxy{0}{\pgfplotsretval}}% \pgfpointnormalised{}% \else \pgfqpoint{0pt}{1pt}% \fi \fi \pgf@process{}% \endgroup }% \def\pgfplotspoint@initialisation@axes@smithchart{% \begingroup %\pgfplotsqpointxy{\pgfplots@xmin}{\pgfplots@ymin}% \gdef\pgfplotspointminminmin{\pgfplotsqpointxy@smithchart@canvas{0}{0}}% % % the "x" axis is the diameter of the circle (for fixed y=0) \pgf@x=2\pgf@xx \pgf@y=0pt \xdef\pgfplotspointxaxis{\noexpand\pgf@x=\the\pgf@x\space\noexpand\pgf@y=\the\pgf@y\space}% \pgfmathveclen{\pgf@x}{\pgf@y}% \xdef\pgfplotspointxaxislength{\pgfmathresult pt}% % \pgfplotsqpointxy{\pgfplots@xmax}{\pgfplots@ymax}% \xdef\pgfplotspointyaxis{\noexpand\pgf@x=\the\pgf@x\space\noexpand\pgf@y=\the\pgf@y\space}% % % the length of the "y" axis is 2*pi*r (for fixed x=0, the outer % circle). % The radius is the length of (0,1) which is (0pt,\pgf@xx1): \pgfmath@basic@multiply@{\pgf@sys@tonumber\pgf@xx}{1}% \pgfmathmultiply@{\pgfmathresult}{6.28318530717959}% 2*pi * r \xdef\pgfplotspointyaxislength{\pgfmathresult pt}% % \global\let\pgfplotspointzaxis=\pgfpointorigin \gdef\pgfplotspointzaxislength{0pt}% \endgroup % \edef\pgfplots@loc@TMPa{\pgf@sys@tonumber\pgf@xx}% \pgfmathdivide@{16000}{\pgfplots@loc@TMPa}% \let\pgfplots@smithchart@axis@max@xradius@for@ycircle=\pgfmathresult % \ifdim\pgf@xx=\pgf@yy \def\pgfplots@smithchart@axis@ratioxy{1}% \def\pgfplots@smithchart@axis@ratioyx{1}% \let\pgfplots@smithchart@axis@max@yradius@for@ycircle=\pgfplots@smithchart@axis@max@xradius@for@ycircle \else \edef\pgfplots@loc@TMPb{\pgf@sys@tonumber\pgf@yy}% \pgfmathdivide@\pgfplots@loc@TMPa\pgfplots@loc@TMPb \let\pgfplots@smithchart@axis@ratioxy=\pgfmathresult \pgfmathdivide@\pgfplots@loc@TMPb\pgfplots@loc@TMPa \let\pgfplots@smithchart@axis@ratioyx=\pgfmathresult % \pgfmathdivide@{16000}{\pgfplots@loc@TMPb}% \let\pgfplots@smithchart@axis@max@yradius@for@ycircle=\pgfmathresult \fi } \let\pgfplotspoint@initialisation@units@orig=\pgfplotspoint@initialisation@units \def\pgfplotspoint@initialisation@units@smithchart{% \pgfplotspoint@initialisation@units@orig \def\pgfplotspointunity{% \pgfplotspointouternormalvectorofaxisgetv{0v0}% x=0 (outer circle) and v varies (the yticks) \ifx\pgfplotsretval\pgfutil@empty \def\pgfplotsretval{0}% \fi \pgfpointnormalised{\pgfplotsqpointxy{0}{\ifx\pgfplotsretval\pgfutil@empty 0\else\pgfplotsretval\fi}}% \pgf@xa=-\pgf@y \global\pgf@y=\pgf@x \global\pgf@x=\pgf@xa }% \def\pgfplotsunitylength{1}% \def\pgfplotsunityinvlength{1}% }% \def\pgfplots@drawgridlines@INSTALLCLIP@onorientedsurf@smithchartaxis#1{% %\pgfplots@clippath@install{\pgfusepath{clip}}% }% % At this time, the minor/major tick lists are initialised. \def\pgfplots@draw@axis@is@prepared@smithchartaxis{% \pgfplots@gridlines@init@grid@stop@points@for xy% \pgfplots@gridlines@init@grid@stop@points@for yx% % % and finalize x: \def\pgfplots@finalize@constraints{1}% \pgfplots@gridlines@init@grid@stop@points@for@computethem{x}{y}{\pgfplots@finalize@constraints}% }% % Initialises the '#1grid each nth passes #2' and '#1grid stop at #2' % features. All it does is to prepare the % method \pgfplots@get@current@grid@stop@point. % % The method is quite involved. Please refer to the manual for what it % is supposed to do, and refer to the code comments below for % implementational details. % % #1 either x or y % #2 either x or y \def\pgfplots@gridlines@init@grid@stop@points@for#1#2{% % \expandafter\let\csname pgfplots@#1grid@stop@points\endcsname=\relax % \pgfkeysgetvalue{/pgfplots/#1grid each nth passes #2}\pgfplots@loc@TMPa \ifx\pgfplots@loc@TMPa\pgfutil@empty \else % we have no "xticknum -> xtickpos" lookup table yet. \expandafter\def\csname b@pgfplots@#2ticknum@to@pos@lookup\endcsname{0}% % \pgfplotslistnewempty\pgfplots@loc@TMPd % normalise the argument for 'ygrid each nth passes x': each list element % should be of the form ':' where means that each % th arc can pass. \expandafter\pgfplotsutilforeachcommasep\pgfplots@loc@TMPa\as\entry{% \expandafter\pgfplots@gridlines@init@grid@stop@points@for@normalise\entry\relax#1#2% \expandafter\pgfplotslistpushback\entry\to\pgfplots@loc@TMPd }% \expandafter\let\csname pgfplots@#1grid@stop@points\endcsname=\pgfplots@loc@TMPd % % Ok. % % Now, the 'ygrid each nth passes x' feature relies *crucially* on grid line % indices (for the 'each nth' feature). % % I sort the arcs according to their absolute magnitude and assign % indices into the resulting arrays to normalize that stuff. % % The array is of the form % A[i] = entry of \pgfplots@prepared@tick@positions@* % and contains *both*, major and minor grid lines. \pgfplotsarraynewempty\pgfplots@gridlines \pgfplotscoordmath{default}{zero}% \edef\elem{{-1}{\pgfmathresult}}% require 0 to be zero for symmetry even if there is no such tick pos \expandafter\pgfplotsarraypushback\elem\to\pgfplots@gridlines \pgfplots@if{pgfplots@#1majorgrids}{% % insert all major tick positions, using their absolute value. \expandafter \pgfplotslistforeachungrouped\csname pgfplots@prepared@tick@positions@major@#1\endcsname\as\elem{% \expandafter\pgfplots@prepared@tick@pos@unpack\elem \pgfplotscoordmath{default}{parsenumber}{\pgfplots@tick}% \pgfplotscoordmath{default}{op}{abs}{{\pgfmathresult}}% \edef\elem{{\pgfplots@ticknum}{\pgfmathresult}}% \expandafter\pgfplotsarraypushback\elem\to\pgfplots@gridlines }% }{}% \pgfplots@if{pgfplots@#1minorgrids}{% % now the same for minor grid positions: \expandafter \pgfplotslistforeachungrouped\csname pgfplots@prepared@tick@positions@minor@#1\endcsname\as\elem{% \expandafter\pgfplots@prepared@tick@pos@unpack\elem \pgfplotscoordmath{default}{parsenumber}{\pgfplots@tick}% \pgfplotscoordmath{default}{op}{abs}{{\pgfmathresult}}% \edef\elem{{\pgfplots@ticknum}{\pgfmathresult}}% \expandafter\pgfplotsarraypushback\elem\to\pgfplots@gridlines }% }{}% % sort the array! \pgfkeysgetvalue{/pgfplots/smithchart@sortlt/.