%% \CharacterTable %% {Upper-case \A\B\C\D\E\F\G\H\I\J\K\L\M\N\O\P\Q\R\S\T\U\V\W\X\Y\Z %% Lower-case \a\b\c\d\e\f\g\h\i\j\k\l\m\n\o\p\q\r\s\t\u\v\w\x\y\z %% Digits \0\1\2\3\4\5\6\7\8\9 %% Exclamation \! Double quote \" Hash (number) \# %% Dollar \$ Percent \% Ampersand \& %% Acute accent \' Left paren \( Right paren \) %% Asterisk \* Plus \+ Comma \, %% Minus \- Point \. Solidus \/ %% Colon \: Semicolon \; Less than \< %% Equals \= Greater than \> Question mark \? %% Commercial at \@ Left bracket \[ Backslash \\ %% Right bracket \] Circumflex \^ Underscore \_ %% Grave accent \` Left brace \{ Vertical bar \| %% Right brace \} Tilde \~} %% %\iffalse % % (c) Copyright 2007-2016 Apostolos Syropoulos % This program can be redistributed and/or modified under the % terms of the LaTeX Project Public License Distributed from % http://www.latex-project.org/lppl.txt; either % version 1.3c of the License, or any later version. % % This work has the LPPL maintenance status `maintained'. % % Please report errors or suggestions for improvement to % % Apostolos Syropoulos (asyropoulos@yahoo.com) % %\fi % \CheckSum{1881} % \iffalse This is a Metacomment % %\ProvidesFile{xgreek.sty} % % [2016/04/28 v2.7 Package `xgreek.sty'] % % \begin{macrocode} %<*driver> \documentclass{ltxdoc} \GetFileInfo{xgreek.drv} \usepackage{xltxtra} \begin{document} \newICUfeature{Contextuals}{Alts}{+calt} \setmainfont[Mapping=tex-text,Script=Greek, SmallCapsFeatures={Contextuals=Alts}]{Universal Modern} \setmonofont{UM Typewriter} \setsansfont[Mapping=tex-text]{GFS Neohellenic} \DocInput{xgreek.dtx} \end{document} % % \end{macrocode} % \fi %\StopEventually{} %\title{The \textsf{xgreek} package} %\author{Apostolos Syropoulos\\ % Xanthi, Greece\\ % \texttt{asyropoulos@yahoo.com}} % \date{2009/11/23\\ Last Updated 2016/04/28} %\maketitle % \begin{abstract} % The \textsf{xgreek} package provides rudimentary support for Greek language % typesetting with \XeLaTeX. In particular, it provides support for modern Greek (either % monotonic or polytonic) and ancient Greek. %\end{abstract} % %\section{Introduction} % % The \textsf{xgreek} package provides rudimentary support for Greek language % typesetting with \XeLaTeX. Users will be able to typeset documents in either % modern Greek (monotonic or polytonic) or ancient Greek by selecting the appropriate % package option. The default ``language'' is monotonic Greek. % % % \section{The Source Code} % According to the Unicode standard %\begin{center} %|http://www.unicode.org/Public/UNIDATA/UnicodeData.txt| %\end{center} % the uppercase form of \textsc{greek small letter epsilon with tonos} is % \textsc{greek capital letter eta with tonos}. This is certainly wrong. The main reason % is that accents are not part of the letter as for example is the case with % \textsc{latin small letter k with caron}. Since, \XeLaTeX\ blindly follows the Unicode % standard, commands like |\MakeUppercase| produce wrong output. For this reason % I first need to set up the correct |\uccode|s and |\lccode|s. % \begin{macrocode} %<*xgreek> \message{Package `xgreek' version 2.7 by Apostolos Syropoulos} \global\lccode"0370="0371 \global\uccode"0370="0370 \global\lccode"0371="0371 \global\uccode"0371="0370 \global\lccode"0372="0373 \global\uccode"0372="0372 \global\lccode"0373="0373 \global\uccode"0373="0372 \global\lccode"0376="0377 \global\uccode"0376="0376 \global\lccode"0377="0377 \global\uccode"0377="0376 \global\lccode"03FD="037B \global\uccode"03FD="03FD \global\lccode"037B="037B \global\uccode"037B="03FD \global\lccode"03FE="037C \global\uccode"03FE="03FE \global\lccode"037C="037C \global\uccode"037C="03FE \global\lccode"03FF="037D \global\uccode"03FF="03FF \global\lccode"037D="037D \global\uccode"037D="03FF \global\lccode"0386="03AC \global\uccode"0386="0391 \global\lccode"0388="03AD \global\uccode"0388="0395 \global\lccode"0389="03AC \global\uccode"0389="0397 \global\lccode"038A="03AF \global\uccode"038A="0399 \global\lccode"038C="03CC \global\uccode"038C="039F \global\lccode"038E="03CD \global\uccode"038E="03A5 \global\lccode"038F="03CE \global\uccode"038F="03A9 \global\lccode"0390="0390 \global\uccode"0390="03AA \global\lccode"0391="03B1 \global\uccode"0391="0391 \global\lccode"0392="03B2 \global\uccode"0392="0392 \global\lccode"0393="03B3 \global\uccode"0393="0393 \global\lccode"0394="03B4 \global\uccode"0394="0394 \global\lccode"0395="03B5 \global\uccode"0395="0395 \global\lccode"0396="03B6 \global\uccode"0396="0396 \global\lccode"0397="03B7 \global\uccode"0397="0397 \global\lccode"0398="03B8 \global\uccode"0398="0398 \global\lccode"0399="03B9 \global\uccode"0399="0399 \global\lccode"039A="03BA \global\uccode"039A="039A \global\lccode"039B="03BB \global\uccode"039B="039B \global\lccode"039C="03BC \global\uccode"039C="039C \global\lccode"039D="03BD \global\uccode"039D="039D \global\lccode"039E="03BE \global\uccode"039E="039E \global\lccode"039F="03BF \global\uccode"039F="039F \global\lccode"03A0="03C0 \global\uccode"03A0="03A0 \global\lccode"03A1="03C1 \global\uccode"03A1="03A1 \global\lccode"03A3="03C3 \global\uccode"03A3="03A3 \global\lccode"03A4="03C4 \global\uccode"03A4="03A4 \global\lccode"03A5="03C5 \global\uccode"03A5="03A5 \global\lccode"03A6="03C6 \global\uccode"03A6="03A6 \global\lccode"03A7="03C7 \global\uccode"03A7="03A7 \global\lccode"03A8="03C8 \global\uccode"03A8="03A8 \global\lccode"03A9="03C9 \global\uccode"03A9="03A9 \global\lccode"03AA="03CA \global\uccode"03AA="03AA \global\lccode"03AB="03CB \global\uccode"03AB="03AB \global\lccode"03AC="03AC \global\uccode"03AC="0391 \global\lccode"03AD="03AD \global\uccode"03AD="0395 \global\lccode"03AE="03AE \global\uccode"03AE="0397 \global\lccode"03AF="03AF \global\uccode"03AF="0399 \global\lccode"03B0="03B0 \global\uccode"03B0="03AB \global\lccode"03B1="03B1 \global\uccode"03B1="0391 \global\lccode"03B2="03B2 \global\uccode"03B2="0392 \global\lccode"03B3="03B3 \global\uccode"03B3="0393 \global\lccode"03B4="03B4 \global\uccode"03B4="0394 \global\lccode"03B5="03B5 \global\uccode"03B5="0395 \global\lccode"03B6="03B6 \global\uccode"03B6="0396 \global\lccode"03B7="03B7 \global\uccode"03B7="0397 \global\lccode"03B8="03B8 \global\uccode"03B8="0398 \global\lccode"03B9="03B9 \global\uccode"03B9="0399 \global\lccode"03BA="03BA \global\uccode"03BA="039A \global\lccode"03BB="03BB \global\uccode"03BB="039B \global\lccode"03BC="03BC \global\uccode"03BC="039C \global\lccode"03BD="03BD \global\uccode"03BD="039D \global\lccode"03BE="03BE \global\uccode"03BE="039E \global\lccode"03BF="03BF \global\uccode"03BF="039F \global\lccode"03C0="03C0 \global\uccode"03C0="03A0 \global\lccode"03C1="03C1 \global\uccode"03C1="03A1 \global\lccode"03C2="03C2 \global\uccode"03C2="03A3 \global\lccode"03C3="03C3 \global\uccode"03C3="03A3 \global\lccode"03C4="03C4 \global\uccode"03C4="03A4 \global\lccode"03C5="03C5 \global\uccode"03C5="03A5 \global\lccode"03C6="03C6 \global\uccode"03C6="03A6 \global\lccode"03C7="03C7 \global\uccode"03C7="03A7 \global\lccode"03C8="03C8 \global\uccode"03C8="03A8 \global\lccode"03C9="03C9 \global\uccode"03C9="03A9 \global\lccode"03CA="03CA \global\uccode"03CA="03AA \global\lccode"03CB="03CB \global\uccode"03CB="03AB \global\lccode"03CC="03CC \global\uccode"03CC="039F \global\lccode"03CD="03CD \global\uccode"03CD="03A5 \global\lccode"03CE="03CE \global\uccode"03CE="03A9 \global\lccode"03D0="03D0 \global\uccode"03D0="0392 \global\lccode"03D1="03D1 \global\uccode"03D1="0398 \global\lccode"03D2="03C5 \global\uccode"03D2="03A5 \global\lccode"03D3="03CD \global\uccode"03D3="03A5 \global\lccode"03D4="03CB \global\uccode"03D4="03AB \global\lccode"03D5="03C6 \global\uccode"03D5="03A6 \global\lccode"03D6="03C0 \global\uccode"03D6="03A0 \global\lccode"03DA="03DB \global\uccode"03DA="03DA \global\lccode"03DB="03DB \global\uccode"03DB="03DA \global\lccode"03DC="03DD \global\uccode"03DC="03DC \global\lccode"03DD="03DD \global\uccode"03DD="03DC \global\lccode"03DE="03DF \global\uccode"03DE="03DE \global\lccode"03DF="03DF \global\uccode"03DF="03DE \global\lccode"03E0="03E1 \global\uccode"03E0="03E0 \global\lccode"03E1="03E1 \global\uccode"03E1="03E0 \global\lccode"03F0="03BA \global\uccode"03F0="039A \global\lccode"03F1="03C1 \global\uccode"03F1="03A1 \global\lccode"03F2="03F2 \global\uccode"03F2="03F9 \global\lccode"03F9="03F2 \global\uccode"03F9="03F9 \global\lccode"1F00="1F00 \global\uccode"1F00="0391 \global\lccode"1F01="1F01 \global\uccode"1F01="0391 \global\lccode"1F02="1F02 \global\uccode"1F02="0391 \global\lccode"1F03="1F03 \global\uccode"1F03="0391 \global\lccode"1F04="1F04 \global\uccode"1F04="0391 \global\lccode"1F05="1F05 \global\uccode"1F05="0391 \global\lccode"1F06="1F06 \global\uccode"1F06="0391 \global\lccode"1F07="1F07 \global\uccode"1F07="0391 \global\lccode"1F08="1F00 \global\uccode"1F08="0391 \global\lccode"1F09="1F01 \global\uccode"1F09="0391 \global\lccode"1F0A="1F02 \global\uccode"1F0A="0391 \global\lccode"1F0B="1F03 \global\uccode"1F0B="0391 \global\lccode"1F0C="1F04 \global\uccode"1F0C="0391 \global\lccode"1F0D="1F05 \global\uccode"1F0D="0391 \global\lccode"1F0E="1F06 \global\uccode"1F0E="0391 \global\lccode"1F0F="1F07 \global\uccode"1F0F="0391 \global\lccode"1F10="1F10 \global\uccode"1F10="0395 \global\lccode"1F11="1F11 \global\uccode"1F11="0395 \global\lccode"1F12="1F12 \global\uccode"1F12="0395 \global\lccode"1F13="1F13 \global\uccode"1F13="0395 \global\lccode"1F14="1F14 \global\uccode"1F14="0395 \global\lccode"1F15="1F15 \global\uccode"1F15="0395 \global\lccode"1F18="1F10 \global\uccode"1F18="0395 \global\lccode"1F19="1F11 \global\uccode"1F19="0395 \global\lccode"1F1A="1F12 \global\uccode"1F1A="0395 \global\lccode"1F1B="1F13 \global\uccode"1F1B="0395 \global\lccode"1F1C="1F14 \global\uccode"1F1C="0395 \global\lccode"1F1D="1F15 \global\uccode"1F1D="0395 \global\lccode"1F20="1F20 \global\uccode"1F20="0397 \global\lccode"1F21="1F21 \global\uccode"1F21="0397 \global\lccode"1F22="1F22 \global\uccode"1F22="0397 \global\lccode"1F23="1F23 \global\uccode"1F23="0397 \global\lccode"1F24="1F24 \global\uccode"1F24="0397 \global\lccode"1F25="1F25 \global\uccode"1F25="0397 \global\lccode"1F26="1F26 \global\uccode"1F26="0397 \global\lccode"1F27="1F27 \global\uccode"1F27="0397 \global\lccode"1F28="1F20 \global\uccode"1F28="0397 \global\lccode"1F29="1F21 \global\uccode"1F29="0397 \global\lccode"1F2A="1F22 \global\uccode"1F2A="0397 \global\lccode"1F2B="1F23 \global\uccode"1F2B="0397 \global\lccode"1F2C="1F24 \global\uccode"1F2C="0397 \global\lccode"1F2D="1F25 \global\uccode"1F2D="0397 \global\lccode"1F2E="1F26 \global\uccode"1F2E="0397 \global\lccode"1F2F="1F27 \global\uccode"1F2F="0397 \global\lccode"1F30="1F30 \global\uccode"1F30="0399 \global\lccode"1F31="1F31 \global\uccode"1F31="0399 \global\lccode"1F32="1F32 \global\uccode"1F32="0399 \global\lccode"1F33="1F33 \global\uccode"1F33="0399 \global\lccode"1F34="1F34 \global\uccode"1F34="0399 \global\lccode"1F35="1F35 \global\uccode"1F35="0399 \global\lccode"1F36="1F36 \global\uccode"1F36="0399 \global\lccode"1F37="1F37 \global\uccode"1F37="0399 \global\lccode"1F38="1F30 \global\uccode"1F38="0399 \global\lccode"1F39="1F31 \global\uccode"1F39="0399 \global\lccode"1F3A="1F32 \global\uccode"1F3A="0399 \global\lccode"1F3B="1F33 \global\uccode"1F3B="0399 \global\lccode"1F3C="1F34 \global\uccode"1F3C="0399 \global\lccode"1F3D="1F35 \global\uccode"1F3D="0399 \global\lccode"1F3E="1F36 \global\uccode"1F3E="0399 \global\lccode"1F3F="1F37 \global\uccode"1F3F="0399 \global\lccode"1F40="1F40 \global\uccode"1F40="039F \global\lccode"1F41="1F41 \global\uccode"1F41="039F \global\lccode"1F42="1F42 \global\uccode"1F42="039F \global\lccode"1F43="1F43 \global\uccode"1F43="039F \global\lccode"1F44="1F44 \global\uccode"1F44="039F \global\lccode"1F45="1F45 \global\uccode"1F45="039F \global\lccode"1F48="1F40 \global\uccode"1F48="039F \global\lccode"1F49="1F41 \global\uccode"1F49="039F \global\lccode"1F4A="1F42 \global\uccode"1F4A="039F \global\lccode"1F4B="1F43 \global\uccode"1F4B="039F \global\lccode"1F4C="1F44 \global\uccode"1F4C="039F \global\lccode"1F4D="1F45 \global\uccode"1F4D="039F \global\lccode"1F50="1F50 \global\uccode"1F50="03A5 \global\lccode"1F51="1F51 \global\uccode"1F51="03A5 \global\lccode"1F52="1F52 \global\uccode"1F52="03A5 \global\lccode"1F53="1F53 \global\uccode"1F53="03A5 \global\lccode"1F54="1F54 \global\uccode"1F54="03A5 \global\lccode"1F55="1F55 \global\uccode"1F55="03A5 \global\lccode"1F56="1F56 \global\uccode"1F56="03A5 \global\lccode"1F57="1F57 \global\uccode"1F57="03A5 \global\lccode"1F59="1F51 \global\uccode"1F59="03A5 \global\lccode"1F5B="1F53 \global\uccode"1F5B="03A5 \global\lccode"1F5D="1F55 \global\uccode"1F5D="03A5 \global\lccode"1F5F="1F57 \global\uccode"1F5F="03A5 \global\lccode"1F60="1F60 \global\uccode"1F60="03A9 \global\lccode"1F61="1F61 \global\uccode"1F61="03A9 \global\lccode"1F62="1F62 \global\uccode"1F62="03A9 \global\lccode"1F63="1F63 \global\uccode"1F63="03A9 \global\lccode"1F64="1F64 \global\uccode"1F64="03A9 \global\lccode"1F65="1F65 \global\uccode"1F65="03A9 \global\lccode"1F66="1F66 \global\uccode"1F66="03A9 \global\lccode"1F67="1F67 \global\uccode"1F67="03A9 \global\lccode"1F68="1F60 \global\uccode"1F68="03A9 \global\lccode"1F69="1F61 \global\uccode"1F69="03A9 \global\lccode"1F6A="1F62 \global\uccode"1F6A="03A9 \global\lccode"1F6B="1F63 \global\uccode"1F6B="03A9 \global\lccode"1F6C="1F64 \global\uccode"1F6C="03A9 \global\lccode"1F6D="1F65 \global\uccode"1F6D="03A9 \global\lccode"1F6E="1F66 \global\uccode"1F6E="03A9 \global\lccode"1F6F="1F67 \global\uccode"1F6F="03A9 \global\lccode"1F70="1F70 \global\uccode"1F70="0391 \global\lccode"1F71="1F71 \global\uccode"1F71="0391 \global\lccode"1F72="1F72 \global\uccode"1F72="0395 \global\lccode"1F73="1F73 \global\uccode"1F73="0395 \global\lccode"1F74="1F74 \global\uccode"1F74="0397 \global\lccode"1F75="1F75 \global\uccode"1F75="0397 \global\lccode"1F76="1F76 \global\uccode"1F76="0399 \global\lccode"1F77="1F77 \global\uccode"1F77="0399 \global\lccode"1F78="1F78 \global\uccode"1F78="039F \global\lccode"1F79="1F79 \global\uccode"1F79="039F \global\lccode"1F7A="1F7A \global\uccode"1F7A="03A5 \global\lccode"1F7B="1F7B \global\uccode"1F7B="03A5 \global\lccode"1F7C="1F7C \global\uccode"1F7C="03A9 \global\lccode"1F7D="1F7D \global\uccode"1F7D="03A9 \global\lccode"1F80="1F80 \global\uccode"1F80="1FBC \global\lccode"1F81="1F81 \global\uccode"1F81="1FBC \global\lccode"1F82="1F82 \global\uccode"1F82="1FBC \global\lccode"1F83="1F83 \global\uccode"1F83="1FBC \global\lccode"1F84="1F84 \global\uccode"1F84="1FBC \global\lccode"1F85="1F85 \global\uccode"1F85="1FBC \global\lccode"1F86="1F86 \global\uccode"1F86="1FBC \global\lccode"1F87="1F87 \global\uccode"1F87="1FBC \global\lccode"1F88="1F80 \global\uccode"1F88="1FBC \global\lccode"1F89="1F81 \global\uccode"1F89="1FBC \global\lccode"1F8A="1F82 \global\uccode"1F8A="1FBC \global\lccode"1F8B="1F83 \global\uccode"1F8B="1FBC \global\lccode"1F8C="1F84 \global\uccode"1F8C="1FBC \global\lccode"1F8D="1F85 \global\uccode"1F8D="1FBC \global\lccode"1F8E="1F86 \global\uccode"1F8E="1FBC \global\lccode"1F8F="1F87 \global\uccode"1F8F="1FBC \global\lccode"1F90="1F90 \global\uccode"1F90="1FCC \global\lccode"1F91="1F91 \global\uccode"1F91="1FCC \global\lccode"1F92="1F92 \global\uccode"1F92="1FCC \global\lccode"1F93="1F93 \global\uccode"1F93="1FCC \global\lccode"1F94="1F94 \global\uccode"1F94="1FCC \global\lccode"1F95="1F95 \global\uccode"1F95="1FCC \global\lccode"1F96="1F96 \global\uccode"1F96="1FCC \global\lccode"1F97="1F97 \global\uccode"1F97="1FCC \global\lccode"1F98="1F90 \global\uccode"1F98="1FCC \global\lccode"1F99="1F91 \global\uccode"1F99="1FCC \global\lccode"1F9A="1F92 \global\uccode"1F9A="1FCC \global\lccode"1F9B="1F93 \global\uccode"1F9B="1FCC \global\lccode"1F9C="1F94 \global\uccode"1F9C="1FCC \global\lccode"1F9D="1F95 \global\uccode"1F9D="1FCC \global\lccode"1F9E="1F96 \global\uccode"1F9E="1FCC \global\lccode"1F9F="1F97 \global\uccode"1F9F="1FCC \global\lccode"1FA0="1FA0 \global\uccode"1FA0="1FFC \global\lccode"1FA1="1FA1 \global\uccode"1FA1="1FFC \global\lccode"1FA2="1FA2 \global\uccode"1FA2="1FFC \global\lccode"1FA3="1FA3 \global\uccode"1FA3="1FFC \global\lccode"1FA4="1FA4 \global\uccode"1FA4="1FFC \global\lccode"1FA5="1FA5 \global\uccode"1FA5="1FFC \global\lccode"1FA6="1FA6 \global\uccode"1FA6="1FFC \global\lccode"1FA7="1FA7 \global\uccode"1FA7="1FFC \global\lccode"1FA8="1FA0 \global\uccode"1FA8="1FFC \global\lccode"1FA9="1FA1 \global\uccode"1FA9="1FFC \global\lccode"1FAA="1FA2 \global\uccode"1FAA="1FFC \global\lccode"1FAB="1FA3 \global\uccode"1FAB="1FFC \global\lccode"1FAC="1FA4 \global\uccode"1FAC="1FFC \global\lccode"1FAD="1FA5 \global\uccode"1FAD="1FFC \global\lccode"1FAE="1FA6 \global\uccode"1FAE="1FFC \global\lccode"1FAF="1FA7 \global\uccode"1FAF="1FFC \global\lccode"1FB0="1FB0 \global\uccode"1FB0="1FB8 \global\lccode"1FB1="1FB1 \global\uccode"1FB1="1FB9 \global\lccode"1FB2="1FB2 \global\uccode"1FB2="1FBC \global\lccode"1FB3="1FB3 \global\uccode"1FB3="1FBC \global\lccode"1FB4="1FB4 \global\uccode"1FB4="1FBC \global\lccode"1FB6="1FB6 \global\uccode"1FB6="0391 \global\lccode"1FB7="1FB7 \global\uccode"1FB7="1FBC \global\lccode"1FB8="1FB0 \global\uccode"1FB8="1FB8 \global\lccode"1FB9="1FB1 \global\uccode"1FB9="1FB9 \global\lccode"1FBA="1F70 \global\uccode"1FBA="0391 \global\lccode"1FBB="1F71 \global\uccode"1FBB="0391 \global\lccode"1FBC="1FB3 \global\uccode"1FBC="1FBC \global\lccode"1FBD="1FBD \global\uccode"1FBD="1FBD \global\lccode"1FC2="1FC2 \global\uccode"1FC2="1FCC \global\lccode"1FC3="1FC3 \global\uccode"1FC3="1FCC \global\lccode"1FC4="1FC4 \global\uccode"1FC4="1FCC \global\lccode"1FC6="1FC6 \global\uccode"1FC6="0397 \global\lccode"1FC7="1FC7 \global\uccode"1FC7="1FCC \global\lccode"1FC8="1F72 \global\uccode"1FC8="0395 \global\lccode"1FC9="1F73 \global\uccode"1FC9="0395 \global\lccode"1FCA="1F74 \global\uccode"1FCA="0397 \global\lccode"1FCB="1F75 \global\uccode"1FCB="0397 \global\lccode"1FCC="1FC3 \global\uccode"1FCC="1FCC \global\lccode"1FD0="1FD0 \global\uccode"1FD0="1FD8 \global\lccode"1FD1="1FD1 \global\uccode"1FD1="1FD9 \global\lccode"1FD2="1FD2 \global\uccode"1FD2="03AA \global\lccode"1FD3="1FD3 \global\uccode"1FD3="03AA \global\lccode"1FD6="1FD6 \global\uccode"1FD6="0399 \global\lccode"1FD7="1FD7 \global\uccode"1FD7="03AA \global\lccode"1FD8="1FD0 \global\uccode"1FD8="1FD8 \global\lccode"1FD9="1FD1 \global\uccode"1FD9="1FD9 \global\lccode"1FDA="1F76 \global\uccode"1FDA="0399 \global\lccode"1FDB="1F77 \global\uccode"1FDB="0399 \global\lccode"1FE0="1FE0 \global\uccode"1FE0="1FE8 \global\lccode"1FE1="1FE1 \global\uccode"1FE1="1FE9 \global\lccode"1FE2="1FE2 \global\uccode"1FE2="03AB \global\lccode"1FE3="1FE3 \global\uccode"1FE3="03AB \global\lccode"1FE4="1FE4 \global\uccode"1FE4="03A1 \global\lccode"1FE5="1FE5 \global\uccode"1FE5="03A1 \global\lccode"1FE6="1FE6 \global\uccode"1FE6="03A5 \global\lccode"1FE7="1FE7 \global\uccode"1FE7="03AB \global\lccode"1FE8="1FE0 \global\uccode"1FE8="1FE8 \global\lccode"1FE9="1FE1 \global\uccode"1FE9="1FE9 \global\lccode"1FEA="1F7A \global\uccode"1FEA="03A5 \global\lccode"1FEB="1F7B \global\uccode"1FEB="03A5 \global\lccode"1FEC="1FE5 \global\uccode"1FEC="1FEC \global\lccode"1FF2="1FF2 \global\uccode"1FF2="1FFC \global\lccode"1FF3="1FF3 \global\uccode"1FF3="1FFC \global\lccode"1FF4="1FF4 \global\uccode"1FF4="1FFC \global\lccode"1FF6="1FF6 \global\uccode"1FF6="03A9 \global\lccode"1FF7="1FF7 \global\uccode"1FF7="1FFC \global\lccode"1FF8="1F78 \global\uccode"1FF8="039F \global\lccode"1FF9="1F79 \global\uccode"1FF9="039F \global\lccode"1FFA="1F7C \global\uccode"1FFA="03A9 \global\lccode"1FFB="1F7D \global\uccode"1FFB="03A9 \global\lccode"1FFC="1FF3 \global\uccode"1FFC="1FFC % \end{macrocode} % Next I define the various strings that correspond to the standard \LaTeX\ captions. % I first define the strings for monotonic Greek. % \begin{macrocode} \def\prefacename{Πρόλογος}% \def\refname{Αναφορές}% \def\abstractname{Περίληψη}% \def\bibname{Βιβλιογραφία}% \def\chaptername{Κεφάλαιο}% \def\appendixname{Παράρτημα}% \def\contentsname{Περιεχόμενα}% \def\listfigurename{Κατάλογος σχημάτων}% \def\listtablename{Κατάλογος πινάκων}% \def\indexname{Ευρετήριο}% \def\figurename{Σχήμα}% \def\tablename{Πίνακας}% \def\partname{Μέρος}% \def\enclname{Συνημμένα}% \def\ccname{Κοινοποίηση}% \def\headtoname{Προς}% \def\pagename{Σελίδα}% \def\seename{βλέπε}% \def\alsoname{βλέπε επίσης}% \def\proofname{Απόδειξη}% \def\glossaryname{Γλωσσάρι}% % \end{macrocode} % Macro |\polytonicn@mes| is invoked when polytonic Greek is the main language of the document. % \begin{macrocode} \def\polytonicn@mes{% \def\refname{Ἀναφορὲς}% \def\indexname{Εὑρετήριο}% \def\figurename{Σχῆμα}% \def\headtoname{Πρὸς}% \def\alsoname{βέλπε ἐπίσης}% \def\proofname{Ἀπόδειξη}% } % \end{macrocode} % Macro |\@ncientn@mes| is invoked when ancient Greek is the main language of the document. % \begin{macrocode} \def\@ncientn@mes{% \def\prefacename{Προοίμιον}% \def\abstractname{Περίληψις}% \def\bibname{Βιβλιογραφία}% \def\chaptername{Κεφάλαιον}% \def\appendixname{Παράρτημα}% \def\contentsname{Περιεχόμενα}% \def\listfigurename{Κατάλογος σχημάτων}% \def\listtablename{Κατάλογος πινάκων}% \def\indexname{Εὑρετήριον}% \def\tablename{Πίναξ}% \def\partname{Μέρος}% \def\enclname{Συνημμένως}% \def\ccname{Κοινοποίησις}% \def\headtoname{Πρὸς}% \def\pagename{Σελὶς}% \def\seename{ὃρα}% \def\alsoname{ὃρα ὡσαύτως}% \def\proofname{Ἀπόδειξις}% \def\glossaryname{Γλωσσάριον}% \def\refname{Ἀναφοραὶ}% \def\figurename{Σχῆμα}% \def\headtoname{Πρὸς}% } % \end{macrocode} % I redefine |\today| so as to produce dates in Greek. The % names of months are defined by the macro |\gr@month|. % \begin{macrocode} \def\gr@month{% \ifcase\month\or Ιανουαρίου\or Φεβρουαρίου\or Μαρτίου\or Απριλίου\or Μαΐου\or Ιουνίου\or Ιουλίου\or Αυγούστου\or Σεπτεμβρίου\or Οκτωβρίου\or Νοεμβρίου\or Δεκεμβρίου\fi} \def\today{\number\day \space \gr@month\space \number\year} % \end{macrocode} % When either polytonic Greek or ancient Greek is the main language of the document, % then the macro |\gr@c@month| becomes active. % \begin{macrocode} \def\gr@c@month{% \ifcase\month\or Ἰανουαρίου\or Φεβρουαρίου\or Μαρτίου\or Ἀπριλίου\or Μαΐου\or Ἰουνίου\or Ἰουλίου\or Αὐγούστου\or Σεπτεμβρίου\or Ὀκτωβρίου\or Νοεμβρίου\or Δεκεμβρίου\fi} % \end{macrocode} % Next, I define a few macros that allow one to access characters % that are not usually easily accessible from the keyboard (e.g., the sampi or the % koppa symbol). The list includes a command for the unicode symbol GREEK ANO TELEIA, % which, in some systems, is confused with MIDDLE DOT. The use of command |\numer@lsign| % will be explained later. % \begin{macrocode} \def\anwtonos{ʹ} %GREEK NUMERAl SIGN \let\numer@lsign\anwtonos \def\katwtonos{͵} %GREEK LOWER NUMERAL SIGN \def\koppa{\char"03DF\relax} \def\sampi{\char"03E1\relax} \def\Digamma{\char"03DC\relax} \def\ddigamma{\char"03DD\relax} \def\anoteleia{\char"0387\relax} \def\euro{\char"20AC\relax} \def\permill{\char"2030\relax} % \end{macrocode} % Many users prefer the use of the letters sigma and tau instead of the stigma symbol in % Greek numerals, therefore, by default the |\stigma| command expands to ``στ''. % \begin{macrocode} \def\stigma{στ\relax} % \end{macrocode} % The following commands take care of the basic rules of typography. Note that the first command % changes the way space is added after punctuation symbols and the last two commands force \LaTeX\ % to add indentation space to the first paragraph after a header. Since a number of users need, for % their own reasons, to be able to disable this particular feature I have introduced a new package % option, namely |noindentfirst|, which restores the default behavior. In order to be able % to do this I need the original value of the boolean variable |\@afterindentfalse|. % \begin{macrocode} \frenchspacing \let\@saveafterindentfalse\@afterindentfalse \let\@afterindentfalse\@afterindenttrue \@afterindenttrue % \end{macrocode} % Now that I have defined the language dependant macros, I will define the various % supported options. Note I follow the standard mechanism to load hyphenation patterns. % \begin{macrocode} \DeclareOption{monogreek}{% \language\l@monogreek% } \DeclareOption{polygreek}{% \language\l@polygreek% \polytonicn@mes% \let\gr@month\gr@c@month% } \DeclareOption{ancientgreek}{% \language\l@ancientgreek% \@ncientn@mes% \let\gr@month\gr@c@month% } % \end{macrocode} % If a user wants to use the stigma symbol in Greek numerals, she should use the % |stigma| option. % \begin{macrocode} \DeclareOption{stigma}{% \def\stigma{\char"03DB\relax} } % \end{macrocode} % As noted above, the new option |noindentfirst| restores the default \LaTeX\ behavior of adding no indentation to % the first paragraph after any header. % \begin{macrocode} \DeclareOption{noindentfirst}{% \let\@afterindentfalse\@saveafterindentfalse } % \end{macrocode} % Nowadays it is customary in Greece to use Greek numerals without the GREEK NUMERAL SIGN at the end % of numeral. Thus, the |nonumeralsign| option disables the typesetting of the GREEK NUMERAL SIGN % at the end of Greek numerals. % \begin{macrocode} \DeclareOption{nonumeralsign}{% \let\numer@lsign\relax } % \end{macrocode} % % By default the |monogreek| option is activated. % \begin{macrocode} \ExecuteOptions{monogreek} \ProcessOptions % \end{macrocode} % Now I am going to define the macros that typeset alphabetic Greek numerals. The code % is borrowed from the greek option for the babel package. % \begin{macro}{\gr@ill@value} % When the argument of |\greeknumeral| has a value outside of the % acceptable bounds ($0 < x < 999999$) a warning will be issued % (and nothing will be printed). % \begin{macrocode} \def\gr@ill@value#1{% \PackageWarning{xgreek}{Illegal value (#1) for greeknumeral}} % \end{macrocode} % \end{macro} % \begin{macro}{\anw@true} % \begin{macro}{\anw@false} % \begin{macro}{\anw@print} % When a large number with three \emph{trailing} zeros is to be % printed those zeros \emph{and} the numeric mark need to be % discarded. As each `digit' is processed by a separate macro % \emph{and} because the processing needs to be expandable we need % some helper macros that help remember to \emph{not} print the % numeric mark (|\numer@lsign|). % % The command |\anw@false| switches the printing of the numeric % mark off by making |\anw@print| expand to nothing. The command % |\anw@true| (re)enables the printing of the numeric marc. These % macro's need to be robust in order to prevent improper expansion % during writing to files or during |\uppercase|. % \begin{macrocode} \DeclareRobustCommand\anw@false{% \DeclareRobustCommand\anw@print{}} \DeclareRobustCommand\anw@true{% \DeclareRobustCommand\anw@print{\numer@lsign}} \anw@true % \end{macrocode} % \end{macro} % \end{macro} % \end{macro} % % \begin{macro}{\@greeknumeral} % This command is used to typeset Greek numerals. The command uses % |\numer@lsign| to typeset the NUMERAL SIGN. Obviously, when the % user has specified the \texttt{no\-numeral\-sign} option, then numeral % comes out without the trailing NUMERAL SIGN. However, when a user % wants to typeset a Greek numeral, the numeral must come out correctly, % regardless of what appears in headers, etc. And that is exactly the % reason why this command is inaccessible to users. % The command |\@greeknumeral| needs to be \emph{fully} expandable % in order to get the right information in auxiliary % files. Therefore we use a big |\if|-construction to check the % value of the argument and start the parsing at the right level. % \begin{macrocode} \def\@greeknumeral#1{% % \end{macrocode} % If the value is negative or zero nothing is printed and a warning % is issued. % \begin{macrocode} \ifnum#1<\@ne\space\gr@ill@value{#1}% \else \ifnum#1<10\expandafter\gr@num@i\number#1% \else \ifnum#1<100\expandafter\gr@num@ii\number#1% \else % \end{macrocode} % The available shorthands for 1.000 (|\@m|) and 10.000 % (|\@M|) are used to save a few tokens. % \begin{macrocode} \ifnum#1<\@m\expandafter\gr@num@iii\number#1% \else \ifnum#1<\@M\expandafter\gr@num@iv\number#1% \else \ifnum#1<100000\expandafter\gr@num@v\number#1% \else \ifnum#1<1000000\expandafter\gr@num@vi\number#1% \else % \end{macrocode} % If the value is too large, nothing is printed and a warning % is issued. % \begin{macrocode} \space\gr@ill@value{#1}% \fi \fi \fi \fi \fi \fi \fi } % \end{macrocode} % \end{macro} % % What is left to make complete the definition of command |\greeknumeral| is a set of macros to produce % the various digits. % \begin{macro}{\gr@num@i} % \begin{macro}{\gr@num@ii} % \begin{macro}{\gr@num@iii} % As there is no ``digit'' representing $0$ in this system, the zeros % are simply discarded. When there is a large number with three % \emph{trailing} zeros also the numeric mark is discarded. % Therefore these macros need to pass the information to each other % about the (non-)translation of a zero. % \begin{macrocode} \def\gr@num@i#1{% \ifcase#1\or α\or β\or γ\or δ\or ε\or \stigma\or ζ\or η\or θ\fi \ifnum#1=\z@\else\anw@true\fi\anw@print} \def\gr@num@ii#1{% \ifcase#1\or ι\or κ\or λ\or μ\or ν\or ξ\or ο\or π\or \koppa\fi \ifnum#1=\z@\else\anw@true\fi\gr@num@i} \def\gr@num@iii#1{% \ifcase#1\or ρ\or σ\or τ\or υ\or φ\or χ\or ψ\or ω\or \sampi\fi \ifnum#1=\z@\anw@false\else\anw@true\fi\gr@num@ii} % \end{macrocode} % \end{macro} % \end{macro} % \end{macro} % % \begin{macro}{\gr@num@iv} % \begin{macro}{\gr@num@v} % \begin{macro}{\gr@num@vi} % The