% \iffalse % ^^A %%%%%%%%%%%%%%%%%%%%%%%%%%%%%%% % ^^A SELF-EXTRACTION BEGINS HERE % ^^A %%%%%%%%%%%%%%%%%%%%%%%%%%%%%%% %<*internal> \begingroup \input docstrip.tex \keepsilent \preamble Copyright 2006-2010 by Will Robertson This package is free software and may be redistributed and/or modified under the conditions of the LaTeX Project Public License, version 1.3c or higher (your choice): . This work is "author-maintained" by Will Robertson. \endpreamble \nopostamble \askforoverwritefalse \generate{\file{unicode-math.sty}{\from{unicode-math.dtx}{package}}} \nopreamble \def\tempa{plain} \ifx\tempa\fmtname\endgroup\expandafter\bye\fi \generate{\file{dtx-style.sty}{\from{\jobname.dtx}{dtx-style}}} \endgroup \ProvidesFile{unicode-math.dtx} % %\ProvidesPackage{unicode-math} %<*package> [2010/06/03 v0.5 Unicode maths in XeLaTeX] % %<*internal> \documentclass{ltxdoc} \usepackage{dtx-style} \begin{document} \DocInput{\jobname.dtx} \end{document} % % \fi % % ^^A %%%%%%%%%%%%%%%%%%%%%%%%%%%%% % ^^A DOCUMENTATION BEGINS HERE % ^^A %%%%%%%%%%%%%%%%%%%%%%%%%%%%% % % \title{Experimental Unicode mathematical typesetting: The \pkg{unicode-math} package} % \author{Will Robertson\\\texttt{will.robertson@latex-project.org}} % \date{\umfiledate \qquad \umfileversion} % % \maketitle % % \begin{abstract} % \noindent % \begingroup % \bfseries % Warning! This package is experimental and subject to change without regard % for backwards compatibility. % Performance issues may be encountered until algorithms are refined. % \endgroup % % (But don't take the warning too seriously, either. % I hope the package is now ready to use.) % % This is the first release of the \pkg{unicode-math} package, which is % intended to be a complete implementation of Unicode % maths for \LaTeX\ using the \XeTeX\ and Lua\TeX\ typesetting engines. % With this package, changing maths fonts will be as easy as changing % text fonts --- not that there are many Unicode maths fonts yet. % Maths input can also be simplified with Unicode since literal glyphs may be % entered instead of control sequences in your document source. % % The package is fulled tested under \XeTeX, but Lua\TeX\ support is not % yet complete. User beware, but let me know of any troubles. % % Alongside this documentation file, you should be able to find a minimal % example demonstrating the use of the package, % `\texttt{unimath-example.ltx}'. It also comes with a separate document, % `\texttt{unimath-symbols.pdf}', % containing a complete listing of mathematical symbols defined by % \pkg{unicode-math}. % % Finally, while the STIX fonts may be used with this package, accessing % their alphabets in their `private user area' is not yet supported. % (Of these additional alphabets there is a separate caligraphic design % distinct to the script design already included.) % Better support for the STIX fonts is planned for an upcoming revision of the % package after any problems have been ironed out with the initial version. % % \end{abstract} % % \newpage % \tableofcontents % % \newpage % \section{Introduction} % % This document describes the \pkg{unicode-math} package, which is an % \emph{experimental} implementation of a macro to Unicode glyph encoding for % mathematical characters. Its intended use is for \XeTeX, although it is % conjectured that some effect could be spent to create a cross-format % package that would also work with Lua\TeX. % % Users who desire to specify maths alphabets only (Greek and Latin letters, % and Arabic numerals) % may wish to use Andrew Moschou's \pkg{mathspec} package instead. % % \section{Acknowledgements} % % Many thanks to: % Microsoft for developing the mathematics extension to OpenType as part of % Microsoft Office~2007; % Jonathan Kew for implementing Unicode math support in \XeTeX; % Barbara Beeton for her prodigious effort compiling the definitive list of Unicode math % glyphs and their \LaTeX\ names (inventing them where necessary), and also % for her thoughtful replies to my sometimes incessant questions. % Ross Moore and Chris Rowley have provided moral and technical support % from the very early days with great insight into the issues we face trying % to extend and use \TeX\ in the future. % Apostolos Syropoulos, Joel Salomon, Khaled Hosny, and Mariusz Wodzicki % have been fantastic beta testers. % % \section{Getting started} % % Load \pkg{unicode-math} as a regular \LaTeX\ package. It should be loaded % after any other maths or font-related package in case it needs to overwrite % their definitions. Here's an example: % \begin{quote} % \begin{verbatim} % \usepackage{amsmath} % if desired % \usepackage{unicode-math} % \setmathfont{Cambria Math} % \end{verbatim} % \end{quote} % % \subsection{Package options} % Package options may be set when the package as loaded or at any later % stage with the \cs{unimathsetup} command. Therefore, the following two % examples are equivalent: % \begin{quote} % \begin{verbatim} % \usepackage[math-style=TeX]{unicode-math} % % OR % \usepackage{unicode-math} % \unimathsetup{math-style=TeX} % \end{verbatim} % \end{quote} % Note, however, that some package options affects how maths is initialised % and changing an option such as |math-style| will not take effect until a % new maths font is set up. % % Package options may \emph{also} be used when declaring new maths fonts, % passed via options to the \cs{setmathfont} command. % Therefore, the following two examples are equivalent: % \begin{quote} % \begin{verbatim} % \unimathsetup{math-style=TeX} % \setmathfont{Cambria Math} % % OR % \setmathfont[math-style=TeX]{Cambria Math} % \end{verbatim} % \end{quote} % % A short list of package options is shown in \tabref{pkgopt}. % See following sections for more information. % % \begin{table}\centering % \topcaption{Package options.} % \tablabel{pkgopt} % \begin{tabular}{lll} % \toprule % Option & Description & See\dots \\ % \midrule % |math-style| & Style of letters & \secref{math-style} \\ % |bold-style| & Style of bold letters & \secref{bold-style} \\ % |sans-style| & Style of sans serif letters & \secref{sans-style} \\ % |nabla| & Style of the nabla symbol & \secref{nabla} \\ % |partial| & Style of the partial symbol & \secref{partial} \\ % |vargreek-shape| & Style of phi and epsilon & \secref{vargreek-shape} \\ % |colon| & Behaviour of \cs{colon} & \secref{colon} \\ % |slash-delimiter| & Glyph to use for `stretchy' slash & \secref{slash-delimiter} \\ % \bottomrule % \end{tabular} % \end{table} % % \subsection{Known issues} % % In some cases, \XeTeX's math support is either missing or I have not % discovered how to access features for various types of maths construct. % An example of this are horizontal extensible symbols, such as underbraces, % overbraces, and arrows that can grow longer if necessary. Behaviour with % such symbols is not necessarily going to be consistent; please report % problem areas to me. % % \LaTeX's concept of math `versions' is not yet supported. The only way to % get bold maths is to add markup for it all. This is still an area that % requires investigation. % % Symbols for maths characters have been inherited from the STIX project and % may change slightly in the long term. We have tried to preserve backwards % compatibility with \LaTeX\ conventions as best as possible; again, please % report areas of concern. % % \section{Unicode maths font setup} % % In the ideal case, a single Unicode font will contain all maths glyphs we % need. The file |unicode-math-table.tex| (based on Barbara Beeton's \STIX\ table) % provides the mapping between Unicode % maths glyphs and macro names (all 3298 — or however many — of them!). A % single command % \codeline{\cmd\setmathfont\oarg{font features}\marg{font name}} % implements this for every every symbol and alphabetic variant. % That means |x| to $x$, |\xi| to $\xi$, |\leq| to $\leq$, etc., |\mathcal{H}| % to $\mathcal{H}$ and so on, all for Unicode glyphs within a single font. % % This package deals well with Unicode characters for maths % input. This includes using literal Greek letters in formulae, % resolving to upright or italic depending on preference. % % Font features specific to \pkg{unicode-math} are shown in \tabref{mathfontfeatures}. % Package options (see \tabref{pkgopt}) may also be used. % Other \pkg{fontspec} features are also valid. % % \begin{table}\centering % \topcaption{Maths font options.