%-------------------------------------------- % % Package pgfplots, library for higher order patch plots. % It contains advanced patch plots like quadratic triangles, % biquadratic quadrilaterals, coons patches and others. % The basic implementation for patches supports already line, triangle % and rectangle (=2 triangles) patches. % % Copyright 2007/2008/2009 by Christian Feuersänger. % % This program is free software: you can redistribute it and/or modify % it under the terms of the GNU General Public License as published by % the Free Software Foundation, either version 3 of the License, or % (at your option) any later version. % % This program is distributed in the hope that it will be useful, % but WITHOUT ANY WARRANTY; without even the implied warranty of % MERCHANTABILITY or FITNESS FOR A PARTICULAR PURPOSE. See the % GNU General Public License for more details. % % You should have received a copy of the GNU General Public License % along with this program. If not, see . % %-------------------------------------------- % NOTES: % In general, a Bezier spline C:[0,1] -> \R of order n fulfills % C'(0) = n ( P_1 - P_0 ), % C'(1) = n ( P_n - P_{n-1} ). % For n=3 and given P_0 and P_3, I can directly compute P_1 and P_2 once I know % the derivatives at t=0 and t=1. % % % %-------------------------------------------------- % 4-point Lagrange interpolation on {0,1/3,2/3,1}: % C(x) = % a * (1/3 - x)/(1/3) * (2/3-x)/(2/3) * (1-x) + % b * (0 - x)/(0 - 1/3) * (2/3-x)/(2/3-1/3) * (1-x)/(1-1/3) + % c * (0 - x)/(0 - 2/3) * (1/3-x)/(1/3-2/3) * (1-x)/(1-2/3) + % d * (0 - x)/(0 - 1) * (1/3-x)/(1/3-1) * (2/3-x) /(2/3-1) % % % Derivative: % % (-9*c + 2*d + 72*c*x - 18*d*x - 81*c*x^2 + 27*d*x^2 + % a*(-11 + 36*x - 27*x^2) + 9*b*(2 - 10*x + 9*x^2))/2 % % bezier control points are % P1 = (-5*a)/6 + 3*b - (3*c)/2 + d/3 % = -0.833333 a + 3. b - 1.5 c + 0.333333 d % % P2 = 0.333333 (0.5 (2. a - 9. b + 18. c - 11. d) + 3. d) % = 0.333333 a - 1.5 b + 3. c - 0.833333 d %-------------------------------------------------- % A quadratic spline in the ordering % % % % where is the function value at the left end of the spline % segmment, the function value at the right end, and % the function value in the middle of the spline segment. \pgfplotsdeclarepatchclass{quadratic spline}{% get dimension=\def\pgfplotsretval{1}, supports global path=\def\pgfplotsretval{1}, new=\def\pgfplotspatchclass@qspline@no{A}, set next vertex={% % EXPECTED ORDERING: first 2 corners, then 1 mid nodes % (interpolatory). % defines \pgfplotspatchclass@qspline@A ... \pgfplotspatchclass@qspline@C (3 points) \expandafter\edef\csname pgfplotspatchclass@qspline@\pgfplotspatchclass@qspline@no\endcsname{#1}% \if C\pgfplotspatchclass@qspline@no \def\pgfplotspatchclass@qspline@no{A}% \pgfplotspatchready \else \expandafter\let\expandafter\pgfplotspatchclass@qspline@no\csname pgfpptchindexnext@\pgfplotspatchclass@qspline@no\endcsname \fi }, if current point can be first last={% \pgfplots@loc@tmptrue \if A\pgfplotspatchclass@qspline@no % Ah - the current point is the 'C' point, i.e. the % control point (we have advanced the '@no' counter) \pgfplots@loc@tmpfalse \fi \ifpgfplots@loc@tmp #1\relax% \else #2\relax \fi }, sample in unit cube={% \def\pgfplotspatchclassx{0}% \def\pgfplotspatchclassy{0}% #1% \def\pgfplotspatchclassx{1}% \def\pgfplotspatchclassy{0}% #1% \def\pgfplotspatchclassx{0.5}% \def\pgfplotspatchclassy{0}% #1% \pgfplotspatchready },% first vertex=\expandafter\pgfplotspatchvertex\pgfplotspatchclass@qspline@A\endvertex, foreach vertex={% \expandafter\pgfplotspatchvertex\pgfplotspatchclass@qspline@A\endvertex #1% \expandafter\pgfplotspatchvertex\pgfplotspatchclass@qspline@B\endvertex #1% \expandafter\pgfplotspatchvertex\pgfplotspatchclass@qspline@C\endvertex #1% }, fill path={% \begingroup % Draw the patch boundary using a bezier curves. % % Since I have lagrange points to describe the patch (i.e. % points the patch passes through), I have to convert the % lagrange representation to bezier. % % Furthermore, I convert to *cubic* bezier since pdf only % supports cubic curves. % % See the docs for 'biquadratic::fill path' for more details, % in does the same. \def\pgfplots@edge{% \ifx\pgfplotspatchclass@qspline@A\PA \pgfplotsplothandlermesh@pathmoveto{\expandafter\pgfplotspointpatchvertex\PA\endvertex}% \fi \pgfpathcurveto {% \pgfpointadd {\pgfqpointscale{1.333333}{\expandafter\pgfplotspointpatchvertex\PB\endvertex}}% {\pgfqpointscale{-0.333333}{\expandafter\pgfplotspointpatchvertex\PC\endvertex}}% }{% \pgfpointadd {\pgfqpointscale{1.333333}{\expandafter\pgfplotspointpatchvertex\PB\endvertex}}% {\pgfqpointscale{-0.333333}{\expandafter\pgfplotspointpatchvertex\PA\endvertex}}% }{% \expandafter\pgfplotspointpatchvertex\PC\endvertex }% }% \let\PA=\pgfplotspatchclass@qspline@A \let\PB=\pgfplotspatchclass@qspline@C \let\PC=\pgfplotspatchclass@qspline@B \pgfplots@edge \pgfplotsplothandlermesh@setlastpoint{\expandafter\pgfplotspointpatchvertex\PC\endvertex}% \endgroup }, triangulate class=\def\pgfplotsretval{line}, triangulate={% \let\pgfplotsplothandlermesh@patchclass@=\pgfplotsplothandlermesh@patchclass \def\pgfplotsplothandlermesh@patchclass{line}% \pgfplotspatchclass{\pgfplotsplothandlermesh@patchclass}{new}% \expandafter\pgfplotsplothandlermesh@setnextvertex\expandafter{\pgfplotspatchclass@qspline@A}% \expandafter\pgfplotsplothandlermesh@setnextvertex\expandafter{\pgfplotspatchclass@qspline@C}% \expandafter\pgfplotsplothandlermesh@setnextvertex\expandafter{\pgfplotspatchclass@qspline@C}% \expandafter\pgfplotsplothandlermesh@setnextvertex\expandafter{\pgfplotspatchclass@qspline@B}% \let\pgfplotsplothandlermesh@patchclass=\pgfplotsplothandlermesh@patchclass@ },% recursive refine@={% \pgfplotspatchclass{\pgfplotspatchclassname}{new}% \pgfplotspatchvertexaccumstart \expandafter\pgfplotspatchvertexadd\pgfplotspatchclass@qspline@A\times{0.375}% \expandafter\pgfplotspatchvertexadd\pgfplotspatchclass@qspline@B\times{-0.125}% \expandafter\pgfplotspatchvertexadd\pgfplotspatchclass@qspline@C\times{0.75}% \pgfplotspatchvertexfinish\pgfplotspatchclass@qspline@AC % \expandafter\pgfplotsplothandlermesh@setnextvertex\expandafter{\pgfplotspatchclass@qspline@A}% \expandafter\pgfplotsplothandlermesh@setnextvertex\expandafter{\pgfplotspatchclass@qspline@C}% \expandafter\pgfplotsplothandlermesh@setnextvertex\expandafter{\pgfplotspatchclass@qspline@AC}% #1% % \pgfplotspatchvertexaccumstart \expandafter\pgfplotspatchvertexadd\pgfplotspatchclass@qspline@A\times{-0.125}% \expandafter\pgfplotspatchvertexadd\pgfplotspatchclass@qspline@B\times{0.375}% \expandafter\pgfplotspatchvertexadd\pgfplotspatchclass@qspline@C\times{0.75}% \pgfplotspatchvertexfinish\pgfplotspatchclass@qspline@CB % \expandafter\pgfplotsplothandlermesh@setnextvertex\expandafter{\pgfplotspatchclass@qspline@C}% \expandafter\pgfplotsplothandlermesh@setnextvertex\expandafter{\pgfplotspatchclass@qspline@B}% \expandafter\pgfplotsplothandlermesh@setnextvertex\expandafter{\pgfplotspatchclass@qspline@CB}% #1% % },% get pdf shading type=0, get num vertices=\def\pgfplotsretval{3}, }% \pgfplotsdeclarepatchclass{cubic spline}{% get dimension=\def\pgfplotsretval{1}, supports global path=\def\pgfplotsretval{1}, new=\def\pgfplotspatchclass@cspline@no{A}, set next vertex={% % EXPECTED ORDERING: first 2 corners, then 1 mid nodes % (interpolatory). % defines \pgfplotspatchclass@cspline@A ... \pgfplotspatchclass@cspline@D (4 points) \expandafter\edef\csname pgfplotspatchclass@cspline@\pgfplotspatchclass@cspline@no\endcsname{#1}% \if D\pgfplotspatchclass@cspline@no \def\pgfplotspatchclass@cspline@no{A}% \pgfplotspatchready \else \expandafter\let\expandafter\pgfplotspatchclass@cspline@no\csname pgfpptchindexnext@\pgfplotspatchclass@cspline@no\endcsname \fi }, if current point can be first last={% \pgfplots@loc@tmpfalse \if B\pgfplotspatchclass@cspline@no % Ah - the current point is the 'A' point (we have % advanced the '@no' counter) \pgfplots@loc@tmptrue \fi \if C\pgfplotspatchclass@cspline@no % Ah - the current point is the 'B' point (we have % advanced the '@no' counter) \pgfplots@loc@tmptrue \fi \ifpgfplots@loc@tmp #1\relax% \else #2\relax \fi }, sample in unit cube={% \def\pgfplotspatchclassx{0}% \def\pgfplotspatchclassy{0}% #1% \def\pgfplotspatchclassx{1}% \def\pgfplotspatchclassy{0}% #1% \def\pgfplotspatchclassx{0.3333333}% \def\pgfplotspatchclassy{0}% #1% \def\pgfplotspatchclassx{0.6666666}% \def\pgfplotspatchclassy{0}% #1% \pgfplotspatchready },% first vertex=\expandafter\pgfplotspatchvertex\pgfplotspatchclass@cspline@A\endvertex, foreach vertex={% \expandafter\pgfplotspatchvertex\pgfplotspatchclass@cspline@A\endvertex #1% \expandafter\pgfplotspatchvertex\pgfplotspatchclass@cspline@B\endvertex #1% \expandafter\pgfplotspatchvertex\pgfplotspatchclass@cspline@C\endvertex #1% \expandafter\pgfplotspatchvertex\pgfplotspatchclass@cspline@D\endvertex #1% }, fill path={% % Draw the patch boundary using a bezier curve. \pgfplotsplothandlermesh@pathmoveto{\expandafter\pgfplotspointpatchvertex\pgfplotspatchclass@cspline@A\endvertex}% \pgfplotspathcubicfrominterpolation {\pgfplotspatchclass@cspline@A}% {\pgfplotspatchclass@cspline@C}% {\pgfplotspatchclass@cspline@D}% {\pgfplotspatchclass@cspline@B}% \pgfplotsplothandlermesh@setlastpoint{\expandafter\pgfplotspointpatchvertex\pgfplotspatchclass@cspline@B\endvertex}% }, triangulate class=\def\pgfplotsretval{line}, triangulate={% \let\pgfplotsplothandlermesh@patchclass@=\pgfplotsplothandlermesh@patchclass \def\pgfplotsplothandlermesh@patchclass{line}% \pgfplotspatchclass{\pgfplotsplothandlermesh@patchclass}{new}% \expandafter\pgfplotsplothandlermesh@setnextvertex\expandafter{\pgfplotspatchclass@cspline@A}% \expandafter\pgfplotsplothandlermesh@setnextvertex\expandafter{\pgfplotspatchclass@cspline@C}% \expandafter\pgfplotsplothandlermesh@setnextvertex\expandafter{\pgfplotspatchclass@cspline@C}% \expandafter\pgfplotsplothandlermesh@setnextvertex\expandafter{\pgfplotspatchclass@cspline@D}% \expandafter\pgfplotsplothandlermesh@setnextvertex\expandafter{\pgfplotspatchclass@cspline@D}% \expandafter\pgfplotsplothandlermesh@setnextvertex\expandafter{\pgfplotspatchclass@cspline@B}% \let\pgfplotsplothandlermesh@patchclass=\pgfplotsplothandlermesh@patchclass@ },% recursive refine@={% % The 4-point lagrangian interpolation formular is shown on % the top of this page. What I do here is simply to evaluate % C(i*1/9) for i =0,...,9: % 0 % 0.493827 A +0.740741 C -0.296296 D +0.0617284 B % 0.17284 A +1.03704 C -0.259259 D +0.0493827 B % 1/3 % -0.0617284 A +0.740741 C +0.37037 D -0.0493827 B % -0.0493827 A +0.37037 C +0.740741 D -0.0617284 B % 2/3 % 0.0493827 A -0.259259 C +1.03704 D +0.17284 B % 0.0617284 A -0.296296 C +0.740741 D +0.493827 B % 1 \pgfplotspatchclass{\pgfplotspatchclassname}{new}% \pgfplotspatchvertexaccumstart \expandafter\pgfplotspatchvertexadd\pgfplotspatchclass@cspline@A\times{0.493827}% \expandafter\pgfplotspatchvertexadd\pgfplotspatchclass@cspline@B\times{0.0617284}% \expandafter\pgfplotspatchvertexadd\pgfplotspatchclass@cspline@C\times{0.740741}% \expandafter\pgfplotspatchvertexadd\pgfplotspatchclass@cspline@D\times{-0.296296}% \pgfplotspatchvertexfinish\pgfplotspatchclass@cspline@AA % \pgfplotspatchvertexaccumstart \expandafter\pgfplotspatchvertexadd\pgfplotspatchclass@cspline@A\times{0.17284}% \expandafter\pgfplotspatchvertexadd\pgfplotspatchclass@cspline@B\times{0.0493827}% \expandafter\pgfplotspatchvertexadd\pgfplotspatchclass@cspline@C\times{1.03704}% \expandafter\pgfplotspatchvertexadd\pgfplotspatchclass@cspline@D\times{-0.259259}% \pgfplotspatchvertexfinish\pgfplotspatchclass@cspline@AB % \expandafter\pgfplotsplothandlermesh@setnextvertex\expandafter{\pgfplotspatchclass@cspline@A}% \expandafter\pgfplotsplothandlermesh@setnextvertex\expandafter{\pgfplotspatchclass@cspline@C}% \expandafter\pgfplotsplothandlermesh@setnextvertex\expandafter{\pgfplotspatchclass@cspline@AA}% \expandafter\pgfplotsplothandlermesh@setnextvertex\expandafter{\pgfplotspatchclass@cspline@AB}% #1% % % \pgfplotspatchvertexaccumstart \expandafter\pgfplotspatchvertexadd\pgfplotspatchclass@cspline@A\times{-0.0617284}% \expandafter\pgfplotspatchvertexadd\pgfplotspatchclass@cspline@B\times{-0.0493827}% \expandafter\pgfplotspatchvertexadd\pgfplotspatchclass@cspline@C\times{0.740741}% \expandafter\pgfplotspatchvertexadd\pgfplotspatchclass@cspline@D\times{0.37037}% \pgfplotspatchvertexfinish\pgfplotspatchclass@cspline@AA % \pgfplotspatchvertexaccumstart \expandafter\pgfplotspatchvertexadd\pgfplotspatchclass@cspline@A\times{-0.0493827}% \expandafter\pgfplotspatchvertexadd\pgfplotspatchclass@cspline@B\times{-0.0617284}% \expandafter\pgfplotspatchvertexadd\pgfplotspatchclass@cspline@C\times{0.37037}% \expandafter\pgfplotspatchvertexadd\pgfplotspatchclass@cspline@D\times{0.740741}% \pgfplotspatchvertexfinish\pgfplotspatchclass@cspline@AB % \expandafter\pgfplotsplothandlermesh@setnextvertex\expandafter{\pgfplotspatchclass@cspline@C}% \expandafter\pgfplotsplothandlermesh@setnextvertex\expandafter{\pgfplotspatchclass@cspline@D}% \expandafter\pgfplotsplothandlermesh@setnextvertex\expandafter{\pgfplotspatchclass@cspline@AA}% \expandafter\pgfplotsplothandlermesh@setnextvertex\expandafter{\pgfplotspatchclass@cspline@AB}% #1% % % \pgfplotspatchvertexaccumstart \expandafter\pgfplotspatchvertexadd\pgfplotspatchclass@cspline@A\times{0.0493827}% \expandafter\pgfplotspatchvertexadd\pgfplotspatchclass@cspline@B\times{0.17284}% \expandafter\pgfplotspatchvertexadd\pgfplotspatchclass@cspline@C\times{-0.259259}% \expandafter\pgfplotspatchvertexadd\pgfplotspatchclass@cspline@D\times{+1.03704}% \pgfplotspatchvertexfinish\pgfplotspatchclass@cspline@AA % \pgfplotspatchvertexaccumstart \expandafter\pgfplotspatchvertexadd\pgfplotspatchclass@cspline@A\times{0.0617284}% \expandafter\pgfplotspatchvertexadd\pgfplotspatchclass@cspline@B\times{0.493827}% \expandafter\pgfplotspatchvertexadd\pgfplotspatchclass@cspline@C\times{-0.296296}% \expandafter\pgfplotspatchvertexadd\pgfplotspatchclass@cspline@D\times{0.740741}% \pgfplotspatchvertexfinish\pgfplotspatchclass@cspline@AB % \expandafter\pgfplotsplothandlermesh@setnextvertex\expandafter{\pgfplotspatchclass@cspline@D}% \expandafter\pgfplotsplothandlermesh@setnextvertex\expandafter{\pgfplotspatchclass@cspline@B}% \expandafter\pgfplotsplothandlermesh@setnextvertex\expandafter{\pgfplotspatchclass@cspline@AA}% \expandafter\pgfplotsplothandlermesh@setnextvertex\expandafter{\pgfplotspatchclass@cspline@AB}% #1% }, get pdf shading type=0, get num vertices=\def\pgfplotsretval{4}, }% \def\pgfplotspathcubicfrominterpolation#1#2#3#4{% % switch basis from lagrange to bezier (see formular on top of % this file) \pgfpathcurveto {% \begingroup \pgfplotspatchvertexaccumstart \expandafter\pgfplotspatchvertexaddXY#1\times{-0.833333}% \expandafter\pgfplotspatchvertexaddXY#2\times{3}% \expandafter\pgfplotspatchvertexaddXY#3\times{-1.5}% \expandafter\pgfplotspatchvertexaddXY#4\times{0.3333333}% \pgfplotspatchvertexfinish\pgfplots@loc@TMPa \expandafter\pgfplotspointpatchvertex\pgfplots@loc@TMPa\endvertex \endgroup }{% \begingroup \pgfplotspatchvertexaccumstart \expandafter\pgfplotspatchvertexaddXY#1\times{0.333333}% \expandafter\pgfplotspatchvertexaddXY#2\times{-1.5}% \expandafter\pgfplotspatchvertexaddXY#3\times{3}% \expandafter\pgfplotspatchvertexaddXY#4\times{-0.833333}% \pgfplotspatchvertexfinish\pgfplots@loc@TMPa \expandafter\pgfplotspointpatchvertex\pgfplots@loc@TMPa\endvertex \endgroup }{% \expandafter\pgfplotspointpatchvertex#4\endvertex }% }% % make a linearized sequence around the edge of the quad.triangle. % note the ordering: first 3 corners, then 3 mid nodes: \def\pgfplots@qtri@next@A{D}% \def\pgfplots@qtri@next@B{E}% \def\pgfplots@qtri@next@C{F}% \def\pgfplots@qtri@next@D{B}% \def\pgfplots@qtri@next@E{C}% \def\pgfplots@qtri@next@F{A}% \def\pgfplots@qtri@rnext@A{F}% \def\pgfplots@qtri@rnext@B{D}% \def\pgfplots@qtri@rnext@C{E}% \def\pgfplots@qtri@rnext@D{A}% \def\pgfplots@qtri@rnext@E{B}% \def\pgfplots@qtri@rnext@F{C}% \def\pgfplotspatchclass@qtri@recursiverefine@newnames{% \let\pgfplotspatchclass@qtri@A@=\pgfplotspatchclass@qtri@A% \let\pgfplotspatchclass@qtri@B@=\pgfplotspatchclass@qtri@B% \let\pgfplotspatchclass@qtri@C@=\pgfplotspatchclass@qtri@C% \let\pgfplotspatchclass@qtri@D@=\pgfplotspatchclass@qtri@D% \let\pgfplotspatchclass@qtri@E@=\pgfplotspatchclass@qtri@E% \let\pgfplotspatchclass@qtri@F@=\pgfplotspatchclass@qtri@F% }% % A 3-point interpolatory patch which draws quadratic polynomial % splines (functions f(x), x 1d). \pgfplotsdeclarepatchclass{triangle quadr}{% uses view depth=\def\pgfplotsretval{1},% used by the shader: we reorder corners. new=\def\pgfplotspatchclass@qtri@no{A}\let\pgfplotspatchclass@qtrie@AB\relax, set next vertex={% % EXPECTED ORDERING: first 3 corners, then 3 mid nodes. % defines \pgfplotspatchclass@qtri@A ... \pgfplotspatchclass@qtri@F (6 points) \expandafter\edef\csname pgfplotspatchclass@qtri@\pgfplotspatchclass@qtri@no\endcsname{#1}% \if F\pgfplotspatchclass@qtri@no \def\pgfplotspatchclass@qtri@no{A}% \pgfplotspatchready \else \expandafter\let\expandafter\pgfplotspatchclass@qtri@no\csname pgfpptchindexnext@\pgfplotspatchclass@qtri@no\endcsname \fi }, sample in unit cube={% \def\pgfplotspatchclassx{0}% \def\pgfplotspatchclassy{0}% #1% \def\pgfplotspatchclassx{1}% \def\pgfplotspatchclassy{0}% #1% \def\pgfplotspatchclassx{0}% \def\pgfplotspatchclassy{1}% #1% % \def\pgfplotspatchclassx{0.5}% \def\pgfplotspatchclassy{0}% #1% \def\pgfplotspatchclassx{0.5}% \def\pgfplotspatchclassy{0.5}% #1% \def\pgfplotspatchclassx{0}% \def\pgfplotspatchclassy{0.5}% #1% \pgfplotspatchready % % \def\pgfplotspatchclassx{0}% \def\pgfplotspatchclassy{1}% #1% \def\pgfplotspatchclassx{1}% \def\pgfplotspatchclassy{0}% #1% \def\pgfplotspatchclassx{1}% \def\pgfplotspatchclassy{1}% #1% % \def\pgfplotspatchclassx{0.5}% \def\pgfplotspatchclassy{0.5}% #1% \def\pgfplotspatchclassx{1}% \def\pgfplotspatchclassy{0.5}% #1% \def\pgfplotspatchclassx{0.5}% \def\pgfplotspatchclassy{1}% #1% \pgfplotspatchready },% first vertex=\expandafter\pgfplotspatchvertex\pgfplotspatchclass@qtri@A\endvertex, foreach vertex={% \expandafter\pgfplotspatchvertex\pgfplotspatchclass@qtri@A\endvertex #1% \expandafter\pgfplotspatchvertex\pgfplotspatchclass@qtri@B\endvertex #1% \expandafter\pgfplotspatchvertex\pgfplotspatchclass@qtri@C\endvertex #1% \expandafter\pgfplotspatchvertex\pgfplotspatchclass@qtri@D\endvertex #1% \expandafter\pgfplotspatchvertex\pgfplotspatchclass@qtri@E\endvertex #1% \expandafter\pgfplotspatchvertex\pgfplotspatchclass@qtri@F\endvertex #1% }, foreach cdata vertex={% \expandafter\pgfplotspatchvertex\pgfplotspatchclass@qtri@A\endvertex #1% \expandafter\pgfplotspatchvertex\pgfplotspatchclass@qtri@B\endvertex #1% \expandafter\pgfplotspatchvertex\pgfplotspatchclass@qtri@C\endvertex #1% }, fill path={% \begingroup % Draw the patch boundary using three bezier curves. % % Since I have lagrange points to describe the patch (i.e. % points the patch passes through), I have to convert the % lagrange representation to bezier. % % Furthermore, I convert to *cubic* bezier since pdf only % supports cubic curves. % % See the docs for 'biquadratic::fill path' for more details, % in does the same. \def\pgfplots@edge{% \ifx\pgfplotspatchclass@qtri@A\PA \pgfpathmoveto{\expandafter\pgfplotspointpatchvertex\PA\endvertex}% \fi \pgfpathcurveto {% \pgfpointadd {\pgfqpointscale{1.333333}{\expandafter\pgfplotspointpatchvertex\PB\endvertex}}% {\pgfqpointscale{-0.333333}{\expandafter\pgfplotspointpatchvertex\PC\endvertex}}% }{% \pgfpointadd {\pgfqpointscale{1.333333}{\expandafter\pgfplotspointpatchvertex\PB\endvertex}}% {\pgfqpointscale{-0.333333}{\expandafter\pgfplotspointpatchvertex\PA\endvertex}}% }{% \expandafter\pgfplotspointpatchvertex\PC\endvertex }% }% \let\PA=\pgfplotspatchclass@qtri@A \let\PB=\pgfplotspatchclass@qtri@D \let\PC=\pgfplotspatchclass@qtri@B \pgfplots@edge % \let\PA=\pgfplotspatchclass@qtri@B \let\PB=\pgfplotspatchclass@qtri@E \let\PC=\pgfplotspatchclass@qtri@C \pgfplots@edge % \let\PA=\pgfplotspatchclass@qtri@C \let\PB=\pgfplotspatchclass@qtri@F \let\PC=\pgfplotspatchclass@qtri@A \pgfplots@edge \endgroup \pgfpathclose }, %-------------------------------------------------- % stroke path={% % \ifx\pgfplotspatchclass@qtrie@AB\relax % \pgfpathmoveto{\expandafter\pgfplotspointpatchvertex\pgfplotspatchclass@qtri@A\endvertex}% % \pgfpathlineto{\expandafter\pgfplotspointpatchvertex\pgfplotspatchclass@qtri@B\endvertex}% % \pgfpathlineto{\expandafter\pgfplotspointpatchvertex\pgfplotspatchclass@qtri@C\endvertex}% % \pgfpathclose % \else % \if1\pgfplotspatchclass@qtrie@AB % \pgfpathmoveto{\expandafter\pgfplotspointpatchvertex\pgfplotspatchclass@qtri@A\endvertex}% % \pgfpathlineto{\expandafter\pgfplotspointpatchvertex\pgfplotspatchclass@qtri@B\endvertex}% % \fi % \if1\pgfplotspatchclass@qtrie@BC % \pgfpathmoveto{\expandafter\pgfplotspointpatchvertex\pgfplotspatchclass@qtri@B\endvertex}% % \pgfpathlineto{\expandafter\pgfplotspointpatchvertex\pgfplotspatchclass@qtri@C\endvertex}% % \fi % \if1\pgfplotspatchclass@qtrie@CA % \pgfpathmoveto{\expandafter\pgfplotspointpatchvertex\pgfplotspatchclass@qtri@C\endvertex}% % \pgfpathlineto{\expandafter\pgfplotspointpatchvertex\pgfplotspatchclass@qtri@A\endvertex}% % \fi % \fi % }, %-------------------------------------------------- stream to shader={% % create a degenerate coons patch: \begingroup %\message{EDGE INIT^^J}% % this defines \Pcur and \Pnextseq : \pgfplotspatchclass@tri@to@coonspatch@findshadingsequence@for@depth % \pgfutil@namelet{Pstart}{pgfplotspatchclass@qtri@\Pcur}% % % see the docus for "fill path" about these 1.33333 and -0.33333 factors \def\pgfplots@coonsedge{% %\message{EDGE \Pcur^^J}% \expandafter\let\expandafter\PA\csname pgfplotspatchclass@qtri@\Pcur\endcsname \edef\Pcur{\csname pgfplots@qtri@\Pnextseq next@\Pcur\endcsname}% %\message{---> \Pcur^^J}% \expandafter\let\expandafter\PB\csname pgfplotspatchclass@qtri@\Pcur\endcsname \edef\Pcur{\csname pgfplots@qtri@\Pnextseq next@\Pcur\endcsname}% %\message{---> \Pcur^^J}% \expandafter\let\expandafter\PC\csname pgfplotspatchclass@qtri@\Pcur\endcsname \ifx\PA\Pstart \expandafter\pgfplotspatchvertex\PA\endvertex \let\pgfplots@current@point@meta=\pgfplotspatchvertexmeta \pgfplotsaxisvisphasetransformpointmeta \pgfplotslibrarysurfstreamcoord{\pgfqpoint\pgfplotspatchvertexx\pgfplotspatchvertexy}{\pgfplotspointmetatransformed}% % degenerate: the "edge" \PA -- \PA collabses into one % point. % Per construction, the "edge" is the FOREGROUND. %\message{STREAMING COLLAPSED EDGE AT START POINT^^J}% \pgfplotslibrarysurfstreamcoord{\pgfqpoint\pgfplotspatchvertexx\pgfplotspatchvertexy}{\pgfplotspointmetatransformed}% \pgfplotslibrarysurfstreamcoord{\pgfqpoint\pgfplotspatchvertexx\pgfplotspatchvertexy}{\pgfplotspointmetatransformed}% \pgfplotslibrarysurfstreamcoord{\pgfqpoint\pgfplotspatchvertexx\pgfplotspatchvertexy}{\pgfplotspointmetatransformed}% \fi \pgfplotslibrarysurfstreamcoord{% \pgfpointadd {\pgfqpointscale{1.333333}{\expandafter\pgfplotspointpatchvertex\PB\endvertex}}% {\pgfqpointscale{-0.333333}{\expandafter\pgfplotspointpatchvertex\PC\endvertex}}% }{}% \pgfplotslibrarysurfstreamcoord{% \pgfpointadd {\pgfqpointscale{1.333333}{\expandafter\pgfplotspointpatchvertex\PB\endvertex}}% {\pgfqpointscale{-0.333333}{\expandafter\pgfplotspointpatchvertex\PA\endvertex}}% }{}% \ifx\PC\Pstart \else \expandafter\pgfplotspatchvertex\PC\endvertex \let\pgfplots@current@point@meta=\pgfplotspatchvertexmeta \pgfplotsaxisvisphasetransformpointmeta \pgfplotslibrarysurfstreamcoord{\pgfqpoint\pgfplotspatchvertexx\pgfplotspatchvertexy}{\pgfplotspointmetatransformed}% \fi }% \pgfplots@coonsedge % \pgfplots@coonsedge % \pgfplots@coonsedge % % \endgroup },% triangulate={% \let\pgfplotsplothandlermesh@patchclass@=\pgfplotsplothandlermesh@patchclass \def\pgfplotsplothandlermesh@patchclass{triangle}% \pgfplotspatchclass{\pgfplotsplothandlermesh@patchclass}{new}% \pgfplotspatchclass{\pgfplotsplothandlermesh@patchclass}{set edge visible}01% \pgfplotspatchclass{\pgfplotsplothandlermesh@patchclass}{set edge visible}11% \pgfplotspatchclass{\pgfplotsplothandlermesh@patchclass}{set edge visible}20% % Ok. Now create 4 triangles. The ordering is not arbitrary % (unless z buffer=sort is in effect). Let's assume that the % AB edge is BACKGROUND and the CD edge is FOREGROUND. Then % this sequence here should have approximately the same depth % ordering: \expandafter\pgfplotsplothandlermesh@setnextvertex\expandafter{\pgfplotspatchclass@qtri@F}% \expandafter\pgfplotsplothandlermesh@setnextvertex\expandafter{\pgfplotspatchclass@qtri@A}% \expandafter\pgfplotsplothandlermesh@setnextvertex\expandafter{\pgfplotspatchclass@qtri@D}% % \pgfplotspatchclass{\pgfplotsplothandlermesh@patchclass}{set edge visible}00% \pgfplotspatchclass{\pgfplotsplothandlermesh@patchclass}{set edge visible}10% \expandafter\pgfplotsplothandlermesh@setnextvertex\expandafter{\pgfplotspatchclass@qtri@F}% \expandafter\pgfplotsplothandlermesh@setnextvertex\expandafter{\pgfplotspatchclass@qtri@D}% \expandafter\pgfplotsplothandlermesh@setnextvertex\expandafter{\pgfplotspatchclass@qtri@E}% % \pgfplotspatchclass{\pgfplotsplothandlermesh@patchclass}{set edge visible}01% \pgfplotspatchclass{\pgfplotsplothandlermesh@patchclass}{set edge visible}11% \expandafter\pgfplotsplothandlermesh@setnextvertex\expandafter{\pgfplotspatchclass@qtri@D}% \expandafter\pgfplotsplothandlermesh@setnextvertex\expandafter{\pgfplotspatchclass@qtri@B}% \expandafter\pgfplotsplothandlermesh@setnextvertex\expandafter{\pgfplotspatchclass@qtri@E}% % \expandafter\pgfplotsplothandlermesh@setnextvertex\expandafter{\pgfplotspatchclass@qtri@E}% \expandafter\pgfplotsplothandlermesh@setnextvertex\expandafter{\pgfplotspatchclass@qtri@C}% \expandafter\pgfplotsplothandlermesh@setnextvertex\expandafter{\pgfplotspatchclass@qtri@F}% \let\pgfplotsplothandlermesh@patchclass=\pgfplotsplothandlermesh@patchclass@ },% set edge visible={% \ifcase#1 \edef\pgfplotspatchclass@qtrie@AB{#2}% \or \edef\pgfplotspatchclass@qtrie@BC{#2}% \or \edef\pgfplotspatchclass@qtrie@CA{#2}% \fi }, serialize except vertices={% \ifx\pgfplotspatchclass@qtrie@AB\relax \let\pgfplotsretval\pgfutil@empty% \else \edef\pgfplotsretval{% \noexpand\def\noexpand\pgfplotspatchclass@qtrie@AB{\pgfplotspatchclass@qtrie@AB}% \noexpand\def\noexpand\pgfplotspatchclass@qtrie@BC{\pgfplotspatchclass@qtrie@BC}% \noexpand\def\noexpand\pgfplotspatchclass@qtrie@CA{\pgfplotspatchclass@qtrie@CA}% }% \fi },% deserialize except vertices=% \let\pgfplotspatchclass@qtrie@AB\relax #1, recursive refine@={% \pgfplotspatchclass@qtri@recursiverefine@newnames % \pgfplotspatchclass{\pgfplotspatchclassname}{new}% %-------------------------------------------------- % \pgfplotspatchclass{\pgfplotspatchclassname}{set edge visible}01% % \pgfplotspatchclass{\pgfplotspatchclassname}{set edge visible}11% % \pgfplotspatchclass{\pgfplotspatchclassname}{set edge visible}20% %-------------------------------------------------- % The ordering is not arbitrary % (unless z buffer=sort is in effect). Let's assume that the % AB edge is BACKGROUND and the CD edge is FOREGROUND. Then % this sequence here should have approximately the same depth % ordering: % % I used the reference triangle and shape functions as listed in % http://www.colorado.edu/engineering/CAS/courses.d/IFEM.d/ \pgfplotspatchvertexaccumstart \expandafter\pgfplotspatchvertexadd\pgfplotspatchclass@qtri@A\times{0.375}% \expandafter\pgfplotspatchvertexadd\pgfplotspatchclass@qtri@B\times{-0.125}% \expandafter\pgfplotspatchvertexadd\pgfplotspatchclass@qtri@D\times{0.75}% \pgfplotspatchvertexfinish\pgfplotspatchclass@qtri@AD % \pgfplotspatchvertexaccumstart \expandafter\pgfplotspatchvertexadd\pgfplotspatchclass@qtri@B\times{-.125}% \expandafter\pgfplotspatchvertexadd\pgfplotspatchclass@qtri@C\times{-.125}% \expandafter\pgfplotspatchvertexadd\pgfplotspatchclass@qtri@D\times{0.5}% \expandafter\pgfplotspatchvertexadd\pgfplotspatchclass@qtri@E\times{0.25}% \expandafter\pgfplotspatchvertexadd\pgfplotspatchclass@qtri@F\times{0.5}% \pgfplotspatchvertexfinish\pgfplotspatchclass@qtri@DF % \pgfplotspatchvertexaccumstart \expandafter\pgfplotspatchvertexadd\pgfplotspatchclass@qtri@A\times{0.375}% \expandafter\pgfplotspatchvertexadd\pgfplotspatchclass@qtri@C\times{-0.125}% \expandafter\pgfplotspatchvertexadd\pgfplotspatchclass@qtri@F\times{0.75}% \pgfplotspatchvertexfinish\pgfplotspatchclass@qtri@AF % \expandafter\pgfplotsplothandlermesh@setnextvertex\expandafter{\pgfplotspatchclass@qtri@F@}% \expandafter\pgfplotsplothandlermesh@setnextvertex\expandafter{\pgfplotspatchclass@qtri@A@}% \expandafter\pgfplotsplothandlermesh@setnextvertex\expandafter{\pgfplotspatchclass@qtri@D@}% \expandafter\pgfplotsplothandlermesh@setnextvertex\expandafter{\pgfplotspatchclass@qtri@AF}% \expandafter\pgfplotsplothandlermesh@setnextvertex\expandafter{\pgfplotspatchclass@qtri@AD}% \expandafter\pgfplotsplothandlermesh@setnextvertex\expandafter{\pgfplotspatchclass@qtri@DF}% % #1\pgfplotspatchclass@qtri@recursiverefine@newnames % % % \pgfplotspatchvertexaccumstart \expandafter\pgfplotspatchvertexadd\pgfplotspatchclass@qtri@B\times{-.125}% \expandafter\pgfplotspatchvertexadd\pgfplotspatchclass@qtri@C\times{-.125}% \expandafter\pgfplotspatchvertexadd\pgfplotspatchclass@qtri@D\times{0.5}% \expandafter\pgfplotspatchvertexadd\pgfplotspatchclass@qtri@E\times{0.25}% \expandafter\pgfplotspatchvertexadd\pgfplotspatchclass@qtri@F\times{0.5}% \pgfplotspatchvertexfinish\pgfplotspatchclass@qtri@DF % \pgfplotspatchvertexaccumstart \expandafter\pgfplotspatchvertexadd\pgfplotspatchclass@qtri@A\times{-.125}% \expandafter\pgfplotspatchvertexadd\pgfplotspatchclass@qtri@C\times{-.125}% \expandafter\pgfplotspatchvertexadd\pgfplotspatchclass@qtri@D\times{0.5}% \expandafter\pgfplotspatchvertexadd\pgfplotspatchclass@qtri@E\times{0.5}% \expandafter\pgfplotspatchvertexadd\pgfplotspatchclass@qtri@F\times{0.25}% \pgfplotspatchvertexfinish\pgfplotspatchclass@qtri@DE % \pgfplotspatchvertexaccumstart \expandafter\pgfplotspatchvertexadd\pgfplotspatchclass@qtri@A\times{-.125}% \expandafter\pgfplotspatchvertexadd\pgfplotspatchclass@qtri@B\times{-.125}% \expandafter\pgfplotspatchvertexadd\pgfplotspatchclass@qtri@D\times{0.25}% \expandafter\pgfplotspatchvertexadd\pgfplotspatchclass@qtri@E\times{0.5}% \expandafter\pgfplotspatchvertexadd\pgfplotspatchclass@qtri@F\times{0.5}% \pgfplotspatchvertexfinish\pgfplotspatchclass@qtri@EF % % %-------------------------------------------------- % \pgfplotspatchclass{\pgfplotspatchclassname}{set edge visible}00% % \pgfplotspatchclass{\pgfplotspatchclassname}{set edge visible}10% %-------------------------------------------------- \expandafter\pgfplotsplothandlermesh@setnextvertex\expandafter{\pgfplotspatchclass@qtri@F@}% \expandafter\pgfplotsplothandlermesh@setnextvertex\expandafter{\pgfplotspatchclass@qtri@D@}% \expandafter\pgfplotsplothandlermesh@setnextvertex\expandafter{\pgfplotspatchclass@qtri@E@}% \expandafter\pgfplotsplothandlermesh@setnextvertex\expandafter{\pgfplotspatchclass@qtri@DF}% \expandafter\pgfplotsplothandlermesh@setnextvertex\expandafter{\pgfplotspatchclass@qtri@DE}% \expandafter\pgfplotsplothandlermesh@setnextvertex\expandafter{\pgfplotspatchclass@qtri@EF}% % % % %-------------------------------------------------- % % \pgfplotspatchclass{\pgfplotspatchclassname}{set edge visible}01% % % \pgfplotspatchclass{\pgfplotspatchclassname}{set edge visible}11% % %-------------------------------------------------- #1\pgfplotspatchclass@qtri@recursiverefine@newnames % % \pgfplotspatchvertexaccumstart \expandafter\pgfplotspatchvertexadd\pgfplotspatchclass@qtri@A\times{-0.125}% \expandafter\pgfplotspatchvertexadd\pgfplotspatchclass@qtri@B\times{0.375}% \expandafter\pgfplotspatchvertexadd\pgfplotspatchclass@qtri@D\times{0.75}% \pgfplotspatchvertexfinish\pgfplotspatchclass@qtri@DB % \pgfplotspatchvertexaccumstart \expandafter\pgfplotspatchvertexadd\pgfplotspatchclass@qtri@A\times{-.125}% \expandafter\pgfplotspatchvertexadd\pgfplotspatchclass@qtri@C\times{-.125}% \expandafter\pgfplotspatchvertexadd\pgfplotspatchclass@qtri@D\times{0.5}% \expandafter\pgfplotspatchvertexadd\pgfplotspatchclass@qtri@E\times{0.5}% \expandafter\pgfplotspatchvertexadd\pgfplotspatchclass@qtri@F\times{0.25}% \pgfplotspatchvertexfinish\pgfplotspatchclass@qtri@DE % % \pgfplotspatchvertexaccumstart \expandafter\pgfplotspatchvertexadd\pgfplotspatchclass@qtri@B\times{0.375}% \expandafter\pgfplotspatchvertexadd\pgfplotspatchclass@qtri@C\times{-0.125}% \expandafter\pgfplotspatchvertexadd\pgfplotspatchclass@qtri@E\times{0.75}% \pgfplotspatchvertexfinish\pgfplotspatchclass@qtri@BE % \expandafter\pgfplotsplothandlermesh@setnextvertex\expandafter{\pgfplotspatchclass@qtri@D@}% \expandafter\pgfplotsplothandlermesh@setnextvertex\expandafter{\pgfplotspatchclass@qtri@B@}% \expandafter\pgfplotsplothandlermesh@setnextvertex\expandafter{\pgfplotspatchclass@qtri@E@}% \expandafter\pgfplotsplothandlermesh@setnextvertex\expandafter{\pgfplotspatchclass@qtri@DB}% \expandafter\pgfplotsplothandlermesh@setnextvertex\expandafter{\pgfplotspatchclass@qtri@BE}% \expandafter\pgfplotsplothandlermesh@setnextvertex\expandafter{\pgfplotspatchclass@qtri@DE}% % #1\pgfplotspatchclass@qtri@recursiverefine@newnames % \pgfplotspatchvertexaccumstart \expandafter\pgfplotspatchvertexadd\pgfplotspatchclass@qtri@B\times{-0.125}% \expandafter\pgfplotspatchvertexadd\pgfplotspatchclass@qtri@C\times{0.375}% \expandafter\pgfplotspatchvertexadd\pgfplotspatchclass@qtri@E\times{0.75}% \pgfplotspatchvertexfinish\pgfplotspatchclass@qtri@EC % \pgfplotspatchvertexaccumstart \expandafter\pgfplotspatchvertexadd\pgfplotspatchclass@qtri@A\times{-.125}% \expandafter\pgfplotspatchvertexadd\pgfplotspatchclass@qtri@B\times{-.125}% \expandafter\pgfplotspatchvertexadd\pgfplotspatchclass@qtri@D\times{0.25}% \expandafter\pgfplotspatchvertexadd\pgfplotspatchclass@qtri@E\times{0.5}% \expandafter\pgfplotspatchvertexadd\pgfplotspatchclass@qtri@F\times{0.5}% \pgfplotspatchvertexfinish\pgfplotspatchclass@qtri@EF % % \pgfplotspatchvertexaccumstart \expandafter\pgfplotspatchvertexadd\pgfplotspatchclass@qtri@A\times{-0.125}% \expandafter\pgfplotspatchvertexadd\pgfplotspatchclass@qtri@C\times{0.375}% \expandafter\pgfplotspatchvertexadd\pgfplotspatchclass@qtri@F\times{0.75}% \pgfplotspatchvertexfinish\pgfplotspatchclass@qtri@CF % \expandafter\pgfplotsplothandlermesh@setnextvertex\expandafter{\pgfplotspatchclass@qtri@E@}% \expandafter\pgfplotsplothandlermesh@setnextvertex\expandafter{\pgfplotspatchclass@qtri@C@}% \expandafter\pgfplotsplothandlermesh@setnextvertex\expandafter{\pgfplotspatchclass@qtri@F@}% \expandafter\pgfplotsplothandlermesh@setnextvertex\expandafter{\pgfplotspatchclass@qtri@EC}% \expandafter\pgfplotsplothandlermesh@setnextvertex\expandafter{\pgfplotspatchclass@qtri@CF}% \expandafter\pgfplotsplothandlermesh@setnextvertex\expandafter{\pgfplotspatchclass@qtri@EF}% % #1% % },% get pdf shading type=6, get num vertices=\def\pgfplotsretval{6}, get num cdata vertices=\def\pgfplotsretval{3}, }% % see % \pgfplotspatchclass@rect@to@coonspatch@findshadingsequence@for@depth % and its documentation. % % POSTCONDITION: % \Pcur and \Pnextseq are defined. \def\pgfplotspatchclass@tri@to@coonspatch@findshadingsequence@for@depth{% \def\Pcur{A}% \def\Pnextseq{}% % \expandafter\pgfplotspatchvertex\pgfplotspatchclass@qtri@A\endvertex \ifx\pgfplotspatchvertexdepth\pgfutil@empty \else % ah. We have view depth. Use it! % The idea here is as follows. % According to pdf standard, the COONS Shading is % generated in the unit cube and then mapped to the % shading. If u,v in [0,1] are the coordinates in the unit % cube, pixel values for v=1 overwrite values for v=0. % If pixel values have the same v, u=1 overwrites u=0. % In other words, the loop is % for v= 0 to Nv % for u = 0 to Nu % shade pixel for (u,v) % % BB-------CC <--v=1 % | | % | | % | | % AA-------DD <--v=0 % | | % u=0 u=1 % % % IDEA: re-order the sequence of vertices such that z % buffering is obtained. % % APPROACH: % the edge BB--CC collapses into just one point, namely % the FOREGROUND point (i.e. it is drawn on top of % everything else). % % The AA point is the second nearest foreground point. % The sequence is chosen such that AA,BB is the first % edge. % % What is to do (besides determining the vertices for AA % and BB)? Well, make sure, that we can arrange them in % the desired order. This involves a periodic "next vertex" % algorithm which might either go forward % or backward. % % sort according to depth. % To do so, prepare macros \PA,\PB,\PC for use in % \pgfplotsutilsortthree. FORMAT: % \PA={pt } \edef\PA{\pgfplotspatchvertexdepth pt A}% \expandafter\pgfplotspatchvertex\pgfplotspatchclass@qtri@B\endvertex \edef\PB{\pgfplotspatchvertexdepth pt B}% \expandafter\pgfplotspatchvertex\pgfplotspatchclass@qtri@C\endvertex \edef\PC{\pgfplotspatchvertexdepth pt C}% \pgfplotsutilsortthree\PA\PB\PC \def\toCHAR##1pt ##2{##2}% get original index % \edef\Pcur{\expandafter\toCHAR\PB}%% \edef\Pnext{\csname pgfplots@qtri@next@\Pcur\endcsname}% \edef\Pnext{\csname pgfplots@qtri@next@\Pnext\endcsname}% \if\Pnext\PA % ok, next(next(AA)) = BB. % that means we have to advance forward. \def\Pnextseq{}% \else % well, since we have a triangle, there only remains % the backwards direction. \def\Pnextseq{r}% \fi %\message{FOREGROUND VERTEX = \PA.^^J}% %\message{SECOND NEAREST VERTEX = \PB.^^J}% \fi } \def\pgfplotspatchclass@tri@to@coonspatch@findshadingsequence@for@depth@no@op{% \def\Pcur{A}% \def\Pnextseq{}% } % bilinear is the same as 'rectangle', but it uses a different shader. \pgfplotsdeclarepatchclass{bilinear}{% allow matrix=\def\pgfplotsretval{1}, new=\def\pgfplotspatchclass@rect@no{0}, set next vertex={% \ifcase\pgfplotspatchclass@rect@no\relax \edef\pgfplotspatchclass@rect@A{#1}% \def\pgfplotspatchclass@rect@no{1}% \or \edef\pgfplotspatchclass@rect@B{#1}% \def\pgfplotspatchclass@rect@no{2}% \or \edef\pgfplotspatchclass@rect@C{#1}% \def\pgfplotspatchclass@rect@no{3}% \or \edef\pgfplotspatchclass@rect@D{#1}% \def\pgfplotspatchclass@rect@no{0}% \pgfplotspatchready% \fi }, sample in unit cube={% \def\pgfplotspatchclassx{0}% \def\pgfplotspatchclassy{0}% #1% \def\pgfplotspatchclassx{1}% \def\pgfplotspatchclassy{0}% #1% \def\pgfplotspatchclassx{1}% \def\pgfplotspatchclassy{1}% #1% \def\pgfplotspatchclassx{0}% \def\pgfplotspatchclassy{1}% #1% \pgfplotspatchready },% first vertex=\expandafter\pgfplotspatchvertex\pgfplotspatchclass@rect@A\endvertex, first vertex before z buffer=\pgfplotspatchclass@rect@first@before@z@buffer, foreach vertex={% \expandafter\pgfplotspatchvertex\pgfplotspatchclass@rect@A\endvertex #1% \expandafter\pgfplotspatchvertex\pgfplotspatchclass@rect@B\endvertex #1% \expandafter\pgfplotspatchvertex\pgfplotspatchclass@rect@C\endvertex #1% \expandafter\pgfplotspatchvertex\pgfplotspatchclass@rect@D\endvertex #1% }, stream to shader={% % create a coons patch: \begingroup \pgfplotspatchclass@rect@to@coonspatch@findshadingsequence@for@depth {pgfplotspatchclass@rect@}{\Pcur}{\Pnextseq}% % \pgfutil@namelet{Pstart}{pgfplotspatchclass@rect@\Pcur}% \def\pgfplots@coonsedge{% %\message{EDGE \Pcur^^J}% \expandafter\let\expandafter\PA\csname pgfplotspatchclass@rect@\Pcur\endcsname \edef\Pcur{\csname pgfplots@rect@\Pnextseq next@\Pcur\endcsname}% %\message{---> \Pcur^^J}% \expandafter\let\expandafter\PB\csname pgfplotspatchclass@rect@\Pcur\endcsname \ifx\PA\Pstart \expandafter\pgfplotspatchvertex\PA\endvertex \let\pgfplots@current@point@meta=\pgfplotspatchvertexmeta \pgfplotsaxisvisphasetransformpointmeta \pgfplotslibrarysurfstreamcoord{\pgfqpoint\pgfplotspatchvertexx\pgfplotspatchvertexy}{\pgfplotspointmetatransformed}% \fi % % CONTROL POINT A+1/3(B-A) \pgfplotslibrarysurfstreamcoord{% \pgfpointadd {\pgfqpointscale{0.6666666}{\expandafter\pgfplotspointpatchvertex\PA\endvertex}}% {\pgfqpointscale{0.3333333}{\expandafter\pgfplotspointpatchvertex\PB\endvertex}}% }{}% % CONTROL POINT A+2/3(B-A) \pgfplotslibrarysurfstreamcoord{% \pgfpointadd {\pgfqpointscale{0.3333333}{\expandafter\pgfplotspointpatchvertex\PA\endvertex}}% {\pgfqpointscale{0.6666666}{\expandafter\pgfplotspointpatchvertex\PB\endvertex}}% }{}% \ifx\PB\Pstart \else \expandafter\pgfplotspatchvertex\PB\endvertex \let\pgfplots@current@point@meta=\pgfplotspatchvertexmeta \pgfplotsaxisvisphasetransformpointmeta \pgfplotslibrarysurfstreamcoord{\pgfqpoint\pgfplotspatchvertexx\pgfplotspatchvertexy}{\pgfplotspointmetatransformed}% \fi }% % \pgfplots@coonsedge % \pgfplots@coonsedge % \pgfplots@coonsedge % \pgfplots@coonsedge % \endgroup },% fill path={% \pgfpathmoveto{\expandafter\pgfplotspointpatchvertex\pgfplotspatchclass@rect@A\endvertex}% \pgfpathlineto{\expandafter\pgfplotspointpatchvertex\pgfplotspatchclass@rect@B\endvertex}% \pgfpathlineto{\expandafter\pgfplotspointpatchvertex\pgfplotspatchclass@rect@C\endvertex}% \pgfpathlineto{\expandafter\pgfplotspointpatchvertex\pgfplotspatchclass@rect@D\endvertex}% \pgfpathclose }, triangulate={% \pgfplotscoordmath{meta}{parsenumber}{0.25}% \let\pgfplots@loc@scale=\pgfmathresult % \pgfplotspatchvertexaccumstart \expandafter\pgfplotspatchvertexadd\pgfplotspatchclass@rect@A\endvertex\times{0.25}% \expandafter\pgfplotspatchvertexadd\pgfplotspatchclass@rect@B\endvertex\times{0.25}% \expandafter\pgfplotspatchvertexadd\pgfplotspatchclass@rect@C\endvertex\times{0.25}% \expandafter\pgfplotspatchvertexadd\pgfplotspatchclass@rect@D\endvertex\times{0.25}% \pgfplotspatchvertexfinish\pgfplotspatchclass@rect@M % \let\pgfplotsplothandlermesh@patchclass@=\pgfplotsplothandlermesh@patchclass \def\pgfplotsplothandlermesh@patchclass{triangle}% \pgfplotspatchclass{\pgfplotsplothandlermesh@patchclass}{new}% \pgfplotspatchclass{\pgfplotsplothandlermesh@patchclass}{set edge visible}01% \pgfplotspatchclass{\pgfplotsplothandlermesh@patchclass}{set edge visible}10% \pgfplotspatchclass{\pgfplotsplothandlermesh@patchclass}{set edge visible}20% % Ok. Now create 4 triangles. The ordering is not arbitrary % (unless z buffer=sort is in effect). Let's assume that the % AB edge is BACKGROUND and the CD edge is FOREGROUND. Then % this sequence here should have approximately the same depth % ordering: \expandafter\pgfplotsplothandlermesh@setnextvertex\expandafter{\pgfplotspatchclass@rect@A}% \expandafter\pgfplotsplothandlermesh@setnextvertex\expandafter{\pgfplotspatchclass@rect@B}% \expandafter\pgfplotsplothandlermesh@setnextvertex\expandafter{\pgfplotspatchclass@rect@M}% % \expandafter\pgfplotsplothandlermesh@setnextvertex\expandafter{\pgfplotspatchclass@rect@B}% \expandafter\pgfplotsplothandlermesh@setnextvertex\expandafter{\pgfplotspatchclass@rect@C}% \expandafter\pgfplotsplothandlermesh@setnextvertex\expandafter{\pgfplotspatchclass@rect@M}% % \expandafter\pgfplotsplothandlermesh@setnextvertex\expandafter{\pgfplotspatchclass@rect@D}% \expandafter\pgfplotsplothandlermesh@setnextvertex\expandafter{\pgfplotspatchclass@rect@A}% \expandafter\pgfplotsplothandlermesh@setnextvertex\expandafter{\pgfplotspatchclass@rect@M}% % \expandafter\pgfplotsplothandlermesh@setnextvertex\expandafter{\pgfplotspatchclass@rect@C}% \expandafter\pgfplotsplothandlermesh@setnextvertex\expandafter{\pgfplotspatchclass@rect@D}% \expandafter\pgfplotsplothandlermesh@setnextvertex\expandafter{\pgfplotspatchclass@rect@M}% \let\pgfplotsplothandlermesh@patchclass=\pgfplotsplothandlermesh@patchclass@ },% recursive refine@={% \pgfplotspatchclass@rect@refine@{#1}% },% serialize except vertices=\let\pgfplotsretval\pgfutil@empty,% deserialize except vertices=, get pdf shading type=6, get num vertices=\def\pgfplotsretval{4}, }% \pgfplotsdeclarepatchclass{rectangle}{% recursive refine@={% \pgfplotspatchclass@rect@refine@{#1}% },% } \def\pgfplotspatchclass@rect@refine@#1{% \pgfplotspatchclass@rect@recursiverefine@newnames % \pgfplotspatchclass{\pgfplotspatchclassname}{new}% %-------------------------------------------------- % \pgfplotspatchclass{\pgfplotspatchclassname}{set edge visible}01% % \pgfplotspatchclass{\pgfplotspatchclassname}{set edge visible}11% % \pgfplotspatchclass{\pgfplotspatchclassname}{set edge visible}20% %-------------------------------------------------- % The ordering is not arbitrary % (unless z buffer=sort is in effect). Let's assume that the % AB edge is BACKGROUND and the CD edge is FOREGROUND. Then % this sequence here should have approximately the same depth % ordering: % \pgfplotspatchvertexaccumstart \expandafter\pgfplotspatchvertexadd\pgfplotspatchclass@rect@A\times{0.25}% \expandafter\pgfplotspatchvertexadd\pgfplotspatchclass@rect@B\times{0.25}% \expandafter\pgfplotspatchvertexadd\pgfplotspatchclass@rect@C\times{0.25}% \expandafter\pgfplotspatchvertexadd\pgfplotspatchclass@rect@D\times{0.25}% \pgfplotspatchvertexfinish\pgfplotspatchclass@rect@M % \expandafter\pgfplotspatchclass@rect@refine@@\expandafter{\pgfplotspatchclass@rect@M}{#1}% } \def\pgfplotspatchclass@rect@refine@@#1#2{% \pgfplotspatchvertexaccumstart \expandafter\pgfplotspatchvertexadd\pgfplotspatchclass@rect@A\times{0.5}% \expandafter\pgfplotspatchvertexadd\pgfplotspatchclass@rect@B\times{0.5}% \pgfplotspatchvertexfinish\pgfplotspatchclass@rect@AB % \pgfplotspatchvertexaccumstart \expandafter\pgfplotspatchvertexadd\pgfplotspatchclass@rect@A\times{0.5}% \expandafter\pgfplotspatchvertexadd\pgfplotspatchclass@rect@D\times{0.5}% \pgfplotspatchvertexfinish\pgfplotspatchclass@rect@DA % \expandafter\pgfplotsplothandlermesh@setnextvertex\expandafter{\pgfplotspatchclass@rect@A@}% \expandafter\pgfplotsplothandlermesh@setnextvertex\expandafter{\pgfplotspatchclass@rect@AB}% \pgfplotsplothandlermesh@setnextvertex{#1}% \expandafter\pgfplotsplothandlermesh@setnextvertex\expandafter{\pgfplotspatchclass@rect@DA}% #2\pgfplotspatchclass@rect@recursiverefine@newnames % % \pgfplotspatchvertexaccumstart \expandafter\pgfplotspatchvertexadd\pgfplotspatchclass@rect@A\times{0.5}% \expandafter\pgfplotspatchvertexadd\pgfplotspatchclass@rect@B\times{0.5}% \pgfplotspatchvertexfinish\pgfplotspatchclass@rect@AB % \pgfplotspatchvertexaccumstart \expandafter\pgfplotspatchvertexadd\pgfplotspatchclass@rect@B\times{0.5}% \expandafter\pgfplotspatchvertexadd\pgfplotspatchclass@rect@C\times{0.5}% \pgfplotspatchvertexfinish\pgfplotspatchclass@rect@BC % \expandafter\pgfplotsplothandlermesh@setnextvertex\expandafter{\pgfplotspatchclass@rect@AB}% \expandafter\pgfplotsplothandlermesh@setnextvertex\expandafter{\pgfplotspatchclass@rect@B@}% \expandafter\pgfplotsplothandlermesh@setnextvertex\expandafter{\pgfplotspatchclass@rect@BC}% \pgfplotsplothandlermesh@setnextvertex{#1}% #2\pgfplotspatchclass@rect@recursiverefine@newnames % % % \pgfplotspatchvertexaccumstart \expandafter\pgfplotspatchvertexadd\pgfplotspatchclass@rect@C\times{0.5}% \expandafter\pgfplotspatchvertexadd\pgfplotspatchclass@rect@D\times{0.5}% \pgfplotspatchvertexfinish\pgfplotspatchclass@rect@CD % \pgfplotspatchvertexaccumstart \expandafter\pgfplotspatchvertexadd\pgfplotspatchclass@rect@B\times{0.5}% \expandafter\pgfplotspatchvertexadd\pgfplotspatchclass@rect@C\times{0.5}% \pgfplotspatchvertexfinish\pgfplotspatchclass@rect@BC % \expandafter\pgfplotsplothandlermesh@setnextvertex\expandafter{\pgfplotspatchclass@rect@BC}% \expandafter\pgfplotsplothandlermesh@setnextvertex\expandafter{\pgfplotspatchclass@rect@C@}% \expandafter\pgfplotsplothandlermesh@setnextvertex\expandafter{\pgfplotspatchclass@rect@CD}% \pgfplotsplothandlermesh@setnextvertex{#1}% #2\pgfplotspatchclass@rect@recursiverefine@newnames % % % \pgfplotspatchvertexaccumstart \expandafter\pgfplotspatchvertexadd\pgfplotspatchclass@rect@C\times{0.5}% \expandafter\pgfplotspatchvertexadd\pgfplotspatchclass@rect@D\times{0.5}% \pgfplotspatchvertexfinish\pgfplotspatchclass@rect@CD % \pgfplotspatchvertexaccumstart \expandafter\pgfplotspatchvertexadd\pgfplotspatchclass@rect@D\times{0.5}% \expandafter\pgfplotspatchvertexadd\pgfplotspatchclass@rect@A\times{0.5}% \pgfplotspatchvertexfinish\pgfplotspatchclass@rect@DA % \expandafter\pgfplotsplothandlermesh@setnextvertex\expandafter{\pgfplotspatchclass@rect@CD}% \expandafter\pgfplotsplothandlermesh@setnextvertex\expandafter{\pgfplotspatchclass@rect@D@}% \expandafter\pgfplotsplothandlermesh@setnextvertex\expandafter{\pgfplotspatchclass@rect@DA}% \pgfplotsplothandlermesh@setnextvertex{#1}% #2\pgfplotspatchclass@rect@recursiverefine@newnames % }% \def\pgfplotspatchclass@rect@recursiverefine@newnames{% \let\pgfplotspatchclass@rect@A@=\pgfplotspatchclass@rect@A% \let\pgfplotspatchclass@rect@B@=\pgfplotspatchclass@rect@B% \let\pgfplotspatchclass@rect@C@=\pgfplotspatchclass@rect@C% \let\pgfplotspatchclass@rect@D@=\pgfplotspatchclass@rect@D% }% % An arbitrary poligy specified in the sequence % D <-- C % | ^ % v | % A --> B % \pgfkeyssetvalue{/pgfplots/vertex count}{0}% \pgfplotsdeclarepatchclass{polygon}{% new=\def\pgfplotspatchclass@poly@no{0}, set next vertex={% \pgfplotspatchclass@poly@checkcount \expandafter\edef\csname pgfplotspatchclass@poly@\pgfplotspatchclass@poly@no\endcsname{#1}% \pgfplotsutil@advancestringcounter\pgfplotspatchclass@poly@no \ifnum\pgfplotspatchclass@poly@no=\pgfkeysvalueof{/pgfplots/vertex count} % \def\pgfplotspatchclass@poly@no{0}% \pgfplotspatchready% \fi }, first vertex=\expandafter\expandafter\expandafter\pgfplotspatchvertex\csname pgfplotspatchclass@poly@0\endcsname\endvertex, foreach vertex={% \pgfplotspatchclass@poly@foreach@loop{0}{#1}% }, init pdf shading={% \pgfplots@error{Sorry, patch type=polygon does not support shadings}% }, serialize except vertices=\let\pgfplotsretval\pgfutil@empty,% deserialize except vertices=, get pdf shading type=4, get num vertices=\def\pgfplotsretval{\pgfkeysvalueof{/pgfplots/vertex count}}, }% \def\pgfplotspatchclass@poly@checkcount{% \ifnum\pgfkeysvalueof{/pgfplots/vertex count}>0 \else \pgfplots@error{Sorry, 'patch type=polygon' *requires* that 'vertex count=' is set (note: it is allowed if multiple vertices have the same coordinates).}% \fi }% \long\def\pgfplotspatchclass@poly@foreach@loop#1#2{% \ifnum#1<\pgfkeysvalueof{/pgfplots/vertex count} % \expandafter\expandafter\expandafter\pgfplotspatchvertex\csname pgfplotspatchclass@poly@#1\endcsname\endvertex #2% \begingroup \c@pgf@counta=#1 % \advance\c@pgf@counta by1 % \t@pgfplots@toka={#2}% \xdef\pgfplots@glob@TMPc{\noexpand\pgfplotspatchclass@poly@foreach@loop{\the\c@pgf@counta}{\the\t@pgfplots@toka}}% \endgroup \else \gdef\pgfplots@glob@TMPc{}% \fi \pgfplots@glob@TMPc }% \def\pgfplots@biquad@next@A{E} \def\pgfplots@biquad@next@B{F} \def\pgfplots@biquad@next@C{G} \def\pgfplots@biquad@next@D{H} \def\pgfplots@biquad@next@E{B} \def\pgfplots@biquad@next@F{C} \def\pgfplots@biquad@next@G{D} \def\pgfplots@biquad@next@H{A} \def\pgfplots@biquad@rnext@A{H} \def\pgfplots@biquad@rnext@B{E} \def\pgfplots@biquad@rnext@C{F} \def\pgfplots@biquad@rnext@D{G} \def\pgfplots@biquad@rnext@E{A} \def\pgfplots@biquad@rnext@F{B} \def\pgfplots@biquad@rnext@G{C} \def\pgfplots@biquad@rnext@H{D} \def\pgfplotspatchclass@biquad@recursiverefine@newnames{% \let\pgfplotspatchclass@biquad@A@=\pgfplotspatchclass@biquad@A% \let\pgfplotspatchclass@biquad@B@=\pgfplotspatchclass@biquad@B% \let\pgfplotspatchclass@biquad@C@=\pgfplotspatchclass@biquad@C% \let\pgfplotspatchclass@biquad@D@=\pgfplotspatchclass@biquad@D% \let\pgfplotspatchclass@biquad@E@=\pgfplotspatchclass@biquad@E% \let\pgfplotspatchclass@biquad@F@=\pgfplotspatchclass@biquad@F% \let\pgfplotspatchclass@biquad@G@=\pgfplotspatchclass@biquad@G% \let\pgfplotspatchclass@biquad@H@=\pgfplotspatchclass@biquad@H% \let\pgfplotspatchclass@biquad@I@=\pgfplotspatchclass@biquad@I% }% % mathematica shape functions parameterized in % (xi,eta) in [-1,1]x[-1,1]: %f[xi_, eta_] = % a*1/4*(1 - xi) (1 - eta) xi*eta + % b 1/4 (-1 - xi) (1 - eta) xi*eta + % c* 1/4 (-1 - xi) (-1 - eta) xi*eta + % d *1/4 (1 - xi) (-1 - eta) xi*eta + % e * 1/2 (xi^2 - 1) (1 - eta) eta + % f*1/2 (-1 - xi) (eta^2 - 1) xi + % g* -1/2 (1 - xi^2) (-1 - eta) eta + % h* -1/2 (1 - xi) (1 - eta^2) xi + % i*(1 - xi^2) (1 - eta^2) % here, a,b,...,i are the 9 nodes. \pgfplotsdeclarepatchclass{biquadratic}{% new=\def\pgfplotspatchclass@biquad@no{A}\let\pgfplotspatchclass@biquade@AB\relax, set next vertex={% % defines \pgfplotspatchclass@biquad@A ... \pgfplotspatchclass@biquad@I (9 points) \expandafter\edef\csname pgfplotspatchclass@biquad@\pgfplotspatchclass@biquad@no\endcsname{#1}% \if I\pgfplotspatchclass@biquad@no \def\pgfplotspatchclass@biquad@no{A}% \pgfplotspatchready \else \expandafter\let\expandafter\pgfplotspatchclass@biquad@no\csname pgfpptchindexnext@\pgfplotspatchclass@biquad@no\endcsname \fi }, sample in unit cube={% \def\pgfplotspatchclassx{0}% \def\pgfplotspatchclassy{0}% #1% \def\pgfplotspatchclassx{1}% \def\pgfplotspatchclassy{0}% #1% \def\pgfplotspatchclassx{1}% \def\pgfplotspatchclassy{1}% #1% \def\pgfplotspatchclassx{0}% \def\pgfplotspatchclassy{1}% #1% \def\pgfplotspatchclassx{0.5}% \def\pgfplotspatchclassy{0}% #1% \def\pgfplotspatchclassx{1}% \def\pgfplotspatchclassy{0.5}% #1% \def\pgfplotspatchclassx{0.5}% \def\pgfplotspatchclassy{1}% #1% \def\pgfplotspatchclassx{0}% \def\pgfplotspatchclassy{0.5}% #1% \def\pgfplotspatchclassx{0.5}% \def\pgfplotspatchclassy{0.5}% #1% \pgfplotspatchready },% first vertex=\expandafter\pgfplotspatchvertex\pgfplotspatchclass@biquad@A\endvertex, foreach vertex={% \expandafter\pgfplotspatchvertex\pgfplotspatchclass@biquad@A\endvertex #1% \expandafter\pgfplotspatchvertex\pgfplotspatchclass@biquad@B\endvertex #1% \expandafter\pgfplotspatchvertex\pgfplotspatchclass@biquad@C\endvertex #1% \expandafter\pgfplotspatchvertex\pgfplotspatchclass@biquad@D\endvertex #1% \expandafter\pgfplotspatchvertex\pgfplotspatchclass@biquad@E\endvertex #1% \expandafter\pgfplotspatchvertex\pgfplotspatchclass@biquad@F\endvertex #1% \expandafter\pgfplotspatchvertex\pgfplotspatchclass@biquad@G\endvertex #1% \expandafter\pgfplotspatchvertex\pgfplotspatchclass@biquad@H\endvertex #1% \expandafter\pgfplotspatchvertex\pgfplotspatchclass@biquad@I\endvertex #1% }, foreach cdata vertex={% \expandafter\pgfplotspatchvertex\pgfplotspatchclass@biquad@A\endvertex #1% \expandafter\pgfplotspatchvertex\pgfplotspatchclass@biquad@B\endvertex #1% \expandafter\pgfplotspatchvertex\pgfplotspatchclass@biquad@C\endvertex #1% \expandafter\pgfplotspatchvertex\pgfplotspatchclass@biquad@D\endvertex #1% }, fill path={% \begingroup % Visualize the patch boundary using four bezier curves. % % This involves a change from Lagrange to bezier % representation of the boundary curves. % % Furthermore, pdf supports only **cubic** bezier curves. What % I am doing here is % a) change of basis from 3-point lagrange ---> 3 point quadratic bezier % b) expression 3 point quadratic bezier ----> 4 point cubic bezier % % INPUT: % 3 langrange points (i.e. the patch passes through them) % \PA,\PB,\PC (start,middle,end) % % OUTPUT: % \PA,bezier control 1, bezier control 2, \PC. % \def\pgfplots@edge{% \ifx\pgfplotspatchclass@biquad@A\PA \pgfpathmoveto{\expandafter\pgfplotspointpatchvertex\PA\endvertex}% \fi \pgfpathcurveto {% \pgfpointadd {\pgfqpointscale{1.333333}{\expandafter\pgfplotspointpatchvertex\PB\endvertex}}% {\pgfqpointscale{-0.333333}{\expandafter\pgfplotspointpatchvertex\PC\endvertex}}% }{% \pgfpointadd {\pgfqpointscale{1.333333}{\expandafter\pgfplotspointpatchvertex\PB\endvertex}}% {\pgfqpointscale{-0.333333}{\expandafter\pgfplotspointpatchvertex\PA\endvertex}}% }{% \expandafter\pgfplotspointpatchvertex\PC\endvertex }% }% \let\PA=\pgfplotspatchclass@biquad@A \let\PB=\pgfplotspatchclass@biquad@E \let\PC=\pgfplotspatchclass@biquad@B \pgfplots@edge % \let\PA=\pgfplotspatchclass@biquad@B \let\PB=\pgfplotspatchclass@biquad@F \let\PC=\pgfplotspatchclass@biquad@C \pgfplots@edge % \let\PA=\pgfplotspatchclass@biquad@C \let\PB=\pgfplotspatchclass@biquad@G \let\PC=\pgfplotspatchclass@biquad@D \pgfplots@edge % \let\PA=\pgfplotspatchclass@biquad@D \let\PB=\pgfplotspatchclass@biquad@H \let\PC=\pgfplotspatchclass@biquad@A \pgfplots@edge \endgroup \pgfpathclose }, %-------------------------------------------------- % stroke path={% % \ifx\pgfplotspatchclass@biquade@AB\relax % \pgfpathmoveto{\expandafter\pgfplotspointpatchvertex\pgfplotspatchclass@biquad@A\endvertex}% % \pgfpathlineto{\expandafter\pgfplotspointpatchvertex\pgfplotspatchclass@biquad@B\endvertex}% % \pgfpathlineto{\expandafter\pgfplotspointpatchvertex\pgfplotspatchclass@biquad@C\endvertex}% % \pgfpathclose % \else % \if1\pgfplotspatchclass@biquade@AB % \pgfpathmoveto{\expandafter\pgfplotspointpatchvertex\pgfplotspatchclass@biquad@A\endvertex}% % \pgfpathlineto{\expandafter\pgfplotspointpatchvertex\pgfplotspatchclass@biquad@B\endvertex}% % \fi % \if1\pgfplotspatchclass@biquade@BC % \pgfpathmoveto{\expandafter\pgfplotspointpatchvertex\pgfplotspatchclass@biquad@B\endvertex}% % \pgfpathlineto{\expandafter\pgfplotspointpatchvertex\pgfplotspatchclass@biquad@C\endvertex}% % \fi % \if1\pgfplotspatchclass@biquade@CA % \pgfpathmoveto{\expandafter\pgfplotspointpatchvertex\pgfplotspatchclass@biquad@C\endvertex}% % \pgfpathlineto{\expandafter\pgfplotspointpatchvertex\pgfplotspatchclass@biquad@A\endvertex}% % \fi % \fi % }, %-------------------------------------------------- stream to shader={% \begingroup % % An early version of this shader used Coons patch shadings % (which provides coordinates only for the 9 boundary % vertices, not for the inner vertices). That is a little bit % simpler than what you see in the following lines of code: a % transformation to a tensor bezier shading. % % What we need is to map the 3x3 data from lagrangrian % (interpolation) representation to 4x4 cubic bezier - and % handle the four INNER nodes correctly. % % The algorithm to convert from 1d curves with 3 point langrange to 4 point % bezier is well-known and relatively simple. Fortunately, the % extension to 3x3 -> 4x4 can be boiled down to a successive % application of the 1d algorithm - applied to horizontal and % vertical lines in the data matrizes. % % NOTE: the algorithm in the following lines results in % EXACTLY THE SAME four cubic boundary curves as the approach % in 'fill path'. The only difference is that it also does the % right thing for the inner node. % % STEP 1: ensure that the patch's coordinates are streamed in % a sequence which is compatible with the DEPTH of the % corners. % % we use % \pgfplotspatchclass@rect@to@coonspatch@findshadingsequence@for@depth % which works for bilinear, biquadratic, and bicubic \pgfplotspatchclass@rect@to@coonspatch@findshadingsequence@for@depth {pgfplotspatchclass@biquad@}{\Pcur}{\Pnextseq}% % % STEP 2: % now, translate the result into our matrix form. % This means to (a) identify the FIRST point which needs to be % streamed (it is stored in \Pcur as 'A', 'B', 'C', or 'D') % and (b) keep in mind that we have to take care of the % sequence in which points are streamed ("forward" means to % rotate the matrix elements and "backward" means to transpose % the "forward" result). % % This can be seen as conversion from the "linearized" % numbering to matrix indexing - while respecting the "start % point". % % INPUT: % % D G C % H I F % A E B % \if A\Pcur % Ah - the point "A" needs to be streamed as first. % % Well, this is simple: take the matrix as-is! % simply copy 1:1 % % i.e. convert % D G C % H I F % A E B % % to % % AC BC CC % AB BB CB % AA BA CA \let\P@AA=\pgfplotspatchclass@biquad@A \let\P@BA=\pgfplotspatchclass@biquad@E \let\P@CA=\pgfplotspatchclass@biquad@B \let\P@AB=\pgfplotspatchclass@biquad@H \let\P@BB=\pgfplotspatchclass@biquad@I \let\P@CB=\pgfplotspatchclass@biquad@F \let\P@AC=\pgfplotspatchclass@biquad@D \let\P@BC=\pgfplotspatchclass@biquad@G \let\P@CC=\pgfplotspatchclass@biquad@C \fi \if B\Pcur % the "B" point needs to be streamed as first. % % i.e. reorder % D G C % H I F % A E B % % to % A H D AC BC CC % E I G =: AB BB CB % B F C AA BA CA % \let\P@AA=\pgfplotspatchclass@biquad@B \let\P@BA=\pgfplotspatchclass@biquad@F \let\P@CA=\pgfplotspatchclass@biquad@C \let\P@AB=\pgfplotspatchclass@biquad@E \let\P@BB=\pgfplotspatchclass@biquad@I \let\P@CB=\pgfplotspatchclass@biquad@G \let\P@AC=\pgfplotspatchclass@biquad@A \let\P@BC=\pgfplotspatchclass@biquad@H \let\P@CC=\pgfplotspatchclass@biquad@D \fi \if C\Pcur % the "C" point needs to be streamed as first. % % i.e. reorder % D G C % H I F % A E B % % to % B E A AC BC CC % F I H =: AB BB CB % C G D AA BA CA % \let\P@AA=\pgfplotspatchclass@biquad@C \let\P@BA=\pgfplotspatchclass@biquad@G \let\P@CA=\pgfplotspatchclass@biquad@D \let\P@AB=\pgfplotspatchclass@biquad@F \let\P@BB=\pgfplotspatchclass@biquad@I \let\P@CB=\pgfplotspatchclass@biquad@H \let\P@AC=\pgfplotspatchclass@biquad@B \let\P@BC=\pgfplotspatchclass@biquad@E \let\P@CC=\pgfplotspatchclass@biquad@A \fi \if D\Pcur % the "D" point needs to be streamed as first. % % i.e. reorder % D G C % H I F % A E B % % to % C F B AC BC CC % G I E =: AB BB CB % D H A AA BA CA % \let\P@AA=\pgfplotspatchclass@biquad@D \let\P@BA=\pgfplotspatchclass@biquad@H \let\P@CA=\pgfplotspatchclass@biquad@A \let\P@AB=\pgfplotspatchclass@biquad@G \let\P@BB=\pgfplotspatchclass@biquad@I \let\P@CB=\pgfplotspatchclass@biquad@E \let\P@AC=\pgfplotspatchclass@biquad@C \let\P@BC=\pgfplotspatchclass@biquad@F \let\P@CC=\pgfplotspatchclass@biquad@B \fi \ifx\Pnextseq\pgfutil@empty \else % reverse the ordering. This means to transpose the % matrix: \pgfplotspatchclass@biquad@transpose \fi % % % Step: convert to tensor bezier representation. % % Converting a 2d tensor product lagrangian interpoland to a % 2d tensor product bezier interpoland can be achieved by % means of 1d algorithms along LINES in the matrix. % % The underlying proof for this is related to the tensor % product form: the U and V coordinates are orthogonal to each % other, so we can redistribute all intermediate results. (I % do not have the real proof, so this hand-waving argument has % to be enough). I verified its results experimentally. % % Note that the underlying 1d operation is the same as for % 'patch type=quadratic spline' . We only need to apply it to all % lines in U direction and afterwards to all lines in V % direction. % \def\pgfplotspatchvertexaddXY@expanded##1\times{% \edef\pgfplots@loc@TMPa{##1}% \expandafter\pgfplotspatchvertexaddXY\pgfplots@loc@TMPa\times }% % % this macro operates on \pgfplots@line{[ABC]} and defines % \pgfplots@line{[ABCD]} (i.e. one dimension more!) \def\pgfplots@apply@to@line{% \pgfplotspatchvertexaccumstart \pgfplotspatchvertexaddXY@expanded\pgfplots@line{B}\times{1.333333}% \pgfplotspatchvertexaddXY@expanded\pgfplots@line{C}\times{-0.333333}% \pgfplotspatchvertexfinish\pgfplots@controlpoint@A % \pgfplotspatchvertexaccumstart \pgfplotspatchvertexaddXY@expanded\pgfplots@line{A}\times{-0.333333}% \pgfplotspatchvertexaddXY@expanded\pgfplots@line{B}\times{1.333333}% \pgfplotspatchvertexfinish\pgfplots@controlpoint@B % % ... we output 4 points (cubic!). % A= left endpoint (untouched) % B= first control % C= second control % D= right endpoint (untouched, is formerly called 'C') \edef\pgfplots@loc@TMPa{\pgfplots@line{C}}% \expandafter\expandafter\expandafter\let\pgfplots@line{B}=\pgfplots@controlpoint@A \expandafter\expandafter\expandafter\let\pgfplots@line{C}=\pgfplots@controlpoint@B \expandafter\expandafter\expandafter\let\pgfplots@line{D}=\pgfplots@loc@TMPa }% % \def\pgfplots@line##1{\csname P@##1A\endcsname}% \pgfplots@apply@to@line % \def\pgfplots@line##1{\csname P@##1B\endcsname}% \pgfplots@apply@to@line % \def\pgfplots@line##1{\csname P@##1C\endcsname}% \pgfplots@apply@to@line % % Now, we have a 3x4 matrix. % % \def\pgfplots@line##1{\csname P@A##1\endcsname}% \pgfplots@apply@to@line % \def\pgfplots@line##1{\csname P@B##1\endcsname}% \pgfplots@apply@to@line % \def\pgfplots@line##1{\csname P@C##1\endcsname}% \pgfplots@apply@to@line % \def\pgfplots@line##1{\csname P@D##1\endcsname}% \pgfplots@apply@to@line % % OK. The tensor product representation is READY. % % in particular, we have a 4x4 matrix right now: % \pgfplotsplothandlermesh@shade@cubic@tensor \endgroup },% triangulate={% \let\pgfplotsplothandlermesh@patchclass@=\pgfplotsplothandlermesh@patchclass \def\pgfplotsplothandlermesh@patchclass{triangle}% \pgfplotspatchclass{\pgfplotsplothandlermesh@patchclass}{new}% \pgfplotspatchclass{\pgfplotsplothandlermesh@patchclass}{set edge visible}01% \pgfplotspatchclass{\pgfplotsplothandlermesh@patchclass}{set edge visible}10% \pgfplotspatchclass{\pgfplotsplothandlermesh@patchclass}{set edge visible}20% % Ok. Now create 4 triangles. The ordering is not arbitrary % (unless z buffer=sort is in effect). Let's assume that the % AB edge is BACKGROUND and the CD edge is FOREGROUND. Then % this sequence here should have approximately the same depth % ordering: \expandafter\pgfplotsplothandlermesh@setnextvertex\expandafter{\pgfplotspatchclass@biquad@A}% \expandafter\pgfplotsplothandlermesh@setnextvertex\expandafter{\pgfplotspatchclass@biquad@E}% \expandafter\pgfplotsplothandlermesh@setnextvertex\expandafter{\pgfplotspatchclass@biquad@I}% % \expandafter\pgfplotsplothandlermesh@setnextvertex\expandafter{\pgfplotspatchclass@biquad@H}% \expandafter\pgfplotsplothandlermesh@setnextvertex\expandafter{\pgfplotspatchclass@biquad@A}% \expandafter\pgfplotsplothandlermesh@setnextvertex\expandafter{\pgfplotspatchclass@biquad@I}% % \expandafter\pgfplotsplothandlermesh@setnextvertex\expandafter{\pgfplotspatchclass@biquad@E}% \expandafter\pgfplotsplothandlermesh@setnextvertex\expandafter{\pgfplotspatchclass@biquad@B}% \expandafter\pgfplotsplothandlermesh@setnextvertex\expandafter{\pgfplotspatchclass@biquad@I}% % \expandafter\pgfplotsplothandlermesh@setnextvertex\expandafter{\pgfplotspatchclass@biquad@B}% \expandafter\pgfplotsplothandlermesh@setnextvertex\expandafter{\pgfplotspatchclass@biquad@F}% \expandafter\pgfplotsplothandlermesh@setnextvertex\expandafter{\pgfplotspatchclass@biquad@I}% % \expandafter\pgfplotsplothandlermesh@setnextvertex\expandafter{\pgfplotspatchclass@biquad@D}% \expandafter\pgfplotsplothandlermesh@setnextvertex\expandafter{\pgfplotspatchclass@biquad@H}% \expandafter\pgfplotsplothandlermesh@setnextvertex\expandafter{\pgfplotspatchclass@biquad@I}% % \expandafter\pgfplotsplothandlermesh@setnextvertex\expandafter{\pgfplotspatchclass@biquad@D}% \expandafter\pgfplotsplothandlermesh@setnextvertex\expandafter{\pgfplotspatchclass@biquad@G}% \expandafter\pgfplotsplothandlermesh@setnextvertex\expandafter{\pgfplotspatchclass@biquad@I}% % \expandafter\pgfplotsplothandlermesh@setnextvertex\expandafter{\pgfplotspatchclass@biquad@G}% \expandafter\pgfplotsplothandlermesh@setnextvertex\expandafter{\pgfplotspatchclass@biquad@C}% \expandafter\pgfplotsplothandlermesh@setnextvertex\expandafter{\pgfplotspatchclass@biquad@I}% % \expandafter\pgfplotsplothandlermesh@setnextvertex\expandafter{\pgfplotspatchclass@biquad@C}% \expandafter\pgfplotsplothandlermesh@setnextvertex\expandafter{\pgfplotspatchclass@biquad@F}% \expandafter\pgfplotsplothandlermesh@setnextvertex\expandafter{\pgfplotspatchclass@biquad@I}% \let\pgfplotsplothandlermesh@patchclass=\pgfplotsplothandlermesh@patchclass@ },% %-------------------------------------------------- % set edge visible={% % \ifcase#1 % \edef\pgfplotspatchclass@biquade@AB{#2}% % \or % \edef\pgfplotspatchclass@biquade@BC{#2}% % \or % \edef\pgfplotspatchclass@biquade@CA{#2}% % \fi % }, %-------------------------------------------------- serialize except vertices={% \ifx\pgfplotspatchclass@biquade@AB\relax \let\pgfplotsretval\pgfutil@empty% \else \edef\pgfplotsretval{% \noexpand\def\noexpand\pgfplotspatchclass@biquade@AB{\pgfplotspatchclass@biquade@AB}% \noexpand\def\noexpand\pgfplotspatchclass@biquade@BC{\pgfplotspatchclass@biquade@BC}% \noexpand\def\noexpand\pgfplotspatchclass@biquade@CA{\pgfplotspatchclass@biquade@CA}% }% \fi },% deserialize except vertices=% \let\pgfplotspatchclass@biquade@AB\relax #1, recursive refine@={% \pgfplotspatchclass@biquad@recursiverefine@newnames % \pgfplotspatchclass{\pgfplotspatchclassname}{new}% %-------------------------------------------------- % \pgfplotspatchclass{\pgfplotspatchclassname}{set edge visible}01% % \pgfplotspatchclass{\pgfplotspatchclassname}{set edge visible}11% % \pgfplotspatchclass{\pgfplotspatchclassname}{set edge visible}20% %-------------------------------------------------- % The ordering is not arbitrary % (unless z buffer=sort is in effect). Let's assume that the % AB edge is BACKGROUND and the CD edge is FOREGROUND. Then % this sequence here should have approximately the same depth % ordering: % % I used the reference triangle and shape functions as listed in % http://www.colorado.edu/engineering/CAS/courses.d/IFEM.d/, % see above for the definition of f[xi,eta] % % N[{f[-1/2, -1], f[0, -1/2], f[-1/2, 0], f[-1, -1/2], f[-1/2, -1/2]}] % {0.375` a - 0.125` b + 0.75` e, % 0.375` e - 0.125` g + 0.75` i, % -0.125` f + 0.375` h + 0.75` i, % 0.375` a - 0.125` d + 0.75` h, % 0.140625` a - 0.046875` b + 0.015625` c - 0.046875` d + % 0.28125` e - 0.09375` f - 0.09375` g + 0.28125` h + % 0.5625` i} %-------------------------------------------------- \pgfplotspatchvertexaccumstart \expandafter\pgfplotspatchvertexadd\pgfplotspatchclass@biquad@A\times{0.375}% \expandafter\pgfplotspatchvertexadd\pgfplotspatchclass@biquad@B\times{-0.125}% \expandafter\pgfplotspatchvertexadd\pgfplotspatchclass@biquad@E\times{0.75}% \pgfplotspatchvertexfinish\pgfplotspatchclass@biquad@AE % \pgfplotspatchvertexaccumstart \expandafter\pgfplotspatchvertexadd\pgfplotspatchclass@biquad@E\times{0.375}% \expandafter\pgfplotspatchvertexadd\pgfplotspatchclass@biquad@G\times{-0.125}% \expandafter\pgfplotspatchvertexadd\pgfplotspatchclass@biquad@I\times{0.75}% \pgfplotspatchvertexfinish\pgfplotspatchclass@biquad@EI % \pgfplotspatchvertexaccumstart \expandafter\pgfplotspatchvertexadd\pgfplotspatchclass@biquad@F\times{-0.125}% \expandafter\pgfplotspatchvertexadd\pgfplotspatchclass@biquad@H\times{0.375}% \expandafter\pgfplotspatchvertexadd\pgfplotspatchclass@biquad@I\times{0.75}% \pgfplotspatchvertexfinish\pgfplotspatchclass@biquad@HI % \pgfplotspatchvertexaccumstart \expandafter\pgfplotspatchvertexadd\pgfplotspatchclass@biquad@A\times{0.375}% \expandafter\pgfplotspatchvertexadd\pgfplotspatchclass@biquad@D\times{-0.125}% \expandafter\pgfplotspatchvertexadd\pgfplotspatchclass@biquad@H\times{0.75}% \pgfplotspatchvertexfinish\pgfplotspatchclass@biquad@AH % \pgfplotspatchvertexaccumstart \expandafter\pgfplotspatchvertexadd\pgfplotspatchclass@biquad@A\times{0.140625}% \expandafter\pgfplotspatchvertexadd\pgfplotspatchclass@biquad@B\times{-0.046875}% \expandafter\pgfplotspatchvertexadd\pgfplotspatchclass@biquad@C\times{0.015625}% \expandafter\pgfplotspatchvertexadd\pgfplotspatchclass@biquad@D\times{-0.046875}% \expandafter\pgfplotspatchvertexadd\pgfplotspatchclass@biquad@E\times{0.28125}% \expandafter\pgfplotspatchvertexadd\pgfplotspatchclass@biquad@F\times{-0.09375}% \expandafter\pgfplotspatchvertexadd\pgfplotspatchclass@biquad@G\times{-0.09375}% \expandafter\pgfplotspatchvertexadd\pgfplotspatchclass@biquad@H\times{0.28125}% \expandafter\pgfplotspatchvertexadd\pgfplotspatchclass@biquad@I\times{0.5625}% \pgfplotspatchvertexfinish\pgfplotspatchclass@biquad@AEIH % \expandafter\pgfplotsplothandlermesh@setnextvertex\expandafter{\pgfplotspatchclass@biquad@A@}% \expandafter\pgfplotsplothandlermesh@setnextvertex\expandafter{\pgfplotspatchclass@biquad@E@}% \expandafter\pgfplotsplothandlermesh@setnextvertex\expandafter{\pgfplotspatchclass@biquad@I@}% \expandafter\pgfplotsplothandlermesh@setnextvertex\expandafter{\pgfplotspatchclass@biquad@H@}% \expandafter\pgfplotsplothandlermesh@setnextvertex\expandafter{\pgfplotspatchclass@biquad@AE}% \expandafter\pgfplotsplothandlermesh@setnextvertex\expandafter{\pgfplotspatchclass@biquad@EI}% \expandafter\pgfplotsplothandlermesh@setnextvertex\expandafter{\pgfplotspatchclass@biquad@HI}% \expandafter\pgfplotsplothandlermesh@setnextvertex\expandafter{\pgfplotspatchclass@biquad@AH}% \expandafter\pgfplotsplothandlermesh@setnextvertex\expandafter{\pgfplotspatchclass@biquad@AEIH}% % #1\pgfplotspatchclass@biquad@recursiverefine@newnames % % N[{f[1/2, -1], f[1, -1/2], f[1/2, 0], f[1/2, -1/2]}] % {-0.125` a + 0.375` b + 0.75` e, % 0.375` b - 0.125` c + 0.75` f, % 0.375` f - 0.125` h + 0.75` i, % -0.046875 a + 0.140625 b - 0.046875 c + 0.015625 d + 0.28125 e + 0.28125 f - 0.09375 g - 0.09375 h + 0.5625 i} \pgfplotspatchvertexaccumstart \expandafter\pgfplotspatchvertexadd\pgfplotspatchclass@biquad@A\times{-0.125}% \expandafter\pgfplotspatchvertexadd\pgfplotspatchclass@biquad@B\times{0.375}% \expandafter\pgfplotspatchvertexadd\pgfplotspatchclass@biquad@E\times{0.75}% \pgfplotspatchvertexfinish\pgfplotspatchclass@biquad@EB % \pgfplotspatchvertexaccumstart \expandafter\pgfplotspatchvertexadd\pgfplotspatchclass@biquad@B\times{0.375}% \expandafter\pgfplotspatchvertexadd\pgfplotspatchclass@biquad@C\times{-0.125}% \expandafter\pgfplotspatchvertexadd\pgfplotspatchclass@biquad@F\times{0.75}% \pgfplotspatchvertexfinish\pgfplotspatchclass@biquad@BF % \pgfplotspatchvertexaccumstart \expandafter\pgfplotspatchvertexadd\pgfplotspatchclass@biquad@F\times{0.375}% \expandafter\pgfplotspatchvertexadd\pgfplotspatchclass@biquad@H\times{-0.125}% \expandafter\pgfplotspatchvertexadd\pgfplotspatchclass@biquad@I\times{0.75}% \pgfplotspatchvertexfinish\pgfplotspatchclass@biquad@FI % % \pgfplotspatchvertexaccumstart \expandafter\pgfplotspatchvertexadd\pgfplotspatchclass@biquad@E\times{0.375}% \expandafter\pgfplotspatchvertexadd\pgfplotspatchclass@biquad@G\times{-0.125}% \expandafter\pgfplotspatchvertexadd\pgfplotspatchclass@biquad@I\times{0.75}% \pgfplotspatchvertexfinish\pgfplotspatchclass@biquad@EI % \pgfplotspatchvertexaccumstart \expandafter\pgfplotspatchvertexadd\pgfplotspatchclass@biquad@A\times{-0.046875}% \expandafter\pgfplotspatchvertexadd\pgfplotspatchclass@biquad@B\times{0.140625}% \expandafter\pgfplotspatchvertexadd\pgfplotspatchclass@biquad@C\times{-0.046875}% \expandafter\pgfplotspatchvertexadd\pgfplotspatchclass@biquad@D\times{0.015625}% \expandafter\pgfplotspatchvertexadd\pgfplotspatchclass@biquad@E\times{0.28125}% \expandafter\pgfplotspatchvertexadd\pgfplotspatchclass@biquad@F\times{0.28125}% \expandafter\pgfplotspatchvertexadd\pgfplotspatchclass@biquad@G\times{-0.09375}% \expandafter\pgfplotspatchvertexadd\pgfplotspatchclass@biquad@H\times{-0.09375}% \expandafter\pgfplotspatchvertexadd\pgfplotspatchclass@biquad@I\times{0.5625}% \pgfplotspatchvertexfinish\pgfplotspatchclass@biquad@EBFI % \expandafter\pgfplotsplothandlermesh@setnextvertex\expandafter{\pgfplotspatchclass@biquad@E@}% \expandafter\pgfplotsplothandlermesh@setnextvertex\expandafter{\pgfplotspatchclass@biquad@B@}% \expandafter\pgfplotsplothandlermesh@setnextvertex\expandafter{\pgfplotspatchclass@biquad@F@}% \expandafter\pgfplotsplothandlermesh@setnextvertex\expandafter{\pgfplotspatchclass@biquad@I@}% \expandafter\pgfplotsplothandlermesh@setnextvertex\expandafter{\pgfplotspatchclass@biquad@EB}% \expandafter\pgfplotsplothandlermesh@setnextvertex\expandafter{\pgfplotspatchclass@biquad@BF}% \expandafter\pgfplotsplothandlermesh@setnextvertex\expandafter{\pgfplotspatchclass@biquad@FI}% \expandafter\pgfplotsplothandlermesh@setnextvertex\expandafter{\pgfplotspatchclass@biquad@EI}% \expandafter\pgfplotsplothandlermesh@setnextvertex\expandafter{\pgfplotspatchclass@biquad@EBFI}% % #1\pgfplotspatchclass@biquad@recursiverefine@newnames % % % N[ {f[1, 1/2], f[1/2, 1], f[0, 1/2], f[1/2, 1/2]}] % {-0.125` b + 0.375` c + 0.75` f, % 0.375` c - 0.125` d + 0.75` g, % -0.125` e + 0.375` g + 0.75` i, % 0.015625` a - 0.046875` b + 0.140625` c - 0.046875` d - 0.09375` e + 0.28125` f + 0.28125` g - 0.09375` h + 0.5625` i} \pgfplotspatchvertexaccumstart \expandafter\pgfplotspatchvertexadd\pgfplotspatchclass@biquad@B\times{-0.125}% \expandafter\pgfplotspatchvertexadd\pgfplotspatchclass@biquad@C\times{0.375}% \expandafter\pgfplotspatchvertexadd\pgfplotspatchclass@biquad@F\times{0.75}% \pgfplotspatchvertexfinish\pgfplotspatchclass@biquad@FC % \pgfplotspatchvertexaccumstart \expandafter\pgfplotspatchvertexadd\pgfplotspatchclass@biquad@C\times{0.375}% \expandafter\pgfplotspatchvertexadd\pgfplotspatchclass@biquad@D\times{-0.125}% \expandafter\pgfplotspatchvertexadd\pgfplotspatchclass@biquad@G\times{0.75}% \pgfplotspatchvertexfinish\pgfplotspatchclass@biquad@CG % \pgfplotspatchvertexaccumstart \expandafter\pgfplotspatchvertexadd\pgfplotspatchclass@biquad@E\times{-0.125}% \expandafter\pgfplotspatchvertexadd\pgfplotspatchclass@biquad@G\times{0.375}% \expandafter\pgfplotspatchvertexadd\pgfplotspatchclass@biquad@I\times{0.75}% \pgfplotspatchvertexfinish\pgfplotspatchclass@biquad@GI % \pgfplotspatchvertexaccumstart \expandafter\pgfplotspatchvertexadd\pgfplotspatchclass@biquad@F\times{0.375}% \expandafter\pgfplotspatchvertexadd\pgfplotspatchclass@biquad@H\times{-0.125}% \expandafter\pgfplotspatchvertexadd\pgfplotspatchclass@biquad@I\times{0.75}% \pgfplotspatchvertexfinish\pgfplotspatchclass@biquad@FI % % % \pgfplotspatchvertexaccumstart \expandafter\pgfplotspatchvertexadd\pgfplotspatchclass@biquad@A\times{0.015625}% \expandafter\pgfplotspatchvertexadd\pgfplotspatchclass@biquad@B\times{-0.046875}% \expandafter\pgfplotspatchvertexadd\pgfplotspatchclass@biquad@C\times{0.140625}% \expandafter\pgfplotspatchvertexadd\pgfplotspatchclass@biquad@D\times{-0.046875}% \expandafter\pgfplotspatchvertexadd\pgfplotspatchclass@biquad@E\times{-0.09375}% \expandafter\pgfplotspatchvertexadd\pgfplotspatchclass@biquad@F\times{0.28125}% \expandafter\pgfplotspatchvertexadd\pgfplotspatchclass@biquad@G\times{0.28125}% \expandafter\pgfplotspatchvertexadd\pgfplotspatchclass@biquad@H\times{-0.09375}% \expandafter\pgfplotspatchvertexadd\pgfplotspatchclass@biquad@I\times{0.5625}% \pgfplotspatchvertexfinish\pgfplotspatchclass@biquad@IFCG % \expandafter\pgfplotsplothandlermesh@setnextvertex\expandafter{\pgfplotspatchclass@biquad@I@}% \expandafter\pgfplotsplothandlermesh@setnextvertex\expandafter{\pgfplotspatchclass@biquad@F@}% \expandafter\pgfplotsplothandlermesh@setnextvertex\expandafter{\pgfplotspatchclass@biquad@C@}% \expandafter\pgfplotsplothandlermesh@setnextvertex\expandafter{\pgfplotspatchclass@biquad@G@}% \expandafter\pgfplotsplothandlermesh@setnextvertex\expandafter{\pgfplotspatchclass@biquad@FI}% \expandafter\pgfplotsplothandlermesh@setnextvertex\expandafter{\pgfplotspatchclass@biquad@FC}% \expandafter\pgfplotsplothandlermesh@setnextvertex\expandafter{\pgfplotspatchclass@biquad@CG}% \expandafter\pgfplotsplothandlermesh@setnextvertex\expandafter{\pgfplotspatchclass@biquad@GI}% \expandafter\pgfplotsplothandlermesh@setnextvertex\expandafter{\pgfplotspatchclass@biquad@IFCG}% % #1\pgfplotspatchclass@biquad@recursiverefine@newnames % % % N[{f[-1/2, 1], f[-1, 1/2], f[-1/2, 1/2]}] % {-0.125 c + 0.375 d + 0.75 g, % -0.125 a + 0.375 d + 0.75 h, % -0.046875 a + 0.015625 b - 0.046875 c + 0.140625 d - 0.09375 e - 0.09375 f + 0.28125 g + 0.28125 h + 0.5625 i} \pgfplotspatchvertexaccumstart \expandafter\pgfplotspatchvertexadd\pgfplotspatchclass@biquad@C\times{-0.125}% \expandafter\pgfplotspatchvertexadd\pgfplotspatchclass@biquad@D\times{0.375}% \expandafter\pgfplotspatchvertexadd\pgfplotspatchclass@biquad@G\times{0.75}% \pgfplotspatchvertexfinish\pgfplotspatchclass@biquad@GD % \pgfplotspatchvertexaccumstart \expandafter\pgfplotspatchvertexadd\pgfplotspatchclass@biquad@A\times{-0.125}% \expandafter\pgfplotspatchvertexadd\pgfplotspatchclass@biquad@D\times{0.375}% \expandafter\pgfplotspatchvertexadd\pgfplotspatchclass@biquad@H\times{0.75}% \pgfplotspatchvertexfinish\pgfplotspatchclass@biquad@DH % \pgfplotspatchvertexaccumstart \expandafter\pgfplotspatchvertexadd\pgfplotspatchclass@biquad@E\times{-0.125}% \expandafter\pgfplotspatchvertexadd\pgfplotspatchclass@biquad@G\times{0.375}% \expandafter\pgfplotspatchvertexadd\pgfplotspatchclass@biquad@I\times{0.75}% \pgfplotspatchvertexfinish\pgfplotspatchclass@biquad@GI % \pgfplotspatchvertexaccumstart \expandafter\pgfplotspatchvertexadd\pgfplotspatchclass@biquad@F\times{-0.125}% \expandafter\pgfplotspatchvertexadd\pgfplotspatchclass@biquad@H\times{0.375}% \expandafter\pgfplotspatchvertexadd\pgfplotspatchclass@biquad@I\times{0.75}% \pgfplotspatchvertexfinish\pgfplotspatchclass@biquad@HI % \pgfplotspatchvertexaccumstart \expandafter\pgfplotspatchvertexadd\pgfplotspatchclass@biquad@A\times{-0.046875}% \expandafter\pgfplotspatchvertexadd\pgfplotspatchclass@biquad@B\times{0.015625}% \expandafter\pgfplotspatchvertexadd\pgfplotspatchclass@biquad@C\times{-0.046875}% \expandafter\pgfplotspatchvertexadd\pgfplotspatchclass@biquad@D\times{0.140625}% \expandafter\pgfplotspatchvertexadd\pgfplotspatchclass@biquad@E\times{-0.09375}% \expandafter\pgfplotspatchvertexadd\pgfplotspatchclass@biquad@F\times{-0.09375}% \expandafter\pgfplotspatchvertexadd\pgfplotspatchclass@biquad@G\times{0.28125}% \expandafter\pgfplotspatchvertexadd\pgfplotspatchclass@biquad@H\times{0.28125}% \expandafter\pgfplotspatchvertexadd\pgfplotspatchclass@biquad@I\times{0.5625}% \pgfplotspatchvertexfinish\pgfplotspatchclass@biquad@HIGD % \expandafter\pgfplotsplothandlermesh@setnextvertex\expandafter{\pgfplotspatchclass@biquad@H@}% \expandafter\pgfplotsplothandlermesh@setnextvertex\expandafter{\pgfplotspatchclass@biquad@I@}% \expandafter\pgfplotsplothandlermesh@setnextvertex\expandafter{\pgfplotspatchclass@biquad@G@}% \expandafter\pgfplotsplothandlermesh@setnextvertex\expandafter{\pgfplotspatchclass@biquad@D@}% \expandafter\pgfplotsplothandlermesh@setnextvertex\expandafter{\pgfplotspatchclass@biquad@HI}% \expandafter\pgfplotsplothandlermesh@setnextvertex\expandafter{\pgfplotspatchclass@biquad@GI}% \expandafter\pgfplotsplothandlermesh@setnextvertex\expandafter{\pgfplotspatchclass@biquad@GD}% \expandafter\pgfplotsplothandlermesh@setnextvertex\expandafter{\pgfplotspatchclass@biquad@DH}% \expandafter\pgfplotsplothandlermesh@setnextvertex\expandafter{\pgfplotspatchclass@biquad@HIGD}% % #1% % },% get pdf shading type*={% \if1\b@pgfplotsplothandlermesh@enable@fixed@biquadratic \def\pgfplotsretval{7}% \else \def\pgfplotsretval{6}% \fi },% get num vertices=\def\pgfplotsretval{9}, get num cdata vertices=\def\pgfplotsretval{4}, }% % set this to 0 to revert to an older implementation (which was buggy, % though) \def\b@pgfplotsplothandlermesh@enable@fixed@biquadratic{1}% % see docs in 'biquadratic::stream to shader' for details. % PRECONDITION: to be used inside of 'stream to shader'. \def\pgfplotspatchclass@biquad@coonsedge{% %\message{EDGE \Pcur^^J}% \expandafter\let\expandafter\PA\csname pgfplotspatchclass@biquad@\Pcur\endcsname \edef\Pcur{\csname pgfplots@biquad@\Pnextseq next@\Pcur\endcsname}% \expandafter\let\expandafter\PB\csname pgfplotspatchclass@biquad@\Pcur\endcsname %\message{---> \Pcur^^J}% \edef\Pcur{\csname pgfplots@biquad@\Pnextseq next@\Pcur\endcsname}% \expandafter\let\expandafter\PC\csname pgfplotspatchclass@biquad@\Pcur\endcsname %\message{---> \Pcur^^J}% \ifx\PA\Pstart \expandafter\pgfplotspatchvertex\PA\endvertex \let\pgfplots@current@point@meta=\pgfplotspatchvertexmeta \pgfplotsaxisvisphasetransformpointmeta \pgfplotslibrarysurfstreamcoord{\pgfqpoint\pgfplotspatchvertexx\pgfplotspatchvertexy}{\pgfplotspointmetatransformed}% \fi \pgfplotslibrarysurfstreamcoord{% \pgfpointadd {\pgfqpointscale{1.333333}{\expandafter\pgfplotspointpatchvertex\PB\endvertex}}% {\pgfqpointscale{-0.333333}{\expandafter\pgfplotspointpatchvertex\PC\endvertex}}% }{}% \pgfplotslibrarysurfstreamcoord{% \pgfpointadd {\pgfqpointscale{1.333333}{\expandafter\pgfplotspointpatchvertex\PB\endvertex}}% {\pgfqpointscale{-0.333333}{\expandafter\pgfplotspointpatchvertex\PA\endvertex}}% }{}% \ifx\PC\Pstart \else \expandafter\pgfplotspatchvertex\PC\endvertex \let\pgfplots@current@point@meta=\pgfplotspatchvertexmeta \pgfplotsaxisvisphasetransformpointmeta \pgfplotslibrarysurfstreamcoord{\pgfqpoint\pgfplotspatchvertexx\pgfplotspatchvertexy}{\pgfplotspointmetatransformed}% \fi }% \def\pgfplotspatchclass@biquad@innercontrolpoints{% \begingroup % % This here computes the FOUR INNER CONTROL POINTS of a tensor % cubic bezier patch (Shading Type 7). % % % the following point coordinates have been acquired from % biquadratic::recursive refine. See above for documentation. \pgfplotspatchvertexaccumstart \expandafter\pgfplotspatchvertexaddXY\pgfplotspatchclass@biquad@A\times{0.375}% \expandafter\pgfplotspatchvertexaddXY\pgfplotspatchclass@biquad@B\times{-0.125}% \expandafter\pgfplotspatchvertexaddXY\pgfplotspatchclass@biquad@E\times{0.75}% \pgfplotspatchvertexfinishXY\pgfplotspatchclass@biquad@AE % % \pgfplotspatchvertexaccumstart \expandafter\pgfplotspatchvertexaddXY\pgfplotspatchclass@biquad@F\times{-0.125}% \expandafter\pgfplotspatchvertexaddXY\pgfplotspatchclass@biquad@H\times{0.375}% \expandafter\pgfplotspatchvertexaddXY\pgfplotspatchclass@biquad@I\times{0.75}% \pgfplotspatchvertexfinishXY\pgfplotspatchclass@biquad@HI % \pgfplotspatchvertexaccumstart \expandafter\pgfplotspatchvertexaddXY\pgfplotspatchclass@biquad@A\times{-0.125}% \expandafter\pgfplotspatchvertexaddXY\pgfplotspatchclass@biquad@B\times{0.375}% \expandafter\pgfplotspatchvertexaddXY\pgfplotspatchclass@biquad@E\times{0.75}% \pgfplotspatchvertexfinishXY\pgfplotspatchclass@biquad@EB % \pgfplotspatchvertexaccumstart \expandafter\pgfplotspatchvertexaddXY\pgfplotspatchclass@biquad@F\times{0.375}% \expandafter\pgfplotspatchvertexaddXY\pgfplotspatchclass@biquad@H\times{-0.125}% \expandafter\pgfplotspatchvertexaddXY\pgfplotspatchclass@biquad@I\times{0.75}% \pgfplotspatchvertexfinishXY\pgfplotspatchclass@biquad@FI % \pgfplotspatchvertexaccumstart \expandafter\pgfplotspatchvertexaddXY\pgfplotspatchclass@biquad@C\times{0.375}% \expandafter\pgfplotspatchvertexaddXY\pgfplotspatchclass@biquad@D\times{-0.125}% \expandafter\pgfplotspatchvertexaddXY\pgfplotspatchclass@biquad@G\times{0.75}% \pgfplotspatchvertexfinishXY\pgfplotspatchclass@biquad@CG % \pgfplotspatchvertexaccumstart \expandafter\pgfplotspatchvertexaddXY\pgfplotspatchclass@biquad@C\times{-0.125}% \expandafter\pgfplotspatchvertexaddXY\pgfplotspatchclass@biquad@D\times{0.375}% \expandafter\pgfplotspatchvertexaddXY\pgfplotspatchclass@biquad@G\times{0.75}% \pgfplotspatchvertexfinishXY\pgfplotspatchclass@biquad@GD % % \let\PA=\pgfplotspatchclass@biquad@AE \let\PB=\pgfplotspatchclass@biquad@HI \let\PC=\pgfplotspatchclass@biquad@GD \pgfplotspatchclass@biquad@innercontrolpoints@PREPARE\pgfplotspatchclass@biquad@@A\pgfplotspatchclass@biquad@@D % \let\PA=\pgfplotspatchclass@biquad@EB \let\PB=\pgfplotspatchclass@biquad@FI \let\PC=\pgfplotspatchclass@biquad@CG \pgfplotspatchclass@biquad@innercontrolpoints@PREPARE\pgfplotspatchclass@biquad@@B\pgfplotspatchclass@biquad@@C % % \let\Pcur=\Pstartidx \pgfplotslibrarysurfstreamcoord{\csname pgfplotspatchclass@biquad@@\Pcur\endcsname}{}% % \edef\Pcur{\csname pgfplots@rect@\Pnextseq next@\Pcur\endcsname}% \pgfplotslibrarysurfstreamcoord{\csname pgfplotspatchclass@biquad@@\Pcur\endcsname}{}% % \edef\Pcur{\csname pgfplots@rect@\Pnextseq next@\Pcur\endcsname}% \pgfplotslibrarysurfstreamcoord{\csname pgfplotspatchclass@biquad@@\Pcur\endcsname}{}% % \edef\Pcur{\csname pgfplots@rect@\Pnextseq next@\Pcur\endcsname}% \pgfplotslibrarysurfstreamcoord{\csname pgfplotspatchclass@biquad@@\Pcur\endcsname}{}% \endgroup }% \def\pgfplotspatchclass@biquad@innercontrolpoints@PREPARE#1#2{% \pgfpointadd {\pgfqpointscale{1.333333}{\expandafter\pgfplotspointpatchvertex\PB\endvertex}}% {\pgfqpointscale{-0.333333}{\expandafter\pgfplotspointpatchvertex\PC\endvertex}}% \edef#1{\global\pgf@x=\the\pgf@x\space\global\pgf@y=\the\pgf@y\space}% % \pgfpointadd {\pgfqpointscale{1.333333}{\expandafter\pgfplotspointpatchvertex\PB\endvertex}}% {\pgfqpointscale{-0.333333}{\expandafter\pgfplotspointpatchvertex\PA\endvertex}}% \edef#2{\global\pgf@x=\the\pgf@x\space\global\pgf@y=\the\pgf@y\space}% % \pgfpathcircle{\expandafter\pgfplotspointpatchvertex\PA\endvertex}{1pt}\pgfusepath{fill}% \pgfpathcircle{\expandafter\pgfplotspointpatchvertex\PB\endvertex}{1pt}\pgfusepath{fill}% \pgfpathcircle{\expandafter\pgfplotspointpatchvertex\PC\endvertex}{1pt}\pgfusepath{fill}% \pgfpathmoveto{\expandafter\pgfplotspointpatchvertex\PA\endvertex}% \pgfpathcurveto{#1}{#2}{\expandafter\pgfplotspointpatchvertex\PC\endvertex}% \pgfusepath{stroke}% } % Direct interface to coons patches (pdf shading type 6). % See manual and/or pdf reference \pgfplotsdeclarepatchclass{coons}{% new=\def\pgfplotspatchclass@coons@no{A}, set next vertex={% % defines \pgfplotspatchclass@coons@A ... \pgfplotspatchclass@coons@L (12 points) \expandafter\edef\csname pgfplotspatchclass@coons@\pgfplotspatchclass@coons@no\endcsname{#1}% \if L\pgfplotspatchclass@coons@no \def\pgfplotspatchclass@coons@no{A}% \pgfplotspatchready \else \expandafter\let\expandafter\pgfplotspatchclass@coons@no\csname pgfpptchindexnext@\pgfplotspatchclass@coons@no\endcsname \fi }, first vertex=\expandafter\pgfplotspatchvertex\pgfplotspatchclass@coons@A\endvertex, foreach vertex={% \expandafter\pgfplotspatchvertex\pgfplotspatchclass@coons@A\endvertex #1% \expandafter\pgfplotspatchvertex\pgfplotspatchclass@coons@B\endvertex #1% \expandafter\pgfplotspatchvertex\pgfplotspatchclass@coons@C\endvertex #1% \expandafter\pgfplotspatchvertex\pgfplotspatchclass@coons@D\endvertex #1% \expandafter\pgfplotspatchvertex\pgfplotspatchclass@coons@E\endvertex #1% \expandafter\pgfplotspatchvertex\pgfplotspatchclass@coons@F\endvertex #1% \expandafter\pgfplotspatchvertex\pgfplotspatchclass@coons@G\endvertex #1% \expandafter\pgfplotspatchvertex\pgfplotspatchclass@coons@H\endvertex #1% \expandafter\pgfplotspatchvertex\pgfplotspatchclass@coons@I\endvertex #1% \expandafter\pgfplotspatchvertex\pgfplotspatchclass@coons@J\endvertex #1% \expandafter\pgfplotspatchvertex\pgfplotspatchclass@coons@K\endvertex #1% \expandafter\pgfplotspatchvertex\pgfplotspatchclass@coons@L\endvertex #1% }, foreach cdata vertex={% % 0, 3, 6, 9 \expandafter\pgfplotspatchvertex\pgfplotspatchclass@coons@A\endvertex #1% \expandafter\pgfplotspatchvertex\pgfplotspatchclass@coons@D\endvertex #1% \expandafter\pgfplotspatchvertex\pgfplotspatchclass@coons@G\endvertex #1% \expandafter\pgfplotspatchvertex\pgfplotspatchclass@coons@J\endvertex #1% }, fill path={% \pgfpathmoveto {\expandafter\pgfplotspointpatchvertex\pgfplotspatchclass@coons@A\endvertex}% \pgfpathcurveto {\expandafter\pgfplotspointpatchvertex\pgfplotspatchclass@coons@B\endvertex}% {\expandafter\pgfplotspointpatchvertex\pgfplotspatchclass@coons@C\endvertex}% {\expandafter\pgfplotspointpatchvertex\pgfplotspatchclass@coons@D\endvertex}% \pgfpathcurveto {\expandafter\pgfplotspointpatchvertex\pgfplotspatchclass@coons@E\endvertex}% {\expandafter\pgfplotspointpatchvertex\pgfplotspatchclass@coons@F\endvertex}% {\expandafter\pgfplotspointpatchvertex\pgfplotspatchclass@coons@G\endvertex}% \pgfpathcurveto {\expandafter\pgfplotspointpatchvertex\pgfplotspatchclass@coons@H\endvertex}% {\expandafter\pgfplotspointpatchvertex\pgfplotspatchclass@coons@I\endvertex}% {\expandafter\pgfplotspointpatchvertex\pgfplotspatchclass@coons@J\endvertex}% \pgfpathcurveto {\expandafter\pgfplotspointpatchvertex\pgfplotspatchclass@coons@K\endvertex}% {\expandafter\pgfplotspointpatchvertex\pgfplotspatchclass@coons@L\endvertex}% {\expandafter\pgfplotspointpatchvertex\pgfplotspatchclass@coons@A\endvertex}% \pgfpathclose }, serialize except vertices=\let\pgfplotsretval\pgfutil@empty,% deserialize except vertices=, get pdf shading type=6, get num vertices=\def\pgfplotsretval{12}, get num cdata vertices=\def\pgfplotsretval{4}, }% % Direct interface to tensor product bezier patches (pdf shading type 7). % See manual and/or pdf reference \pgfplotsdeclarepatchclass{tensor bezier}{% new=\def\pgfplotspatchclass@tensor@no{A}, set next vertex={% % defines \pgfplotspatchclass@tensor@A ... \pgfplotspatchclass@tensor@P (16 points) \expandafter\edef\csname pgfplotspatchclass@tensor@\pgfplotspatchclass@tensor@no\endcsname{#1}% \if P\pgfplotspatchclass@tensor@no \def\pgfplotspatchclass@tensor@no{A}% \pgfplotspatchready \else \expandafter\let\expandafter\pgfplotspatchclass@tensor@no\csname pgfpptchindexnext@\pgfplotspatchclass@tensor@no\endcsname \fi }, first vertex=\expandafter\pgfplotspatchvertex\pgfplotspatchclass@tensor@A\endvertex, foreach vertex={% \expandafter\pgfplotspatchvertex\pgfplotspatchclass@tensor@A\endvertex #1% \expandafter\pgfplotspatchvertex\pgfplotspatchclass@tensor@B\endvertex #1% \expandafter\pgfplotspatchvertex\pgfplotspatchclass@tensor@C\endvertex #1% \expandafter\pgfplotspatchvertex\pgfplotspatchclass@tensor@D\endvertex #1% \expandafter\pgfplotspatchvertex\pgfplotspatchclass@tensor@E\endvertex #1% \expandafter\pgfplotspatchvertex\pgfplotspatchclass@tensor@F\endvertex #1% \expandafter\pgfplotspatchvertex\pgfplotspatchclass@tensor@G\endvertex #1% \expandafter\pgfplotspatchvertex\pgfplotspatchclass@tensor@H\endvertex #1% \expandafter\pgfplotspatchvertex\pgfplotspatchclass@tensor@I\endvertex #1% \expandafter\pgfplotspatchvertex\pgfplotspatchclass@tensor@J\endvertex #1% \expandafter\pgfplotspatchvertex\pgfplotspatchclass@tensor@K\endvertex #1% \expandafter\pgfplotspatchvertex\pgfplotspatchclass@tensor@L\endvertex #1% \expandafter\pgfplotspatchvertex\pgfplotspatchclass@tensor@M\endvertex #1% \expandafter\pgfplotspatchvertex\pgfplotspatchclass@tensor@N\endvertex #1% \expandafter\pgfplotspatchvertex\pgfplotspatchclass@tensor@O\endvertex #1% \expandafter\pgfplotspatchvertex\pgfplotspatchclass@tensor@P\endvertex #1% }, foreach cdata vertex={% % 0, 3, 6, 9 \expandafter\pgfplotspatchvertex\pgfplotspatchclass@tensor@A\endvertex #1% \expandafter\pgfplotspatchvertex\pgfplotspatchclass@tensor@D\endvertex #1% \expandafter\pgfplotspatchvertex\pgfplotspatchclass@tensor@G\endvertex #1% \expandafter\pgfplotspatchvertex\pgfplotspatchclass@tensor@J\endvertex #1% }, fill path={% \pgfpathmoveto {\expandafter\pgfplotspointpatchvertex\pgfplotspatchclass@tensor@A\endvertex}% \pgfpathcurveto {\expandafter\pgfplotspointpatchvertex\pgfplotspatchclass@tensor@B\endvertex}% {\expandafter\pgfplotspointpatchvertex\pgfplotspatchclass@tensor@C\endvertex}% {\expandafter\pgfplotspointpatchvertex\pgfplotspatchclass@tensor@D\endvertex}% \pgfpathcurveto {\expandafter\pgfplotspointpatchvertex\pgfplotspatchclass@tensor@E\endvertex}% {\expandafter\pgfplotspointpatchvertex\pgfplotspatchclass@tensor@F\endvertex}% {\expandafter\pgfplotspointpatchvertex\pgfplotspatchclass@tensor@G\endvertex}% \pgfpathcurveto {\expandafter\pgfplotspointpatchvertex\pgfplotspatchclass@tensor@H\endvertex}% {\expandafter\pgfplotspointpatchvertex\pgfplotspatchclass@tensor@I\endvertex}% {\expandafter\pgfplotspointpatchvertex\pgfplotspatchclass@tensor@J\endvertex}% \pgfpathcurveto {\expandafter\pgfplotspointpatchvertex\pgfplotspatchclass@tensor@K\endvertex}% {\expandafter\pgfplotspointpatchvertex\pgfplotspatchclass@tensor@L\endvertex}% {\expandafter\pgfplotspointpatchvertex\pgfplotspatchclass@tensor@A\endvertex}% \pgfpathclose }, serialize except vertices=\let\pgfplotsretval\pgfutil@empty,% deserialize except vertices=, get pdf shading type=7, get num vertices=\def\pgfplotsretval{16}, get num cdata vertices=\def\pgfplotsretval{4}, }% % A bicubic patch with 16 points. % % It expects points in the order (i.e. in matrix ordering, row-wise): % % AD BD CD DD % AC BC CC DC % AB BB CB DB % AA BA CA DA % \pgfplotsdeclarepatchclass{bicubic}{% new=\def\pgfplotspatchclass@bicubic@row{A}\def\pgfplotspatchclass@bicubic@col{A}, set next vertex={% % defines \pgfplotspatchclass@bicubic@AA ... \pgfplotspatchclass@bicubic@DD (16 points) \expandafter\edef\csname pgfplotspatchclass@bicubic@\pgfplotspatchclass@bicubic@row\pgfplotspatchclass@bicubic@col\endcsname{#1}% \if D\pgfplotspatchclass@bicubic@row \def\pgfplotspatchclass@bicubic@row{A}% \if D\pgfplotspatchclass@bicubic@col \def\pgfplotspatchclass@bicubic@col{A}% \pgfplotspatchready \else \expandafter\let\expandafter\pgfplotspatchclass@bicubic@col\csname pgfpptchindexnext@\pgfplotspatchclass@bicubic@col\endcsname \fi \else \expandafter\let\expandafter\pgfplotspatchclass@bicubic@row\csname pgfpptchindexnext@\pgfplotspatchclass@bicubic@row\endcsname \fi }, sample in unit cube={% \def\pgfplotspatchclassx{0}% \def\pgfplotspatchclassy{0}% #1% \def\pgfplotspatchclassx{0.333333333}% \def\pgfplotspatchclassy{0}% #1% \def\pgfplotspatchclassx{0.666666666}% \def\pgfplotspatchclassy{0}% #1% \def\pgfplotspatchclassx{1}% \def\pgfplotspatchclassy{0}% #1% % % \def\pgfplotspatchclassx{0}% \def\pgfplotspatchclassy{0.333333333}% #1% \def\pgfplotspatchclassx{0.333333333}% \def\pgfplotspatchclassy{0.333333333}% #1% \def\pgfplotspatchclassx{0.666666666}% \def\pgfplotspatchclassy{0.333333333}% #1% \def\pgfplotspatchclassx{1}% \def\pgfplotspatchclassy{0.333333333}% #1% % % \def\pgfplotspatchclassx{0}% \def\pgfplotspatchclassy{0.666666666}% #1% \def\pgfplotspatchclassx{0.333333333}% \def\pgfplotspatchclassy{0.666666666}% #1% \def\pgfplotspatchclassx{0.666666666}% \def\pgfplotspatchclassy{0.666666666}% #1% \def\pgfplotspatchclassx{1}% \def\pgfplotspatchclassy{0.666666666}% #1% % % \def\pgfplotspatchclassx{0}% \def\pgfplotspatchclassy{1}% #1% \def\pgfplotspatchclassx{0.333333333}% \def\pgfplotspatchclassy{1}% #1% \def\pgfplotspatchclassx{0.666666666}% \def\pgfplotspatchclassy{1}% #1% \def\pgfplotspatchclassx{1}% \def\pgfplotspatchclassy{1}% #1% % % % \pgfplotspatchready },% first vertex=\expandafter\pgfplotspatchvertex\pgfplotspatchclass@bicubic@AA\endvertex, foreach vertex={% \expandafter\pgfplotspatchvertex\pgfplotspatchclass@bicubic@AA\endvertex #1% \expandafter\pgfplotspatchvertex\pgfplotspatchclass@bicubic@BA\endvertex #1% \expandafter\pgfplotspatchvertex\pgfplotspatchclass@bicubic@CA\endvertex #1% \expandafter\pgfplotspatchvertex\pgfplotspatchclass@bicubic@DA\endvertex #1% \expandafter\pgfplotspatchvertex\pgfplotspatchclass@bicubic@AB\endvertex #1% \expandafter\pgfplotspatchvertex\pgfplotspatchclass@bicubic@BB\endvertex #1% \expandafter\pgfplotspatchvertex\pgfplotspatchclass@bicubic@CB\endvertex #1% \expandafter\pgfplotspatchvertex\pgfplotspatchclass@bicubic@DB\endvertex #1% \expandafter\pgfplotspatchvertex\pgfplotspatchclass@bicubic@AC\endvertex #1% \expandafter\pgfplotspatchvertex\pgfplotspatchclass@bicubic@BC\endvertex #1% \expandafter\pgfplotspatchvertex\pgfplotspatchclass@bicubic@CC\endvertex #1% \expandafter\pgfplotspatchvertex\pgfplotspatchclass@bicubic@DC\endvertex #1% \expandafter\pgfplotspatchvertex\pgfplotspatchclass@bicubic@AD\endvertex #1% \expandafter\pgfplotspatchvertex\pgfplotspatchclass@bicubic@BD\endvertex #1% \expandafter\pgfplotspatchvertex\pgfplotspatchclass@bicubic@CD\endvertex #1% \expandafter\pgfplotspatchvertex\pgfplotspatchclass@bicubic@DD\endvertex #1% }, foreach cdata vertex={% \expandafter\pgfplotspatchvertex\pgfplotspatchclass@bicubic@AA\endvertex #1% \expandafter\pgfplotspatchvertex\pgfplotspatchclass@bicubic@DA\endvertex #1% \expandafter\pgfplotspatchvertex\pgfplotspatchclass@bicubic@DD\endvertex #1% \expandafter\pgfplotspatchvertex\pgfplotspatchclass@bicubic@AD\endvertex #1% }, fill path={% % Visualize the patch boundary using four bezier curves. % % This involves a change from Lagrange to bezier % representation of the boundary curves. % \pgfpathmoveto{\expandafter\pgfplotspointpatchvertex\pgfplotspatchclass@bicubic@AA\endvertex}% \pgfplotspathcubicfrominterpolation {\pgfplotspatchclass@bicubic@AA} {\pgfplotspatchclass@bicubic@BA} {\pgfplotspatchclass@bicubic@CA} {\pgfplotspatchclass@bicubic@DA}% \pgfplotspathcubicfrominterpolation {\pgfplotspatchclass@bicubic@DA} {\pgfplotspatchclass@bicubic@DB} {\pgfplotspatchclass@bicubic@DC} {\pgfplotspatchclass@bicubic@DD}% \pgfplotspathcubicfrominterpolation {\pgfplotspatchclass@bicubic@DD} {\pgfplotspatchclass@bicubic@CD} {\pgfplotspatchclass@bicubic@BD} {\pgfplotspatchclass@bicubic@AD}% \pgfplotspathcubicfrominterpolation {\pgfplotspatchclass@bicubic@AD} {\pgfplotspatchclass@bicubic@AC} {\pgfplotspatchclass@bicubic@AB} {\pgfplotspatchclass@bicubic@AA}% \pgfpathclose }, stream to shader={% \begingroup % % AD BD CD DD % AC BC CC DC % AB BB CB DB % AA BA CA DA % % STEP 1: ensure that the patch's coordinates are streamed in % a sequence which is compatible with the DEPTH of the % corners. % % we use % \pgfplotspatchclass@rect@to@coonspatch@findshadingsequence@for@depth % which works for bilinear, biquadratic, and bicubic % % define helper macros which are input for % \pgfplotspatchclass@rect@to@coonspatch@findshadingsequence@for@depth: \let\pgfplotspatchclass@rect@A=\pgfplotspatchclass@bicubic@AA \let\pgfplotspatchclass@rect@B=\pgfplotspatchclass@bicubic@DA \let\pgfplotspatchclass@rect@C=\pgfplotspatchclass@bicubic@DD \let\pgfplotspatchclass@rect@D=\pgfplotspatchclass@bicubic@AD \pgfplotspatchclass@rect@to@coonspatch@findshadingsequence@for@depth {pgfplotspatchclass@rect@}{\Pcur}{\Pnextseq}% % %\message{using \Pcur\space(set = \Pnextseq)^^J}% % now, translate the result into our matrix form. % This means to (a) identify the FIRST point which needs to be % streamed (it is stored in \Pcur as 'A', 'B', 'C', or 'D') % and (b) keep in mind that we have to take care of the % sequence in which points are streamed ("forward" means to % rotate the matrix elements and "backward" means to transpose % the "forward" result). % \if A\Pcur % Ah - the point "AA" needs to be streamed as first. % % Well, this is simple: take the matrix as-is! % simply copy 1:1 \let\P@AA=\pgfplotspatchclass@bicubic@AA \let\P@BA=\pgfplotspatchclass@bicubic@BA \let\P@CA=\pgfplotspatchclass@bicubic@CA \let\P@DA=\pgfplotspatchclass@bicubic@DA \let\P@AB=\pgfplotspatchclass@bicubic@AB \let\P@BB=\pgfplotspatchclass@bicubic@BB \let\P@CB=\pgfplotspatchclass@bicubic@CB \let\P@DB=\pgfplotspatchclass@bicubic@DB \let\P@AC=\pgfplotspatchclass@bicubic@AC \let\P@BC=\pgfplotspatchclass@bicubic@BC \let\P@CC=\pgfplotspatchclass@bicubic@CC \let\P@DC=\pgfplotspatchclass@bicubic@DC \let\P@AD=\pgfplotspatchclass@bicubic@AD \let\P@BD=\pgfplotspatchclass@bicubic@BD \let\P@CD=\pgfplotspatchclass@bicubic@CD \let\P@DD=\pgfplotspatchclass@bicubic@DD \fi \if B\Pcur % the "DA" point needs to be streamed as first. % % Reorder % AD BD CD DD % AC BC CC DC % AB BB CB DB % AA BA CA DA % to % AA AB AC AD % BA BB BC BD % CA CB CC CD % DA DB DC DD % \let\P@AA=\pgfplotspatchclass@bicubic@DA \let\P@BA=\pgfplotspatchclass@bicubic@DB \let\P@CA=\pgfplotspatchclass@bicubic@DC \let\P@DA=\pgfplotspatchclass@bicubic@DD \let\P@AB=\pgfplotspatchclass@bicubic@CA \let\P@BB=\pgfplotspatchclass@bicubic@CB \let\P@CB=\pgfplotspatchclass@bicubic@CC \let\P@DB=\pgfplotspatchclass@bicubic@CD \let\P@AC=\pgfplotspatchclass@bicubic@BA \let\P@BC=\pgfplotspatchclass@bicubic@BB \let\P@CC=\pgfplotspatchclass@bicubic@BC \let\P@DC=\pgfplotspatchclass@bicubic@BD \let\P@AD=\pgfplotspatchclass@bicubic@AA \let\P@BD=\pgfplotspatchclass@bicubic@AB \let\P@CD=\pgfplotspatchclass@bicubic@AC \let\P@DD=\pgfplotspatchclass@bicubic@AD \fi \if C\Pcur % the "DD" point needs to be streamed as first. % % Reorder % AD BD CD DD % AC BC CC DC % AB BB CB DB % AA BA CA DA % to % DA CA BA AA % DB CB BB AB % DC CC BC AC % DD CD BD AD % \let\P@AA=\pgfplotspatchclass@bicubic@DD \let\P@BA=\pgfplotspatchclass@bicubic@CD \let\P@CA=\pgfplotspatchclass@bicubic@BD \let\P@DA=\pgfplotspatchclass@bicubic@AD \let\P@AB=\pgfplotspatchclass@bicubic@DC \let\P@BB=\pgfplotspatchclass@bicubic@CC \let\P@CB=\pgfplotspatchclass@bicubic@BC \let\P@DB=\pgfplotspatchclass@bicubic@AC \let\P@AC=\pgfplotspatchclass@bicubic@DB \let\P@BC=\pgfplotspatchclass@bicubic@CB \let\P@CC=\pgfplotspatchclass@bicubic@BB \let\P@DC=\pgfplotspatchclass@bicubic@AB \let\P@AD=\pgfplotspatchclass@bicubic@DA \let\P@BD=\pgfplotspatchclass@bicubic@CA \let\P@CD=\pgfplotspatchclass@bicubic@BA \let\P@DD=\pgfplotspatchclass@bicubic@AA \fi \if D\Pcur % the "AD" point needs to be streamed as first. % % Reorder % AD BD CD DD % AC BC CC DC % AB BB CB DB % AA BA CA DA % to % DD DC DB DA % CD CC CB CA % BD BC BB BA % AD AC AB AA % \let\P@AA=\pgfplotspatchclass@bicubic@AD \let\P@BA=\pgfplotspatchclass@bicubic@AC \let\P@CA=\pgfplotspatchclass@bicubic@AB \let\P@DA=\pgfplotspatchclass@bicubic@AA \let\P@AB=\pgfplotspatchclass@bicubic@BD \let\P@BB=\pgfplotspatchclass@bicubic@BC \let\P@CB=\pgfplotspatchclass@bicubic@BB \let\P@DB=\pgfplotspatchclass@bicubic@BA \let\P@AC=\pgfplotspatchclass@bicubic@CD \let\P@BC=\pgfplotspatchclass@bicubic@CC \let\P@CC=\pgfplotspatchclass@bicubic@CB \let\P@DC=\pgfplotspatchclass@bicubic@CA \let\P@AD=\pgfplotspatchclass@bicubic@DD \let\P@BD=\pgfplotspatchclass@bicubic@DC \let\P@CD=\pgfplotspatchclass@bicubic@DB \let\P@DD=\pgfplotspatchclass@bicubic@DA \fi \ifx\Pnextseq\pgfutil@empty \else % reverse the ordering. This means to transpose the % matrix: \pgfplotspatchclass@bicubic@transpose \fi % % Step: convert to tensor bezier representation. % % Converting a 2d tensor product lagrangian interpoland to a % 2d tensor product bezier interpoland can be achieved by % means of 1d algorithms along LINES in the matrix. % % The underlying proof for this is related to the tensor % product form: the U and V coordinates are orthogonal to each % other, so we can redistribute all intermediate results. (I % do not have the real proof, so this hand-waving argument has % to be enough). I verified its results experimentally. % % Note that the underlying 1d operation is the same as for % 'patch type=cubic spline' . We only need to apply it to all % lines in U direction and afterwards to all lines in V % direction. % \def\pgfplotspatchvertexaddXY@expanded##1\times{% \edef\pgfplots@loc@TMPa{##1}% \expandafter\pgfplotspatchvertexaddXY\pgfplots@loc@TMPa\times }% % % this macro operates on \pgfplots@line{[ABCD]}, see below: \def\pgfplots@apply@to@line{% \pgfplotspatchvertexaccumstart \pgfplotspatchvertexaddXY@expanded\pgfplots@line{A}\times{-0.833333}% \pgfplotspatchvertexaddXY@expanded\pgfplots@line{B}\times{3}% \pgfplotspatchvertexaddXY@expanded\pgfplots@line{C}\times{-1.5}% \pgfplotspatchvertexaddXY@expanded\pgfplots@line{D}\times{0.3333333}% \pgfplotspatchvertexfinish\pgfplots@controlpoint@A % \pgfplotspatchvertexaccumstart \pgfplotspatchvertexaddXY@expanded\pgfplots@line{A}\times{0.333333}% \pgfplotspatchvertexaddXY@expanded\pgfplots@line{B}\times{-1.5}% \pgfplotspatchvertexaddXY@expanded\pgfplots@line{C}\times{3}% \pgfplotspatchvertexaddXY@expanded\pgfplots@line{D}\times{-0.833333}% \pgfplotspatchvertexfinish\pgfplots@controlpoint@B % \expandafter\expandafter\expandafter\let\pgfplots@line{B}=\pgfplots@controlpoint@A \expandafter\expandafter\expandafter\let\pgfplots@line{C}=\pgfplots@controlpoint@B }% % \def\pgfplots@line##1{\csname P@##1A\endcsname}% \pgfplots@apply@to@line % \def\pgfplots@line##1{\csname P@##1B\endcsname}% \pgfplots@apply@to@line % \def\pgfplots@line##1{\csname P@##1C\endcsname}% \pgfplots@apply@to@line % \def\pgfplots@line##1{\csname P@##1D\endcsname}% \pgfplots@apply@to@line % % \def\pgfplots@line##1{\csname P@A##1\endcsname}% \pgfplots@apply@to@line % \def\pgfplots@line##1{\csname P@B##1\endcsname}% \pgfplots@apply@to@line % \def\pgfplots@line##1{\csname P@C##1\endcsname}% \pgfplots@apply@to@line % \def\pgfplots@line##1{\csname P@D##1\endcsname}% \pgfplots@apply@to@line % % OK. The tensor product representation is READY. % \pgfplotsplothandlermesh@shade@cubic@tensor \endgroup }, triangulate={% \let\pgfplotsplothandlermesh@patchclass@=\pgfplotsplothandlermesh@patchclass \def\pgfplotsplothandlermesh@patchclass{triangle}% \pgfplotspatchclass{\pgfplotsplothandlermesh@patchclass}{new}% % Ok. Now create a lot of triangles. % % FIXME: The ordering is not arbitrary (unless z buffer=sort is in effect). % % ##1: the row index of the cell to be triangulated (either A,B,or C) % ##2: the col index of the cell to be triangulated (either A,B,or C) % ##3: the 1. 'set edge visible' value for the first triangle % ##4: the 2. 'set edge visible' value for the first triangle % ##5: the 3. 'set edge visible' value for the first triangle % ##6: the 1. 'set edge visible' value for the second triangle % ##7: the 2. 'set edge visible' value for the second triangle % ##8: the 3. 'set edge visible' value for the second triangle \def\pgfplots@bicubic@triangulate@cell##1##2##3##4##5##6##7##8{% \pgfplotspatchclass{\pgfplotsplothandlermesh@patchclass}{set edge visible}0##3% \pgfplotspatchclass{\pgfplotsplothandlermesh@patchclass}{set edge visible}1##4% \pgfplotspatchclass{\pgfplotsplothandlermesh@patchclass}{set edge visible}2##5% \pgfplotsplothandlermesh@setnextvertex{\csname pgfplotspatchclass@bicubic@##1##2\endcsname}% \pgfplotsplothandlermesh@setnextvertex{\csname pgfplotspatchclass@bicubic@\csname pgfpptchindexnext@##1\endcsname##2\endcsname}% \pgfplotsplothandlermesh@setnextvertex{\csname pgfplotspatchclass@bicubic@\csname pgfpptchindexnext@##1\endcsname \csname pgfpptchindexnext@##2\endcsname\endcsname}% % \pgfplotspatchclass{\pgfplotsplothandlermesh@patchclass}{set edge visible}0##6% \pgfplotspatchclass{\pgfplotsplothandlermesh@patchclass}{set edge visible}1##7% \pgfplotspatchclass{\pgfplotsplothandlermesh@patchclass}{set edge visible}2##8% \pgfplotsplothandlermesh@setnextvertex{\csname pgfplotspatchclass@bicubic@##1\csname pgfpptchindexnext@##2\endcsname\endcsname}% \pgfplotsplothandlermesh@setnextvertex{\csname pgfplotspatchclass@bicubic@##1##2\endcsname}% \pgfplotsplothandlermesh@setnextvertex{\csname pgfplotspatchclass@bicubic@\csname pgfpptchindexnext@##1\endcsname \csname pgfpptchindexnext@##2\endcsname\endcsname}% % }% % \pgfplotspatchclass{\pgfplotsplothandlermesh@patchclass}{set edge visible}01% \pgfplotspatchclass{\pgfplotsplothandlermesh@patchclass}{set edge visible}10% \pgfplotspatchclass{\pgfplotsplothandlermesh@patchclass}{set edge visible}20% \pgfplots@bicubic@triangulate@cell AA100 100% \pgfplots@bicubic@triangulate@cell BA100 000% \pgfplots@bicubic@triangulate@cell CA110 000% % \pgfplots@bicubic@triangulate@cell AB000 100% \pgfplots@bicubic@triangulate@cell BB000 000% \pgfplots@bicubic@triangulate@cell CB010 000% % \pgfplots@bicubic@triangulate@cell AC000 101% \pgfplots@bicubic@triangulate@cell BC000 001% \pgfplots@bicubic@triangulate@cell CC010 001% \let\pgfplotsplothandlermesh@patchclass=\pgfplotsplothandlermesh@patchclass@ },% serialize except vertices=\let\pgfplotsretval\pgfutil@empty,% deserialize except vertices=, get pdf shading type=7, get num vertices=\def\pgfplotsretval{16}, get num cdata vertices=\def\pgfplotsretval{4}, }% % Transpose a bicubic matrix (4x4). % % Reorder % AD BD CD DD % AC BC CC DC % AB BB CB DB % AA BA CA DA % to % DA DB DC DD % CA CB CC CD % BA BB BC BD % AA AB AC AD \def\pgfplotspatchclass@bicubic@transpose{% \pgfplotsutil@swap\P@AB\P@BA \pgfplotsutil@swap\P@CA\P@AC \pgfplotsutil@swap\P@DA\P@AD \pgfplotsutil@swap\P@CB\P@BC \pgfplotsutil@swap\P@BD\P@DB \pgfplotsutil@swap\P@DC\P@CD } % Transpose a bicubic matrix (4x4). % % Reorder % AC BC CC % AB BB CB % AA BA CA % to % CA CB CC % BA BB BC % AA AB AC \def\pgfplotspatchclass@biquad@transpose{% \pgfplotsutil@swap\P@AB\P@BA \pgfplotsutil@swap\P@CA\P@AC \pgfplotsutil@swap\P@CB\P@BC } % Expects that a 4x4 matrix in tensor bezier representation where % A = left end point % B = first control point % C = second control point % D = right end point % % and the coordinates are stored in \csname P@[ABCD][ABCD]\endcsname % % Streaming starts with \P@AA and is applied rowwise. \def\pgfplotsplothandlermesh@shade@cubic@tensor{% % Stream it to the shader. Note that the shader has a % DIFFERENT ordering; it expects points in the cyclic ordering % % AA BA CA DA DB DC DD CD BD AD AC AB BB CB CC BC % % note furthermore that only the corners have "point meta" in % this shading :-( % \expandafter\pgfplotspatchvertex\P@AA\endvertex \let\pgfplots@current@point@meta=\pgfplotspatchvertexmeta \pgfplotsaxisvisphasetransformpointmeta \pgfplotslibrarysurfstreamcoord{\pgfqpoint\pgfplotspatchvertexx\pgfplotspatchvertexy}{\pgfplotspointmetatransformed}% \pgfplotslibrarysurfstreamcoord{\expandafter\pgfplotspointpatchvertex\P@BA\endvertex}{\pgfplotspointmetatransformed}% \pgfplotslibrarysurfstreamcoord{\expandafter\pgfplotspointpatchvertex\P@CA\endvertex}{\pgfplotspointmetatransformed}% \expandafter\pgfplotspatchvertex\P@DA\endvertex \let\pgfplots@current@point@meta=\pgfplotspatchvertexmeta \pgfplotsaxisvisphasetransformpointmeta \pgfplotslibrarysurfstreamcoord{\pgfqpoint\pgfplotspatchvertexx\pgfplotspatchvertexy}{\pgfplotspointmetatransformed}% % \pgfplotslibrarysurfstreamcoord{\expandafter\pgfplotspointpatchvertex\P@DB\endvertex}{\pgfplotspointmetatransformed}% \pgfplotslibrarysurfstreamcoord{\expandafter\pgfplotspointpatchvertex\P@DC\endvertex}{\pgfplotspointmetatransformed}% \expandafter\pgfplotspatchvertex\P@DD\endvertex \let\pgfplots@current@point@meta=\pgfplotspatchvertexmeta \pgfplotsaxisvisphasetransformpointmeta \pgfplotslibrarysurfstreamcoord{\pgfqpoint\pgfplotspatchvertexx\pgfplotspatchvertexy}{\pgfplotspointmetatransformed}% % \pgfplotslibrarysurfstreamcoord{\expandafter\pgfplotspointpatchvertex\P@CD\endvertex}{\pgfplotspointmetatransformed}% \pgfplotslibrarysurfstreamcoord{\expandafter\pgfplotspointpatchvertex\P@BD\endvertex}{\pgfplotspointmetatransformed}% \expandafter\pgfplotspatchvertex\P@AD\endvertex \let\pgfplots@current@point@meta=\pgfplotspatchvertexmeta \pgfplotsaxisvisphasetransformpointmeta \pgfplotslibrarysurfstreamcoord{\pgfqpoint\pgfplotspatchvertexx\pgfplotspatchvertexy}{\pgfplotspointmetatransformed}% % \pgfplotslibrarysurfstreamcoord{\expandafter\pgfplotspointpatchvertex\P@AC\endvertex}{\pgfplotspointmetatransformed}% \pgfplotslibrarysurfstreamcoord{\expandafter\pgfplotspointpatchvertex\P@AB\endvertex}{\pgfplotspointmetatransformed}% % % \pgfplotspatchclass{\pgfplotspatchclassname}{get pdf shading type}% \if 7\pgfplotsretval \pgfplotslibrarysurfstreamcoord{\expandafter\pgfplotspointpatchvertex\P@BB\endvertex}{\pgfplotspointmetatransformed}% \pgfplotslibrarysurfstreamcoord{\expandafter\pgfplotspointpatchvertex\P@CB\endvertex}{\pgfplotspointmetatransformed}% \pgfplotslibrarysurfstreamcoord{\expandafter\pgfplotspointpatchvertex\P@CC\endvertex}{\pgfplotspointmetatransformed}% \pgfplotslibrarysurfstreamcoord{\expandafter\pgfplotspointpatchvertex\P@BC\endvertex}{\pgfplotspointmetatransformed}% \else % assume 'get pdf shading type=6' - it does not contain the % inner vertices. \fi } \endinput