%D \module %D [ file=supp-pdf, %D version=2006.09.02, % 2004.12.16, %D title=\CONTEXT\ Support Macros, %D subtitle=\METAPOST\ to \PDF\ conversion, %D author=Hans Hagen \& others (see text), %D date=\currentdate, %D copyright=\PRAGMA] %C %C This module is part of the \CONTEXT\ macro||package and is %C therefore copyrighted by \PRAGMA. See mreadme.pdf for %C details. \ifx\writestatus\undefined \immediate\write16{[Loading MPS to PDF converter (version 2006.09.02).]} \else \writestatus{loading}{Context Support Macros / PDF} \fi %D This module is not optimized because it is used outside %D \CONTEXT\ and we cannot forsee what interference will take %D place. We no longer load supp-mis. I got too tired of %D keeping track of interferences with non \CONTEXT\ usage so %D I moved the necessary code in here and use a derived version %D in \CONTEXT. When I have the time I will clean up some of the %D code that is of no use for non||\CONTEXT\ users. \ifx\contextversion\undefined \chardef\mptopdfstoredatcode\catcode`\@ \catcode\string`@=11 \def\unprotect {\let\@@mpstopdf@@unprotect \unprotect \let\@@mpstopdf@@protect \protect \edef\protect {\noexpand \let \noexpand \protect \noexpand \@@mpstopdf@@protect \noexpand \let \noexpand \unprotect \noexpand \@@mpstopdf@@unprotect % context specific \catcode\string`\noexpand @=\the\catcode\string`@ \catcode\string`\noexpand !=\the\catcode\string`! \catcode\string`\noexpand ?=\the\catcode\string`? % latex specific \catcode\string`\noexpand /=\the\catcode\string`/ \catcode\string`\noexpand -=\the\catcode\string`- \catcode\string`\noexpand :=\the\catcode\string`: \catcode\string`\noexpand ;=\the\catcode\string`; \catcode\string`\noexpand "=\the\catcode\string`" \catcode\string`\noexpand <=\the\catcode\string`< \catcode\string`\noexpand >=\the\catcode\string`> \catcode\string`\noexpand `=\the\catcode\string``} \catcode\string`@=11 \catcode\string`!=11 \catcode\string`?=11 \catcode\string`/=12 \catcode\string`-=12 \catcode\string`:=12 \catcode\string`;=12 \catcode\string`>=12 \catcode\string`<=12 \catcode\string`"=12 \catcode\string``=12 } \def\defineMPtoPDFfallbacks {% shortcuts \chardef\@@escape 0 \chardef\@@begingroup 1 \chardef\@@endgroup 2 \chardef\@@endofline 5 \chardef\@@ignore 9 \chardef\@@space 10 \chardef\@@letter 11 \chardef\@@other 12 \chardef\@@active 13 \chardef\@@comment 14 % placeholders \ifx\withoutpt \undefined \let\withoutpt \@@mptopdf@@withoutpt \fi \ifx\twodigitrounding \undefined \let\twodigitrounding \@@mptopdf@@twodigitrounding \fi \ifx\forgetall \undefined \let\forgetall \@@mptopdf@@forgetall \fi \ifx\uncatcodespecials \undefined \let\uncatcodespecials \@@mptopdf@@uncatcodespecials \fi \ifx\setnaturalcatcodes\undefined \let\setnaturalcatcodes\@@mptopdf@@setnaturalcatcodes \fi \ifx\dospecials \undefined \let\dospecials \@@mptopdf@@dospecials \fi} \def\@@mptopdf@@forgetall {\parskip0pt\leftskip0pt\parindent0pt\everypar{}} \def\@@mptopdf@@twodigitrounding#1% {#1}% \def\@@mptopdf@@uncatcodespecials {\def\do##1{\catcode`##1=\@@other}\dospecials \catcode`\ =\@@space \catcode`\^^L=\@@ignore \catcode`\^^M=\@@endofline \catcode`\^^?=\@@ignore} \def\@@mptopdf@@setnaturalcatcodes {\catcode`\!=\@@other \catcode`\?=\@@other \catcode`\@=\@@other \catcode`\#=\@@other \catcode`\&=\@@other \catcode`\|=\@@other \catcode`\$=\@@other \catcode`\^=\@@other \catcode`\_=\@@other \catcode`\*=\@@other \catcode`\/=\@@other \catcode`\-=\@@other \catcode`+=\@@other \catcode`\==\@@other \catcode`\<=\@@other \catcode`\>=\@@other \catcode`\"=\@@other \catcode`\'=\@@other \catcode`\`=\@@other \catcode`\:=\@@other \catcode`\;=\@@other \catcode`\,=\@@other \catcode`\.=\@@other \catcode`\~=\@@other \catcode`\(=\@@other \catcode`\)=\@@other \catcode`\{=\@@other \catcode`\}=\@@other \catcode`\\=\@@other \catcode`\%=\@@other} \def\@@mptopdf@@dospecials {\do\ \do\\\do\{\do\}\do\$% \do\#\do\^\do\_\do\&\do\%% \do\~\do\^^A\do\^^K} { \catcode`\.=12 \catcode`\p=12 \catcode`\t=12 \gdef\@@MPTOPDF@@WITHOUTPT#1pt{#1} } \def\@@mptopdf@@withoutpt#1% {\expandafter\@@MPTOPDF@@WITHOUTPT#1} % \def\@@mptopdf@@newabove#1#2% \dimen \name % {#1#2% % \ifnum\expandafter\gobblesixarguments\meaning#2>20\else % \expandafter\@@mptopdf@@newabove\expandafter#1\expandafter#2% % \fi} \def\@@mptopdf@@stripnewabove#1% {\ifnum10<9#1 #1\else\expandafter\@@mptopdf@@stripnewabove\fi}% \def\@@mptopdf@@newabove\csname#1\endcsname#2% \dimen \name {\csname#1\endcsname#2% \ifnum\expandafter\@@mptopdf@@stripnewabove\meaning#2>20\else \@@mptopdf@@newabove\csname#1\endcsname#2% \fi} \@@mptopdf@@newabove \csname newcount\endcsname \scratchcounter \@@mptopdf@@newabove \csname newdimen\endcsname \scratchdimen \csname newbox\endcsname \scratchbox \expandafter \newif \csname ifdone\endcsname \catcode`\@=\mptopdfstoredatcode \else \let\defineMPtoPDFfallbacks\relax \fi %D These macros are written as generic as possible. Some %D general support macro's are loaded from a small module %D especially made for non \CONTEXT\ use. In this module I %D use a matrix transformation macro written by Tanmoy %D Bhattacharya. Thanks to extensive testing by Sebastian %D Ratz I was able to complete this module within reasonable %D time. This module has support for \METAPOST\ extensions %D built in. %D %D Daniel H. Luecking came up with a better (more precise) %D transformation method. You can recognize his comment by %D his initials. (We keep the old code around because it's a %D nice illustration on how a module like this evolves.) %D Beware, we cannot use \zeropoint here since it may be %D defined in the range \dimen 0 - 20 which we happen to use %D as scratch registers; inside context we may consider %D using dedicated registers. %D This module handles some \PDF\ conversion and insertions %D topics. By default, the macros use the \PDFTEX\ primitive %D \type{\pdfliteral} when available. Since \PDFTEX\ is now the %D default engine for \TEX\ distributions, we need a more complex %D test. \unprotect \ifx\PDFcode\undefined \ifx\pdfliteral\undefined \def\PDFcode#1{\special{PDF: #1}} \else\ifx\pdfoutput\undefined \def\PDFcode#1{\special{PDF: #1}} \else\ifcase\pdfoutput \def\PDFcode#1{\special{PDF: #1}} \else % pdftex as well as in pdf mode \let\PDFcode\pdfliteral \fi\fi\fi \else % we probably use context \fi %D First we define a handy constant: \bgroup \defineMPtoPDFfallbacks \catcode`\%=\@@other \xdef\letterpercent{\string%} \egroup %D \macros %D {pdfimage,pdfimages,pdfclippedimage} %D %D Starting with pdftex version 14, images are included more %D natural to the form embedding. This enables alternative %D images to be embedded. %D %D \starttyping %D \pdfimage {file} %D \pdfimages {high res file} {low res file} %D \stoptyping %D %D The first one replaces the pre||version||14 original, %D while the latter provides alternative images. %D %D The next macro is dedicated to Maarten Gelderman, who %D needed to paste prepared \PDF\ pages into conference %D proceedings. %D %D \starttyping %D \pdfclippedimage {file} {l} {r} {t} {b} %D \stoptyping \ifx\pdftexversion\undefined \else \ifnum\pdftexversion>13 \def\pdfimage#1#% {\dopdfimage{#1}} \def\dopdfimage#1#2% {\immediate\pdfximage#1{#2}% \pdfrefximage\pdflastximage} \def\pdfimages#1#% {\dopdfimages{#1}} \def\dopdfimages#1#2#3% {\immediate\pdfximage#1{#2}% \immediate\pdfobj{[ << /Image \the\pdflastximage\space0 R /DefaultForPrinting true >> ]}% \immediate\pdfximage#1 attr {/Alternates \the\pdflastobj\space0 R}{#3}% \pdfrefximage\pdflastximage} \def\pdfclippedimage#1#% specs {file}{left}{right}{top}{bottom} {\dopdfclippedimage{#1}} \def\dopdfclippedimage#1#2#3#4#5#6% {\bgroup \pdfximage#1{#2}% \setbox\scratchbox\hbox {\pdfrefximage\pdflastximage}% \hsize\wd\scratchbox \advance\hsize -#3 \advance\hsize -#4 \vsize\ht\scratchbox \advance\vsize -#5 \advance\vsize -#6 \setbox\scratchbox\vbox to \vsize {\vskip-#5\hbox to \hsize{\hskip-#3\box\scratchbox\hss}}% \pdfxform\scratchbox \pdfrefxform\pdflastxform \egroup} \fi \fi %D If you want to save a few hash entries, you may prefer the %D less readable alternatives, like: %D %D \starttyping %D \def\pdfimage#1#% This one is less readable but needs no additional %D {\bgroup % hash entry for the second stage macro. %D \def\pdfimage##1% %D {\immediate\pdfximage##1{#2}% %D \pdfrefximage\pdflastximage\egroup}} %D \stoptyping %D For old times sake we provide a few aliases. These will be %D removed some day. \ifx\pdftexversion\undefined \else \ifnum\pdftexversion>13 \let\pdfform =\pdfxform \let\pdflastform=\pdflastxform \let\pdfrefform =\pdfrefxform \fi \fi %D The main conversion macro wraps the \PDF\ codes in a box %D that is output as an object. The graphics are embedded %D in~\type{q} and~\type{Q} and are scaled and positioned using %D one transform call (\type{cm}). This saves some additional %D scaling. %D \macros %D {convertMPtoPDF} %D %D The next set of macros implements \METAPOST\ to \PDF\ %D conversion. Because we want to test as fast as possible, we %D first define the \POSTSCRIPT\ operators that \METAPOST\ %D uses. We don't define irrelevant ones, because these are %D skipped anyway. %D The converter can be made a bit faster by replacing the %D two test macros (the ones with the many \type {\if's}) by %D a call to named branch macros (something \typ {\getvalue %D {xPSmoveto}}. For everyday documents with relatively %D small graphics the gain in speed can be neglected. \def \PScurveto {curveto} \def \PSlineto {lineto} \def \PSmoveto {moveto} \def \PSshowpage {showpage} \def \PSnewpath {newpath} \def \PSfshow {fshow} \def \PSclosepath {closepath} \def \PSfill {fill} \def \PSstroke {stroke} \def \PSclip {clip} \def \PSrlineto {rlineto} \def \PSsetlinejoin {setlinejoin} \def \PSsetlinecap {setlinecap} \def \PSsetmiterlimit {setmiterlimit} \def \PSsetgray {setgray} \def \PSsetrgbcolor {setrgbcolor} \def \PSsetcmykcolor {setcmykcolor} \def \PSsetdash {setdash} \def \PSgsave {gsave} \def \PSgrestore {grestore} \def \PStranslate {translate} \def \PSscale {scale} \def \PSconcat {concat} \def \PSdtransform {dtransform} \def \PSsetlinewidth {setlinewidth} \def \PSpop {pop} \def \PSnfont {nfont} % was needed for TUG98 proceedings \def \PSspecial {special} % extensions to MetaPost %D A previous version set \type {%} to ignore, which %D simplified the following definitions. At the start of %D conversion the percent character was made active again. %D Because the whole graphic is one paragraph (there are no %D empty lines) this does not give the desired effect. This %D went unnoticed untill Scott Pakin sent me a test file %D percent characters in a string. So, from now on we have %D to prefix the following strings with percentages. %D Some day I'll figure out a better solution (line by line reading %D using \ETEX). \edef \PSBoundingBox {\letterpercent\letterpercent BoundingBox:} \edef \PSHiResBoundingBox {\letterpercent\letterpercent HiResBoundingBox:} \edef \PSExactBoundingBox {\letterpercent\letterpercent ExactBoundingBox:} \edef \PSMetaPostSpecial {\letterpercent\letterpercent MetaPostSpecial:} \edef \PSMetaPostSpecials {\letterpercent\letterpercent MetaPostSpecials:} \edef \PSPage {\letterpercent\letterpercent Page:} \edef \PSBeginProlog {\letterpercent\letterpercent BeginProlog} \edef \PSEndProlog {\letterpercent\letterpercent EndProlog} \edef \PSEof {\letterpercent\letterpercent EOF} %D By the way, the \type {setcmykcolor} operator is not %D output by \METAPOST\ but can result from converting the %D \cap{RGB} color specifications, as implemented in %D \type{supp-mps}. %D In \POSTSCRIPT\ arguments precede the operators. Due to the %D fact that in some translations we need access to those %D arguments, and also because sometimes we have to skip them, %D we stack them up. The stack is one||dimensional for non path %D operators and two||dimensional for operators inside a path. %D This is because we have to save the whole path for %D (optional) postprocessing. Values are pushed onto the stack %D by: %D %D \starttyping %D \setMPargument {value} %D \stoptyping %D %D They can be retrieved by the short named macros: %D %D \starttyping %D \gMPa {number} %D \gMPs {number} %D \stoptyping %D %D When scanning a path specification, we also save the %D operator, using %D %D \starttyping %D \setMPkeyword {n} %D \stoptyping %D %D The path drawing operators are coded for speed: \type{clip}, %D \type{stroke}, \type{fill} and \type{fillstroke} become %D 1, 2, 3 and~4. %D %D When processing the path this code can be retrieved %D using %D %D \starttyping %D \getMPkeyword % {n} %D \stoptyping %D %D When setting an argument, the exact position on the stack %D depends on the current value of the \COUNTERS\ %D \type{\nofMPsegments} and \type{\nofMParguments}. \newcount\nofMPsegments \newcount\nofMParguments %D These variables hold the coordinates. The argument part of %D the stack is reset by: %D %D \starttyping %D \resetMPstack %D \stoptyping %D %D We use the prefix \type{@@MP} to keep the stack from %D conflicting with existing macros. To speed up things a bit %D more, we use the constant \type{\@@MP}. \def\@@MP{@@MP} \def\setMPargument% #1% {\advance\nofMParguments 1 \expandafter\def \csname\@@MP\the\nofMPsegments\the\nofMParguments\endcsname} % {#1} \def\letMPargument {\advance\nofMParguments 1 \expandafter\let \csname\@@MP\the\nofMPsegments\the\nofMParguments\endcsname} \def\setMPsequence#1 % {\advance\nofMParguments 1 \expandafter\def \csname\@@MP\the\nofMPsegments\the\nofMParguments\endcsname{#1}% \handleMPsequence} \def\gMPa#1% {\csname\@@MP0\number#1\endcsname} \def\gMPs#1% {\csname\@@MP\the\nofMPsegments\number#1\endcsname} \def\dogMPa#1% {\expandafter\expandafter\expandafter\do\csname\@@MP0\number#1\endcsname} \def\setMPkeyword#1 % {\expandafter\def\csname\@@MP\the\nofMPsegments0\endcsname{#1}% \advance\nofMPsegments 1 \nofMParguments0} \def\getMPkeyword% #1% {\csname\@@MP\the\nofMPsegments0\endcsname} % {\csname\@@MP#10\endcsname} \def\docleanupMPargument#1% we need this because args can have [ or ] pre/appended {\expandafter\edef\csname\@@MP\the\nofMPsegments\number#1\endcsname {\csname\@@MP\the\nofMPsegments\number#1\endcsname}} %D When we reset the stack, we can assume that all further %D comment is to be ignored and handled in strings. %D By redefining the reset macro after the first call, we %D save some run time. Only use this macro after all %D comments are processed and use the simple alternative %D when dealing with comments. \def\doresetMPstack {\nofMParguments0\relax} \def\resetMPstack {\let\handleMPgraphic\handleMPendgraphic \let\resetMPstack\doresetMPstack \resetMPstack} %D The arguments are saved with the preceding command %D \type{\do}. By default this command expands to nothing, but %D when we deal with strings it's used to strip off the %D \type{(} and \type{)}. %D %D Strings are kind of tricky, because characters can be %D passed verbatim \type{(hello)}, by octal number %D \type{(\005)} or as command \type{(\()}. We therefore %D cannot simply ignore \type{(} and \type{)}, the way we do %D with \type{[} and \type{]}. Another complication is that %D strings may contain characters that normally have a %D special meaning in \TEX, like \type{$} and \type{{}}. %D %D A previous solution made \type{\} an active character and %D let it look ahead for a number or characters. We had to %D abandon this scheme because of the need for verbatim %D support. The next solution involved some \CATCODE\ %D trickery but works well. \def\octalMPcharacter#1#2#3% {\char'#1#2#3\relax} %D curly braces and squarly brackets are stored in the argument stack %D as part of strings, for instance in: %D %D \starttyping %D /fshow {exch findfont exch scalefont setfont show}bind def %D [3 3 ] 0 setdash %D \stoptyping %D %D but we need to keep them in situation like %D %D \starttyping %D ([bla bla] bla bla) ec-lmr10 9.96265 fshow %D ({bla bla} bla bla) ec-lmr10 9.96265 fshow %D \stoptyping %D %D So, when we store the snippets, we keep the special tokens, and %D when needed we either ignore or obey them \bgroup \defineMPtoPDFfallbacks \catcode`\|=\@@comment \catcode`\%=\@@active \catcode`\[=\@@active \catcode`\]=\@@active \catcode`\{=\@@active \catcode`\}=\@@active \catcode`B=\@@begingroup \catcode`E=\@@endgroup \gdef\keepMPspecials| B\let%\letterpercent| \def[B\noexpand[E| \def]B\noexpand]E| \def{B\noexpand{E| \def}B\noexpand}EE \gdef\ignoreMPspecials| B\let%\letterpercent| \def[BE| \def]BE| \def{BE| \def}BEE \gdef\obeyMPspecials| B\def%B\char 37\relax E| \def[B\char 91\relax E| \def]B\char 93\relax E| \def{B\char123\relax E| \def}B\char125\relax EE \gdef\setMPspecials| B\setnaturalcatcodes \catcode`\\=\@@escape \catcode`\%=\@@active \catcode`\[=\@@active \catcode`\]=\@@active \catcode`\{=\@@active \catcode`\}=\@@active \lccode`\-=0 | latex sets this to `\- \lccode`\%=`\% | otherwise it's seen as a number \def\(B\char40\relax E| \def\)B\char41\relax E| \def\\B\char92\relax E| \def\0B\octalMPcharacter0E| \def\1B\octalMPcharacter1E| \def\2B\octalMPcharacter2E| \def\3B\octalMPcharacter3E| \def\4B\octalMPcharacter4E| \def\5B\octalMPcharacter5E| \def\6B\octalMPcharacter6E| \def\7B\octalMPcharacter7E| \def\8B\octalMPcharacter8E| \def\9B\octalMPcharacter9EE \egroup %D We use