@cmd}\pgfplots@loc@TMPa \pgfkeyslet{/pgfplots/iflessthan/.@cmd}\pgfplots@loc@TMPa \pgfplotsarraysort\pgfplots@gridlines % % ok. Now it is sorted. % % I finally need a lookup % \pgfplots@ticknum --> sort index. % If the associated values have the same absolute value, the same % sort index should be assigned. % % For example, the array might be associated to the following tick % positions, sorted by absolute value: % 0.0, 1.0, -1.0, 3.0, -3.0, 4.0, -4.0, 5.0, -5.0 % What I want is that % 0.0 gets sort index 0 % 1.0 and -1.0 get sort index 1 % 3.0 and -3.0 get sort index 2 % 4.0 and -4.0 get sort index 3 % and so on. The array contains only absolute values, so that's % not too difficult to check. % % Since each of the tick positions can be (uniquely) identified by % its associated \pgfplots@ticknum value, I map \pgfplots@ticknum % to the sort index. \countdef\c@sortindex=\c@pgf@counta \c@sortindex=\pgfkeysvalueof{/pgfplots/#1grid each nth passes #2 start} % this is assigned to the '0.0' gridline (if any) \def\pgfplots@lasttickpos{}% \pgfplotsarrayforeachungrouped\pgfplots@gridlines\as\elem{% \expandafter\pgfplots@prepared@tick@pos@unpack\elem \ifx\pgfplots@lasttickpos\pgfutil@empty \else \ifx\pgfplots@lasttickpos\pgfplots@tick \else \advance\c@sortindex by1 \fi \fi \expandafter\edef\csname pgfplots@#1tickpos@to@sortidx@\pgfplots@ticknum\endcsname{\the\c@sortindex}% %\message{\pgfplots@ticknum\space(abs(tickpos) = \pgfplots@tick)---> sort index \csname pgfplots@#1tickpos@to@sortidx@\pgfplots@ticknum\endcsname^^J}% \let\pgfplots@lasttickpos=\pgfplots@tick }% % % unfortunately, I can't free the \pgfplots@gridlines array % without extensive overhead :-( \fi % \expandafter\let\csname b@pgfplots@#1gridline@stopmap\endcsname\relax \pgfkeysgetvalue{/pgfplots/#1grid stop at #2}\pgfplots@loc@TMPa \ifx\pgfplots@loc@TMPa\pgfutil@empty \else \edef\pgfplots@loc@TMPa{\pgfplots@loc@TMPa,}% this inserts the final comma and handles any active ':' sign (for french babel) \def\pgfplots@loc@TMPb{\pgfplots@gridlines@init@stop@maps #1#2}% \expandafter\pgfplots@loc@TMPb\pgfplots@loc@TMPa\pgfplots@EOI% \fi % % % Now, compute all final stop positions. Also prepare the cross % dependencies between x grids and y grids here (such that there % is no grid line stopping in white space) % \if#1x% \def\pgfplots@finalize@constraints{0}% we have to wait until y stop points are known. \else \def\pgfplots@finalize@constraints{1}% \fi \pgfplots@gridlines@init@grid@stop@points@for@computethem{#1}{#2}{\pgfplots@finalize@constraints}% }% % #1,#2,#3 the arguments for % \pgfplots@gridlines@preparation@get@current@grid@stop@point \def\pgfplots@gridlines@init@grid@stop@points@for@computethem#1#2#3{% % \expandafter\pgfplotslistforeachungrouped\csname pgfplots@prepared@tick@positions@major@#1\endcsname\as\elem{% \expandafter\pgfplots@prepared@tick@pos@unpack\elem \pgfplotscoordmath{default}{parsenumber}{\pgfplots@tick}\let\pgfplots@tick=\pgfmathresult \pgfplots@gridlines@preparation@get@current@grid@stop@point{#1}{#2}{\pgfplots@tick}{#3}% \if1#3% \pgfplots@gridlines@let{#1}{\pgfplots@tick@prepared}=\pgfplotsretval \fi }% \expandafter\pgfplotslistforeachungrouped\csname pgfplots@prepared@tick@positions@minor@#1\endcsname\as\elem{% \expandafter\pgfplots@prepared@tick@pos@unpack\elem \pgfplotscoordmath{default}{parsenumber}{\pgfplots@tick}\let\pgfplots@tick=\pgfmathresult \pgfplots@gridlines@preparation@get@current@grid@stop@point{#1}{#2}{\pgfplots@tick}{#3}% \if1#3% \pgfplots@gridlines@let{#1}{\pgfplots@tick@prepared}=\pgfplotsretval \fi }% \expandafter\def\csname b@pgfplots@#1gridline@stopmap\endcsname{1}% } \def\pgfplots@gridlines@init@stop@maps#1#2{% \pgfutil@ifnextchar\pgfplots@EOI{% \pgfutil@gobble }{% \pgfutil@ifnextchar,{% \pgfplots@gridlines@init@stop@maps@next@@#1#2% }{% \pgfplots@gridlines@init@stop@maps@next#1#2% }% }% }% \def\pgfplots@gridlines@init@stop@maps@next#1#2#3:#4,{% \pgfplotscoordmath{default}{parsenumber}{#4}% \let\pgfplots@loc@TMPa=\pgfmathresult \pgfplots@gridlines@stopmap@prepare{#3}% \pgfplots@gridlines@let{#1}{\pgfmathresult}=\pgfplots@loc@TMPa \expandafter\def\csname b@pgfplots@#1gridline@stopmap\endcsname{1}% % \pgfplots@gridlines@init@stop@maps #1#2% } % just eat one empty comma: \def\pgfplots@gridlines@init@stop@maps@next@@#1#2,{\pgfplots@gridlines@init@stop@maps #1#2}% \def\pgfplots@gridlines@let#1#2=#3{% \expandafter\let\csname pgfplots@#1gridline@stopmap@#2\endcsname=#3% \if#1y% % support symmetry: % add -\pgfmathresult to the map. % To disable this symmetry, use 'ygrid stop at x={0.2:4 -0.2:5} % you can also use an empty value '-0.2:{}', that's also ok. \expandafter\let\csname pgfplots@#1gridline@stopmap@-#2\endcsname=#3% \fi }% \def\pgfplots@gridlines@stopmap@prepare@digits{2}% \def\pgfplots@gridlines@stopmap@prepare#1{% \begingroup \pgfmathfloatparsenumber{#1}% \let\pgfmathfloat@round@precision=\pgfplots@gridlines@stopmap@prepare@digits% \pgfmathfloatroundzerofill\pgfmathresult \pgfmath@smuggleone\pgfmathresult \endgroup }% \def\pgfplots@gridlines@stopmap@trunc@#1.