} % \tablabel{mathfontfeatures} % \begin{tabular}{lll} % \toprule % Option & Description & See\dots \\ % \midrule % |range| & Style of letters & \secref{range} \\ % |script-font| & Font to use for sub- and super-scripts & \secref{sscript} \\ % |script-features| & Font features for sub- and super-scripts & \secref{sscript} \\ % |sscript-font| & Font to use for nested sub- and super-scripts & \secref{sscript} \\ % |sscript-features| & Font features for nested sub- and super-scripts & \secref{sscript} \\ % \bottomrule % \end{tabular} % \end{table} % % \subsection{Using multiple fonts} % \seclabel{range} % % There will probably be few cases where a single Unicode maths font suffices % (simply due to glyph coverage). The upcoming \STIX\ font comes to mind as a % possible exception. It will therefore be necessary to delegate specific % Unicode ranges of glyphs to separate fonts: % \codeline{\cmd\setmathfont|[range=|\meta{unicode range}|,|\meta{font features}|]|\marg{font name}} % where \meta{unicode range} is a comma-separated list of Unicode slots and % ranges such as |{"27D0-"27EB,"27FF,"295B-"297F}|. You may also use the macro % for accessing the glyph, such as \cs{int}, or whole collection of symbols with % the same math type, such as \cs{mathopen}, or complete math alphabets such as \cs{mathbb}. % (Only numerical slots, however, can be used in ranged declarations.) % % \subsubsection{Control over maths alphabets} % % Exact control over maths alphabets can be somewhat involved. % Here is the current plan. % \begin{itemize} % \item |[range=\mathbb]| to use the font for `bb' letters only. % \item |[range=\mathbfsfit/{greek,Greek}]| for Greek lowercase and uppercase only (with |latin|, |Latin|, |num| as well for Latin lower-/upper-case and numbers). % \item |[range=\mathsfit->\mathbfsfit]| to map to different output alphabet(s) (which is rather useless right now but will become less useless in the future). % \end{itemize} % % And now the trick. % If a particular math alphabet is not defined in the font, fall back onto the lower-base plane (i.e., upright) glyphs. % Therefore, to use an \ascii-encoded fractur font, for example, write % \par{\centering|\setmathfont[range=\mathfrak]{SomeFracturFont}|\par}\noindent % and because the math plane fractur glyphs will be missing, \pkg{unicode-math} will know to use the \ascii\ ones instead. % If necessary (but why?) this behaviour can be forced with |[range=\mathfrac->\mathup]|. % % % \subsection{Script and scriptscript fonts/features} % \seclabel{sscript} % % Cambria Math uses OpenType font features to activate smaller optical sizes % for scriptsize and scriptscriptsize symbols (the $B$ and $C$, respectively, % in $A_{B_C}$). Other fonts will possibly use entirely separate fonts. % % Not yet implemented: Both of these options % must be taken into account. I hope this will be mostly automatic from the % users' points of view. The |+ssty| feature can be detected and applied % automatically, and appropriate optical size information embedded in the % fonts will ensure this latter case. Fine tuning should be possible % automatically with \pkg{fontspec} options. We might have to wait until % MnMath, for example, before we really know. % % \section{Maths input} % % \XeTeX's Unicode support allows maths input through two methods. Like % classical \TeX, macros such as \cmd\alpha, \cmd\sum, \cmd\pm, \cmd\leq, and % so on, provide verbose access to the entire repertoire of characters defined % by Unicode. The literal characters themselves may be used instead, for more % readable input files. % % \subsection{Math `style'} % \seclabel{math-style} % % Classically, \TeX\ uses italic lowercase Greek letters and \emph{upright} % uppercase Greek letters for variables in mathematics. This is contrary to % the \textsc{iso} standards of using italic forms for both upper- and lowercase. % Furthermore, the French (contrary again, \emph{quelle surprise}) have been % known to use upright uppercase \emph{Latin} letters as well as upright % upper- and lowercase Greek. Finally, it is not unknown to use upright letters % for all characters, as seen in the Euler fonts. % % The \pkg{unicode-math} package accommodates these possibilities with an % interface heavily inspired by Walter Schmidt's \pkg{lucimatx} package: a % package option \opt{math-style} that takes one of four arguments: % \opt{TeX}, \opt{ISO}, \opt{french}, or \opt{upright}. % % The philosophy behind the interface to the mathematical alphabet symbols % lies in \LaTeX's attempt of separating content and formatting. Because input % source text may come from a variety of places, the upright and % `mathematical' italic Latin and Greek alphabets are \emph{unified} from the % point of view of having a specified meaning in the source text. That is, to % get a mathematical ‘$x$’, either the ascii (`keyboard') letter |x| may % be typed, or the actual Unicode character may be used. Similarly for Greek % letters. The upright or italic forms are then chosen based on the % |math-style| package option. % % If glyphs are desired that do not map as per the package option (for % example, an upright `g' is desired but typing |$g$| yields `$g$'), % \emph{markup} is required to specify this; to follow from the example: % |\mathup{g}|. Maths alphabets commands such as \cmd\mathup\ are detailed % later. % % \paragraph{Alternative interface} % However, some users may not like this convention of normalising their input. % For them, an upright |x| is an upright `x' and that's that. % (This will be the case when obtaining source text from copy/pasting PDF or % Microsoft Word documents, for example.) % For these users, the |literal| option to |math-style| will effect this behaviour. % % The \opt{math-style} options' effects are shown in brief in \tabref{math-style}. % % \begin{table} % \centering % \topcaption{Effects of the \opt{math-style} package option.} % \tablabel{math-style} % \begin{tabular}{@{}>{\ttfamily}lcc@{}} % \toprule % & \multicolumn{2}{c}{Example} \\ % \cmidrule(l){2-3} % \rmfamily Package option & Latin & Greek \\ % \midrule % math-style=ISO & $(a,z,B,X)$ & $\mathit{(\alpha,\beta,\Gamma,\Xi)}$ \\ % math-style=TeX & $(a,z,B,X)$ & $(\mathit\alpha,\mathit\beta,\mathup\Gamma,\mathup\Xi)$ \\ % math-style=french & $(a,z,\mathup B,\mathup X)$ & $(\mathup\alpha,\mathup\beta,\mathup\Gamma,\mathup\Xi)$ \\ % math-style=upright & $(\mathup a,\mathup z,\mathup B,\mathup X)$ & $(\mathup\alpha,\mathup\beta,\mathup\Gamma,\mathup\Xi)$ \\ % \bottomrule % \end{tabular} % \end{table} % % % \subsection{Bold style} % \seclabel{bold-style} % % Similar as in the previous section, ISO standards differ somewhat to \TeX's % conventions (and classical typesetting) for `boldness' in mathematics. In % the past, it has been customary to use bold \emph{upright} letters to denote % things like vectors and matrices. For example, \( \mathbfup{M} = % (\mitM_x,\mitM_y,\mitM_z) \). Presumably, this was due to the relatively % scarcity of bold italic fonts in the pre-digital typesetting era. It has % been suggested that \emph{italic} bold symbols are used nowadays instead. % % Bold Greek letters have simply been bold variant glyphs of their regular % weight, as in \( \mbfitxi = (\mitxi_\mitr,\mitxi_\mitphi,\mitxi_\mittheta) % \). Confusingly, the syntax in \LaTeX\ has been different for these two % examples: \cmd\mathbf\ in the former (`$\mathbfup{M}$'), and \cmd\bm\ (or % \cmd\boldsymbol, deprecated) in the latter (`$\mbfitxi$'). % % In \pkg{unicode-math}, the \cmd\mathbf\ command works directly with both % Greek and Latin maths alphabet characters and depending on package option % either switches to upright for Latin letters (|bold-style=TeX|) as well or % keeps them italic (|bold-style=ISO|). % % To match the package options for non-bold characters, for % |bold-style=upright| all bold characters are upright, and % |bold-style=literal| does not change the upright/italic shape of the letter. % % Upright and italic bold mathematical letters input as direct Unicode % characters are normalised with the same rules. For example, with % |bold-style=TeX|, a literal bold italic latin character will be typeset % upright. % % Note that \opt{bold-style} is independent of \opt{math-style}, although if % the former is not specified then sensible defaults are chosen based on the % latter. % % The \opt{bold-style} options' effects are shown in brief in % \tabref{bold-style}. % % \begin{table} % \centering % \topcaption{Effects of the \opt{bold-style} package option.