the comment symbol as a sort of trigger. Beware! %D The whole graphic is seen as on eparagraph, which means %D that we cannot change the catcodes in between. \bgroup \defineMPtoPDFfallbacks \catcode`\%=\@@active \gdef\startMPscanning{\let%=\startMPconversion} \egroup %D In earlier versions we used the sequence %D %D \starttyping %D \expandafter\handleMPsequence\input filename\relax %D \stoptyping %D %D Persistent problems in \LATEX\ however forced us to use a %D different scheme. Every \POSTSCRIPT\ file starts with a %D \type{%}, so we temporary make this an active character %D that starts the scanning and redefines itself. (The problem %D originates in the redefinition by \LATEX\ of the %D \type{\input} primitive.) \def\startMPconversion {\keepMPspecials \handleMPsequence} %D Here comes the main loop. Most arguments are numbers. This %D means that they can be recognized by their \type{\lccode}. %D This method saves a lot of processing time. We could %D speed up the conversion by handling the \type{path} %D seperately. \def\dohandleMPsequence#1% {\ifdone \ifcase\lccode`#1\relax \expandafter\expandafter\expandafter\dohandleMPsequenceA \else \expandafter\expandafter\expandafter\dohandleMPsequenceB \fi \else \expandafter\dohandleMPsequenceC \fi#1} %\def\dohandleMPsequenceA#1 % % {\setMPargument{#1}% % \handleMPsequence} \let\dohandleMPsequenceA\setMPsequence % \def\dohandleMPsequenceB#1 % % {\edef\somestring{#1}% % \ifx\somestring\PSmoveto % \edef\lastMPmoveX{\gMPa1}% % \edef\lastMPmoveY{\gMPa2}% % \PDFcode{\!MPgMPa1 \!MPgMPa2 m}% % \resetMPstack % \else\ifx\somestring\PSnewpath % \let\handleMPsequence\handleMPpath % \else\ifx\somestring\PSgsave % \PDFcode{q}% % \resetMPstack % \else\ifx\somestring\PSgrestore % \PDFcode{Q}% % \resetMPstack % \else\ifx\somestring\PSdtransform % == setlinewidth % \let\handleMPsequence\handleMPdtransform % % after that we will encounter more tokens until setlinewidth+pop % % or pop+setlinewidth which we catch next; we explicitly need to % % reset the stack since [] n setdash may follow; a more clever % % approach would be to read on till the condition is met, but it's % % the only pop / setlinewidth we will encounter so ... % \else\ifx\somestring\PSsetlinewidth % % already handled in dtransform % \resetMPstack % \else\ifx\somestring\PSpop % % already handled in dtransform % \resetMPstack % \else\ifx\somestring\PSconcat % \cleanupMPconcat % \PDFcode{\gMPa1 \gMPa2 \gMPa3 \gMPa4 \gMPa5 \gMPa6 cm}% % \resetMPstack % \else\ifx\somestring\PSsetrgbcolor % \handleMPrgbcolor % \resetMPstack % \else\ifx\somestring\PSsetcmykcolor % \handleMPcmykcolor % \resetMPstack % \else\ifx\somestring\PSsetgray % \handleMPgraycolor % \resetMPstack % \else\ifx\somestring\PStranslate % \PDFcode{1 0 0 1 \gMPa1 \gMPa2 cm}% % \resetMPstack % \else\ifx\somestring\PSsetdash % \handleMPsetdash % \resetMPstack % \else\ifx\somestring\PSsetlinejoin % \PDFcode{\gMPa1 j}% % \resetMPstack % \else\ifx\somestring\PSsetmiterlimit % \PDFcode{\gMPa1 M}% % \resetMPstack % \else\ifx\somestring\PSfshow % \PDFcode{n}% % \handleMPfshow % \resetMPstack % \else\ifx\somestring\PSsetlinecap % \PDFcode{\gMPa1 J}% % \resetMPstack % \else\ifx\somestring\PSrlineto % \PDFcode{\!MP\lastMPmoveX\space\!MP\lastMPmoveY\space l S}% % \resetMPstack % \else\ifx\somestring\PSscale % \PDFcode{\gMPa1 0 0 \gMPa2 0 0 cm}% % \resetMPstack % \else\ifx\somestring\PSspecial % \handleMPspecialcommand % \resetMPstack % \else % \handleMPgraphic% {#1}% % \fi\fi\fi\fi\fi\fi\fi\fi\fi\fi\fi\fi\fi\fi\fi\fi\fi\fi\fi\fi % \handleMPsequence} \def\installMPSkeywordN#1#2% {\expandafter\def\csname\@@MP:N:#1\endcsname{#2}} \def\installMPSshortcutN#1#2% todo: \let {\expandafter\let\csname\@@MP:N:#1\expandafter\endcsname\csname\@@MP:N:#2\endcsname} \def\dohandleMPsequenceB#1 % {\edef\somestring{#1}% \ifcsname\@@MP:N:\somestring\endcsname \csname\@@MP:N:\somestring\expandafter\endcsname \else \expandafter\handleMPgraphic \fi \handleMPsequence} \ifx\eTeXversion\undefined \def\dohandleMPsequenceB#1 % {\edef\somestring{#1}% \expandafter\ifx\csname\@@MP:N:\somestring\endcsname\relax \expandafter\handleMPgraphic \else \csname\@@MP:N:\somestring\expandafter\endcsname \fi \handleMPsequence} \fi \installMPSkeywordN \PSmoveto {\edef\lastMPmoveX{\gMPa1}% \edef\lastMPmoveY{\gMPa2}% \resetMPstack} \installMPSkeywordN \PSnewpath {\let\handleMPsequence\handleMPpath} \installMPSkeywordN \PSgsave {\PDFcode{q}% \resetMPstack} \installMPSkeywordN \PSgrestore {\PDFcode{Q}% \resetMPstack} \installMPSkeywordN \PSdtransform % == setlinewidth {\let\handleMPsequence\handleMPdtransform} % after that we will encounter more tokens until setlinewidth+pop % or pop+setlinewidth which we catch next; we explicitly need to % reset the stack since [] n setdash may follow; a more clever % approach would be to read on till the condition is met, but it's % the only pop / setlinewidth we will encounter so ... \installMPSkeywordN \PSsetlinewidth {% already handled in dtransform \resetMPstack} \installMPSkeywordN \PSpop {% already handled in dtransform \resetMPstack} \installMPSkeywordN \PSconcat {\cleanupMPconcat \PDFcode{\gMPa1 \gMPa2 \gMPa3 \gMPa4 \gMPa5 \gMPa6 cm}% \resetMPstack} \installMPSkeywordN \PSsetrgbcolor {\handleMPrgbcolor \resetMPstack} \installMPSkeywordN \PSsetcmykcolor {\handleMPcmykcolor \resetMPstack} \installMPSkeywordN \PSsetgray {\handleMPgraycolor \resetMPstack} \installMPSkeywordN \PStranslate {\PDFcode{1 0 0 1 \gMPa1 \gMPa2 cm}% \resetMPstack} \installMPSkeywordN \PSsetdash {\handleMPsetdash \resetMPstack} \installMPSkeywordN \PSsetlinejoin {\PDFcode{\gMPa1 j}% \resetMPstack} \installMPSkeywordN \PSsetmiterlimit {\PDFcode{\gMPa1 M}% \resetMPstack} \installMPSkeywordN \PSfshow {%\PDFcode{n}% removed ! \handleMPfshow \resetMPstack} \installMPSkeywordN \PSsetlinecap {\PDFcode{\gMPa1 J}% \resetMPstack} \installMPSkeywordN \PSrlineto {\flushMPmoveto \PDFcode{\!MP\lastMPmoveX\space\!MP\lastMPmoveY\space l S}% \resetMPmoveto \resetMPstack} \installMPSkeywordN \PSscale {\PDFcode{\gMPa1 0 0 \gMPa2 0 0 cm}% \resetMPstack} \installMPSkeywordN \PSspecial {\handleMPspecialcommand \resetMPstack} \installMPSshortcutN {n} \PSnewpath \installMPSshortcutN {p} \PSclosepath \installMPSshortcutN {l} \PSlineto \installMPSshortcutN {r} \PSrlineto \installMPSshortcutN {m} \PSmoveto \installMPSshortcutN {c} \PScurveto \installMPSshortcutN {C} \PSsetcmykcolor \installMPSshortcutN {G} \PSsetgray \installMPSshortcutN {R} \PSsetrgbcolor \installMPSshortcutN {lj} \PSsetlinejoin \installMPSshortcutN {ml} \PSsetmiterlimit \installMPSshortcutN {lc} \PSsetlinecap \installMPSshortcutN {sd} \PSsetdash \installMPSshortcutN {S} \PSstroke \installMPSshortcutN {F} \PSfill \installMPSshortcutN {W} \PSclip \installMPSshortcutN {q} \PSgsave \installMPSshortcutN {Q} \PSgrestore \installMPSshortcutN {s} \PSscale \installMPSshortcutN {t} \PSconcat \installMPSshortcutN {P} \PSshowpage \installMPSkeywordN {hlw} {\PDFcode{\gMPa1 w}\resetMPstack} \installMPSkeywordN {vlw} {\PDFcode{\gMPa1 w}\resetMPstack} \installMPSkeywordN {rd} {\PDFcode{[] 0 d}\resetMPstack} \def\dohandleMPsequenceC#1 % {\edef\somestring{#1}% \handleMPgraphic % {#1}% \handleMPsequence} %D Since colors are not sensitive to transformations, they %D are sometimes used for signaling. Therefore, we handle them %D separately. The next macro can be redefined if needed. \def\handleMPrgbcolor {\PDFcode{\!MPgMPa1 \!MPgMPa2 \!MPgMPa3 rg \!MPgMPa1 \!MPgMPa2 \!MPgMPa3 RG}} \def\handleMPcmykcolor {\PDFcode{\!MPgMPa1 \!MPgMPa2 \!MPgMPa3 \!MPgMPa4 k \!MPgMPa1 \!MPgMPa2 \!MPgMPa3 \!MPgMPa4 K}} \def\handleMPgraycolor {\PDFcode{\!MPgMPa1 g \!MPgMPa1 G}} \def\handleMPspotcolor {\PDFcode{0 g 0 G}} %D Beginning and ending the graphics is taken care of by the %D macro \type{\handleMPgraphic}, which is redefined when %D the first graphics operator is met. \def\handleMPendgraphic % #1% {\ifx\somestring\PSshowpage \let\handleMPsequence\finishMPgraphic \else\ifx\somestring\PSEof \let\handleMPsequence\finishMPgraphic \else \letMPargument\somestring % {#1}% \fi\fi} \def\handleMPbegingraphic % #1% {\ifx\somestring\PSBoundingBox \def\handleMPsequence{\handleMPboundingbox1}% \else\ifx\somestring\PSHiResBoundingBox \def\handleMPsequence{\handleMPboundingbox2}% \else\ifx\somestring\PSExactBoundingBox \def\handleMPsequence{\handleMPboundingbox3}% \else\ifx\somestring\PSshowpage \let\handleMPsequence\finishMPgraphic \else\ifx\somestring\PSEof \let\handleMPsequence\finishMPgraphic \else\ifx\somestring\PSPage \let\handleMPsequence\handleMPpage \else\ifx\somestring\PSMetaPostSpecials \let\handleMPsequence\handleMPspecialscomment \else\ifx\somestring\PSMetaPostSpecial \let\handleMPsequence\handleMPspecialcomment \else\ifx\somestring\PSBeginProlog \let\handleMPsequence\handleMPprolog \else \letMPargument\somestring % {#1}% \fi\fi\fi\fi\fi\fi\fi\fi\fi} \let\handleMPgraphic=\handleMPbegingraphic %D New: we can best filter the prolog because nowdays it can contain %D quite some code. % hm, catcode mess, so we need to tweak %'s catcode here % \long\expandafter\def\expandafter\handleMPprolog\expandafter#\expandafter1\PSEndProlog% % but today i'm not in the mood for ugly stuff \long\def\handleMPprolog#1EndProlog % {\doresetMPstack \let\handleMPsequence\dohandleMPsequence \handleMPsequence} %D We check for three kind of bounding boxes: the normal one %D and two high precision ones: %D %D \starttyping %D BoundingBox: llx lly ucx ucy %D HiResBoundingBox: llx lly ucx ucy %D ExactBoundingBox: llx lly ucx ucy %D \stoptyping %D %D The original as well as the recalculated dimensions are %D saved for later use. \newif\ifskipemptyMPgraphic \skipemptyMPgraphicfalse \chardef\currentMPboundingbox=0 \def\handleMPboundingbox#1#2 #3 #4 #5 {\ifnum#1>\currentMPboundingbox \xdef\MPllx{#2}\xdef\MPlly{#3}% \xdef\MPurx{#4}\xdef\MPury{#5}% \dimen0=#2pt \dimen0=-\MPxscale\dimen0 \dimen2=#3pt \dimen2=-\MPyscale\dimen2 \xdef\MPxoffset{\withoutpt\the\dimen0}% \xdef\MPyoffset{\withoutpt\the\dimen2}% \dimen0=#2bp \dimen0=-\dimen0 \dimen2=#3bp \dimen2=-\dimen2 \advance\dimen0 #4bp \dimen0=\MPxscale\dimen0 \xdef\MPwidth{\the\dimen0}% \advance\dimen2 #5bp \xdef\MPyshift{\the\dimen2}% unscaled \dimen2=\MPyscale\dimen2 \xdef\MPheight{\the\dimen2}% \chardef\currentMPboundingbox#1\relax \fi \doresetMPstack \let\handleMPsequence\dohandleMPsequence \let\next\handleMPsequence \ifskipemptyMPgraphic \ifdim\MPheight=0pt\relax\ifdim\MPwidth=0pt\relax \def\next{\endinput\finishMPgraphic}% \fi\fi \fi \next} %D Unless defined otherwise, we simply ignore specialcomments. \def\handleMPspecialcomment {\doresetMPstack \let\handleMPsequence\dohandleMPsequence \handleMPsequence} \let\handleMPspecialscomment\handleMPspecialcomment %D We use the \type{page} comment as a signal that %D stackbuilding can be started. \def\handleMPpage #1 #2 {\doresetMPstack \donetrue \let\handleMPsequence\dohandleMPsequence \handleMPsequence} %D The same applies to the special extensions. \def\handleMPspecialcommand {\doresetMPstack \let\handleMPsequence\dohandleMPsequence \handleMPsequence} %D \METAPOST\ draws its dots by moving to a location and %D invoking \type{0 0 rlineto}. This operator is not %D available in \PDF. Our solution is straightforward: we draw %D a line from $(current\_x, current\_y)$ to itself. This %D means that the arguments of the preceding \type{moveto} have %D to be saved. \def\lastMPmoveX{0} \def\lastMPmoveY{0} %D These saved coordinates are also used when we handle the %D texts. Text handling proved to be a bit of a nuisance, but %D finally I saw the light. It proved that we also had to %D take care of \type{(split arguments)}. \def\setMPfshowfont#1#2% {\font\temp=#1\space at #2\relax\temp} \let\MPfshowcommand\empty \def\dohandleMPfshow {\bgroup \setbox\scratchbox\hbox {\obeyMPspecials \let\ \relax % mp breaks long lines and appends a \ \edef\size{\gMPa\nofMParguments}% \ifx\size\PSnfont % round font size (to pt) \advance\nofMParguments -1 \expandafter\scratchdimen\gMPa\nofMParguments pt\relax \ifdim\scratchdimen<1pt \def\size{1pt}% \else \advance\scratchdimen .5pt \def\size##1.##2\relax{\def\size{##1pt}}% \expandafter\size\the\scratchdimen\relax \fi \else \edef\size{\size bp}% \fi \advance\nofMParguments -1 %\font\temp=\gMPa\nofMParguments\space at \size \let\temp\relax % to be sure \setMPfshowfont{\gMPa\nofMParguments}\size \advance\nofMParguments -1 \temp \MPfshowcommand {\ifnum\nofMParguments=1 \def\do(##1){##1}% \dogMPa1% \else % we need to catch ( a ) (a a a) (\123 \123 \123) etc \scratchcounter1 \def\dodo##1% Andreas Fieger's bug: (\304...) {\edef\!!stringa{##1\empty\empty}% and another one: ( 11) -> \ifx 11 \ifx\!!stringa\MPspacechar\MPspacechar\else\expandafter##1\fi}% \def\do(##1{\dodo{##1}}% \dogMPa\scratchcounter\MPspacechar \let\do\relax \loop \advance\scratchcounter 1 \ifnum\scratchcounter<\nofMParguments\relax \gMPa\scratchcounter\MPspacechar \repeat \def\do##1){\dodo{##1}}% \dogMPa\scratchcounter \fi \unskip}}% \setbox\scratchbox\hbox {\hskip\lastMPmoveX bp\raise\lastMPmoveY bp\box\scratchbox}% \ht\scratchbox0pt% \dp\scratchbox0pt% \wd\scratchbox0pt% \box\scratchbox \egroup} \let\handleMPfshow\dohandleMPfshow % so we can overload this one later %D You could consider the following definition to be the most %D natural one. % \def\MPspacechar{\space} % normal case \def\MPspacechar{\char32\relax} % old solution does not work with math %D However, the following implementation is more robust, since %D some fonts have funny visible spaces in the space slot. This %D gives a mismatch between the space that \METAPOST\ took into %D account and the \quote {natural} space. This only happens in %D labels, since \type {btex}||\type {etex} thingies don't have %D spaces. This phenomena showed up when preparing the %D \METAFUN\ manual, where Palatino fonts are used. We can %D safely assume that \METAPOST\ considers \type {\char32} to %D be the space. \def\MPspacechar{\setbox\scratchbox\hbox{\char32}\kern\wd\scratchbox} %D Well, this does not work with math fonts, so: \def\MPspacechar{\char32\relax} %D Most operators are just converted and keep their %D arguments. Dashes however need a bit different treatment, %D otherwise \PDF\ viewers complain loudly. Another %D complication is that one argument comes after the \type{]}. %D When reading the data, we simply ignore the array boundary %D characters. We save ourselves some redundant newlines and %D at the same time keep the output readable by packing the %D literals. \def\handleMPsetdash {\bgroup \ignoreMPspecials \def\somestring{[}% \scratchcounter1 \loop \ifnum\scratchcounter<\nofMParguments \edef\somestring{\somestring\space\gMPa\scratchcounter}% \advance\scratchcounter 1 \repeat \edef\somestring{\somestring]\gMPa\scratchcounter\space d}% \PDFcode{\somestring}% \egroup} %D The \type{setlinewidth} commands looks a bit complicated. There are %D two alternatives, that result in a similar look in both %D $x$- and $y$-dorection. As John Hobby says: %D %D \startnarrower \switchtobodyfont[ss] %D \starttyping %D x 0 dtransform exch truncate exch idtransform pop setlinewidth %D 0 y dtransform truncate idtransform setlinewidth pop %D \stoptyping %D %D These are just fancy versions of \type{x setlinewidth} and %D \type{y setlinewidth}. The \type{x 0 ...} form is used if %D the path is {\em primarily vertical}. It rounds the width %D so that vertical lines come out an integer number of pixels %D wide in device space. The \type{0 y ...} form does the same %D for paths that are {\em primarily horizontal}. The reason %D why I did this is Knuth insists on getting exactly the %D widths \TEX\ intends for the horizontal and vertical rules %D in \type{btex...etex} output. (Note that PostScript scan %D conversion rules cause a horizontal or vertical line of %D integer width $n$ in device space to come out $n+1$ pixels %D wide, regardless of the phase relative to the pixel grid.) %D \stopnarrower %D %D The common operator in these sequences is \type{dtransform}, %D so we can use this one to trigger setting the linewidth. \def\handleMPdtransform {\ifdim\gMPa1 pt>0pt \PDFcode{\gMPa1 w}% \def\next##1 ##2 ##3 ##4 ##5 ##6 {\handleMPsequence}% \else \PDFcode{\gMPa2 w}% \def\next##1 ##2 ##3 ##4 {\handleMPsequence}% \fi \let\handleMPsequence\dohandleMPsequence \resetMPstack \next} %D The most complicated command is \type{concat}. \METAPOST\ %D applies this operator to \type{stroke}. At that moment the %D points set by \type{curveto} and \type{moveto}, are already %D fixed. In \PDF\ however the \type{cm} operator affects the %D points as well as the pen (stroke). Like more \PDF\ %D operators, \type{cm} is defined in a bit ambiguous way. %D The only save route for non||circular penshapes, is saving %D the path, recalculating the points and applying the %D transformation matrix in such a way that we can be sure %D that its behavior is well defined. This comes down to %D inverting the path and applying \type{cm} to that path as %D well as the pen. This all means that we have to save the %D path. %D In \METAPOST\ there are three ways to handle a path $p$: %D %D \starttyping %D draw p; fill p; filldraw p; %D \stoptyping %D %D The last case outputs a \type{gsave fill grestore} before %D \type{stroke}. Handling the path outside the main loops %D saves about 40\% run time.