#2#3#4\relax{% \def\pgfmathresult{#1.#2#3}% }% \pgfkeysdefargs{/pgfplots/smithchart@sortlt}{#1#2#3#4}{% \expandafter\pgfplots@prepared@tick@pos@unpack#1% \let\pgfplots@A=\pgfplots@tick \expandafter\pgfplots@prepared@tick@pos@unpack#2% \let\pgfplots@B=\pgfplots@tick \pgfplotscoordmath{default}{if less than}{\pgfplots@A}{\pgfplots@B}{#3}{#4}% }% % initialise a lookuptable from ticknumber -> tick position (sort % of an array) % % This is only invoked if it is needed (if 'arc % limits={[index]4,[index]2}' or something like that is used, see the % manual). % % #1 either x or y % #2 either x or y \def\pgfplots@gridlines@init@grid@stop@points@for@init@ticknum@lookup#1#2{% \c@pgf@counta=0 \pgfplots@if{pgfplots@#1majorgrids}{% \expandafter \pgfplotslistforeachungrouped\csname pgfplots@prepared@tick@positions@major@#2\endcsname\as\elem{% \expandafter\pgfplots@prepared@tick@pos@unpack\elem \expandafter\let\csname pgfplots@#2tick@num@to@pos@\the\c@pgf@counta\endcsname=\pgfplots@tick \advance\c@pgf@counta by1 }% }{}% \pgfplots@if{pgfplots@#1minorgrids}{% \expandafter \pgfplotslistforeachungrouped\csname pgfplots@prepared@tick@positions@minor@#2\endcsname\as\elem{% \expandafter\pgfplots@prepared@tick@pos@unpack\elem \expandafter\let\csname pgfplots@#2tick@num@to@pos@\the\c@pgf@counta\endcsname=\pgfplots@tick \advance\c@pgf@counta by1 }% }{}% \expandafter\def\csname b@pgfplots@#2ticknum@to@pos@lookup\endcsname{1}% }% \def\pgfplots@gridlines@init@grid@stop@points@for@normalise#1\relax#2#3{% \def\b@pgfplots@haslt{0}% % \pgfutil@in@{if <}{#1}% \ifpgfutil@in@ % strip the white space between 'if' and '<': \def\pgfplots@loc@TMPa##1if <##2\relax{\edef\entry{##1if<##2}}% \expandafter\pgfplots@loc@TMPa\entry\relax \def\b@pgfplots@haslt{1}% \fi % \pgfutil@in@{if<}{#1}% \ifpgfutil@in@ \def\b@pgfplots@haslt{1}% \fi % \pgfutil@in@:{#1}% \ifpgfutil@in@ \def\b@pgfplots@hascolon{1}% \else \def\b@pgfplots@hascolon{0}% \fi % \if1\b@pgfplots@hascolon \edef\entry{\entry\if0\b@pgfplots@haslt if<\fi}% \else \if1\b@pgfplots@haslt \expandafter\pgfplots@gridlines@stop@at@unpack@@@\entry\relax \edef\entry{\pgfplots@grid@stop@at:2if<\pgfplots@grid@stop@at@iflt}% \else \edef\entry{\entry:2if<}% \fi% \fi% % \pgfutil@in@{[index]}{#1}% \ifpgfutil@in@ \if0\csname b@pgfplots@#3ticknum@to@pos@lookup\endcsname \pgfplots@gridlines@init@grid@stop@points@for@init@ticknum@lookup#2#3% \fi \expandafter\pgfplots@gridlines@stop@at@unpack\entry\relax \pgfutil@ifundefined{pgfplots@#3tick@num@to@pos@\pgfplots@grid@stop@at}{% \pgfplots@warning{There is no #3tick with index '\pgfplots@grid@stop@at'. Skipping it.}% \let\entry=\pgfutil@empty }{% \edef\entry{\csname pgfplots@#3tick@num@to@pos@\pgfplots@grid@stop@at\endcsname:\pgfplots@grid@stop@at@eachnth}% }% \fi % \expandafter\pgfplots@gridlines@stop@at@unpack\entry\relax \pgfplotscoordmath{default}{parsenumber}\pgfplots@grid@stop@at \let\pgfplots@grid@stop@at=\pgfmathresult \ifx\pgfplots@grid@stop@at@iflt\pgfutil@empty \else \pgfplotscoordmath{default}{parsenumber}\pgfplots@grid@stop@at@iflt \let\pgfplots@grid@stop@at@iflt=\pgfmathresult \fi \edef\entry{\pgfplots@grid@stop@at:\pgfplots@grid@stop@at@eachnth if<\pgfplots@grid@stop@at@iflt}% }% \def\pgfplots@gridlines@stop@at@unpack@@@#1if<#2\relax{% \def\pgfplots@grid@stop@at{#1}% \def\pgfplots@grid@stop@at@iflt{#2}% }% \def\pgfplots@gridlines@stop@at@unpack#1:#2if<#3\relax{% \def\pgfplots@grid@stop@at{#1}% \def\pgfplots@grid@stop@at@eachnth{#2}% \def\pgfplots@grid@stop@at@iflt{#3}% }% % Returns the xtick position which should end the current arc. % % This is an INTERNAL preparation method. See % \pgfplots@get@current@grid@stop@point for the final one. % % Note that arcs correspond to ygrid lines. % % #1 either x or y % #2 either x or y % #3 the value of the current grid line % #4 a boolean which expands either to 0 or to 1. % The \pgfplots@get@current@grid@stop@point@handle@constraints method % will be invoked if and only if #4=1 % % @POSTCONDITION On output, % - \pgfplotsretval will be filled with the % result. If the result is empty, no restriction is imposed. % Otherwise, it contains the #2tick value at which the current #1grid shall end. % The result is already processed with % \pgfplotscoordmath{default}{parsenumber}{} % - \pgfplots@tick@prepared contains a rounded representation of #3. % % The method relies on the 'ygrid each nth passes x' feature, more specifically the % stuff prepared by \pgfplots@gridlines@init@grid@stop@points@for \def\pgfplots@gridlines@preparation@get@current@grid@stop@point#1#2#3#4{% \def\pgfplotsretval{}% % \pgfplots@gridlines@stopmap@prepare{#3}% \let\pgfplots@tick@prepared=\pgfmathresult \pgfmathfloatabs@\pgfplots@tick@prepared \let\pgfplots@tick@prepared@abs=\pgfmathresult % \pgfplotscoordmath{default}{op}{abs}{{#3}}% \let\pgfplots@tick@abs=\pgfmathresult % % first: check the '#1grid stop at #2': \expandafter\ifx\csname b@pgfplots@#1gridline@stopmap\endcsname\relax% % ok. there is no such thing. \else % ah - process it! \pgfutil@ifundefined{pgfplots@#1gridline@stopmap@\pgfplots@tick@prepared}{% }{% \edef\pgfplotsretval{\csname pgfplots@#1gridline@stopmap@\pgfplots@tick@prepared\endcsname}% }% \fi % \ifx\pgfplotsretval\pgfutil@empty % the individual map failed. Ok, then check for the '#1grid each nth passes #2' \expandafter\ifx\csname pgfplots@#1grid@stop@points\endcsname\relax \else % \pgfplots@ticknum is defined in this context here. \pgfutil@ifundefined{pgfplots@#1tickpos@to@sortidx@\pgfplots@ticknum}{% \pgfplots@warning{Sorry, I can't get the current arc limit for #1grid no \#\pgfplots@ticknum\space(value \pgfplots@tick). This seems like an internal error!?}% }{% % get the sort index for the current tick (which is % uniquely identified by its \pgfplots@ticknum) \expandafter\let\expandafter\pgfplots@k\csname pgfplots@#1tickpos@to@sortidx@\pgfplots@ticknum\endcsname % \expandafter\pgfplotslistforeachungrouped\csname pgfplots@#1grid@stop@points\endcsname\as\pgfplots@loc@TMPa{% \ifx\pgfplotsretval\pgfutil@empty % we found no final limit so far. proceed. \expandafter\pgfplots@gridlines@stop@at@unpack\pgfplots@loc@TMPa\relax \ifx\pgfplots@grid@stop@at@iflt\pgfutil@empty \pgfplots@loop@CONTINUEtrue \else \pgfplotscoordmath{default}{if less than}{\pgfplots@tick@abs}{\pgfplots@grid@stop@at@iflt}{% \pgfplots@loop@CONTINUEtrue }{% \pgfplots@loop@CONTINUEfalse }% \fi % \ifpgfplots@loop@CONTINUE \pgfplotsmathmodint\pgfplots@k\pgfplots@grid@stop@at@eachnth \ifnum\pgfmathresult=0 \c@pgf@counta=\pgfplots@k \divide\c@pgf@counta by\pgfplots@grid@stop@at@eachnth\relax \edef\pgfplots@k{\the\c@pgf@counta}% \else % found the final limit. % % Now, check the constraints which couple % X and Y. \let\pgfplotsretval=\pgfplots@grid@stop@at \if1#4% \pgfplots@get@current@grid@stop@point@handle@constraints #1#2{#3}% \fi \fi \fi \fi }% }% \fi \fi \ifx\pgfplotsretval\pgfutil@empty \else \expandafter\let\csname pgfplots@final@stop@point@for@#1tick@\pgfplots@tick@prepared\endcsname=\pgfplotsretval %\message{#1 grid line: storing end value for '#3' END[\pgfplots@tick@prepared] = \pgfplotsretval.^^J}% \fi }% % PRECONDITION % \pgfplotsretval contains a non-zero constraint for the ygrid at #1. % % POSTCONDITION % either \pgfplotsretval is unchanged, or it is reset to % \pgfutil@empty if constraints are violated. % % The constraints are ONLY effective if BOTH, incomplete x- and y grid % lines are in effect. In that case, it should never happen that a % single grid line ends in a dead-end somewhere in white space. % % I enforce two constraints which apply only to ygrid to fix this % issue (this may be improved later). % % The idea is simple: % 1. suppose the grid line 'x=1' stops at 'y=5'. % Suppose further that the y grid line 'y=0.95' should stop at 'x=1'. % Is that acceptable? Yes, because |y| < 5. % Now, suppose an y grid line with |y| > 5 should stop at 'x=1'. % Is this allowed? NO! Because it would become a dead end since % the 'x=1' line ends at 'y=5'! % % So, whenever we consider ygrids and stop point candidates "x=X", % acquire the value Q where the x (!) grid line "x=X" stops. % If |y| > Q, the candidate "x=X" is rejected. % % 2. There might still be the case that x grid lines have dead-ends. % The current solution applies the idea first to all y grid lines, % and once the y grid lines are ready, it applies the same idea to % x grid lines. % % Uncomment the routine(s) and run the test cases to see what happens. \def\pgfplots@get@current@grid@stop@point@handle@constraints#1#2#3{% \ifx\pgfplotsretval\pgfutil@empty \else \pgfplots@gridlines@stopmap@prepare{\pgfplotsretval}% \let\pgfplots@loc@TMPa=\pgfmathresult % %\message{checking ending '#1=#3' at '#2=\pgfplotsretval'. '#2=\pgfplots@loc@TMPa' stops}% \pgfutil@ifundefined{pgfplots@final@stop@point@for@#2tick@\pgfplots@loc@TMPa}{% % no constraint. Ok. %\message{ nowhere. No constraint.^^J}% }{% %\message{ at \pgfplots@loc@TMPa. Feasible: }% % Oh, a constraint. That means % further work. \expandafter\let\expandafter\pgfplots@loc@TMPa\csname pgfplots@final@stop@point@for@#2tick@\pgfmathresult\endcsname \pgfplotscoordmath{default}{op}{abs}{{#3}}% \pgfplotscoordmath{default}{if less than}{\pgfmathresult}{\pgfplots@loc@TMPa}{% % ok, we can use the found % stop value. %\message{YES.^^J}% }{% %\message{NO.