first three ``digits'' always have the numeric mark, except % when one is discarded because it's value is zero. % \begin{macrocode} \def\gr@num@iv#1{% \ifnum#1=\z@\else\katwtonos\fi \ifcase#1\or α\or β\or γ\or δ\or ε\or \stigma\or ζ\or η\or θ\fi \gr@num@iii} \def\gr@num@v#1{% \ifnum#1=\z@\else\katwtonos\fi \ifcase#1\or ι\or κ\or λ\or μ\or ν\or ξ\or ο\or π\or \koppa\fi \gr@num@iv} \def\gr@num@vi#1{% \katwtonos \ifcase#1\or ρ\or σ\or τ\or υ\or φ\or χ\or ψ\or ω\or \sampi\fi \gr@num@v} % \end{macrocode} % \end{macro} % \end{macro} % \end{macro} % \begin{macro}{\@Greeknumeral} % The command |\@Greeknumeral| prints uppercase Greek numerals. % The parsing is performed by the macro |\@greeknumeral|. The printing % of the NUMERAL SIGN depends on the value of |\numer@lsign|. % \begin{macrocode} \def\@Greeknumeral#1{% \expandafter\MakeUppercase\expandafter{\@greeknumeral{#1}}} % \end{macrocode} % \end{macro} % \begin{macro}{\greeknumeral} % This command prints lowercase Greek numerals and the NUMERAL SIGN % is always printed. % \begin{macrocode} \def\greeknumeral#1{% \let\@numer@lsign\numer@lsign% \let\numer@lsign\anwtonos% \@greeknumeral{#1} \let\numer@lsign\@numer@lsign} % \end{macrocode} % \end{macro} % \begin{macro}{\Greeknumeral} % This command prints uppercase Greek numerals and the NUMERAL SIGN % is always printed. % \begin{macrocode} \def\Greeknumeral#1{% \let\@numer@lsign\numer@lsign% \let\numer@lsign\anwtonos% \@Greeknumeral{#1} \let\numer@lsign\@numer@lsign} % \end{macrocode} % \end{macro} % % The alphabetic numbering system is not the only numbering system employed by Greeks. % In fact, Greeks used various systems that are now known as {\em acrophonic} numbering % systems. Many scholars are familiar with the acrophonic Attic numbering system and the % the command |\atticnum| can be used to generate acrophonic Attic numerals. % The acrophonic Attic numbering system, like the Roman one, employs % letters to denote important numbers. Multiple occurrence of a letter denote % a multiple of the ``important'' number, e.g., the letter Ι denotes 1, so % ΙΙΙ denotes 3. Here are the basic digits used in the acrophonic Attic numbering % system: % \begin{itemize} % \item Ι denotes the number one (1) % \item Π denotes the number five (5) % \item Δ denotes the number ten (10) % \item Η denotes the number one hundred (100) % \item Χ denotes the number one thousand (1000) % \item Μ denotes the number ten thousands (10000) %\end{itemize} % Moreover, the letters Δ, Η, Χ, and Μ under the letter ^^^^^10143 (a form of Π) % denote five times their original value. In particular, the symbol ^^^^^10144, denotes % the number 50, the symbol ^^^^^10145 denotes the number 500, the symbol ^^^^^10146 % denotes the number 5000, and the symbol ^^^^^10147 denotes the number 50,000. It % must be noted that the numbering system does not provide negative numerals or a symbol for % zero. %\begin{macro}{\@@atticnum} % Now, let me definite the macro % |\@@atticnum|. This macro uses one integer variable (or counter in % \TeX's jargon.) % \begin{macrocode} \newcount\@attic@num % \end{macrocode} % The macro |\@@atticnum| is also defined as a robust command. % \begin{macrocode} \DeclareRobustCommand*{\@@atticnum}[1]{% % \end{macrocode} % After assigning to variable |\@attic@num| the value of the macro's argument, % we make sure that the argument is in the expected range, i.e., it is greater % than zero, and less or equal to $249999$. In case it isn't, it simply % produces a |\space|, warns the user about it and quits. Although, the % |\atticnum| macro is capable to produce an Athenian numeral for even greater % intergers, the following argument by Claudio Beccari convised me to place % this upper limit: % \begin{quote} % According to psychological perception studies (that ancient Athenians % and Romans perfectly knew without needing to study Freud and Jung) % living beings (which includes at least all vertebrates, not only % humans) can perceive up to four randomly set objects of the same kind % without the need of counting, the latter activity being a specific % acquired ability of human kind; the biquinary numbering notation % used by the Athenians and the Romans exploits this natural % characteristic of human beings. % \end{quote} % \begin{macrocode} \@attic@num#1\relax \ifnum\@attic@num<\@ne% \space% \PackageWarning{xgreek}{% Illegal value (\the\@attic@num) for acrophonic Attic numeral}% \else\ifnum\@attic@num>249999% \space% \PackageWarning{xgreek}{% Value too large (\the\@attic@num) for acrophonic Attic numeral}% \else % \end{macrocode} % Having done all the necessary checks, it is possible to proceed with the actual % computation. If the number is greater than $49999$, then it certainly % has at least one ^^^^^10147 ``digit''. The macro finds all such digits by