10 10 131 1413 131 _ 3 103 R i j k l R i j k l x + y + z versus x + y + z ( _ a b ) 0 1 x x x + y + z x + y + z x + y + z x + y + z ( a b ) sin x 2500 m 3 s 2500 km 3 /s sin 2 x = 1 cos 2 x c 2 = a 2 + b 2 MathType@MTEF@5@5@+=feaafiart1ev1aaatCvAUfeBSjuyZL2yd9gzLbvyNv2CaerbuLwBLnhiov2DGi1BTfMBaeXatLxBI9gBaerbd9wDYLwzYbItLDharqqtubsr4rNCHbGeaGqiVu0Je9sqqrpepC0xbbL8F4rqqrFfpeea0xe9Lq=Jc9vqaqpepm0xbba9pwe9Q8fs0=yqaqpepae9pg0FirpepeKkFr0xfr=xfr=xb9adbaqaaeGaciGaaiaabeqaamaabaabaaGcbaWaauWaaeaaceWGJbGbaSaaaiaawMa7caGLkWoadaahaaWcbeqaaiaaikdaaaGccqGH9aqpdaqbdaqaaiqadggagaWcaaGaayzcSlaawQa7amaaCaaaleqabaGaaGOmaaaakiabgUcaRmaafmaabaGabmOyayaalaaacaGLjWUaayPcSdWaaWbaaSqabeaacaaIYaaaaaaa@4704@ n= log v 1 log v 2 log t 1 log t 2 MathType@MTEF@5@5@+=feaafiart1ev1aaatCvAUfeBSjuyZL2yd9gzLbvyNv2CaerbuLwBLnhiov2DGi1BTfMBaeXatLxBI9gBaerbd9wDYLwzYbItLDharqqtubsr4rNCHbGeaGqiVu0Je9sqqrpepC0xbbL8F4rqqrFfpeea0xe9Lq=Jc9vqaqpepm0xbba9pwe9Q8fs0=yqaqpepae9pg0FirpepeKkFr0xfr=xfr=xb9adbaqaaeGaciGaaiaabeqaamaabaabaaGcbaGaamOBaiabg2da9maalaaabaGaciiBaiaac+gacaGGNbGaamODamaaBaaaleaacaaIXaaabeaakiabgkHiTiGacYgacaGGVbGaai4zaiaadAhadaWgaaWcbaGaaGOmaaqabaaakeaaciGGSbGaai4BaiaacEgacaWG0bWaaSbaaSqaaiaaigdaaeqaaOGaeyOeI0IaciiBaiaac+gacaGGNbGaamiDamaaBaaaleaacaaIYaaabeaaaaaaaa@4CB4@ F s = A a · σ ¯ o MathType@MTEF@5@5@+=feaafiart1ev1aaatCvAUfeBSjuyZL2yd9gzLbvyNv2CaerbuLwBLnhiov2DGi1BTfMBaeXatLxBI9gBaerbd9wDYLwzYbItLDharqqtubsr4rNCHbGeaGqiVu0Je9sqqrpepC0xbbL8F4rqqrFfpeea0xe9Lq=Jc9vqaqpepm0xbba9pwe9Q8fs0=yqaqpepae9pg0FirpepeKkFr0xfr=xfr=xb9adbaqaaeGaciGaaiaabeqaamaabaabaaGcbaGaamOramaaBaaaleaacaqGZbaabeaakiabg2da9iaadgeadaWgaaWcbaGaaeyyaaqabaGccqWIpM+zcuaHdpWCgaqeamaaBaaaleaacaqGVbaabeaaaaa@4033@ M z;pl;d (1 ( N s;d N pl;d a 1 1 a 1 ) 2 ) MathType@MTEF@5@5@+=feaafiart1ev1aaatCvAUfeBSjuyZL2yd9gzLbvyNv2CaerbuLwBLnhiov2DGi1BTfMBaeXatLxBI9gBaerbd9wDYLwzYbItLDharqqtubsr4rNCHbGeaGqiVu0Je9sqqrpepC0xbbL8F4rqqrFfpeea0xe9Lq=Jc9vqaqpepm0xbba9pwe9Q8fs0=yqaqpepae9pg0FirpepeKkFr0xfr=xfr=xb9adbaqaaeGaciGaaiaabeqaamaabaabaaGcbaGaamytamaaBaaaleaacaqG6bGaae4oaiaabchacaqGSbGaae4oaiaabsgaaeqaaOGaaiikaiaaigdacqGHsislcaGGOaWaaSaaaeaadaWcaaqaaiaad6eadaWgaaWcbaGaae4CaiaabUdacaqGKbaabeaaaOqaaiaad6eadaWgaaWcbaGaaeiCaiaabYgacaqG7aGaaeizaaqabaaaaOGaeyOeI0IaamyyamaaBaaaleaacaaIXaaabeaaaOqaaiaaigdacqGHsislcaWGHbWaaSbaaSqaaiaaigdaaeqaaaaakiaacMcadaahaaWcbeqaaiaaikdaaaGccaGGPaaaaa@501B@ M z;pl;d 1 ( N s;d N pl;d a 1 1 a 1 ) 2 MathType@MTEF@5@5@+=feaafiart1ev1aaatCvAUfeBSjuyZL2yd9gzLbvyNv2CaerbuLwBLnhiov2DGi1BTfMBaeXatLxBI9gBaerbd9wDYLwzYbItLDharqqtubsr4rNCHbGeaGqiVu0Je9sqqrpepC0xbbL8F4rqqrFfpeea0xe9Lq=Jc9vqaqpepm0xbba9pwe9Q8fs0=yqaqpepae9pg0FirpepeKkFr0xfr=xfr=xb9adbaqaaeGaciGaaiaabeqaamaabaabaaGcbaGaamytamaaBaaaleaacaqG6bGaae4oaiaabchacaqGSbGaae4oaiaabsgaaeqaaOGaaiikaiaaigdacqGHsislcaGGOaWaaSaaaeaadaWcaaqaaiaad6eadaWgaaWcbaGaae4CaiaabUdacaqGKbaabeaaaOqaaiaad6eadaWgaaWcbaGaaeiCaiaabYgacaqG7aGaaeizaaqabaaaaOGaeyOeI0IaamyyamaaBaaaleaacaaIXaaabeaaaOqaaiaaigdacqGHsislcaWGHbWaaSbaaSqaaiaaigdaaeqaaaaakiaacMcadaahaaWcbeqaaiaaikdaaaGccaGGPaaaaa@501B@ q=1,03 1 V y;s;d N y;pl;d ) 2 MathType@MTEF@5@5@+=feaafiart1ev1aaatCvAUfeBSjuyZL2yd9gzLbvyNv2CaerbuLwBLnhiov2DGi1BTfMBaeXatLxBI9gBaerbd9wDYLwzYbItLDharqqtubsr4rNCHbGeaGqiVu0Je9sqqrpepC0xbbL8F4rqqrFfpeea0xe9Lq=Jc9vqaqpepm0xbba9pwe9Q8fs0=yqaqpepae9pg0FirpepeKkFr0xfr=xfr=xb9adbaqaaeGaciGaaiaabeqaamaabaabaaGcbaGaamyCaiabg2da9iaaigdacaGGSaGaaGimaiaaiodadaGcaaqaaiaaigdacqGHsislcaGGOaWaaSaaaeaacaWGwbWaaSbaaSqaaiaabMhacaqG7aGaae4CaiaabUdacaqGKbaabeaaaOqaaiaad6eadaWgaaWcbaGaaeyEaiaabUdacaqGWbGaaeiBaiaabUdacaqGKbaabeaaaaGccaGGPaWaaWbaaSqabeaacaaIYaaaaaqabaaaaa@4A85@ MathType@MTEF@5@5@+=feaafiart1ev1aaatCvAUfeBSjuyZL2yd9gzLbvyNv2CaerbuLwBLnhiov2DGi1BTfMBaeXatLxBI9gBaerbd9wDYLwzYbItLDharqqtubsr4rNCHbGeaGqiVu0Je9sqqrpepC0xbbL8F4rqqrFfpeea0xe9Lq=Jc9vqaqpepm0xbba9pwe9Q8fs0=yqaqpepae9pg0FirpepeKkFr0xfr=xfr=xb9adbaqaaeGaciGaaiaabeqaamaabaabaaGcbaGaeSyfHukaaa@3759@ ( 1 - 1 ) 1 - 1 ) ( 1 - 1 x + a / b - 1 - 1 a + b 0 1 1 2 x D sin sin x 1 + ... + n π 2 0.123 1,000,000 2.1e10 0xFFEF MCMLXIX twenty one 2 + 3 1 2 π + < <= ++ .NOT. and ( a + b ) [ 0 , 1 ) f ( x , y ) x y f ( x ) sin x m 1 2 x x maps to y Theorem 1:      /* a comment */ there exists δ > 0 such that f ( x ) < 1 x 2 + = 2 x + y - z ( x , y ) ( a b ) a b c d 1 x 3 + x 3 = 1 x 3 + x 3 1 + 5 2 ( a b ) ( a b ) Unrecognized element: mfraction; arguments were: 1 + 5 and 2 C | C | x + y + z x + y + z x + y + z x + y + z ( x ) ( x , y ) x + y + z f x y a n i ( x + y ) 2 x ^ versus x ^ x + y + z versus x + y + z 0 versus 0 F 1 0 ( ; a ; z ) ( 1 0 0 0 1 0 0 0 1 ) (2.1) E = m c 2 8.44 x + 55 y = 0 3.1 x - 0.7 y = - 1.1