^^J}% % no, the stop value is % invalid; it would stop in % white space! \let\pgfplotsretval=\pgfutil@empty }% }% \fi }% % Returns the xtick position which should end the current arc. % % Note that arcs correspond to ygrid lines. % % #1 either x or y % #2 either x or y % #3 the value of the current grid line % % @POSTCONDITION On output, \pgfplotsretval will be filled with the % result. If the result is empty, no restriction is imposed. % Otherwise, it contains the #2tick value at which the current #1grid shall end. % The result is already processed with % \pgfplotscoordmath{default}{parsenumber}{} % % The method relies on the 'ygrid each nth passes x' feature, more specifically the % stuff prepared by \pgfplots@gridlines@init@grid@stop@points@for % % Note that all work has already been done by % \pgfplots@gridlines@init@grid@stop@points@for. We only need to query % the result at this point. % @see \pgfplots@gridlines@init@grid@stop@points@for % @see \pgfplots@gridlines@preparation@get@current@grid@stop@point \def\pgfplots@get@current@grid@stop@point#1#2#3{% \def\pgfplotsretval{}% % % check the '#1grid stop at #2': \expandafter\ifx\csname b@pgfplots@#1gridline@stopmap\endcsname\relax% % ok. there is no such thing. \else % \pgfplots@gridlines@stopmap@prepare{#3}% \let\pgfplots@tick@prepared=\pgfmathresult \pgfmathfloatabs@\pgfplots@tick@prepared \let\pgfplots@tick@prepared@abs=\pgfmathresult % % ah - process it! \pgfutil@ifundefined{pgfplots@#1gridline@stopmap@\pgfplots@tick@prepared}{% \let\pgfplotsretval\pgfutil@empty }{% \edef\pgfplotsretval{\csname pgfplots@#1gridline@stopmap@\pgfplots@tick@prepared\endcsname}% }% \fi % }% \def\pgfplots@smithchart@draw@xcircle#1{% \pgfplotscoordmath{default}{one}% \let\pgfplots@loc@TMPa=\pgfmathresult % \pgfplotscoordmath{default}{parsenumber}{#1}% \let\pgfplots@x=\pgfmathresult % \pgfplotscoordmath{default}{op}{add}{{\pgfplots@loc@TMPa}{\pgfplots@x}}% \let\pgfplots@radius@inverse=\pgfmathresult \pgfplotscoordmath{default}{op}{reciprocal}{{\pgfmathresult}}% \let\pgfplots@radius=\pgfmathresult \pgfplotscoordmath{default}{op}{multiply}{{\pgfmathresult}{\pgfplots@x}}% \pgfplotscoordmath{default}{tofixed}{\pgfmathresult}% \let\pgfplots@center=\pgfmathresult % \pgfplotscoordmath{default}{tofixed}{\pgfplots@radius}% \let\pgfplots@radius=\pgfmathresult % \pgfplotscoordmath{default}{tofixed}{\pgfplots@radius@inverse}% \let\pgfplots@radius@inverse=\pgfmathresult % % This here would suffice in case 'xgrid each nth passes y={}': % \pgfpathellipse % {\pgfplotsqpointxy@smithchart@canvas{\pgfplots@center}{0}} % {\pgfplotsqpointxy@smithchart@canvas{\pgfplots@radius}{0}} % {\pgfplotsqpointxy@smithchart@canvas{0}{\pgfplots@radius}}% % % but we also check for the 'xgrid each nth passes y' feature: \pgfplots@get@current@grid@stop@point xy{\pgfplots@x}% \let\pgfplots@arc@ends@at@y@arc@value\pgfplotsretval% % \ifx\pgfplots@arc@ends@at@y@arc@value\pgfutil@empty % Ok. There is no specific end point -- simply use the % (1,0) point (i.e. draw the full circle). % \pgfmathadd@{\pgfplots@center}{\pgfplots@radius}% \let\pgfplots@start=\pgfmathresult% \def\pgfplots@startim{0}% \def\pgfplots@startangle{0}% \let\pgfplots@end=\pgfplots@start \let\pgfplots@endim=\pgfplots@startim \def\pgfplots@endangle{360}% \else % Ok. The arc should end before it reaches the (1,0) % point. Determine the exact position and the % corresponding arc end angle. % % In general, the intersection between the circle for % fixed x=A and fixed y=B is given by % % p + j * q = (A + j * B -1 ) / ( A + j*B +1) % see http://www.siart.de/lehre/tutorien.xhtml#smishort \pgfplotscoordmath{default}{one}% \let\pgfplots@one=\pgfmathresult \pgfplotscoordmath{default}{parsenumber}{-1}% \let\pgfplots@mone=\pgfmathresult \pgfplotscoordmath{default}{op}{add}{{\pgfplots@x}{\pgfplots@mone}}% \let\pgfplots@A@mone=\pgfmathresult \pgfplotscoordmath{default}{op}{add}{{\pgfplots@x}{\pgfplots@one}}% \let\pgfplots@A@one=\pgfmathresult % oh - we should only draw a partial arc. % Well, then compute its end point and the % corresponding end angle. \pgfplotscoordmathcomplexdivision {\pgfplots@A@mone}{\pgfplots@arc@ends@at@y@arc@value}% {\pgfplots@A@one}{\pgfplots@arc@ends@at@y@arc@value}% \let\pgfplots@start=\pgfmathresult \let\pgfplots@startim=\pgfmathresultim \pgfplotscoordmath{default}{tofixed}{\pgfplots@start}% \let\pgfplots@start=\pgfmathresult \pgfplotscoordmath{default}{tofixed}{\pgfplots@startim}% \let\pgfplots@startim=\pgfmathresult % \pgfplots@compute@angle@of@point@in@circle\pgfplots@start\pgfplots@startim{\pgfplots@center}{\pgfplots@radius}{\pgfplots@radius@inverse}% \let\pgfplots@startangle=\pgfmathresult \pgfmathsubtract@{360}{\pgfplots@startangle}% \let\pgfplots@endangle=\pgfmathresult \let\pgfplots@end=\pgfplots@start \edef\pgfplots@endim{-\pgfplots@startim}% \ifdim\pgfplots@startangle pt>\pgfplots@endangle pt \let\pgfplots@loc@TMPa=\pgfplots@startangle \let\pgfplots@startangle=\pgfplots@endangle \let\pgfplots@endangle=\pgfplots@loc@TMPa \fi \fi % %\message{X grid line \#\csname pgfplots@ticknum\endcsname \space at '#1': center = (\pgfplots@center,0); radius = \pgfplots@radius\space(start angle \pgfplots@startangle, end angle = \pgfplots@endangle; stops at y = \pgfplots@arc@ends@at@y@arc@value).