\footnote{We can save some more by %D following the \METAPOST\ output routine, but for the moment %D we keep things simple.} Switching between the main loop and %D the path loop is done by means of the recursely called %D macro \type{\handleMPsequence}. \def\handleMPpath {\chardef\finiMPpath0 \let\closeMPpath\relax \let\flushMPpath\flushnormalMPpath \resetMPstack \nofMPsegments1 \let\handleMPsequence\dohandleMPpath \dohandleMPpath} %D Most paths are drawn with simple round pens. Therefore we've %D split up the routine in two. \def\flushnormalMPsegment {\ifcase\getMPkeyword\relax \PDFcode{\!MPgMPs1 \!MPgMPs2 l}% \or \PDFcode{\!MPgMPs1 \!MPgMPs2 \!MPgMPs3 \!MPgMPs4 \!MPgMPs5 \!MPgMPs6 c}% \or \PDFcode{\!MP\lastMPmoveX\space\!MP\lastMPmoveY\space l S}% \or \edef\lastMPmoveX{\gMPs1}% evt \!MP here \edef\lastMPmoveY{\gMPs2}% \PDFcode{\!MP\lastMPmoveX\space \!MP\lastMPmoveY\space m}% \fi} \def\flushconcatMPsegment {\ifcase\getMPkeyword\relax \doMPconcat{\gMPs1}\a{\gMPs2}\b% \PDFcode{\!MP\a\space\!MP\b\space l}% \or \doMPconcat{\gMPs1}\a{\gMPs2}\b% \doMPconcat{\gMPs3}\c{\gMPs4}\d% \doMPconcat{\gMPs5}\e{\gMPs6}\f% \PDFcode{\!MP\a\space\!MP\b\space \!MP\c\space\!MP\d\space \!MP\e\space\!MP\f\space c}% \or \bgroup \noMPtranslate \doMPconcat\lastMPmoveX\a\lastMPmoveY\b% \PDFcode{\!MP\a\space\!MP\b\space l S}% \egroup \or \edef\lastMPmoveX{\gMPs1}% \edef\lastMPmoveY{\gMPs2}% \doMPconcat\lastMPmoveX\a\lastMPmoveY\b% \PDFcode{\!MP\a\space\!MP\b\space m}% \fi} % \def\flushnormalMPpath % {\scratchcounter\nofMPsegments % \nofMPsegments 1 % \loop % \flushnormalMPsegment % \advance\nofMPsegments 1 % \ifnum\nofMPsegments<\scratchcounter % \repeat} % % \def\flushconcatMPpath % {\scratchcounter\nofMPsegments % \nofMPsegments 1 % \loop % \flushconcatMPsegment % \advance\nofMPsegments 1 % \ifnum\nofMPsegments<\scratchcounter % \repeat} % % an alternative is presented below: (no \def assignment) \def\doflushsomeMPpath {\dodoflushsomeMPpath \advance\nofMPsegments 1 \ifnum\nofMPsegments<\scratchcounter \expandafter\doflushsomeMPpath \fi} \def\flushsomeMPpath {\scratchcounter\nofMPsegments \nofMPsegments 1 \doflushsomeMPpath} \def\flushnormalMPpath{\let\dodoflushsomeMPpath\flushnormalMPsegment\flushsomeMPpath} %OLD \def\flushconcatMPpath{\let\dodoflushsomeMPpath\flushconcatMPsegment\flushsomeMPpath} %NEW pre-calculate 1/D so it needn't be repeated for each control point. \def\flushconcatMPpath {\MPreciprocaldeterminant \let\dodoflushsomeMPpath\flushconcatMPsegment\flushsomeMPpath} %D The transformation of the coordinates is handled by one of %D the macros Tanmoy posted to the \PDFTEX\ mailing list. %D I rewrote and optimized the original macro to suit the other %D macros in this module. %D %D \starttyping %D \doMPconcat {x position} \xresult {y position} \yresult %D \stoptyping %D %D By setting the auxiliary \DIMENSIONS\ \type{\dimen0} upto %D \type{\dimen10} only once per path, we save over 20\% run %D time. Some more speed was gained by removing some parameter %D passing. These macros can be optimized a bit more by using %D more constants. There is however not much need for further %D optimization because penshapes usually are round and %D therefore need no transformation. Nevertheless we move the %D factor to the outer level and use a bit different \type{pt} %D removal macro. Although the values represent base points, %D we converted them to pure points, simply because those can %D be converted back. %OLD \mathchardef\MPconcatfactor=256 % beware don't remove spaces before it %OLD \def\doMPreducedimen#1 %OLD {\count0\MPconcatfactor %OLD \advance\dimen#1 \ifdim\dimen#1>0pt .5\else -.5\fi\count0 %OLD \divide\dimen#1 \count0\relax} %OLD % too inaccurate (see old pragma logo) %OLD %OLD \def\doMPreducedimen#1 %OLD {\count0=\MPconcatfactor %OLD \divide\dimen#1 \count0\relax} %OLD \def\doMPreducedimen#1 %OLD {\advance\dimen#1 \ifdim\dimen#1>0pt .5\else -.5\fi\MPconcatfactor %OLD \divide\dimen#1 \MPconcatfactor} %D The transformation code is rewritten by Daniel H. Luecking who %D describes his patch as follows: %D %D We would like to divide 1 by $X$, but all divisions are integer so %D for accuracy we want to convert to large integers and make sure the %D integer quotient has as many significant digits as possible. Thus we %D need to replace $1/X$ with $M/N$ where $N$ is as large as possible %D and $M/N$ is as large as possible. Also for simplicity $M$ should be %D a power of 2. So we make $M = 2^{30}$ \footnote{$2^{31} - 1$ is the %D largest legal integer. Using it (and simply ignoring the inaccuracy %D caused by $-1$) turns out to be at least as accurate in all cases, %D and more accurate in some.} (largest legal power of 2) and adjust %D $X$ downward (if necessary) to the the range $1-2^{16}$. This gives %D at least 15 significant binary digits, (almost as accurate as %D \METAPOST\ for numbers near 1) or almost 5 significant figures %D (decimal). \newcount\MPscratchCnt \newdimen\MPscratchDim % will be assigned global \def\MPadjustdimen % sets \MPscratchDim and \MPscratchCnt {\MPscratchCnt0 \doMPadjustdimen} \def\doMPadjustdimen {\ifdim\MPscratchDim>1pt \divide\MPscratchDim 2 \advance\MPscratchCnt 1 \expandafter\doMPadjustdimen \fi} %OLD \def\doMPexpanddimen#1 %OLD {\multiply\dimen#1 \MPconcatfactor\relax} %D DHL: When viewed as an integer, $1 \hbox{pt}=2^{16}$ so $2^{32}/X$ %D is the right way to do $(1 \hbox{pt})/(X \hbox{pt})$ and get the %D answer in points. But we are limited to $2^{30}/X$. However, we %D actually do $[ 2^{30} / (X/2^K) ]*2^{2-K}$ where $K$ is the number %D of halvings it takes to bring $X$ below $1 \hbox{pt}$. If $K$ is 0 %D or 1 we readjust by multiplying by 4 or 2, otherwise by halving %D $(K-2)$ times \type {\MPscratchCnt} holds the value of $K$ from %D \type {\MPadjustdimen}. \def\MPreadjustdimen % acts on \MPscratchDim and MPscratchCnt {\ifcase\MPscratchCnt \multiply\scratchdimen 4 \or \multiply\scratchdimen 2 \else \expandafter\doMPreadjustdimen \fi} \def\doMPreadjustdimen {\ifnum\MPscratchCnt>2 \divide\scratchdimen 2 \advance\MPscratchCnt -1 \expandafter\doMPreadjustdimen \fi} \def\MPreciprocaldeterminant {\scratchdimen\withoutpt\the\dimen0 \dimen6 % s_x*s_y \advance\scratchdimen - \withoutpt\the\dimen2 \dimen4 % s_x*s_y - r_x*r_y \ifdim\scratchdimen<0pt % we need a positive dimension \scratchdimen-\scratchdimen % for \MPadjustdimen (?) \doMPreciprocal \scratchdimen-\scratchdimen \else \doMPreciprocal \fi \edef\MPreciprocal{\withoutpt\the\scratchdimen}} \newcount\MPnumerator \MPnumerator = 1073741824 % 2^{30} % todo: dimexpr \def\doMPreciprocal % replace \scratchdimen with its reciprocal {\ifdim\scratchdimen=1pt \else \MPadjustdimen \scratchcounter\MPnumerator \divide\scratchcounter\scratchdimen \scratchdimen1\scratchcounter % 1 needed ! \MPreadjustdimen \fi} %OLD \def\presetMPconcat %OLD {\dimen 0=\gMPs1pt \doMPreducedimen 0 % r_x %OLD \dimen 2=\gMPs2pt \doMPreducedimen 2 % s_x %OLD \dimen 4=\gMPs3pt \doMPreducedimen 4 % s_y %OLD \dimen 6=\gMPs4pt \doMPreducedimen 6 % r_y %OLD \dimen 8=\gMPs5pt \doMPreducedimen 8 % t_x %OLD \dimen10=\gMPs6pt \doMPreducedimen10 } % t_y %OLD %OLD \def\presetMPscale %OLD {\dimen 0=\gMPs1pt \doMPreducedimen 0 %OLD \dimen 2=0pt %OLD \dimen 4=0pt %OLD \dimen 6=\gMPs2pt \doMPreducedimen 6 %OLD \dimen 8=0pt %OLD \dimen10=0pt} \def\cleanupMPconcat {\ignoreMPspecials \docleanupMPargument1% \docleanupMPargument6% \keepMPspecials} \def\presetMPconcat {\dimen 0=\gMPs1pt % s_x \dimen 2=\gMPs2pt % r_x \dimen 4=\gMPs3pt % r_y \dimen 6=\gMPs4pt % s_y \dimen 8=\gMPs5pt % t_x \dimen10=\gMPs6pt} % t_y \def\presetMPscale {\dimen 0=\gMPs1pt \dimen 2=0pt \dimen 4=0pt \dimen 6=\gMPs2pt \dimen 8=0pt \dimen10=0pt} \def\noMPtranslate % use this one grouped {\dimen 8=0pt % t_x \dimen10=0pt} % t_y %D \starttyping %D \def\doMPconcat#1#2#3#4% %D {\dimen12=#1 pt \doMPreducedimen12 % p_x %D \dimen14=#3 pt \doMPreducedimen14 % p_y %D % %D \dimen16 \dimen 0 %D \multiply \dimen16 \dimen 6 %D \dimen20 \dimen 2 %D \multiply \dimen20 \dimen 4 %D \advance \dimen16 -\dimen20 %D % %D \dimen18 \dimen12 %D \multiply \dimen18 \dimen 6 %D \dimen20 \dimen14 %D \multiply \dimen20 \dimen 4 %D \advance \dimen18 -\dimen20 %D \dimen20 \dimen 4 %D \multiply \dimen20 \dimen10 %D \advance \dimen18 \dimen20 %D \dimen20 \dimen 6 %D \multiply \dimen20 \dimen 8 %D \advance \dimen18 -\dimen20 %D % %D \multiply \dimen12 -\dimen 2 %D \multiply \dimen14 \dimen 0 %D \advance \dimen12 \dimen14 %D \dimen20 \dimen 2 %D \multiply \dimen20 \dimen 8 %D \advance \dimen12 \dimen20 %D \dimen20 \dimen 0 %D \multiply \dimen20 \dimen10 %D \advance \dimen12 -\dimen20 %D % %D \doMPreducedimen16 %D \divide \dimen18 \dimen16 \doMPexpanddimen18 %D \divide \dimen12 \dimen16 \doMPexpanddimen12 %D % %D \edef#2{\withoutpt\the\dimen18}% % p_x^\prime %D \edef#4{\withoutpt\the\dimen12}} % p_y^\prime %D \stoptyping %D The following optimization resulted from some tests by %D and email exchanges with Sanjoy Mahajan. %D %D \starttyping %D \def\doMPconcat#1#2#3#4% %D {\dimen12=#1 pt \doMPreducedimen12 % p_x %D \dimen14=#3 pt \doMPreducedimen14 % p_y %D % %D \dimen16 \dimen 0 %D \multiply \dimen16 \dimen 6 %D \dimen20 \dimen 2 %D \multiply \dimen20 \dimen 4 %D \advance \dimen16 -\dimen20 %D % %D \dimen18 \dimen12 %D \multiply \dimen18 \dimen 6 %D \dimen20 \dimen14 %D \multiply \dimen20 \dimen 4 %D \advance \dimen18 -\dimen20 %D \dimen20 \dimen 4 %D \multiply \dimen20 \dimen10 %D \advance \dimen18 \dimen20 %D \dimen20 \dimen 6 %D \multiply \dimen20 \dimen 8 %D \advance \dimen18 -\dimen20 %D % %D \multiply \dimen12 -\dimen 2 %D \multiply \dimen14 \dimen 0 %D \advance \dimen12 \dimen14 %D \dimen20 \dimen 2 %D \multiply \dimen20 \dimen 8 %D \advance \dimen12 \dimen20 %D \dimen20 \dimen 0 %D \multiply \dimen20 \dimen10 %D \advance \dimen12 -\dimen20 %D % %D %\ifdim\dimen16>1pt % oeps, can be < 1pt too %D \ifdim\dimen16=1pt \else %D \ifdim\dimen16>\MPconcatfactor pt %D \doMPreducedimen16 %D \divide \dimen18 \dimen16 \doMPexpanddimen18 %D \divide \dimen12 \dimen16 \doMPexpanddimen12 %D \else %D \divide \dimen18 \dimen16 \doMPexpanddimen18 \doMPexpanddimen18 %D \divide \dimen12 \dimen16 \doMPexpanddimen12 \doMPexpanddimen12 %D \fi %D \fi %D % %D \edef#2{\withoutpt\the\dimen18}% % p_x^\prime %D \edef#4{\withoutpt\the\dimen12}} % p_y^\prime %D \stoptyping %D %D But, this one is still too inaccurate, so we now have: % \def\doMPconcat#1#2#3#4% % {\dimen12=#1pt % p_x % \dimen14=#3pt % p_y % % % % we should test for >-1024 too, but for the moment take the gamble % \chardef\MPfactor1\ifdim\dimen12<1024pt \ifdim\dimen14<1024pt 6\fi\fi % % % \multiply\dimen12 \MPfactor % \multiply\dimen14 \MPfactor % % % \doMPreducedimen12 % \doMPreducedimen14 % % % \dimen16 \dimen 0 % \multiply \dimen16 \dimen 6 % \dimen20 \dimen 2 % \multiply \dimen20 \dimen 4 % \advance \dimen16 -\dimen20 % % % \dimen18 \dimen12 % \multiply \dimen18 \dimen 6 % \dimen20 \dimen14 % \multiply \dimen20 \dimen 4 % \advance \dimen18 -\dimen20 % \dimen20 \dimen 4 % \multiply \dimen20 \dimen10 % \advance \dimen18 \dimen20 % \dimen20 \dimen 6 % \multiply \dimen20 \dimen 8 % \advance \dimen18 -\dimen20 % % % \multiply \dimen12 -\dimen 2 % \multiply \dimen14 \dimen 0 % \advance \dimen12 \dimen14 % \dimen20 \dimen 2 % \multiply \dimen20 \dimen 8 % \advance \dimen12 \dimen20 % \dimen20 \dimen 0 % \multiply \dimen20 \dimen10 % \advance \dimen12 -\dimen20 % % % \ifdim\dimen16=1pt \else % \ifdim\dimen16>\MPconcatfactor pt % \doMPreducedimen16 % \divide \dimen18 \dimen16 \doMPexpanddimen18 % \divide \dimen12 \dimen16 \doMPexpanddimen12 % \else % \divide \dimen18 \dimen16 \doMPexpanddimen18 \doMPexpanddimen18 % \divide \dimen12 \dimen16 \doMPexpanddimen12 \doMPexpanddimen12 % \fi % \fi % % % \divide\dimen18 \MPfactor % \divide\dimen12 \MPfactor % % % \edef#2{\withoutpt\the\dimen18}% % p_x^\prime % \edef#4{\withoutpt\the\dimen12}} % p_y^\prime %D We cannot use \type {\beginETEX} here since in plain we %D get \type {\outer} problems, sigh. %OLD \beginTEX %OLD %OLD \def\MPcriteriumA {512pt} % scale %OLD \def\MPcriteriumB {2pt} % scale %OLD %OLD \endTEX %OLD %OLD \ifx\MPcriteriumA\undefined %OLD %OLD \newdimen\MPcriteriumA \MPcriteriumA=512pt %OLD \newdimen\MPcriteriumB \MPcriteriumB= 2pt %OLD %OLD \fi %OLD \def\doMPconcat#1#2#3#4% %OLD {\dimen12=#1pt % p_x %OLD \dimen14=#3pt % p_y %OLD % %OLD \chardef\MPfactor0 %OLD \ifdim\dimen4<\MPcriteriumB\ifdim\dimen4>-\MPcriteriumB %OLD \ifdim\dimen6<\MPcriteriumB\ifdim\dimen6>-\MPcriteriumB %OLD \ifdim\dimen8<\MPcriteriumB\ifdim\dimen8>-\MPcriteriumB %OLD \ifdim\dimen10<\MPcriteriumB\ifdim\dimen10>-\MPcriteriumB %OLD \chardef\MPfactor1 %OLD \fi\fi %OLD \fi\fi %OLD \fi\fi %OLD \fi\fi %OLD \ifcase\MPfactor % spurious 0 removed %OLD \chardef\MPfactor1 %OLD \ifdim\dimen12<\MPcriteriumA\ifdim\dimen12>-\MPcriteriumA %OLD \ifdim\dimen14<\MPcriteriumA\ifdim\dimen14>-\MPcriteriumA %OLD \chardef\MPfactor16 %OLD \fi\fi %OLD \fi\fi %OLD \fi %OLD % %OLD \multiply\dimen12 \MPfactor %OLD \multiply\dimen14 \MPfactor %OLD % %OLD \doMPreducedimen12 %OLD \doMPreducedimen14 %OLD % %OLD \dimen16 \dimen 0 %OLD \multiply \dimen16 \dimen 6 %OLD \dimen20 \dimen 2 %OLD \multiply \dimen20 \dimen 4 %OLD \advance \dimen16 -\dimen20 %OLD % %OLD \dimen18 \dimen12 %OLD \multiply \dimen18 \dimen 6 %OLD \dimen20 \dimen14 %OLD \multiply \dimen20 \dimen 4 %OLD \advance \dimen18 -\dimen20 %OLD \dimen20 \dimen 4 %OLD \multiply \dimen20 \dimen10 %OLD \advance \dimen18 \dimen20 %OLD \dimen20 \dimen 6 %OLD \multiply \dimen20 \dimen 8 %OLD \advance \dimen18 -\dimen20 %OLD % %OLD \multiply \dimen12 -\dimen 2 %OLD \multiply \dimen14 \dimen 0 %OLD \advance \dimen12 \dimen14 %OLD \dimen20 \dimen 2 %OLD \multiply \dimen20 \dimen 8 %OLD \advance \dimen12 \dimen20 %OLD \dimen20 \dimen 0 %OLD \multiply \dimen20 \dimen10 %OLD \advance \dimen12 -\dimen20 %OLD % %OLD \ifdim\dimen16=1pt \else %OLD \ifdim\dimen16>\MPconcatfactor 1pt \relax %OLD \doMPreducedimen16 %OLD \divide \dimen18 \dimen16 \doMPexpanddimen18 %OLD \divide \dimen12 \dimen16 \doMPexpanddimen12 %OLD \else %OLD \divide \dimen18 \dimen16 \doMPexpanddimen18 \doMPexpanddimen18 %OLD \divide \dimen12 \dimen16 \doMPexpanddimen12 \doMPexpanddimen12 %OLD \fi %OLD \fi %OLD % %OLD \divide\dimen18 \MPfactor %OLD \divide\dimen12 \MPfactor %OLD % %OLD \edef#2{\withoutpt\the\dimen18}% % p_x^\prime %OLD \edef#4{\withoutpt\the\dimen12}} % p_y^\prime %D DHL: Ideally, $r_x$, $r_y$, $s_x$, $s_y$ should be in macros, not %D dimensions (they are scalar quantities after all, not lengths). I %D suppose the authors decided to do calculations with integer %D arithmetic instead of using real factors because it's faster. %D However, the actual macros test slower, possibly because I've %D omitted three nested loops. In my test files, my approach is more %D accurate. It is also far simpler and overflow does not seem to be a %D significant concern. The scale factors written by Metapost are (?) %D always $<=1$ (it scales coordinates internally) and coordinates are %D always likely to be less than \type {\maxdimen}. %D %D If this should ever cause problems, the scale factors can be reduced. % \def\doMPconcat#1#2#3#4% % {\dimen12=#1pt % p_x % #1pt % \dimen14=#3pt % p_y % #3pt % \advance\dimen12 -\dimen8 % p_x - t_x % \advance\dimen14 -\dimen10 % p_y - t_y % \dimen18=\withoutpt\the\dimen6 \dimen12 % s_y(p_x - t_x) % \advance\dimen18 -\withoutpt\the\dimen4 \dimen14 % - r_y(p_y-t_y) % \dimen14=\withoutpt\the\dimen0 \dimen14 % s_x(p_y-t_y) % \advance\dimen14 -\withoutpt\the\dimen2 \dimen12 % - r_x(p_x-t_x) % % \MPscratchDim contains precomputed 1/D: % \dimen18=\withoutpt\the\MPscratchDim \dimen18 % \dimen14=\withoutpt\the\MPscratchDim \dimen14 % \edef#2{\withoutpt\the\dimen18}% % p_x^\prime % \edef#4{\withoutpt\the\dimen14}} % p_y^\prime \def\doMPconcat#1#2#3#4% {\dimen12=#1pt % p_x % #1pt \dimen14=#3pt % p_y % #3pt \advance\dimen12 -\dimen8 % p_x - t_x \advance\dimen14 -\dimen10 % p_y - t_y \dimen18=\withoutpt\the\dimen6 \dimen12 % s_y(p_x - t_x) \advance\dimen18 -\withoutpt\the\dimen4 \dimen14 % - r_y(p_y-t_y) \dimen14=\withoutpt\the\dimen0 \dimen14 % s_x(p_y-t_y) \advance\dimen14 -\withoutpt\the\dimen2 \dimen12 % - r_x(p_x-t_x) % \MPreciprocal contains precomputed 1/D: \dimen18=\MPreciprocal\dimen18 \dimen14=\MPreciprocal\dimen14 \edef#2{\withoutpt\the\dimen18}% % p_x^\prime \edef#4{\withoutpt\the\dimen14}} % p_y^\prime % faster but not that often used % % \def\doMPconcat#1#2#3#4% % {\dimen12\dimexpr#1\points-\dimen 8\relax % p_x-t_x % \dimen14\dimexpr#3\points-\dimen10\relax % p_y-t_y % \dimen18\dimexpr\withoutpt\the\dimen6\dimen12-\withoutpt\the\dimen4\dimen14\relax % s_y(p_x-t_x)-r_y(p_y-t_y) % \dimen14\dimexpr\withoutpt\the\dimen0\dimen14-\withoutpt\the\dimen2\dimen12\relax % s_x(p_y-t_y)-r_x(p_x-t_x) % \edef#2{\withoutpt\the\dimexpr\MPreciprocal\dimen18\relax}% % p_x^\prime % \edef#4{\withoutpt\the\dimexpr\MPreciprocal\dimen14\relax}} % p_y^\prime %D One reason for Daniel to write this patch was that at small sizes %D the accuracy was less than optimal. Here is a test that demonstrates %D that his alternative is pretty good: %D %D \startlinecorrection %D \startMPcode %D