} % \tablabel{bold-style} % \begin{tabular}{@{}>{\ttfamily}lcc@{}} % \toprule % & \multicolumn{2}{c}{Example} \\ % \cmidrule(l){2-3} % \rmfamily Package option & Latin & Greek \\ % \midrule % bold-style=ISO & $(\mathbfit a, \mathbfit z, \mathbfit B, \mathbfit X)$ & $(\mathbfit\alpha, \mathbfit\beta, \mathbfit\Gamma, \mathbfit\Xi)$ \\ % bold-style=TeX & $(\mathbfup a,\mathbfup z,\mathbfup B,\mathbfup X)$ & $(\mathbfit\alpha, \mathbfit\beta,\mathbfup \Gamma,\mathbfup \Xi)$ \\ % bold-style=upright & $(\mathbfup a,\mathbfup z,\mathbfup B,\mathbfup X)$ & $(\mathbfup \alpha,\mathbfup \beta,\mathbfup \Gamma,\mathbfup \Xi)$ \\ % \bottomrule % \end{tabular} % \end{table} % % % \subsection{Sans serif style} % \seclabel{sans-style} % % Unicode contains upright and italic, medium and bold mathematical alphabet characters. % These may be explicitly selected with the \cs{mathsfup}, \cs{mathsfit}, \cs{mathbfsfup}, and \cs{mathbfsfit} % commands discussed in \secref{all-math-alphabets}. % % How should the generic \cs{mathsf} behave? Unlike bold, sans serif is used much more sparingly % in mathematics. I've seen recommendations to typeset tensors in sans serif italic % or sans serif italic bold (e.g., examples in the \pkg{isomath} and \pkg{mattens} packages). % But \LaTeX's \cs{mathsf} is \textsl{upright} sans serif. % % Therefore I reluctantly add the package options |[sans-style=upright]| and |[sans-style=italic]| to control the behaviour of \cs{mathsf}. % The |upright| style sets up the command to use the seemingly-useless upright sans serif, including Greek; % the |italic| style switches to using italic in both Latin and Greek alphabets. % In other words, this option simply changes the meaning of \cs{mathsf} to either \cs{mathsfup} or \cs{mathsfit}, respectively. % Please let me know if more granular control is necessary here. % % There is also a |[sans-style=literal]| setting, set automatically with |[math-style=literal]|, which retains the uprightness of the input characters used when selecting the sans serif output. % % \subsubsection{What about bold sans serif?} % % While you might want your bold upright and your sans serif italic, I don't believe you'd also want % your bold sans serif upright (or all vice versa, if that's even conceivable). Therefore, bold sans % serif follows from the setting for sans serif; it is completely independent of the setting for bold. % % In other words, \cs{mathbfsf} is \cs{mathbfsfup} or \cs{mathbfsfit} based on |[sans-style=upright]| or |[sans-style=italic]|, respectively. And |[sans-style=literal]| causes \cs{mathbfsf} to retain the same italic or upright shape as the input, and turns it bold sans serif. % % Note well! There is no medium-weight sans serif Greek alphabet in Unicode; therefore, |\mathsf{\alpha}| does not make sense (simply produces `$\mathsf{\alpha}$') while |\mathbfsf{\alpha}| gives `$\mathsf{\alpha}$'. % % \subsection{All (the rest) of the mathematical alphabets} % \seclabel{all-math-alphabets} % % Unicode contains separate codepoints for most if not all variations of alphabet % shape one may wish to use in mathematical notation. The complete list is shown % in \tabref{mathalphabets}. Some of these have been covered in the previous sections. % % At present, the math font switching commands do not nest; therefore if you want % sans serif bold, you must write |\mathsfbf{...}| rather than |\mathbf{\mathsf{...}}|. % This may change in the future. % % \begin{table} % \caption{Mathematical alphabets defined in Unicode. Black dots indicate an alphabet exists in the font specified; grey dots indicate shapes that should always be taken from the upright font even in the italic style. See main text for description of \cs{mathbbit}.} % \tablabel{mathalphabets} % \centering % \def\Y{\textbullet} % \def\M{\textcolor{gray}{\textbullet}} % \begin{tabular}{@{} lll l ccc @{}} % \toprule % \multicolumn{3}{c}{Font} & & \multicolumn{3}{c}{Alphabet} \\ % \cmidrule(r){1-3} % \cmidrule(l){5-7} % Style & Shape & Series & Switch & Latin & Greek & Numerals \\ % \midrule % Serif & Upright & Normal & \cs{mathup} & \Y & \Y & \Y \\ % & & Bold & \cs{mathbfup} & \Y & \Y & \Y \\ % & Italic & Normal & \cs{mathit} & \Y & \Y & \M \\ % & & Bold & \cs{mathbfit} & \Y & \Y & \M \\ % Sans serif & Upright & Normal & \cs{mathsfup} & \Y & & \Y \\ % & Italic & Normal & \cs{mathsfit} & \Y & & \M \\ % & Upright & Bold & \cs{mathsfbfup} & \Y & \Y & \Y \\ % & Italic & Bold & \cs{mathsfbfit} & \Y & \Y & \M \\ % Typewriter & Upright & Normal & \cs{mathtt} & \Y & & \Y \\ % Double-struck & Upright & Normal & \cs{mathbb} & \Y & & \Y \\ % & Italic & Normal & \cs{mathbbit} & \Y & & \\ % Script & Upright & Normal & \cs{mathscr} & \Y & & \\ % & & Bold & \cs{matbfscr} & \Y & & \\ % Fraktur & Upright & Normal & \cs{mathfrak} & \Y & & \\ % & & Bold & \cs{mathbffrac} & \Y & & \\ % \bottomrule % \end{tabular} % \end{table} % % \subsubsection{Double-struck} % % The double-struck alphabet (also known as `blackboard bold') consists of % upright Latin letters $\{\mathbb{a}$--$\mathbb{z}$,$\mathbb{A}$$\mathbb{Z}\}$, % numerals $\mathbb{0}$--$\mathbb{9}$, summation symbol $\mathbb\sum$, and four % Greek letters only: $\{\mathbb{\gamma\pi\Gamma\Pi}\}$. % % While |\mathbb{\sum}| does produce a double-struck summation symbol, % its limits aren't properly aligned. Therefore, % either the literal character or the control sequence \cs{Bbbsum} are % recommended instead. % % There are also five Latin \emph{italic} double-struck letters: $\mathbbit{Ddeij}$. % These can be accessed (if not with their literal characters or control sequences) % with the \cs{mathbbit} alphabet switch, but note that only those five letters % will give the expected output. % % % % \subsection{Miscellanea} % % % \subsubsection{Nabla} % \seclabel{nabla} % % The symbol $\nabla$ comes in the six forms shown in \tabref{nabla}. % We want an individual option to specify whether we want upright or italic % nabla by default (when either upright or italic nabla is used in the % source). \TeX\ classically uses an upright nabla, and \textsc{iso} % standards agree with this convention. % The package options |nabla=upright| and % |nabla=italic| switch between the two choices, and |nabla=literal| respects % the shape of the input character. This is then inherited % through \cmd\mathbf; \cmd\mathit\ and \cmd\mathup\ can be used to force one % way or the other. % % |nabla=italic| is the default. |nabla=literal| is % activated automatically after |math-style=literal|. % % \begin{table} % \centering % \topcaption{The various forms of nabla.} % \tablabel{nabla} % \let \tmpshow\empty % \begin{tabular}{@{}llc@{}} % \toprule % \multicolumn{2}{@{}l}{Description} & Glyph % \\ \cmidrule(r){1-2}\cmidrule(l){3-3} % Upright & Serif & $\mathup\nabla$ \\ % & Bold serif & $\mathup\mbfnabla$ \\ % & Bold sans & \fontspec{STIXGeneral-BoldItalic}\char"1D76F \\ % \cmidrule(lr){1-2}\cmidrule(lr){3-3} % Italic & Serif & $\mathit\nabla$ \\ % & Bold serif & $\mathbfit\nabla$ \\ % & Bold sans & \fontspec{STIXGeneral-Bold}\char"1D7A9 \\ % \bottomrule % \end{tabular} % \end{table} % % \subsubsection{Partial} % \seclabel{partial} % % The same applies to the symbols \unichar{2202} partial differential and % \unichar{1D715} math italic partial differential. % % At time of writing, both the Cambria Math and STIX fonts display these % two glyphs in the same italic style, but this is hopefully a bug that will % be corrected in the future~--- the `plain' partial differential should % really have an upright shape. % % Use the |partial=upright| or |partial=italic| package options to specify % which one you would like, or |partial=literal| to have the same character % used in the output as was used for the input. % The default is (always, unless someone requests and % argues otherwise) |partial=italic|.\footnote{A good argument would revolve % around some international standards body recommending upright over italic. % I just don't have the time right now to look it up.} |partial=literal| % is activated following |math-style=literal|. % % See \tabref{partial} for the variations on the partial differential symbol. % % \begin{table} % \centering % \topcaption{The various forms of the partial differential. Note that in % the fonts used to display these glyphs, the first upright partial is % incorrectly shown in an italic style.} % \tablabel{partial} % \begin{tabular}{@{}llc@{}} % \toprule % \multicolumn{2}{@{}l}{Description} & Glyph % \\ \cmidrule(r){1-2}\cmidrule(l){3-3} % Regular & Upright & $\mathup\partial$ \\ % & Italic & $\mathit\partial$ \\ % Bold & Upright & $\mathbfup\partial$ \\ % & Italic & $\mathbfit\partial$ \\ % Sans bold & Upright & \umfont\char"1D789 \\ % & Italic & \umfont\char"1D7C3 \\ % \bottomrule % \end{tabular} % \end{table} % % \subsubsection{Epsilon and phi: $\epsilon$ vs.\ $\varepsilon$ and $\phi$ vs.