^^J}% % % Now, compute the arc. % % first, compute the absolute x/y radii: \pgf@xa=\pgfplots@radius\pgf@xx \pgf@xb=\pgfplots@radius\pgf@yy \edef\pgfplots@mirror@sign{\ifpgfplots@smithchart@mirrored -\fi}% \pgfpathmoveto{\pgfplotsqpointxy@smithchart@canvas{\pgfplots@start}{\pgfplots@startim}}% % note that the case startangle > endangle is % automatically correct; patharc handles that. %\edef\pgfplots@loc@TMPa{{\pgfplots@startangle}{\pgfplots@endangle}{\pgfplots@mirror@sign\the\pgf@xa\space and \the\pgf@xb}}% %\expandafter\pgfpatharc\pgfplots@loc@TMPa % % prefer \pgfpatharctoprecomputed. It is faster and more accurate \edef\pgfplots@loc@TMPa{% {\noexpand\pgfplotsqpointxy@smithchart@canvas{\pgfplots@center}{0}}% {\pgfplots@startangle}% {\pgfplots@endangle}% {\noexpand\pgfplotsqpointxy@smithchart@canvas{\pgfplots@end}{\pgfplots@endim}}% {\pgfplots@mirror@sign\the\pgf@xa}% {\the\pgf@xb}% {\pgfplots@mirror@sign\pgfplots@smithchart@axis@ratioxy}% {\pgfplots@mirror@sign\pgfplots@smithchart@axis@ratioyx}% }% \expandafter\pgfpatharctoprecomputed\pgfplots@loc@TMPa } \def\pgfplots@smithchart@draw@yarc#1{% \pgfplotscoordmath{default}{parsenumber}{#1}% \let\pgfplots@y\pgfmathresult \pgfplotscoordmath{default}{op}{abs}{{\pgfplots@y}}% \pgfplotscoordmath{default}{if less than}{\pgfmathresult}{\pgfplots@almost@zero@thresh}{% \pgfpathmoveto{\pgfplotsqpointxy@smithchart@canvas{-1}{0}}% \pgfpathlineto{\pgfplotsqpointxy@smithchart@canvas{1}{0}}% }{% \pgfplotscoordmath{default}{op}{reciprocal}{{\pgfplots@y}}% \pgfplotscoordmath{default}{tofixed}{\pgfmathresult}% \let\pgfplots@signedradius=\pgfmathresult % \pgfplotscoordmath{default}{tofixed}{\pgfplots@y}% \ifdim\pgfplots@signedradius pt<0pt \def\pgfplots@radius@sign{-}% \edef\pgfplots@radius@inverse{-\pgfmathresult}% \edef\pgfplots@radius{-\pgfplots@signedradius}% \else \def\pgfplots@radius@sign{}% \edef\pgfplots@radius@inverse{\pgfmathresult}% \let\pgfplots@radius=\pgfplots@signedradius \fi % this here is the correct, complete circle -- together % with a clip path, you get what you want: %\pgfpathellipse % {\pgfplotsqpointxy@smithchart@canvas{1}{\pgfplots@signedradius}} % {\pgfplotsqpointxy@smithchart@canvas{\pgfplots@signedradius}{0}} % {\pgfplotsqpointxy@smithchart@canvas{0}{\pgfplots@signedradius}}% % But I only want the arc (probably stopped earlier to % improve qualtity of the chart) % % compute start point for the arc. % % To do so, we need to compute the intersection between % the circle for fixed x=0 and the circle for y=#1. % % In general, the intersection between the circle for % fixed x=A and fixed y=B is given by % % p + j * q = (A + j * B -1 ) / ( A + j*B +1) % see http://www.siart.de/lehre/tutorien.xhtml#smishort % % inserting A = 0 and B = #1 yields the result % p=\pgfplots@start % q=\pgfplots@startim % as follows: \pgfplotscoordmath{default}{one}% \let\pgfplots@one=\pgfmathresult \pgfplotscoordmath{default}{parsenumber}{-1}% \let\pgfplots@mone=\pgfmathresult \pgfplotscoordmathcomplexdivision{\pgfplots@mone}{\pgfplots@y}{\pgfplots@one}{\pgfplots@y}% \let\pgfplots@start=\pgfmathresult \let\pgfplots@startim=\pgfmathresultim \pgfplotscoordmath{default}{tofixed}{\pgfplots@start}% \let\pgfplots@start=\pgfmathresult \pgfplotscoordmath{default}{tofixed}{\pgfplots@startim}% \let\pgfplots@startim=\pgfmathresult % \pgfplots@compute@angle@of@point@in@circle\pgfplots@start\pgfplots@startim{1}{\pgfplots@signedradius}{\pgfplots@radius@inverse}% \let\pgfplots@startangle=\pgfmathresult % % % compute end angle. \pgfplots@get@current@grid@stop@point yx{\pgfplots@y}% \let\pgfplots@arc@ends@at@x@circle@value\pgfplotsretval% % \ifx\pgfplots@arc@ends@at@x@circle@value\pgfutil@empty % Ok. There is no specific end point -- simply use the % (1,0) point (i.e. draw the full arc). % % The "0 degree" angle in my circles is in the direction % of (1,0) . \ifdim\pgfplots@startim pt>0pt % ok; this arc belongs to the upper hemisphere. \def\pgfplots@endangle{270}% \else % ok; this arc belongs to the lower hemisphere. \def\pgfplots@endangle{90}% \fi \def\pgfplots@end{1}% \def\pgfplots@endim{0}% \else % Ok. The arc should end before it reaches the (1,0) % point. Determine the exact position and the % corresponding arc end angle. \pgfplotscoordmath{default}{op}{add}{{\pgfplots@arc@ends@at@x@circle@value}{\pgfplots@mone}}% \let\pgfplots@A@mone=\pgfmathresult \pgfplotscoordmath{default}{op}{add}{{\pgfplots@arc@ends@at@x@circle@value}{\pgfplots@one}}% \let\pgfplots@A@one=\pgfmathresult % oh - we should only draw a partial arc. % Well, then compute its end point and the % corresponding end angle. \pgfplotscoordmathcomplexdivision{\pgfplots@A@mone}{\pgfplots@y}{\pgfplots@A@one}{\pgfplots@y}% \let\pgfplots@end=\pgfmathresult \let\pgfplots@endim=\pgfmathresultim \pgfplotscoordmath{default}{tofixed}{\pgfplots@end}% \let\pgfplots@end=\pgfmathresult \pgfplotscoordmath{default}{tofixed}{\pgfplots@endim}% \let\pgfplots@endim=\pgfmathresult % \pgfplots@compute@angle@of@point@in@circle\pgfplots@end\pgfplots@endim{1}{\pgfplots@signedradius}{\pgfplots@radius@inverse}% \let\pgfplots@endangle=\pgfmathresult \fi % % % % Now, compute the arc. % % first, compute the absolute x/y radii: % % Note that for small y (like y=0.01), the arc is almost a % straight line. Consequently, the ellipsis radius will be much larger % than 16000, violating TeX's number range. % % To avoid that, I clip it to the highest allowed value. % The final radius is % \pgfplots@radius * \pgf@xx and \pgfplots@radius * \pgf@yy. % the clipped value thus needs to respect the magnitude of \pgf@xx and \pgf@yy. \ifdim\pgfplots@radius pt<\pgfplots@smithchart@axis@max@xradius@for@ycircle pt \let\pgfplots@radius@x\pgfplots@radius \else \let\pgfplots@radius@x=\pgfplots@smithchart@axis@max@xradius@for@ycircle \fi \ifdim\pgfplots@radius pt<\pgfplots@smithchart@axis@max@yradius@for@ycircle pt \let\pgfplots@radius@y\pgfplots@radius \else \let\pgfplots@radius@y=\pgfplots@smithchart@axis@max@yradius@for@ycircle \fi %\message{Y grid line \#\csname pgfplots@ticknum\endcsname\space at '#1': center = (1,\pgfplots@signedradius); signedradius = \pgfplots@signedradius\space clipped radii = \pgfplots@radius@x*\the\pgf@xx\space and \pgfplots@radius@y*\the\pgf@yy\space ( start angle \pgfplots@startangle, end angle \pgfplots@endangle, arc limit: \ifx\pgfplots@arc@ends@at@x@circle@value\pgfutil@empty NONE\else \pgfplots@arc@ends@at@x@circle@value\fi)^^J}% \pgf@xa=\pgfplots@radius@x\pgf@xx \pgf@xb=\pgfplots@radius@y\pgf@yy \edef\pgfplots@mirror@sign{\ifpgfplots@smithchart@mirrored -\fi}% \pgfpathmoveto{\pgfplotsqpointxy@smithchart@canvas{\pgfplots@start}{\pgfplots@startim}}% % note that the case startangle > endangle is % automatically correct; patharc handles that. %\edef\pgfplots@loc@TMPa{{\pgfplots@startangle}{\pgfplots@endangle}{\pgfplots@mirror@sign\the\pgf@xa\space and \the\pgf@xb}}% %\expandafter\pgfpatharc\pgfplots@loc@TMPa % % prefer \pgfpatharctoprecomputed. It is faster and more accurate \ifdim\pgfplots@startangle pt>\pgfplots@endangle pt \let\pgfplots@loc@TMPa=\pgfplots@startangle % \let\pgfplots@startangle=\pgfplots@endangle % \let\pgfplots@endangle=\pgfplots@loc@TMPa \fi \edef\pgfplots@loc@TMPa{% {\noexpand\pgfplotsqpointxy@smithchart@canvas{1}{\pgfplots@radius@sign\pgfplots@radius@y}}% {\pgfplots@startangle}% {\pgfplots@endangle}% {\noexpand\pgfplotsqpointxy@smithchart@canvas{\pgfplots@end}{\pgfplots@endim}}% {\pgfplots@mirror@sign\the\pgf@xa}% {\the\pgf@xb}% {\pgfplots@mirror@sign\pgfplots@smithchart@axis@ratioxy}% {\pgfplots@mirror@sign\pgfplots@smithchart@axis@ratioyx}% }% \expandafter\pgfpatharctoprecomputed\pgfplots@loc@TMPa }% } \def\pgfplots@drawgridlines@onorientedsurf@fromto@smithchart#1{% \if x\pgfplotspointonorientedsurfaceA \pgfplots@smithchart@draw@xcircle{#1}% \else \pgfplots@smithchart@draw@yarc{#1}% \fi }% % Given a circle with center point (#3,#4), we search for the angle % of the point (#1,#2). The point is expected to be on the circle. % The resulting angle is returned in \pgfmathresult % % #1 x coordinate of the point for which an angle is searched % #2 y coordinate of the point for which an angle is searched % #3 x coordinate of the circle's center point % #4 y coordinate of the circle's center point % #5 is either empty or it is expected to contain the inverse radius, 1/r % this information is available in my context, so I don't recompute % it. % % All coordinates are expected in standard TeX precision (numbers % without unit) \def\pgfplots@compute@angle@of@point@in@circle#1#2#3#4#5{% % % 1. compute diff vector from center=(1,\pgfplots@signedradius) to start: \pgfmathsubtract@{#1}{#3}% \let\pgfplots@D\pgfmathresult \pgfmathsubtract@{#2}{#4}% \let\pgfplots@Dim\pgfmathresult % % 2. compute the start angle. % It is related to the angle between the point (1,0) and % diff, which, in turn is given by % < (1,0), (D,Dim) > = cos(alpha) ||(D,Dim)|| % < (1,0), (D,Dim) > = D % % Note that ||(D,Dim)|| = r, the radius of the involved circle % around (#3,#4). If 1/r is already available, use it! Saves a lot % of time. % \def\pgfplots@loc@TMPa{#5}% \ifx\pgfplots@loc@TMPa\pgfutil@empty \pgfmathveclen\pgfplots@D\pgfplots@Dim \let\pgfplots@veclen=\pgfmathresult \pgfmathreciprocal@\pgfplots@veclen \let\pgfplots@inverseveclen=\pgfmathresult \else % oh, good -- we already have 1/||(D,Dim)||. Use it. \def\pgfplots@inverseveclen{#5}% %\message{using already available inverseveclen '#5' }% \fi \pgfmathmultiply@{\pgfplots@D}{\pgfplots@inverseveclen}% %\message{D= (\pgfplots@D,\pgfplots@Dim).. acos(\pgfplots@D * \pgfplots@inverseveclen) = acos(\pgfmathresult)}% \pgfmathacos@{\pgfmathresult}% the '-' comes from D<0 . %\message{= \pgfmathresult^^J}% \let\pgfplots@tmpangle\pgfmathresult% % ok. tmpangle is per definition less than 180; it is the % smaller angle between (1,0) and (D,Dim). % % compute the angle relative to (1,0): \ifdim\pgfplots@Dim pt<0pt \pgfmathsubtract@{360}{\pgfplots@tmpangle}% \fi }% \def\pgfplots@drawaxis@innerlines@onorientedsurf@smithchart#1#2#3{% \if2\csname pgfplots@#1axislinesnum\endcsname \draw[/pgfplots/every inner #1 axis line,% decorate,% #1discont,% decoration={pre length=\csname #1disstart\endcsname, post length=\csname #1disend\endcsname}] \pgfextra \csname pgfplotspointonorientedsurfaceabsetupforset#3\endcsname{\csname pgfplots@logical@ZERO@#3\endcsname}{2}% \if#1x% \pgfplotspointonorientedsurfaceabsetupfor{#2}{#1}{\pgfplotspointonorientedsurfaceN}% \pgfplots@drawgridlines@onorientedsurf@fromto{0}% \else \pgfpathmoveto{\pgfplotspointonorientedsurfaceab{\csname pgfplots@#1min\endcsname}{\csname pgfplots@logical@ZERO@#2\endcsname}}% \pgfpathlineto{\pgfplotspointonorientedsurfaceab{\csname pgfplots@#1max\endcsname}{\csname pgfplots@logical@ZERO@#2\endcsname}}% \fi \endpgfextra ; \fi }% \def\pgfplots@drawaxis@outerlines@separate@onorientedsurf@smithchartaxis#1#2{% \if2\csname pgfplots@#1axislinesnum\endcsname % centered axis lines handled elsewhere. \else \scope[/pgfplots/every outer #1 axis line, #1discont,decoration={pre length=\csname #1disstart\endcsname, post length=\csname #1disend\endcsname}] \if#1x \draw decorate { \pgfextra % exchange roles of A <-> B axes: \pgfplotspointonorientedsurfaceabsetupfor{#2}{#1}{\pgfplotspointonorientedsurfaceN}% \pgfplots@drawgridlines@onorientedsurf@fromto{0}% \endpgfextra }; \else \pgfplots@ifaxisline@B@onorientedsurf@should@be@drawn{0}{% \draw decorate { \pgfextra % exchange roles of A <-> B axes: \pgfplotspointonorientedsurfaceabsetupfor{#2}{#1}{\pgfplotspointonorientedsurfaceN}% \pgfplots@drawgridlines@onorientedsurf@fromto{\csname pgfplots@#2min\endcsname}% \endpgfextra }; }{}% %-------------------------------------------------- % \pgfplots@ifaxisline@B@onorientedsurf@should@be@drawn{1}{% % \draw decorate { % \pgfextra % % exchange roles of A <-> B axes: % \pgfplotspointonorientedsurfaceabsetupfor{#2}{#1}{\pgfplotspointonorientedsurfaceN}% % \pgfplots@drawgridlines@onorientedsurf@fromto{\csname pgfplots@#2max\endcsname}% % \endpgfextra % }; % }{}% %-------------------------------------------------- \fi \endscope \fi }% \def\pgfplots@BB@for@plotbox@get@unit@scales@for@limits@smithchart#1#2#3{% % In a smith chart, the size of the image is unrelated to the % involved data limits. % % The factor 2 is because we want to fit the DIAMETER into the % prescribed dimensions, not just the radius. \def\pgfmathresult{2}% \let#1=\pgfmathresult \let#2=\pgfmathresult \def#3{1}% }% \def\pgfplots@handle@invalid@range@defaultlimits@smithchart{% \pgfplotscoordmath{x}{parsenumber}{0}% \global\let\pgfplots@xmin=\pgfmathresult \pgfplotscoordmath{x}{parsenumber}{16000}% \global\let\pgfplots@xmax=\pgfmathresult \global\let\pgfplots@data@xmin=\pgfplots@xmin \global\let\pgfplots@data@xmax=\pgfplots@xmax % \pgfplotscoordmath{y}{parsenumber}{0}% \global\let\pgfplots@ymin=\pgfmathresult \pgfplotscoordmath{y}{parsenumber}{16000}% \global\let\pgfplots@ymax=\pgfmathresult \global\let\pgfplots@data@ymin=\pgfplots@ymin \global\let\pgfplots@data@ymax=\pgfplots@ymax \pgfplotsset{enlargelimits=false}% } \let\pgfplots@set@default@size@options@standard=\pgfplots@set@default@size@options \def\pgfplots@set@default@size@options@smithchart{% \pgfplots@set@default@size@options@standard \pgfplotsset{smithchart ticks by size={\pgfkeysvalueof{/pgfplots/width}}{\pgfkeysvalueof{/pgfplots/height}}}% % \if1\b@pgfplots@smithchart@defaultticks@x \if1\b@pgfplots@smithchart@defaultticks@y \pgfplotsset{default smithchart xytick}% \fi \fi } \def\pgfplots@assign@default@tick@foraxis@smithchart#1{% % do nothing here. I don't know the algorithm yet... but for % smithcharts, it may be sufficient to simply predefine several % sets of ticks, depending on the final size. % % This is realized in % \pgfplots@set@default@size@options@smithchart (which is invoked % before the ticks are processed). \pgfplots@determinedefaultvalues@needs@check@uniformtickfalse \expandafter\let\csname pgfplots@tick@distance@#1\endcsname=\pgfutil@empty % \pgfplotsset{default smithchart #1tick}% % ok, I expect the '#1tick' key to be set now. Process it. % Note that the earlier processing of pgfplots has been bypassed % at this point -- we need to preprocess the tick list *here*: \expandafter\let\expandafter\pgfplots@loc@TMPa\csname pgfplots@#1tick\endcsname \expandafter\pgfplots@assign@default@tick@foraxis@smithchart@\expandafter{\pgfplots@loc@TMPa}% \expandafter\let\csname pgfplots@#1tick\endcsname=\pgfplotsretval % \pgfkeysgetvalue{/pgfplots/minor #1tick}\pgfplots@loc@TMPa \ifx\pgfplots@loc@TMPa\pgfutil@empty \else \expandafter\pgfplots@assign@default@tick@foraxis@smithchart@\expandafter{\pgfplots@loc@TMPa}% \pgfkeyslet{/pgfplots/minor #1tick}\pgfplotsretval \fi % }% % #1: a \foreach list % on output, \pgfplotsretval contains a parsed list of positions \def\pgfplots@assign@default@tick@foraxis@smithchart@#1{% \pgfplotsapplistXXglobalnewempty \gdef\pgfplots@loc@TMPd{1}% \foreach \pgfplots@loc@TMPb in {#1} {% \ifx\pgfplots@loc@TMPb\pgfutil@empty \else \pgfplotscoordmath{default}{parsenumber}{\pgfplots@loc@TMPb}% \pgfplotscoordmath{default}{tofixed}{\pgfmathresult}% per convention... \edef\pgfmathresult{\if0\pgfplots@loc@TMPd,\fi\pgfmathresult}% \gdef\pgfplots@loc@TMPd{0}% \expandafter\pgfplotsapplistXXglobalpushback\expandafter{\pgfmathresult}% \fi }% \pgfplotsapplistXXgloballet\pgfplotsretval \pgfplotsapplistXXglobalclear }% \let\pgfplots@show@ticklabel@@orig=\pgfplots@show@ticklabel@ \def\pgfplots@show@ticklabel@@smithchart#1#2{% \def\pgfmathresult{#2}% \if#1x% \ifdim#2pt>360pt \pgfmath@basic@mod@{#2}{360}% \fi \fi \def\pgfplots@loc@TMPa{\pgfplots@show@ticklabel@@orig{#1}}% \expandafter\pgfplots@loc@TMPa\expandafter{\pgfmathresult}% }% \def\pgfplots@xtick@check@tickshow@smithchart{% \pgfplots@tickshowtrue } \def\pgfplots@ytick@check@tickshow@smithchart{% \pgfplots@tickshowtrue } \let\pgfplots@limits@ready@orig=\pgfplots@limits@ready \def\pgfplots@limits@ready@smithchart{% \pgfplots@limits@ready@orig % % Avoid tick labels at upper *and* lower angle range if both are the % same: \pgfmath@basic@sin@{\pgfplots@xmin}% \let\pgfplots@loc@TMPa=\pgfmathresult \pgfmath@basic@sin@{\pgfplots@xmax}% \pgfplotsmath@ifapproxequal@dim {\pgfmathresult pt}{\pgfplots@loc@TMPa pt}% {0.002pt} {% \def\pgfplots@xtick@disable@last@tick{1}% }{% }% }% \def\smithchart{\smithchartaxis} \def\endsmithchart{\endsmithchartaxis} \def\startsmithchart{\smithchart}% \def\stopsmithchart{\endsmithchart}% \endinput