continuously % subtracting $50000$ from |\@attic@num|, until |\@attic@num| becomes less than % $50000$. % \begin{macrocode} \@whilenum\@attic@num>49999\do{% ^^^^^10147\advance\@attic@num-50000}% % \end{macrocode} % Next the macro checks for tens of thousands. % \begin{macrocode} \@whilenum\@attic@num>9999\do{% M\advance\@attic@num-\@M}% % \end{macrocode} % Since a number can have only one ^^^^^10146 ``digit'' (equivalent to 5000), it % is easy to check whether is should have one and produce the corresponding numeral when % it does have one. % \begin{macrocode} \ifnum\@attic@num>4999% ^^^^^10146\advance\@attic@num-5000% \fi\relax % \end{macrocode} % The macro should also check for thousands, the same way it checked for tens of thousands. % \begin{macrocode} \@whilenum\@attic@num>999\do{% Χ\advance\@attic@num-\@m}% % \end{macrocode} % Since a numeral can have at most one ^^^^^10145 ``digit'' (equivalent to 500), this should be % handled the way the macro handled the case of the five thousands ``digit''. % \begin{macrocode} \ifnum\@attic@num>499% ^^^^^10145\advance\@attic@num-500% \fi\relax % \end{macrocode} % It is time to check hundreds, which follow the same pattern as thousands. % \begin{macrocode} \@whilenum\@attic@num>99\do{% Η\advance\@attic@num-100}% % \end{macrocode} % A numeral can have only one ^^^^^10144 ``digit'' (equivalent to 50). % \begin{macrocode} \ifnum\@attic@num>49% ^^^^^10144\advance\@attic@num-50% \fi\relax % \end{macrocode} % The macro now checks now for tens digit. % \begin{macrocode} \@whilenum\@attic@num>9\do{% Δ\advance\@attic@num by-10}% % \end{macrocode} % Finally, it has to check for fives and the digits 1, 2, 3, and 4. % \begin{macrocode} \@whilenum\@attic@num>4\do{% Π\advance\@attic@num-5}% \ifcase\@attic@num\or Ι\or ΙΙ\or ΙΙΙ\or ΙΙΙΙ\fi% \fi\fi} % \end{macrocode} %\end{macro} % %\begin{macro}{\@atticnum} % The command |\@atticnum| has one argument, which % is a counter. It calls the command |\@@atticnum| to process the value of % the counter. % \begin{macrocode} \def\@atticnum#1{% \expandafter\@@atticnum\expandafter{\the#1}} % \end{macrocode} %\end{macro} %\begin{macro}{\atticnum} % The command |\atticnum| is a wrapper that declares % a new counter in a local scope, assigns to it the value of the argument of the command % and calls the macro |\@atticnum|. This way the command can process correctly % either a number or a counter. % \begin{macrocode} \def\atticnum#1{% \@attic@num#1\relax \@atticnum{\@attic@num}} % \end{macrocode} %\end{macro} % % \begin{macro}{\greek@alph} % \begin{macro}{\greek@Alph} % Here I redefine the macros |\@alph| and |\@Alph|. First, I define some placeholders % \begin{macrocode} \let\latin@alph\@alph \let\latin@Alph\@Alph % \end{macrocode} % Then I define the Greek versions; the additional |\expandafter|s % are needed in order to make sure the table of contents will be % correct (e.g., when there are appendices). % \begin{macrocode} \def\greek@alph#1{\expandafter\@greeknumeral\expandafter{\the#1}} \def\greek@Alph#1{\expandafter\@Greeknumeral\expandafter{\the#1}} % \end{macrocode} % By default Greek alphabetic enumerals instaed of Latin numerals are used to enumerate items in an % enumeration environment. % \begin{macrocode} \let\@alph\greek@alph \let\@Alph\greek@Alph % \end{macrocode} % If for some reason, one needs to have the Latin numerals back, then she has to invoke command % |\nogreekalph|. And if she wants to switch back, then she has to use the |\greekalph| % command: % \begin{macrocode} \def\nogreekalph{% \let\@alph\latin@alph \let\@Alph\latin@Alph} \def\greekalph{% \let\@alph\greek@alph \let\@Alph\greek@Alph} % \end{macrocode} % \end{macro} % \end{macro} % % \begin{macro}{\setlanguage} % We provide the |\setlanguage| command which % activates the hypehnation patterns of some other language. It is similar % to babel's |\selectlanguage|, but we opted to use a new name to avoid any name conflicts. % Valid arguments include |monogreek|, |polygreek|, and |ancientgreek|. % \begin{macrocode} \def\setlanguage#1{% \expandafter\ifx\csname l@#1\endcsname\relax% \typeout{^^J Error: No hyphenation pattern for language #1 loaded,}% \typeout{ default hyphenation patterns are used.^^J}% \language=0% \else\language=\csname l@#1\endcsname\fi} % \end{macrocode} % \end{macro} % The macros |\grtoday| and |\Grtoday| produces the current date, only that the % month and the day are shown as greek numerals instead of arabic % as it is usually the case. In addition, the two commands differ in that the % later produces the Greek numerals in uppercase. % \begin{macrocode} \def\grtoday{% \expandafter\greeknumeral\expandafter{\the\day}\space \gr@c@month\space \expandafter\greeknumeral\expandafter{\the\year}} \def\Grtoday{% \expandafter\Greeknumeral\expandafter{\the\day}\space \gr@c@month\space \expandafter\Greeknumeral\expandafter{\the\year}} % % \end{macrocode} % % \Finale