\ $\varphi$} % \seclabel{vargreek-shape} % % \TeX\ defines \cs{epsilon} to look like $\varepsilon$ and \cs{varepsilon} to % look like $\epsilon$. The Unicode glyph directly after delta and before zeta % is `epsilon' and looks like $\epsilon$; there is a subsequent variant of % epsilon that looks like $\varepsilon$. This creates a problem. People who % use Unicode input won't want their glyphs transforming; \TeX\ users will be % confused that what they think as `normal epsilon' is actual the `variant % epsilon'. And the same problem exists for `phi'. % % We have a package option to control this behaviour. % With |vargreek-shape=TeX|, % \cs{phi} and \cs{epsilon} produce $\phi$ and $\epsilon$ and % \cs{varphi} and \cs{varepsilon} produce $\varphi$ and $\varepsilon$. % With |vargreek-shape=unicode|, these symbols are swapped. % Note, however, that Unicode characters are not affected by this option. % That is, no remapping occurs of the characters/glyphs, only the control sequences. % % The package default is to use |vargreek-shape=TeX|. % % \subsubsection{Primes} % % Primes ($x'$) may be input in several ways. You may use any combination % of \ascii\ straight quote (\texttt{\char`\'}), Unicode prime \unichar{2032} % ($'$), and \cs{prime}; when multiple primes occur next to each other, they chain % together to form double, triple, or quadruple primes if the font contains % pre-drawn glyphs. These may also be accessed with \cs{dprime}, % \cs{trprime}, and \cs{qprime}, respectively. % % If the font does not contain the pre-drawn glyphs or more than four primes % are used, the single prime glyph is used multiple times with a negative % kern to get the spacing right. There is no user interface to adjust this % negative kern yet (because I haven't decided what it should look like); % if you need to, write something like this: % \begin{verbatim} % \ExplSyntaxOn % \muskip_gset:Nn \g_um_primekern_muskip { -\thinmuskip/2 } % \ExplySyntaxOff % \end{verbatim} % % Backwards or reverse primes behave in exactly the same way; use any of \ascii\ % back tick (\texttt{\char`\`}), Unicode reverse prime \unichar{2035} % ({\umfont\char"2035}), or \cs{backprime} to access it. % Multiple backwards primes can also be called with \cs{backdprime}, % \cs{backtrprime}, and \cs{backqprime}. % % If you ever need to enter the straight quote |'| or the backtick |`| in % maths mode, these glyphs can be accessed with \cs{mathstraightquote} and % \cs{mathbacktick}. % % \subsubsection{Unicode subscripts and superscripts} % % You may, if you wish, use Unicode subscripts and superscripts in your % source document. For basic expressions, the use of these characters % can make the input more readable. % Adjacent sub- or super-scripts will be concatenated into a single % expression. % % The range of subscripts and superscripts supported by this package % are shown in \figref{superscripts,subscripts}. Please request more if % you think it is appropriate. % % \begin{figure}\centering % \fbox{\fontspec{Charis SIL}\Large % A % ^^^^2070 % ^^^^00b9 % ^^^^00b2 % ^^^^00b3 % ^^^^2074 % ^^^^2075 % ^^^^2076 % ^^^^2077 % ^^^^2078 % ^^^^2079 % ^^^^207a % ^^^^207b % ^^^^207c % ^^^^207d % ^^^^207e % ^^^^2071 % ^^^^207f % Z} % \caption{ % The Unicode superscripts supported as input characters. % These are the literal glyphs from Charis SIL, % not the output seen when used for maths input. % The `A' and `Z' are to provide context for the size and % location of the superscript glyphs. % } % \figlabel{superscripts} % \end{figure} % % \begin{figure}\centering % \fbox{\fontspec{Charis SIL}\Large % A % ^^^^2080 % ^^^^2081 % ^^^^2082 % ^^^^2083 % ^^^^2084 % ^^^^2085 % ^^^^2086 % ^^^^2087 % ^^^^2088 % ^^^^2089 % ^^^^208a % ^^^^208b % ^^^^208c % ^^^^208d % ^^^^208e % ^^^^2090 % ^^^^2091 % ^^^^1d62 % ^^^^2092 % ^^^^1d63 % ^^^^1d64 % ^^^^1d65 % ^^^^2093 % ^^^^1d66 % ^^^^1d67 % ^^^^1d68 % ^^^^1d69 % ^^^^1d6a % Z} % \caption{ % The Unicode subscripts supported as input characters. % See note from \figref{superscripts}. % } % \figlabel{subscripts} % \end{figure} % % \subsubsection{Colon} % \seclabel{colon} % % The colon is one of the few confusing characters of Unicode maths. % In \TeX, \texttt{:} is defined as a colon with relation spacing: `$a:b$'. % While \cs{colon} is defined as a colon with punctuation spacing: `$a\colon b$'. % % In Unicode, \unichar{003A} {colon} is defined as a punctuation symbol, % while \unichar{2236} {ratio} is the colon-like symbol used in mathematics to denote % ratios and other things. % % This breaks the usual straightforward mapping from control sequence to Unicode input character % to (the same) Unicode glyph. % % To preserve input compatibility, we remap the \ascii\ input character `\texttt{:}' to \unichar{2236}. % Typing a literal \unichar{2236} char will result in the same output. % If \pkg{amsmath} is loaded, then the definition of \cs{colon} is inherited from there % (it looks like a punctuation colon with additional space around it). % Otherwise, \cs{colon} is made to output a colon with \cs{mathpunct} spacing. % % The package option |colon=literal| forces \ascii\ input `|:|' to be printed as \cs{mathcolon} instead. % % % \subsubsection{Slashes and backslashes} % \seclabel{slash-delimiter} % % There are several slash-like symbols defined in Unicode. The complete list is shown in \tabref{slashes}. % % \begin{table}\centering % \caption{Slashes and backslashes.} % \tablabel{slashes} % \begin{tabular}{@{}cl@{}cl@{}} % \toprule % Slot & Name & Glyph & Command \\ % \midrule % \unichar{002F} & \textsc{solidus} & \umfont \char"002F & \cs{slash} \\ % \unichar{2044} & \textsc{fraction slash} & \umfont \char"2044 & \cs{fracslash} \\ % \unichar{2215} & \textsc{division slash} & \umfont \char"2215 & \cs{divslash} \\ % \unichar{29F8} & \textsc{big solidus} & \umfont \char"29F8 & \cs{xsol} \\ % \midrule % \unichar{005C} & \textsc{reverse solidus} & \umfont \char"005C & \cs{backslash} \\ % \unichar{2216} & \textsc{set minus} & \umfont \char"2216 & \cs{smallsetminus} \\ % \unichar{29F5} & \textsc{reverse solidus operator}& \umfont \char"29F5 & \cs{setminus} \\ % \unichar{29F9} & \textsc{big reverse solidus} & \umfont \char"29F9 & \cs{xbsol} \\ % \bottomrule % \end{tabular} % \end{table} % % In regular \LaTeX\ we can write \cs{left}\cs{slash}\dots\cs{right}\cs{backslash} % and so on and obtain extensible delimiter-like symbols. Not all of the Unicode slashes % are suitable for this (and do not have the font support to do it). % % \paragraph{Slash} % % Of \unichar{2044} {fraction slash}, TR25 says that it is: % \begin{quote} % \dots used to build up simple fractions in running text\dots % however parsers of mathematical texts should be prepared to handle fraction slash % when it is received from other sources. % \end{quote} % % \unichar{2215} {division slash} should be used when division is represented % without a built-up fraction; $\pi\approx22/7$, for example. % % \unichar{29F8} {big solidus} is a `big operator' (like $\sum$). % % \paragraph{Backslash} % % The \unichar{005C} {reverse solidus} character \cs{backslash} is used for denoting % double cosets: $A\backslash B$. (So I'm led to believe.) % It may be used as a `stretchy' delimiter if supported by the font. % % MathML uses \unichar{2216} {set minus} like this: $A\smallsetminus B$.\footnote{\S4.4.5.11 \url{http://www.w3.org/TR/MathML3/}} % The \LaTeX\ command name \cs{smallsetminus} is used for backwards compatibility. % % Presumably, \unichar{29F5} {reverse solidus operator} is intended to % be used in a similar way, but it could also (perhaps?) be used to % represent `inverse division': $\pi\approx7\mathbin{\backslash}22$.^^A % \footnote{This is valid syntax in the Octave and Matlab programming languages, % in which it means matrix inverse pre-multiplication. I.e., $A\mathbin{\backslash} B\equiv A^{-1}B$.} % The \LaTeX\ name for this character is \cs{setminus}. % % Finally, \unichar{29F9} {big reverse solidus} is a `big operator' (like $\sum$). % % \paragraph{How to use all of these things} % % Unfortunately, font support for the above characters/glyphs is rather inconsistent. % In Cambria Math, the only slash that grows (say when writing % \[ % \left.\left[\begin{array}{cc} a & b \\ c & d\end{array}\right]\middle\slash % \left[\begin{array}{cc} 1 & 1 \\ 1 & 0\end{array}\right] \right.\quad ) % \] % is the \textsc{fraction slash}, which we just established above is % sort of only supposed to be used in text. % % Of the above characters, the following are allowed to be used after % \cs{left}, \cs{middle}, and \cs{right}: % \begin{itemize} % \item \cs{solidus}; % \item \cs{fracslash}; % \item \cs{slash}; and, % \item \cs{backslash} (the only reverse slash). % \end{itemize} % % However, we assume that there is only \emph{one} stretchy slash % in the font; this is assumed by default to be \unichar{002F} {solidus}. % Writing \cs{left/} or \cs{left}\cs{slash} or \cs{left}{fracslash} % will all result in the same stretchy delimiter being used. % % The delimiter used can be changed with the |slash-delimiter| package option. % Allowed values are |ascii|, |frac|, and |div|, corresponding to the respective % Unicode slots. % % For example: as mentioned above, Cambria Math's stretchy slash is % \unichar{2044} {fraction slash}. When using Cambria Math, then % \pkg{unicode-math} should be loaded with the |slash-delimiter=frac| option. % (This should be a font option rather than a package option, but % it will change soon.) % % \subsubsection{Pre-drawn fraction characters} % % Pre-drawn fractions \unichar{00BC}--\unichar{00BE}, \unichar{2150}--\unichar{215E} % are not suitable for use in mathematics output. However, they can be useful % as input characters to abbreviate common fractions. % % \centerline{\fontspec{Calibri} % ¼ ½ ¾ ⅐ ⅑ ⅒ ⅓ ⅔ ⅕ ⅖ ⅗ ⅘ ⅙ ⅚ ⅛ ⅜ ⅝ ⅞} % % For example, instead of writing `|\tfrac12 x|', it's more readable to have % `|½x|' in the source instead. % % If the \cs{tfrac} command exists (i.e., if \pkg{amsmath} is loaded or % you have specially defined \cs{tfrac} for this purpose), it will be used % to typeset the fractions. If not, regular \cs{frac} will be used. The command % to use (\cs{tfrac} or \cs{frac}) can be forced either way with the package % option |active-frac=small| or |active-frac=normalsize|, respectively. % % \subsubsection{Circles} % % Unicode defines a large number of different types of circles for a variety % of mathematical purposes. There are thirteen alone just considering the % all white and all black ones, shown in \tabref{circles}. % % \LaTeX\ defines considerably fewer: \cs{circ} and cs{bigcirc} for white; % \cs{bullet} for black. This package maps those commands to \cs{vysmwhtcircle}, % \cs{mdlgwhtcircle}, and \cs{smblkcircle}, respectively. % % \begin{table} % \def\showchar#1#2#3{ \textsc{u}+{\small\ttfamily #1} & \texttt{\string#3} & \umfont \char"#1 \\} % \begin{tabular}{@{}llc@{}} % \toprule % Slot & Command & Glyph \\ % \midrule % \showchar{00B7}{centerdot}{\cdotp} % \showchar{22C5}{small middle dot}{\cdot} % \showchar{2219}{bullet operator}{\vysmblkcircle} % \showchar{2022}{round bullet, filled}{\smblkcircle} % \showchar{2981}{z notation spot}{\mdsmblkcircle} % \showchar{26AB}{medium black circle}{\mdblkcircle} % \showchar{25CF}{circle, filled}{\mdlgblkcircle} % \showchar{2B24}{black large circle}{\lgblkcircle} % \bottomrule % \end{tabular} % \def\showchar#1#2#3{ \umfont \char"#1 & \texttt{\string#3} & \textsc{u}+{\small\ttfamily #1} \\} % \begin{tabular}{@{}cll@{}} % \toprule % Glyph & Command & Slot \\ % \midrule % \\ % \\ % \showchar{2218}{composite function (small circle)}{\vysmwhtcircle} % \showchar{25E6}{white bullet}{\smwhtcircle} % \showchar{26AC}{medium small white circle}{\mdsmwhtcircle} % \showchar{26AA}{medium white circle}{\mdwhtcircle} % \showchar{25CB}{large circle}{\mdlgwhtcircle} % \showchar{25EF}{large circle}{\lgwhtcircle} % \bottomrule % \end{tabular} % \caption{Filled and hollow Unicode circles.} % \tablabel{circles} % \end{table} % % \subsubsection{Triangles} % % While there aren't as many different sizes of triangle as there are circle, % there's some important distinctions to make between a few similar characters. % Namely, $\triangle$ and $\vartriangle$ and $\increment$ and $\mathup\Delta$. % See \tabref{uptriangles} for the full summary. % % These triangles all have different intended meanings. Note for backwards % compatibility with \TeX, \unichar{25B3} has \emph{two} different mappings % in \pkg{unicode-math}. \cs{bigtriangleup} is intended as a binary operator % whereas \cs{triangle} is intended to be used as a letter-like symbol. % % But you're better off if you're using the latter form to indicate an % increment to use the glyph intended for this purpose: $\increment x$. % % Finally, given that $\triangle$ and $\increment$ are provided for you % already, it is better off to only use upright Greek Delta $\Delta$ if you're % actually using it as a symbolic entity such as a variable on its own. % % \begin{table} % \begin{tabular}{@{}llcl@{}} % \toprule % Slot & Command & Glyph & Class \\ % \midrule % \unichar{25B5} & \cs{vartriangle} & \umfont \char"25B5 & binary \\ % \unichar{25B3} & \cs{bigtriangleup} & \umfont \char"25B3 & binary \\ % \unichar{25B3} & \cs{triangle} & \umfont \char"25B3 & ordinary \\ % \unichar{2206} & \cs{increment} & \umfont \char"2206 & ordinary \\ % \unichar{0394} & \cs{mathup}\cs{Delta} & \umfont \char"0394 & ordinary \\ % \bottomrule % \end{tabular} % \caption{Different upwards pointing triangles.} % \tablabel{uptriangles} % \end{table} % % \iffalse % \subsubsection{Normalising some input characters} % % I believe % all variant forms should be used as legal input that is normalised to % a consistent output glyph, because we want to be fault-tolerant in the input. % Here are the duplicates: % \begin{quote}\obeylines % \unichar {251} {latin small letter alpha} % \unichar {25B} {latin small letter epsilon} % \unichar {263} {latin small letter gamma} % \unichar {269} {latin small letter iota} % \unichar {278} {latin small letter phi} % \unichar {28A} {latin small letter upsilon} % \unichar {190} {latin capital letter epsilon} % \unichar {194} {latin capital letter gamma} % \unichar {196} {latin capital letter iota} % \unichar {1B1} {latin capital letter upsilon} % \end{quote} % % (Not yet implemented.) % \fi % % % \StopEventually{} % % \part{The \pkg{unicode-math} package} %\iffalse %<*package> %\fi % % \section{Things we need} % % \begin{macrocode} \usepackage{ifxetex,ifluatex} \ifxetex\else\ifluatex\else \PackageError{unicode-math}{% Cannot be run with pdfLaTeX!\MessageBreak Use XeLaTeX or LuaLaTeX instead.% }\@ehd \fi\fi % \end{macrocode} % % \paragraph{Packages} % \begin{macrocode} \RequirePackage{expl3}[2009/08/12] \RequirePackage{xparse}[2009/08/31] \RequirePackage{l3keys2e} \RequirePackage{fontspec}[2010/05/18] % \end{macrocode} % % Start using \LaTeX3 --- finally! % \begin{macrocode} \ExplSyntaxOn \@ifclassloaded{memoir}{ \cs_set_eq:NN \um_after_pkg:nn \AtEndPackage }{ \RequirePackage{scrlfile} \cs_set_eq:NN \um_after_pkg:nn \AfterPackage } % \end{macrocode} % % \paragraph{Extra \pkg{expl3} variants} % \begin{macrocode} \cs_generate_variant:Nn \tl_put_right:Nn {cx} \cs_generate_variant:Nn \seq_if_in:NnTF {NV} \cs_generate_variant:Nn \prop_gput:Nnn {Nxn} \cs_generate_variant:Nn \prop_get:NnN {cxN} \cs_generate_variant:Nn \prop_if_in:NnTF {cx} % \end{macrocode} % % \begin{macrocode} \cs_new:Npn \exp_args:NNcc #1#2#3#4 { \exp_after:wN #1 \exp_after:wN #2 \cs:w #3 \exp_after:wN \cs_end: \cs:w #4 \cs_end: } % \end{macrocode} % % % \paragraph{Conditionals} % \begin{macrocode} \bool_new:N \l_um_fontspec_feature_bool \bool_new:N \l_um_ot_math_bool \bool_new:N \l_um_init_bool \bool_new:N \l_um_implicit_alph_bool % \end{macrocode} % For \opt{math-style}: % \begin{macrocode} \bool_new:N \g_um_literal_bool \bool_new:N \g_um_upLatin_bool \bool_new:N \g_um_uplatin_bool \bool_new:N \g_um_upGreek_bool \bool_new:N \g_um_upgreek_bool % \end{macrocode} % For \opt{bold-style}: % \begin{macrocode} \bool_new:N \g_um_bfliteral_bool \bool_new:N \g_um_bfupLatin_bool \bool_new:N \g_um_bfuplatin_bool \bool_new:N \g_um_bfupGreek_bool \bool_new:N \g_um_bfupgreek_bool % \end{macrocode} % For \opt{sans-style}: % \begin{macrocode} \bool_new:N \g_um_upsans_bool \bool_new:N \g_um_sfliteral_bool % \end{macrocode} % For assorted package options: % \begin{macrocode} \bool_new:N \g_um_upNabla_bool \bool_new:N \g_um_uppartial_bool \bool_new:N \g_um_literal_Nabla_bool \bool_new:N \g_um_literal_partial_bool \bool_new:N \g_um_texgreek_bool \bool_new:N \l_um_smallfrac_bool \bool_new:N \g_um_literal_colon_bool % \end{macrocode} % % \paragraph{Variables} % \begin{macrocode} \int_new:N \g_um_fam_int % \end{macrocode} % % \begin{macrocode} \tl_set:Nn \g_um_math_alphabet_name_latin_tl {Latin,~lowercase} \tl_set:Nn \g_um_math_alphabet_name_Latin_tl {Latin,~uppercase} \tl_set:Nn \g_um_math_alphabet_name_greek_tl {Greek,~lowercase} \tl_set:Nn \g_um_math_alphabet_name_Greek_tl {Greek,~uppercase} \tl_set:Nn \g_um_math_alphabet_name_num_tl {Numerals} \tl_set:Nn \g_um_math_alphabet_name_misc_tl {Misc.} % \end{macrocode} % % \subsection{Extras} % % \begin{macro}{\um_glyph_if_exist:nTF} %: TODO: Generalise for arbitrary fonts! \cs{\l_um_font} is not always the one used for a specific glyph!! % \begin{macrocode} \prg_new_conditional:Nnn \um_glyph_if_exist:n {p,TF,T,F} { \etex_iffontchar:D \l_um_font #1 \scan_stop: \prg_return_true: \else: \prg_return_false: \fi: } \cs_generate_variant:Nn \um_glyph_if_exist_p:n {c} \cs_generate_variant:Nn \um_glyph_if_exist:nTF {c} \cs_generate_variant:Nn \um_glyph_if_exist:nT {c} \cs_generate_variant:Nn \um_glyph_if_exist:nF {c} % \end{macrocode} % \end{macro} % % \subsection{Compatibility with Lua\TeX} % % \begin{macrocode} \xetex_or_luatex:nnn { \cs_new:Npn \um_cs_compat:n #1 } { \cs_set_eq:cc {U#1} {XeTeX#1} } { \cs_set_eq:cc {U#1} {luatexU#1} } \um_cs_compat:n {mathcode} \um_cs_compat:n {delcode} \um_cs_compat:n {mathcodenum} \um_cs_compat:n {mathcharnum} \um_cs_compat:n {mathchardef} \um_cs_compat:n {radical} \um_cs_compat:n {mathaccent} \um_cs_compat:n {delimiter} % \end{macrocode} % % \subsubsection{Function variants} % % \begin{macrocode} \cs_generate_variant:Nn \fontspec_select:nn {x} % \end{macrocode} % % \subsection{Alphabet Unicode positions} % % Before we begin, let's define the positions of the various Unicode % alphabets so that our code is a little more readable.\footnote{`\textsc{u.s.v.}' stands % for `Unicode scalar value'.