for i = 5cm,1cm,5mm,1mm,.5mm,.1mm,.01mm : %D draw fullcircle scaled i withpen pencircle xscaled (i/10) yscaled (i/20) rotated 45 ; %D endfor ; %D \stopMPcode %D \stoplinecorrection %D The following explanation of the conversion process was %D posted to the \PDFTEX\ mailing list by Tanmoy. The original %D macro was part of a set of macro's that included sinus and %D cosinus calculations as well as scaling and translating. The %D \METAPOST\ to \PDF\ conversion however only needs %D transformation. %M \start \switchtobodyfont [ss] %D Given a point $(U_x, U_y)$ in user coordinates, the business %D of \POSTSCRIPT\ is to convert it to device space. Let us say %D that the device space coordinates are $(D_x, D_y)$. Then, in %D \POSTSCRIPT\ $(D_x, D_y)$ can be written in terms of %D $(U_x, U_y)$ in matrix notation, either as %D %D \placeformula %D \startformula %D \pmatrix{D_x&D_y&1\cr} = \pmatrix{U_x&U_y&1\cr} %D \pmatrix{s_x&r_x&0\cr %D r_y&s_y&0\cr %D t_x&t_y&1\cr} %D \stopformula %D %D or %D %D \placeformula %D \startformula %D \pmatrix{D_x\cr D_y\cr 1} = \pmatrix{s_x&r_y&t_x\cr %D r_x&s_y&t_y\cr %D 0 &0 &1 \cr} %D \pmatrix{U_x\cr %D U_y\cr %D 1 \cr} %D \stopformula %D %D both of which is a shorthand for the same set of equations: %D %D \placeformula %D \startformula %D D_x = s_x U_x + r_y U_y + t_x %D \stopformula %D %D \placeformula %D \startformula %D D_y = r_x U_x + s_y U_y + t_y %D \stopformula %D %D which define what is called an `affine transformation'. %D %D \POSTSCRIPT\ represents the `transformation matrix' as a %D six element matrix instead of a $3\times 3$ array because %D three of the elements are always~0, 0 and~1. Thus the above %D transformation is written in postscript as $[s_x\, r_x\, %D r_y\, s_y\, t_x\, t_y]$. However, when doing any %D calculations, it is useful to go back to the original %D matrix notation (whichever: I will use the second) and %D continue from there. %D %D As an example, if the current transformation matrix is %D $[s_x\, r_x\, r_y\, s_y\, t_x\, t_y]$ and you say \typ{[a b %D c d e f] concat}, this means: %D %D \startnarrower %D Take the user space coordinates and transform them to an %D intermediate set of coordinates using array $[a\, b\, c\, d\, %D e\, f]$ as the transformation matrix. %D %D Take the intermediate set of coordinates and change them to %D device coordinates using array $[s_x\, r_x\, r_y\, s_y\, t_x\, t_y]$ %D as the transformation matrix. %D \stopnarrower %D %D Well, what is the net effect? In matrix notation, it is %D %D \placeformula %D \startformula %D \pmatrix{I_x\cr I_y\cr 1\cr} = \pmatrix{a&c&e\cr %D b&d&f\cr %D 0&0&1\cr} %D \pmatrix{U_x\cr %D U_y\cr %D 1 \cr} %D \stopformula %D %D \placeformula %D \startformula %D \pmatrix{D_y\cr D_y\cr 1\cr} = \pmatrix{s_x&r_y&t_x\cr %D r_x&s_y&t_y\cr %D 0 &0 &1 \cr} %D \pmatrix{I_x\cr %D I_y\cr %D 1 \cr} %D \stopformula %D %D where $(I_x, I_y)$ is the intermediate coordinate. %D %D Now, the beauty of the matrix notation is that when there is %D a chain of such matrix equations, one can always compose %D them into one matrix equation using the standard matrix %D composition law. The composite matrix from two matrices can %D be derived very easily: the element in the $i$\high{th} %D horizontal row and $j$\high{th} vertical column is %D calculated by`multiplying' the $i$\high{th} row of the first %D matrix and the $j$\high{th} column of the second matrix (and %D summing over the elements). Thus, in the above: %D %D \placeformula %D \startformula %D \pmatrix{D_x\cr D_y\cr 1} = \pmatrix{s_x^\prime&r_y^\prime&t_x^\prime\cr %D r_x^\prime&s_y^\prime&t_y^\prime\cr %D 0 &0 &0 \cr} %D \pmatrix{U_x\cr %D U_y\cr %D 1 \cr} %D \stopformula %D %D with %D %D \placeformula %D \startformula %D \eqalign %D {s_x^\prime & = s_x a + r_y b \cr %D r_x^\prime & = r_x a + s_y b \cr %D r_y^\prime & = s_x c + r_y d \cr %D s_y^\prime & = r_x c + s_y d \cr %D t_x^\prime & = s_x e + r_y f + t_x \cr %D t_y^\prime & = r_x e + s_y f + t_y \cr} %D \stopformula %D In fact, the same rule is true not only when one is going %D from user coordinates to device coordinates, but whenever %D one is composing two `transformations' together %D (transformations are `associative'). Note that the formula %D is not symmetric: you have to keep track of which %D transformation existed before (i.e.\ the equivalent of %D $[s_x\, r_x\, r_y\, s_y\, t_x\, t_y]$) and which was %D specified later (i.e.\ the equivalent of $[a\, b\, c\, d\, %D e\, f]$). Note also that the language can be rather %D confusing: the one specified later `acts earlier', %D converting the user space coordinates to intermediate %D coordinates, which are then acted upon by the pre||existing %D transformation. The important point is that order of %D transformation matrices cannot be flipped (transformations %D are not `commutative'). %D %D Now what does it mean to move a transformation matrix %D before a drawing? What it means is that given a point %D $(P_x, P_y)$ we need a different set of coordinates %D $(P_x^\prime, P_y^\prime)$ such that if the transformation %D acts on $(P_x^\prime, P_y^\prime)$, they produce $(P_x, %D P_y)$. That is we need to solve the set of equations: %D %D \placeformula %D \startformula %D \pmatrix{P_x\cr P_y\cr 1\cr} = \pmatrix{s_x&r_y&t_x\cr %D r_x&s_y&t_y\cr %D 0 &0 &1 \cr} %D \pmatrix{P_x^\prime\cr %D P_y^\prime\cr %D 1 \cr} %D \stopformula %D %D Again matrix notation comes in handy (i.e. someone has %D already solved the problem for us): we need the inverse %D transformation matrix. The inverse transformation matrix can %D be calculated very easily: %D %D \placeformula %D \startformula %D \pmatrix{P_x^\prime\cr P_y^\prime\cr 1\cr} = %D \pmatrix{s_x^\prime&r_y^\prime&t_x^\prime\cr %D r_x^\prime&s_y^\prime&t_y^\prime\cr %D 0 &0 &1 \cr} %D \pmatrix{P_x\cr %D P_y\cr %D 1 \cr} %D \stopformula %D %D where, the inverse transformation matrix is given by %D %D \placeformula %D \startformula %D \eqalign %D {D & = s_x s_y - r_x r_y \cr %D s_x^\prime & = s_y / D \cr %D s_y^\prime & = s_x / D \cr %D r_x^\prime & = - r_x / D \cr %D r_y^\prime & = - r_y / D \cr %D t_x^\prime & = ( - s_y t_x + r_y t_y ) / D \cr %D t_y^\prime & = ( r_x t_x - s_x t_y ) / D \cr} %D \stopformula %D %D And you can see that when expanded out, this does %D give the formulas: %D %D \placeformula %D \startformula %D P_x^\prime = { { s_y(p_x-t_x) + r_y(t_y-p_y) } \over %D { s_x s_y-r_x r_y } } %D \stopformula %D %D \placeformula %D \startformula %D P_y^\prime = { { s_x(p_y-t_y) + r_x(t_x-p_x) } \over %D { s_x*s_y-r_x*r_y } } %D \stopformula %D %D The code works by representing a real number by converting %D it to a dimension to be put into a \DIMENSION\ register: 2.3 would %D be represented as 2.3pt for example. In this scheme, %D multiplying two numbers involves multiplying the \DIMENSION\ %D registers and dividing by 65536. Accuracy demands that the %D division be done as late as possible, but overflow %D considerations need early division. %D %D Division involves dividing the two \DIMENSION\ registers and %D multiplying the result by 65536. Again, accuracy would %D demand that the numerator be multiplied (and|/|or the %D denominator divided) early: but that can lead to overflow %D which needs to be avoided. %D %D If nothing is known about the numbers to start with (in %D concat), I have chosen to divide the 65536 as a 256 in each %D operand. However, in the series calculating the sine and %D cosine, I know that the terms are small (because I never %D have an angle greater than 45 degrees), so I chose to %D apportion the factor in a different way. %M \stop %D The path is output using the values saved on the stack. If %D needed, all coordinates are recalculated. \def\finishMPpath {\PDFcode{\ifcase\finiMPpath W n\or S\or f\or B\fi}} \def\processMPpath {\checkMPpath \ifcase\nofMPsegments\else \flushMPpath \closeMPpath \finishMPpath \fi \let\handleMPsequence\dohandleMPsequence \resetMPstack \nofMPsegments0 \handleMPsequence} %D The following \METAPOST\ code is quite valid but, when %D processed and converted to \PDF, will make a file %D unprintable on a Hewlett Packard printer (from Acrobat %D $v<=5$). Who is to blame, the driver of the OS layer in %D between, is hard to determine, so we add an additional %D check. %D %D \starttyping %D clip currentpicture to origin -- cycle ; %D setbounds currentpicture to fullsquare scaled 5cm ; %D \stoptyping \def\checkMPpath {\ifcase\finiMPpath \ifnum\nofMPsegments<3 % n is one ahead \message{omitting zero clip path}% \nofMPsegments0 \fi \fi} %D In \PDF\ the \type{cm} operator must precede the path %D specification. We therefore can output the \type{cm} at %D the moment we encounter it. \def\handleMPpathconcat {\presetMPconcat \PDFcode{\gMPs1 \gMPs2 \gMPs3 \gMPs4 \gMPs5 \gMPs6 cm}% \resetMPstack} \def\handleMPpathscale {\presetMPscale \PDFcode{\gMPs1 0 0 \gMPs2 0 0 cm}% \resetMPstack} %D This macro interprets the path and saves it as compact as %D possible. \def\dohandleMPpath#1% {\ifcase\lccode`#1\relax \expandafter\dohandleMPpathA \else \expandafter\dohandleMPpathB \fi#1} %\def\dohandleMPpathA#1 % % {\setMPargument{#1}% % \handleMPsequence} \let\dohandleMPpathA\setMPsequence % \def\dohandleMPpathB#1 % % {\def\somestring{#1}% % \ifx\somestring\PSlineto % \setMPkeyword0 % \else\ifx\somestring\PScurveto % \setMPkeyword1 % \else\ifx\somestring\PSrlineto % \setMPkeyword2 % \else\ifx\somestring\PSmoveto % \setMPkeyword3 % \else\ifx\somestring\PSclip % % \chardef\finiMPpath0 % already % \let\handleMPsequence\processMPpath % \else\ifx\somestring\PSgsave % \chardef\finiMPpath3 % \else\ifx\somestring\PSgrestore % \else\ifx\somestring\PSfill % \ifcase\finiMPpath % \chardef\finiMPpath2 % \let\handleMPsequence\processMPpath % \fi % \else\ifx\somestring\PSstroke % \ifcase\finiMPpath % \chardef\finiMPpath1 % \fi % \let\handleMPsequence\processMPpath % \else\ifx\somestring\PSclosepath % \def\closeMPpath{\PDFcode{h}}% % \else\ifx\somestring\PSconcat % \cleanupMPconcat % \let\flushMPpath\flushconcatMPpath % \handleMPpathconcat % \else\ifx\somestring\PSscale % \let\flushMPpath\flushconcatMPpath % \handleMPpathscale % \fi\fi\fi\fi\fi\fi\fi\fi\fi\fi\fi\fi % \handleMPsequence} \def\installMPSkeywordP#1#2% {\expandafter\def\csname\@@MP:P:#1\endcsname{#2}} \def\installMPSshortcutP#1#2% todo: \let {\expandafter\let\csname\@@MP:P:#1\expandafter\endcsname\csname\@@MP:P:#2\endcsname} \def\dohandleMPpathB#1 % {\def\somestring{#1}% \ifcsname\@@MP:P:\somestring\endcsname \csname\@@MP:P:\somestring\expandafter\endcsname \fi \handleMPsequence} \ifx\eTeXversion\undefined \def\dohandleMPpathB#1 % {\def\somestring{#1}% \csname\@@MP:P:\somestring\endcsname \handleMPsequence} \fi \installMPSkeywordP \PSlineto {\setMPkeyword0 } \installMPSkeywordP \PScurveto {\setMPkeyword1 } \installMPSkeywordP \PSrlineto {\setMPkeyword2 } \installMPSkeywordP \PSmoveto {\edef\lastMPmoveX{\gMPs1}% \edef\lastMPmoveY{\gMPs2}% \resetMPstack \setMPkeyword3 } \installMPSkeywordP \PSclip {% \chardef\finiMPpath\zerocount % already \let\handleMPsequence\processMPpath} \installMPSkeywordP \PSgsave {\chardef\finiMPpath3 } \installMPSkeywordP \PSgrestore {} \installMPSkeywordP \PSfill {\ifcase\finiMPpath \chardef\finiMPpath2 \let\handleMPsequence\processMPpath \fi} \installMPSkeywordP \PSstroke {\ifcase\finiMPpath \chardef\finiMPpath1 \fi \let\handleMPsequence\processMPpath} \installMPSkeywordP \PSclosepath {\def\closeMPpath{\PDFcode{h}}} \installMPSkeywordP \PSconcat {\cleanupMPconcat \let\flushMPpath\flushconcatMPpath \handleMPpathconcat} \installMPSkeywordP \PSscale {\let\flushMPpath\flushconcatMPpath \handleMPpathscale} \installMPSshortcutP {l} \PSlineto \installMPSshortcutP {r} \PSrlineto \installMPSshortcutP {m} \PSmoveto \installMPSshortcutP {c} \PScurveto \installMPSshortcutP {q} \PSgsave \installMPSshortcutP {Q} \PSgrestore \installMPSshortcutP {S} \PSstroke \installMPSshortcutP {F} \PSfill \installMPSshortcutP {B} \PSgsave \installMPSshortcutP {W} \PSclip \installMPSshortcutP {p} \PSclosepath \installMPSshortcutP {s} \PSscale \installMPSshortcutP {t} \PSconcat %D The main conversion command is: %D %D \starttyping %D \convertMPtoPDF {filename} {x scale} {y scale} %D \stoptyping %D %D The dimensions are derived from the bounding box. So we %D only have to say: %D %D \starttyping %D \convertMPtoPDF{mp-pra-1.eps}{1}{1} %D \convertMPtoPDF{mp-pra-1.eps}{.5}{.5} %D \stoptyping %D \macros %D {makeMPintoPDFobject,lastPDFMPobject} %D %D For experts there are a few more options. When attributes %D are to be added, the code must be embedded in an object %D accompanied with the appropriate directives. One can %D influence this process with \type {\makeMPintoPDFobject}. %D %D This option defaults to~0, because \CONTEXT\ takes care %D of objects at another level, which saves some bytes. %D %D \starttabulate[|l|l|p|] %D \NC 0 \NC never \NC don't use an object \NC\NR %D \NC 1 \NC always \NC always use an object \NC\NR %D \NC 2 \NC optional \NC use object when needed \NC\NR %D \stoptabulate %D %D The last object number used is avaliable in the macro %D \type {\lastPDFMPobject}. \ifx\makeMPintoPDFobject\undefined \chardef\makeMPintoPDFobject=0 \fi \def\lastPDFMPobject{0} %D The additional code needed can be made available in the %D (global) macro \type {\currentPDFresources}. \let\currentPDFresources\empty \newtoks\everyMPtoPDFconversion \def\convertMPtoPDF % #1#2#3% {\bgroup \defineMPtoPDFfallbacks \ifx\pdfdecimaldigits\undefined\else \pdfdecimaldigits=5 \fi % new \setbox\scratchbox\vbox\bgroup \xdef\MPheight{0pt}% \xdef\MPwidth {0pt}% \forgetall \offinterlineskip \startMPresources \doprocessMPtoPDFfile} % %D The next one is kind of private and probably will become obsolete): \def\processMPtoPDFfile % file xscale yscale {\bgroup \let\finishMPgraphic\egroup \doprocessMPtoPDFfile} \let\setMPextensions\relax \def\doprocessMPtoPDFfile#1#2#3% file xscale yscale {\setMPspecials \setMPextensions \the\everyMPtoPDFconversion \catcode`\^^M=\@@endofline \startMPscanning \let\do\empty \xdef\MPxscale{#2}% \xdef\MPyscale{#3}% \xdef\MPxoffset{0}% \xdef\MPyoffset{0}% \xdef\MPyshift{0pt}% \donefalse \let\handleMPsequence\dohandleMPsequence \message{[MP to PDF]}% was: [MP to PDF #1] but there is a (#1) anyway \input#1\relax} \def\PDFMPformoffset {\ifx\objectoffset\undefined0pt\else\objectoffset\fi} \chardef\blackoutMPgraphic0 % in ConTeXt 1 \def\finishMPgraphic {\stopMPresources \egroup \setbox\scratchbox\vbox {\forgetall \hbox {\PDFcode{q \MPxscale\space 0 0 \MPyscale\space \MPxoffset\space \MPyoffset\space cm}% \ifcase\blackoutMPgraphic\or\PDFcode{0 g 0 G}\fi \lower\MPyshift\box\scratchbox % unscaled shift \PDFcode{Q}}}% \ht\scratchbox\MPheight \wd\scratchbox\MPwidth \dp\scratchbox0pt\relax \dopackageMPgraphic\scratchbox \egroup \endinput} %D Alternative for \PDFTEX. We cannot come up with something more contexy %D because this module is also used in \LATEX. \def\dopackageMPgraphic#1% #1 = boxregister {%\ifx\pdfxform\undefined % \chardef\makeMPintoPDFobject0 % no pdftex at all %\else\ifx\pdftexversion\undefined % \chardef\makeMPintoPDFobject0 % no pdftex at all %\else\ifnum\pdftexversion<14 % \chardef\makeMPintoPDFobject0 % no resource support %\else % % keep the default value %\fi\fi\fi \ifcase\makeMPintoPDFobject\or\or\ifx\currentPDFresources\empty\else % an existing value of 2 signals object support (set elsewhere) \chardef\makeMPintoPDFobject1 \fi\fi \ifcase\makeMPintoPDFobject \box#1% \or \scratchdimen\PDFMPformoffset\relax \ifdim\scratchdimen>0pt % compensate for error \setbox#1\vbox spread 2\scratchdimen {\forgetall\vss\hbox spread 2\scratchdimen{\hss\box#1\hss}\vss}% \fi \setMPPDFobject{\currentPDFresources}{#1}% \ifdim\scratchdimen>0pt % compensate for error \vbox to \MPheight {\forgetall\vss\hbox to \MPwidth{\hss\getMPPDFobject\hss}\vss}% \else \getMPPDFobject \fi \global\let\currentPDFresources\empty \else \box#1% \fi} \def\setMPPDFobject#1#2% resources boxnumber {\ifx\pdfxform\undefined \def\getMPPDFobject{\box#2}% \else\ifx\pdftexversion\undefined \def\getMPPDFobject{\box#2}% \else\ifnum\pdftexversion<14 \def\getMPPDFobject{\box#2}% \else \ifx\everyPDFxform\undefined\else\the\everyPDFxform\fi \immediate\pdfxform resources{#1}#2% \edef\getMPPDFobject{\noexpand\pdfrefxform\the\pdflastxform}% \fi\fi\fi} \let\getMPPDFobject\relax %D \macros %D {deleteMPgraphic, %D startMPresources, %D stopMPresources} %D %D Here are a few hooks for \CONTEXT\ specific things. \ifx\deleteMPgraphic\undefined \def\deleteMPgraphic#1{} \fi \ifx\startMPresources\undefined \let\startMPresources\relax \let\stopMPresources\relax \fi %D \macros %D {twodigitMPoutput} %D %D We can limit the precision to two digits after the comma %D by saying: %D %D \starttyping %D \twodigitMPoutput %D \stoptyping %D %D This option only works in \CONTEXT\ combined with \ETEX. \def\twodigitMPoutput {\let\!MP \twodigitrounding \def\!MPgMPs##1{\twodigitrounding{\gMPs##1}}% \def\!MPgMPa##1{\twodigitrounding{\gMPa##1}}} \let\!MP \empty \let\!MPgMPa\gMPa \let\!MPgMPs\gMPs %D This kind of conversion is possible because \METAPOST\ %D does all the calculations. Converting other \POSTSCRIPT\ %D files would drive both me and \TEX\ crazy. \protect \endinput