} % % Rather than `readable', in the end, this makes the code more extensible. % \begin{macrocode} \cs_new:Npn \usv_set:nnn #1#2#3 { \tl_set:cn { \um_to_usv:nn {#1}{#2} } {#3} } \cs_new:Npn \um_to_usv:nn #1#2 { g_um_#1_#2_usv } % \end{macrocode} % \paragraph{Alphabets} % \begin{macrocode} \usv_set:nnn {up}{num}{48} \usv_set:nnn {up}{Latin}{65} \usv_set:nnn {up}{latin}{97} \usv_set:nnn {up}{Greek}{"391} \usv_set:nnn {up}{greek}{"3B1} \usv_set:nnn {it}{Latin}{"1D434} \usv_set:nnn {it}{latin}{"1D44E} \usv_set:nnn {it}{Greek}{"1D6E2} \usv_set:nnn {it}{greek}{"1D6FC} \usv_set:nnn {bb}{num}{"1D7D8} \usv_set:nnn {bb}{Latin}{"1D538} \usv_set:nnn {bb}{latin}{"1D552} \usv_set:nnn {scr}{Latin}{"1D49C} \usv_set:nnn {scr}{latin}{"1D4B6} \usv_set:nnn {frak}{Latin}{"1D504} \usv_set:nnn {frak}{latin}{"1D51E} \usv_set:nnn {sf}{num}{"1D7E2} \usv_set:nnn {sfup}{num}{"1D7E2} \usv_set:nnn {sfit}{num}{"1D7E2} \usv_set:nnn {sfup}{Latin}{"1D5A0} \usv_set:nnn {sf}{Latin}{"1D5A0} \usv_set:nnn {sfup}{latin}{"1D5BA} \usv_set:nnn {sf}{latin}{"1D5BA} \usv_set:nnn {sfit}{Latin}{"1D608} \usv_set:nnn {sfit}{latin}{"1D622} \usv_set:nnn {tt}{num}{"1D7F6} \usv_set:nnn {tt}{Latin}{"1D670} \usv_set:nnn {tt}{latin}{"1D68A} % \end{macrocode} % Bold: % \begin{macrocode} \usv_set:nnn {bf}{num}{"1D7CE} \usv_set:nnn {bfup}{num}{"1D7CE} \usv_set:nnn {bfit}{num}{"1D7CE} \usv_set:nnn {bfup}{Latin}{"1D400} \usv_set:nnn {bfup}{latin}{"1D41A} \usv_set:nnn {bfup}{Greek}{"1D6A8} \usv_set:nnn {bfup}{greek}{"1D6C2} \usv_set:nnn {bfit}{Latin}{"1D468} \usv_set:nnn {bfit}{latin}{"1D482} \usv_set:nnn {bfit}{Greek}{"1D71C} \usv_set:nnn {bfit}{greek}{"1D736} \usv_set:nnn {bffrak}{Latin}{"1D56C} \usv_set:nnn {bffrak}{latin}{"1D586} \usv_set:nnn {bfscr}{Latin}{"1D4D0} \usv_set:nnn {bfscr}{latin}{"1D4EA} \usv_set:nnn {bfsf}{num}{"1D7EC} \usv_set:nnn {bfsfup}{num}{"1D7EC} \usv_set:nnn {bfsfit}{num}{"1D7EC} \usv_set:nnn {bfsfup}{Latin}{"1D5D4} \usv_set:nnn {bfsfup}{latin}{"1D5EE} \usv_set:nnn {bfsfup}{Greek}{"1D756} \usv_set:nnn {bfsfup}{greek}{"1D770} \usv_set:nnn {bfsfit}{Latin}{"1D63C} \usv_set:nnn {bfsfit}{latin}{"1D656} \usv_set:nnn {bfsfit}{Greek}{"1D790} \usv_set:nnn {bfsfit}{greek}{"1D7AA} % \end{macrocode} % % \begin{macrocode} \usv_set:nnn {bfsf}{Latin}{ \bool_if:NTF \g_um_upLatin_bool \g_um_bfsfup_Latin_usv \g_um_bfsfit_Latin_usv } \usv_set:nnn {bfsf}{latin}{ \bool_if:NTF \g_um_uplatin_bool \g_um_bfsfup_latin_usv \g_um_bfsfit_latin_usv } \usv_set:nnn {bfsf}{Greek}{ \bool_if:NTF \g_um_upGreek_bool \g_um_bfsfup_Greek_usv \g_um_bfsfit_Greek_usv } \usv_set:nnn {bfsf}{greek}{ \bool_if:NTF \g_um_upgreek_bool \g_um_bfsfup_greek_usv \g_um_bfsfit_greek_usv } \usv_set:nnn {bf}{Latin}{ \bool_if:NTF \g_um_bfupLatin_bool \g_um_bfup_Latin_usv \g_um_bfit_Latin_usv } \usv_set:nnn {bf}{latin}{ \bool_if:NTF \g_um_bfuplatin_bool \g_um_bfup_latin_usv \g_um_bfit_latin_usv } \usv_set:nnn {bf}{Greek}{ \bool_if:NTF \g_um_bfupGreek_bool \g_um_bfup_Greek_usv \g_um_bfit_Greek_usv } \usv_set:nnn {bf}{greek}{ \bool_if:NTF \g_um_bfupgreek_bool \g_um_bfup_greek_usv \g_um_bfit_greek_usv } % \end{macrocode} % Greek variants: % \begin{macrocode} \usv_set:nnn {up}{varTheta}{"3F4} \usv_set:nnn {up}{Digamma}{"3DC} \usv_set:nnn {up}{varepsilon}{"3F5} \usv_set:nnn {up}{vartheta}{"3D1} \usv_set:nnn {up}{varkappa}{"3F0} \usv_set:nnn {up}{varphi}{"3D5} \usv_set:nnn {up}{varrho}{"3F1} \usv_set:nnn {up}{varpi}{"3D6} \usv_set:nnn {up}{digamma}{"3DD} % \end{macrocode} % Bold: % \begin{macrocode} \usv_set:nnn {bfup}{varTheta}{"1D6B9} \usv_set:nnn {bfup}{Digamma}{"1D7CA} \usv_set:nnn {bfup}{varepsilon}{"1D6DC} \usv_set:nnn {bfup}{vartheta}{"1D6DD} \usv_set:nnn {bfup}{varkappa}{"1D6DE} \usv_set:nnn {bfup}{varphi}{"1D6DF} \usv_set:nnn {bfup}{varrho}{"1D6E0} \usv_set:nnn {bfup}{varpi}{"1D6E1} \usv_set:nnn {bfup}{digamma}{"1D7CB} % \end{macrocode} % Italic Greek variants: % \begin{macrocode} \usv_set:nnn {it}{varTheta}{"1D6F3} \usv_set:nnn {it}{varepsilon}{"1D716} \usv_set:nnn {it}{vartheta}{"1D717} \usv_set:nnn {it}{varkappa}{"1D718} \usv_set:nnn {it}{varphi}{"1D719} \usv_set:nnn {it}{varrho}{"1D71A} \usv_set:nnn {it}{varpi}{"1D71B} % \end{macrocode} % Bold italic: % \begin{macrocode} \usv_set:nnn {bfit}{varTheta}{"1D72D} \usv_set:nnn {bfit}{varepsilon}{"1D750} \usv_set:nnn {bfit}{vartheta}{"1D751} \usv_set:nnn {bfit}{varkappa}{"1D752} \usv_set:nnn {bfit}{varphi}{"1D753} \usv_set:nnn {bfit}{varrho}{"1D754} \usv_set:nnn {bfit}{varpi}{"1D755} % \end{macrocode} % Bold sans: % \begin{macrocode} \usv_set:nnn {bfsfup}{varTheta}{"1D767} \usv_set:nnn {bfsfup}{varepsilon}{"1D78A} \usv_set:nnn {bfsfup}{vartheta}{"1D78B} \usv_set:nnn {bfsfup}{varkappa}{"1D78C} \usv_set:nnn {bfsfup}{varphi}{"1D78D} \usv_set:nnn {bfsfup}{varrho}{"1D78E} \usv_set:nnn {bfsfup}{varpi}{"1D78F} % \end{macrocode} % Bold sans italic: % \begin{macrocode} \usv_set:nnn {bfsfit}{varTheta} {"1D7A1} \usv_set:nnn {bfsfit}{varepsilon}{"1D7C4} \usv_set:nnn {bfsfit}{vartheta} {"1D7C5} \usv_set:nnn {bfsfit}{varkappa} {"1D7C6} \usv_set:nnn {bfsfit}{varphi} {"1D7C7} \usv_set:nnn {bfsfit}{varrho} {"1D7C8} \usv_set:nnn {bfsfit}{varpi} {"1D7C9} % \end{macrocode} % Nabla: % \begin{macrocode} \usv_set:nnn {up} {Nabla}{"02207} \usv_set:nnn {it} {Nabla}{"1D6FB} \usv_set:nnn {bfup} {Nabla}{"1D6C1} \usv_set:nnn {bfit} {Nabla}{"1D735} \usv_set:nnn {bfsfup}{Nabla}{"1D76F} \usv_set:nnn {bfsfit}{Nabla}{"1D7A9} % \end{macrocode} % Partial: % \begin{macrocode} \usv_set:nnn {up} {partial}{"02202} \usv_set:nnn {it} {partial}{"1D715} \usv_set:nnn {bfup} {partial}{"1D6DB} \usv_set:nnn {bfit} {partial}{"1D74F} \usv_set:nnn {bfsfup}{partial}{"1D789} \usv_set:nnn {bfsfit}{partial}{"1D7C3} % \end{macrocode} % \paragraph{Exceptions} % These are need for mapping with the exceptions in other alphabets: % (coming up) % \begin{macrocode} \usv_set:nnn {up}{B}{`\B} \usv_set:nnn {up}{C}{`\C} \usv_set:nnn {up}{D}{`\D} \usv_set:nnn {up}{E}{`\E} \usv_set:nnn {up}{F}{`\F} \usv_set:nnn {up}{H}{`\H} \usv_set:nnn {up}{I}{`\I} \usv_set:nnn {up}{L}{`\L} \usv_set:nnn {up}{M}{`\M} \usv_set:nnn {up}{N}{`\N} \usv_set:nnn {up}{P}{`\P} \usv_set:nnn {up}{Q}{`\Q} \usv_set:nnn {up}{R}{`\R} \usv_set:nnn {up}{Z}{`\Z} % \end{macrocode} % % \begin{macrocode} \usv_set:nnn {it}{B}{"1D435} \usv_set:nnn {it}{C}{"1D436} \usv_set:nnn {it}{D}{"1D437} \usv_set:nnn {it}{E}{"1D438} \usv_set:nnn {it}{F}{"1D439} \usv_set:nnn {it}{H}{"1D43B} \usv_set:nnn {it}{I}{"1D43C} \usv_set:nnn {it}{L}{"1D43F} \usv_set:nnn {it}{M}{"1D440} \usv_set:nnn {it}{N}{"1D441} \usv_set:nnn {it}{P}{"1D443} \usv_set:nnn {it}{Q}{"1D444} \usv_set:nnn {it}{R}{"1D445} \usv_set:nnn {it}{Z}{"1D44D} % \end{macrocode} % % \begin{macrocode} \usv_set:nnn {up}{d}{`\d} \usv_set:nnn {up}{e}{`\e} \usv_set:nnn {up}{g}{`\g} \usv_set:nnn {up}{h}{`\h} \usv_set:nnn {up}{i}{`\i} \usv_set:nnn {up}{j}{`\j} \usv_set:nnn {up}{o}{`\o} % \end{macrocode} % % \begin{macrocode} \usv_set:nnn {it}{d}{"1D451} \usv_set:nnn {it}{e}{"1D452} \usv_set:nnn {it}{g}{"1D454} \usv_set:nnn {it}{h}{"0210E} \usv_set:nnn {it}{i}{"1D456} \usv_set:nnn {it}{j}{"1D457} \usv_set:nnn {it}{o}{"1D45C} % \end{macrocode} % Latin `h': % \begin{macrocode} \usv_set:nnn {bb} {h}{"1D559} \usv_set:nnn {tt} {h}{"1D691} \usv_set:nnn {scr} {h}{"1D4BD} \usv_set:nnn {frak} {h}{"1D525} \usv_set:nnn {bfup} {h}{"1D421} \usv_set:nnn {bfit} {h}{"1D489} \usv_set:nnn {sfup} {h}{"1D5C1} \usv_set:nnn {sfit} {h}{"1D629} \usv_set:nnn {bffrak}{h}{"1D58D} \usv_set:nnn {bfscr} {h}{"1D4F1} \usv_set:nnn {bfsfup}{h}{"1D5F5} \usv_set:nnn {bfsfit}{h}{"1D65D} % \end{macrocode} % Dotless `i' and `j: % \begin{macrocode} \usv_set:nnn {up}{dotlessi}{"00131} \usv_set:nnn {up}{dotlessj}{"00237} \usv_set:nnn {it}{dotlessi}{"1D6A4} \usv_set:nnn {it}{dotlessj}{"1D6A5} % \end{macrocode} % Blackboard: % \begin{macrocode} \usv_set:nnn {bb}{C}{"2102} \usv_set:nnn {bb}{H}{"210D} \usv_set:nnn {bb}{N}{"2115} \usv_set:nnn {bb}{P}{"2119} \usv_set:nnn {bb}{Q}{"211A} \usv_set:nnn {bb}{R}{"211D} \usv_set:nnn {bb}{Z}{"2124} \usv_set:nnn {up}{Pi} {"003A0} \usv_set:nnn {up}{pi} {"003C0} \usv_set:nnn {up}{Gamma} {"00393} \usv_set:nnn {up}{gamma} {"003B3} \usv_set:nnn {up}{summation}{"02211} \usv_set:nnn {it}{Pi} {"1D6F1} \usv_set:nnn {it}{pi} {"1D70B} \usv_set:nnn {it}{Gamma} {"1D6E4} \usv_set:nnn {it}{gamma} {"1D6FE} \usv_set:nnn {bb}{Pi} {"0213F} \usv_set:nnn {bb}{pi} {"0213C} \usv_set:nnn {bb}{Gamma} {"0213E} \usv_set:nnn {bb}{gamma} {"0213D} \usv_set:nnn {bb}{summation}{"02140} % \end{macrocode} % Italic blackboard: % \begin{macrocode} \usv_set:nnn {bbit}{D}{"2145} \usv_set:nnn {bbit}{d}{"2146} \usv_set:nnn {bbit}{e}{"2147} \usv_set:nnn {bbit}{i}{"2148} \usv_set:nnn {bbit}{j}{"2149} % \end{macrocode} % Script exceptions: % \begin{macrocode} \usv_set:nnn {scr}{B}{"212C} \usv_set:nnn {scr}{E}{"2130} \usv_set:nnn {scr}{F}{"2131} \usv_set:nnn {scr}{H}{"210B} \usv_set:nnn {scr}{I}{"2110} \usv_set:nnn {scr}{L}{"2112} \usv_set:nnn {scr}{M}{"2133} \usv_set:nnn {scr}{R}{"211B} \usv_set:nnn {scr}{e}{"212F} \usv_set:nnn {scr}{g}{"210A} \usv_set:nnn {scr}{o}{"2134} % \end{macrocode} % Fractur exceptions: % \begin{macrocode} \usv_set:nnn {frak}{C}{"212D} \usv_set:nnn {frak}{H}{"210C} \usv_set:nnn {frak}{I}{"2111} \usv_set:nnn {frak}{R}{"211C} \usv_set:nnn {frak}{Z}{"2128} % \end{macrocode} % % \subsection{STIX fonts} % % Version 1.0.0 of the STIX fonts contains a number of % alphabets in the private use area of Unicode; i.e., % it contains many math glyphs that have not (yet or if ever) % been accepted into the Unicode standard. % % But we still want to be able to use them if possible. % % \begin{macrocode} % %<*stix> % \end{macrocode} % % \paragraph{Upright} % \begin{macrocode} \usv_set:nnn {stix_sfup}{partial}{"E17C} \usv_set:nnn {stix_sfup}{Greek}{"E17D} \usv_set:nnn {stix_sfup}{greek}{"E196} \usv_set:nnn {stix_sfup}{varTheta}{"E18E} \usv_set:nnn {stix_sfup}{varepsilon}{"E1AF} \usv_set:nnn {stix_sfup}{vartheta}{"E1B0} \usv_set:nnn {stix_sfup}{varkappa}{0000} % ??? \usv_set:nnn {stix_sfup}{varphi}{"E1B1} \usv_set:nnn {stix_sfup}{varrho}{"E1B2} \usv_set:nnn {stix_sfup}{varpi}{"E1B3} \usv_set:nnn {stix_upslash}{Greek}{"E2FC} % \end{macrocode} % % \paragraph{Italic} % \begin{macrocode} \usv_set:nnn {stix_bbit}{A}{"E154} \usv_set:nnn {stix_bbit}{B}{"E155} \usv_set:nnn {stix_bbit}{E}{"E156} \usv_set:nnn {stix_bbit}{F}{"E157} \usv_set:nnn {stix_bbit}{G}{"E158} \usv_set:nnn {stix_bbit}{I}{"E159} \usv_set:nnn {stix_bbit}{J}{"E15A} \usv_set:nnn {stix_bbit}{K}{"E15B} \usv_set:nnn {stix_bbit}{L}{"E15C} \usv_set:nnn {stix_bbit}{M}{"E15D} \usv_set:nnn {stix_bbit}{O}{"E15E} \usv_set:nnn {stix_bbit}{S}{"E15F} \usv_set:nnn {stix_bbit}{T}{"E160} \usv_set:nnn {stix_bbit}{U}{"E161} \usv_set:nnn {stix_bbit}{V}{"E162} \usv_set:nnn {stix_bbit}{W}{"E163} \usv_set:nnn {stix_bbit}{X}{"E164} \usv_set:nnn {stix_bbit}{Y}{"E165} % \end{macrocode} % % \begin{macrocode} \usv_set:nnn {stix_bbit}{a}{"E166} \usv_set:nnn {stix_bbit}{b}{"E167} \usv_set:nnn {stix_bbit}{c}{"E168} \usv_set:nnn {stix_bbit}{f}{"E169} \usv_set:nnn {stix_bbit}{g}{"E16A} \usv_set:nnn {stix_bbit}{h}{"E16B} \usv_set:nnn {stix_bbit}{k}{"E16C} \usv_set:nnn {stix_bbit}{l}{"E16D} \usv_set:nnn {stix_bbit}{m}{"E16E} \usv_set:nnn {stix_bbit}{n}{"E16F} \usv_set:nnn {stix_bbit}{o}{"E170} \usv_set:nnn {stix_bbit}{p}{"E171} \usv_set:nnn {stix_bbit}{q}{"E172} \usv_set:nnn {stix_bbit}{r}{"E173} \usv_set:nnn {stix_bbit}{s}{"E174} \usv_set:nnn {stix_bbit}{t}{"E175} \usv_set:nnn {stix_bbit}{u}{"E176} \usv_set:nnn {stix_bbit}{v}{"E177} \usv_set:nnn {stix_bbit}{w}{"E178} \usv_set:nnn {stix_bbit}{x}{"E179} \usv_set:nnn {stix_bbit}{y}{"E17A} \usv_set:nnn {stix_bbit}{z}{"E17B} % \end{macrocode} % % \begin{macrocode} \usv_set:nnn {stix_sfit}{Numerals}{"E1B4} \usv_set:nnn {stix_sfit}{partial}{"E1BE} \usv_set:nnn {stix_sfit}{Greek}{"E1BF} \usv_set:nnn {stix_sfit}{greek}{"E1D8} \usv_set:nnn {stix_sfit}{varTheta}{"E1D0} \usv_set:nnn {stix_sfit}{varepsilon}{"E1F1} \usv_set:nnn {stix_sfit}{vartheta}{"E1F2} \usv_set:nnn {stix_sfit}{varkappa}{0000} % ??? \usv_set:nnn {stix_sfit}{varphi}{"E1F3} \usv_set:nnn {stix_sfit}{varrho}{"E1F4} \usv_set:nnn {stix_sfit}{varpi}{"E1F5} % \end{macrocode} % % \begin{macrocode} \usv_set:nnn {stix_cal}{Latin}{"E22D} \usv_set:nnn {stix_cal}{Numerals}{"E262} % \end{macrocode} % % \begin{macrocode} \usv_set:nnn {stix_sfitslash}{Latin}{"E294} \usv_set:nnn {stix_sfitslash}{latin}{"E2C8} \usv_set:nnn {stix_sfitslash}{greek}{"E32C} \usv_set:nnn {stix_sfitslash}{varepsilon}{"E37A} \usv_set:nnn {stix_sfitslash}{vartheta}{"E35E} \usv_set:nnn {stix_sfitslash}{varkappa}{"E374} \usv_set:nnn {stix_sfitslash}{varphi}{"E360} \usv_set:nnn {stix_sfitslash}{varrho}{"E376} \usv_set:nnn {stix_sfitslash}{varpi}{"E362} \usv_set:nnn {stix_sfitslash}{digamma}{"E36A} % \end{macrocode} % % \paragraph{Bold} % % \begin{macrocode} \usv_set:nnn {stix_bfupslash}{Greek}{"E2FD} \usv_set:nnn {stix_bfupslash}{Digamma}{"E369} % \end{macrocode} % % \begin{macrocode} \usv_set:nnn {stix_bfbb}{A}{"E38A} \usv_set:nnn {stix_bfbb}{B}{"E38B} \usv_set:nnn {stix_bfbb}{E}{"E38D} \usv_set:nnn {stix_bfbb}{F}{"E38E} \usv_set:nnn {stix_bfbb}{G}{"E38F} \usv_set:nnn {stix_bfbb}{I}{"E390} \usv_set:nnn {stix_bfbb}{J}{"E391} \usv_set:nnn {stix_bfbb}{K}{"E392} \usv_set:nnn {stix_bfbb}{L}{"E393} \usv_set:nnn {stix_bfbb}{M}{"E394} \usv_set:nnn {stix_bfbb}{O}{"E395} \usv_set:nnn {stix_bfbb}{S}{"E396} \usv_set:nnn {stix_bfbb}{T}{"E397} \usv_set:nnn {stix_bfbb}{U}{"E398} \usv_set:nnn {stix_bfbb}{V}{"E399} \usv_set:nnn {stix_bfbb}{W}{"E39A} \usv_set:nnn {stix_bfbb}{X}{"E39B} \usv_set:nnn {stix_bfbb}{Y}{"E39C} % \end{macrocode} % % \begin{macrocode} \usv_set:nnn {stix_bfbb}{a}{"E39D} \usv_set:nnn {stix_bfbb}{b}{"E39E} \usv_set:nnn {stix_bfbb}{c}{"E39F} \usv_set:nnn {stix_bfbb}{f}{"E3A2} \usv_set:nnn {stix_bfbb}{g}{"E3A3} \usv_set:nnn {stix_bfbb}{h}{"E3A4} \usv_set:nnn {stix_bfbb}{k}{"E3A7} \usv_set:nnn {stix_bfbb}{l}{"E3A8} \usv_set:nnn {stix_bfbb}{m}{"E3A9} \usv_set:nnn {stix_bfbb}{n}{"E3AA} \usv_set:nnn {stix_bfbb}{o}{"E3AB} \usv_set:nnn {stix_bfbb}{p}{"E3AC} \usv_set:nnn {stix_bfbb}{q}{"E3AD} \usv_set:nnn {stix_bfbb}{r}{"E3AE} \usv_set:nnn {stix_bfbb}{s}{"E3AF} \usv_set:nnn {stix_bfbb}{t}{"E3B0} \usv_set:nnn {stix_bfbb}{u}{"E3B1} \usv_set:nnn {stix_bfbb}{v}{"E3B2} \usv_set:nnn {stix_bfbb}{w}{"E3B3} \usv_set:nnn {stix_bfbb}{x}{"E3B4} \usv_set:nnn {stix_bfbb}{y}{"E3B5} \usv_set:nnn {stix_bfbb}{z}{"E3B6} % \end{macrocode} % % \begin{macrocode} \usv_set:nnn {stix_bftt}{Numerals}{"E3B7} % \end{macrocode} % % \paragraph{Bold Italic} % \begin{macrocode} \usv_set:nnn {stix_bfsfit}{Numerals}{"E1F6} % \end{macrocode} % % \begin{macrocode} \usv_set:nnn {stix_bfbbit}{A}{"E200} \usv_set:nnn {stix_bfbbit}{B}{"E201} \usv_set:nnn {stix_bfbbit}{E}{"E203} \usv_set:nnn {stix_bfbbit}{F}{"E204} \usv_set:nnn {stix_bfbbit}{G}{"E205} \usv_set:nnn {stix_bfbbit}{I}{"E206} \usv_set:nnn {stix_bfbbit}{J}{"E207} \usv_set:nnn {stix_bfbbit}{K}{"E208} \usv_set:nnn {stix_bfbbit}{L}{"E209} \usv_set:nnn {stix_bfbbit}{M}{"E20A} \usv_set:nnn {stix_bfbbit}{O}{"E20B} \usv_set:nnn {stix_bfbbit}{S}{"E20C} \usv_set:nnn {stix_bfbbit}{T}{"E20D} \usv_set:nnn {stix_bfbbit}{U}{"E20E} \usv_set:nnn {stix_bfbbit}{V}{"E20F} \usv_set:nnn {stix_bfbbit}{W}{"E210} \usv_set:nnn {stix_bfbbit}{X}{"E211} \usv_set:nnn {stix_bfbbit}{Y}{"E212} % \end{macrocode} % % \begin{macrocode} \usv_set:nnn {stix_bfbbit}{a}{"E213} \usv_set:nnn {stix_bfbbit}{b}{"E214} \usv_set:nnn {stix_bfbbit}{c}{"E215} \usv_set:nnn {stix_bfbbit}{e}{"E217} \usv_set:nnn {stix_bfbbit}{f}{"E218} \usv_set:nnn {stix_bfbbit}{g}{"E219} \usv_set:nnn {stix_bfbbit}{h}{"E21A} \usv_set:nnn {stix_bfbbit}{k}{"E21D} \usv_set:nnn {stix_bfbbit}{l}{"E21E} \usv_set:nnn {stix_bfbbit}{m}{"E21F} \usv_set:nnn {stix_bfbbit}{n}{"E220} \usv_set:nnn {stix_bfbbit}{o}{"E221} \usv_set:nnn {stix_bfbbit}{p}{"E222} \usv_set:nnn {stix_bfbbit}{q}{"E223} \usv_set:nnn {stix_bfbbit}{r}{"E224} \usv_set:nnn {stix_bfbbit}{s}{"E225} \usv_set:nnn {stix_bfbbit}{t}{"E226} \usv_set:nnn {stix_bfbbit}{u}{"E227} \usv_set:nnn {stix_bfbbit}{v}{"E228} \usv_set:nnn {stix_bfbbit}{w}{"E229} \usv_set:nnn {stix_bfbbit}{x}{"E22A} \usv_set:nnn {stix_bfbbit}{y}{"E22B} \usv_set:nnn {stix_bfbbit}{z}{"E22C} % \end{macrocode} % % \begin{macrocode} \usv_set:nnn {stix_bfcal}{Latin}{"E247} % \end{macrocode} % % \begin{macrocode} \usv_set:nnn {stix_bfitslash}{Latin}{"E295} \usv_set:nnn {stix_bfitslash}{latin}{"E2C9} \usv_set:nnn {stix_bfitslash}{greek}{"E32D} \usv_set:nnn {stix_sfitslash}{varepsilon}{"E37B} \usv_set:nnn {stix_sfitslash}{vartheta}{"E35F} \usv_set:nnn {stix_sfitslash}{varkappa}{"E375} \usv_set:nnn {stix_sfitslash}{varphi}{"E361} \usv_set:nnn {stix_sfitslash}{varrho}{"E377} \usv_set:nnn {stix_sfitslash}{varpi}{"E363} \usv_set:nnn {stix_sfitslash}{digamma}{"E36B} % \end{macrocode} % % \begin{macrocode} % %<*package> % \end{macrocode} % % \subsection{Package options} % % \begin{macro}{\unimathsetup} % This macro can be used in lieu of or later to override % options declared when the package is loaded. % \begin{macrocode} \DeclareDocumentCommand \unimathsetup {m} { \clist_clear:N \l_um_unknown_keys_clist \keys_set:nn {unicode-math} {#1} } % \end{macrocode} % \end{macro} % % % \paragraph{math-style} % \begin{macrocode} \keys_define:nn {unicode-math} { normal-style .choice_code:n = { \bool_set_false:N \g_um_literal_bool \ifcase \l_keys_choice_int \bool_set_false:N \g_um_upGreek_bool \bool_set_false:N \g_um_upgreek_bool \bool_set_false:N \g_um_upLatin_bool \bool_set_false:N \g_um_uplatin_bool \or \bool_set_true:N \g_um_upGreek_bool \bool_set_false:N \g_um_upgreek_bool \bool_set_false:N \g_um_upLatin_bool \bool_set_false:N \g_um_uplatin_bool \or \bool_set_true:N \g_um_upGreek_bool \bool_set_true:N \g_um_upgreek_bool \bool_set_true:N \g_um_upLatin_bool \bool_set_false:N \g_um_uplatin_bool \or \bool_set_true:N \g_um_upGreek_bool \bool_set_true:N \g_um_upgreek_bool \bool_set_true:N \g_um_upLatin_bool \bool_set_true:N \g_um_uplatin_bool \or \bool_set_true:N \g_um_literal_bool \fi } , normal-style .generate_choices:n = {ISO,TeX,french,upright,literal} , } % \end{macrocode} % % \begin{macrocode} \keys_define:nn {unicode-math} { math-style .choice_code:n = { \ifcase \l_keys_choice_int \unimathsetup { normal-style=ISO, bold-style=ISO, sans-style=italic, nabla=upright, partial=italic, } \or \unimathsetup { normal-style=TeX, bold-style=TeX, sans-style=upright, nabla=upright, partial=italic, } \or \unimathsetup { normal-style=french, bold-style=upright, sans-style=upright, nabla=upright, partial=upright, } \or \unimathsetup { normal-style=upright, bold-style=upright, sans-style=upright, nabla=upright, partial=upright, } \or \unimathsetup { normal-style=literal, bold-style=literal, sans-style=literal, colon=literal, nabla=literal, partial=literal, } \fi } , math-style .generate_choices:n = {ISO,TeX,french,upright,literal} , } % \end{macrocode} % % \paragraph{bold-style} % \begin{macrocode} \keys_define:nn {unicode-math} { bold-style .choice_code:n = { \bool_set_false:N \g_um_bfliteral_bool \ifcase \l_keys_choice_int \bool_set_false:N \g_um_bfupGreek_bool \bool_set_false:N \g_um_bfupgreek_bool \bool_set_false:N \g_um_bfupLatin_bool \bool_set_false:N \g_um_bfuplatin_bool \or \bool_set_true:N \g_um_bfupGreek_bool \bool_set_false:N \g_um_bfupgreek_bool \bool_set_true:N \g_um_bfupLatin_bool \bool_set_true:N \g_um_bfuplatin_bool \or \bool_set_true:N \g_um_bfupGreek_bool \bool_set_true:N \g_um_bfupgreek_bool \bool_set_true:N \g_um_bfupLatin_bool \bool_set_true:N \g_um_bfuplatin_bool \or \bool_set_true:N \g_um_bfliteral_bool \fi } , bold-style .generate_choices:n = {ISO,TeX,upright,literal} , } % \end{macrocode} % % \paragraph{sans-style} % \begin{macrocode} \keys_define:nn {unicode-math} { sans-style .choice_code:n = { \ifcase \l_keys_choice_int \bool_set_false:N \g_um_upsans_bool \or \bool_set_true:N \g_um_upsans_bool \or \bool_set_true:N \g_um_sfliteral_bool \fi } , sans-style .generate_choices:n = {italic,upright,literal} , } % \end{macrocode} % % \paragraph{Nabla and partial} % \begin{macrocode} \keys_define:nn {unicode-math} { nabla .choice_code:n = { \bool_set_false:N \g_um_literal_Nabla_bool \ifcase \l_keys_choice_int \bool_set_true:N \g_um_upNabla_bool \or \bool_set_false:N \g_um_upNabla_bool \or \bool_set_true:N \g_um_literal_Nabla_bool \fi } , nabla .generate_choices:n = {upright,italic,literal} , } % \end{macrocode} % % \begin{macrocode} \keys_define:nn {unicode-math} { partial .choice_code:n = { \bool_set_false:N \g_um_literal_partial_bool \ifcase \l_keys_choice_int \bool_set_true:N \g_um_uppartial_bool \or \bool_set_false:N \g_um_uppartial_bool \or \bool_set_true:N \g_um_literal_partial_bool \fi } , partial .generate_choices:n = {upright,italic,literal} , } % \end{macrocode} % % \paragraph{Epsilon and phi shapes} % \begin{macrocode} \keys_define:nn {unicode-math} { vargreek-shape .choice: , vargreek-shape / unicode .code:n = { \bool_set_false:N \g_um_texgreek_bool } , vargreek-shape / TeX .code:n = { \bool_set_true:N \g_um_texgreek_bool } } % \end{macrocode} % % \paragraph{Colon style} % \begin{macrocode} \keys_define:nn {unicode-math} { colon .choice: , colon / literal .code:n = { \bool_set_true:N \g_um_literal_colon_bool } , colon / TeX .code:n = { \bool_set_false:N \g_um_literal_colon_bool } } % \end{macrocode} % % \paragraph{Slash delimiter style} % \begin{macrocode} \keys_define:nn {unicode-math} { slash-delimiter .choice: , slash-delimiter / ascii .code:n = { \tl_set:Nn \g_um_slash_delimiter_usv {"002F} } , slash-delimiter / frac .code:n = { \tl_set:Nn \g_um_slash_delimiter_usv {"2044} } , slash-delimiter / div .code:n = { \tl_set:Nn \g_um_slash_delimiter_usv {"2215} } } % \end{macrocode} % % % \paragraph{Active fraction style} % \begin{macrocode} \keys_define:nn {unicode-math} { active-frac .choice: , active-frac / small .code:n = { \cs_if_exist:NTF \tfrac { \bool_set_true:N \l_um_smallfrac_bool }{ \um_warning:n {no-tfrac} \bool_set_false:N \l_um_smallfrac_bool } \use:c{um_setup_active_frac:} } , active-frac / normalsize .code:n = { \bool_set_false:N \l_um_smallfrac_bool \use:c{um_setup_active_frac:} } } % \end{macrocode} % % \paragraph{Debug/tracing} % \begin{macrocode} \keys_define:nn {unicode-math} { trace .choice: , trace / debug .code:n = { \msg_redirect_module:nnn { unicode-math } { trace } { warning } } , trace / on .code:n = { \msg_redirect_module:nnn { unicode-math } { trace } { trace } } , trace / off .code:n = { \msg_redirect_module:nnn { unicode-math } { trace } { none } } , } % \end{macrocode} % % \begin{macrocode} \clist_new:N \l_um_unknown_keys_clist \keys_define:nn {unicode-math} { unknown .code:n = { \clist_put_right:No \l_um_unknown_keys_clist { \l_keys_key_tl = {#1} } } } % \end{macrocode} % % \begin{macrocode} \unimathsetup {math-style=TeX} \unimathsetup {slash-delimiter=ascii} \unimathsetup {trace=off} \cs_if_exist:NT \tfrac { \unimathsetup {active-frac=small} } \ProcessKeysOptions {unicode-math} % \end{macrocode} % % \subsection{Overcoming \cmd\@onlypreamble} % % The requirement of only setting up the maths fonts in the preamble is now removed. The following list might be overly ambitious. % \begin{macrocode} \tl_map_inline:nn { \new@mathgroup\cdp@list\cdp@elt\DeclareMathSizes \@DeclareMathSizes\newmathalphabet\newmathalphabet@@\newmathalphabet@@@ \DeclareMathVersion\define@mathalphabet\define@mathgroup\addtoversion \version@list\version@elt\alpha@list\alpha@elt \restore@mathversion\init@restore@version\dorestore@version\process@table \new@mathversion\DeclareSymbolFont\group@list\group@elt \new@symbolfont\SetSymbolFont\SetSymbolFont@\get@cdp \DeclareMathAlphabet\new@mathalphabet\SetMathAlphabet\SetMathAlphabet@ \DeclareMathAccent\set@mathaccent\DeclareMathSymbol\set@mathchar \set@mathsymbol\DeclareMathDelimiter\@xxDeclareMathDelimiter \@DeclareMathDelimiter\@xDeclareMathDelimiter\set@mathdelimiter \set@@mathdelimiter\DeclareMathRadical\mathchar@type \DeclareSymbolFontAlphabet\DeclareSymbolFontAlphabet@ }{ \tl_remove_in:Nn \@preamblecmds {\do#1} } % \end{macrocode} % % \section{Fundamentals} % % \subsection{Enlarging the number of maths families} % % To start with, we've got a power of two as many \cmd\fam s as before. So (from |ltfssbas.dtx|) we want to redefine % \begin{macrocode} \def\new@mathgroup{\alloc@8\mathgroup\chardef\@cclvi} \let\newfam\new@mathgroup % \end{macrocode} % % This is sufficient for \LaTeX's \cmd\DeclareSymbolFont-type commands to be able % to define 256 named maths fonts. % % \subsection{Setting math chars, math codes, etc.} % % \begin{macro}{\um_set_mathsymbol:nNNn} % \darg{A \LaTeX\ symbol font, e.g., \texttt{operators}} % \darg{Symbol macro, \eg, \cmd\alpha} % \darg{Type, \eg, \cmd\mathalpha} % \darg{Slot, \eg, \texttt{"221E}} % There are a bunch of tests to perform to process the various characters. % The following assignments should all be fairly straightforward. % \begin{macrocode} \cs_set:Npn \um_set_mathsymbol:nNNn #1#2#3#4 { \prg_case_tl:Nnn #3 { \mathop { \um_set_big_operator:nnn {#1} {#2} {#4} } \mathopen { \tl_if_in:NnTF \l_um_radicals_tl {#2} { \cs_gset:cpx {\cs_to_str:N #2 sign} { \um_radical:nn {#1} {#4} } }{ \um_set_delcode:n {#4} \um_set_mathcode:nnn {#4} \mathopen {#1} \cs_gset:Npx #2 { \um_delimiter:Nnn \mathopen {#1} {#4} } } } \mathclose { \um_set_delcode:n {#4} \um_set_mathcode:nnn {#4} \mathclose {#1} \cs_gset:Npx #2 { \um_delimiter:Nnn \mathclose {#1} {#4} } } \mathfence { \um_set_mathcode:nnn {#4} {#3} {#1} \um_set_delcode:n {#4} \cs_gset:cpx {l \cs_to_str:N #2} { \um_delimiter:Nnn \mathopen {#1} {#4} } \cs_gset:cpx {r \cs_to_str:N #2} { \um_delimiter:Nnn \mathclose {#1} {#4} } } \mathaccent { \cs_gset:Npx #2 { \um_accent:Nnn #3 {#1} {#4} } } }{ \um_set_mathcode:nnn {#4} {#3} {#1} } } % \end{macrocode} % \end{macro} % % % \begin{macro}{\um_set_big_operator:nnn} % \darg{Symbol font name} % \darg{Macro to assign} % \darg{Glyph slot} % In the examples following, say we're defining for the symbol \cmd\sum ($\sum$). % In order for literal Unicode characters to be used in the source and still % have the correct limits behaviour, big operators are made math-active. % This involves three steps: % \begin{itemize} % \item % The active math char is defined to expand to the macro \cs{sum_sym}. % (Later, the control sequence \cs{sum} will be assigned the math char.) % \item % Declare the plain old mathchardef for the control sequence \cmd\sumop. % (This follows the convention of \LaTeX/\pkg{amsmath}.) % \item % Define \cs{sum_sym} as \cmd\sumop, followed by \cmd\nolimits\ if necessary. % \end{itemize} % Whether the \cmd\nolimits\ suffix is inserted is controlled by the % token list \cs{l_um_nolimits_tl}, which contains a list of such characters. % This list is checked dynamically to allow it to be updated mid-document. % % Examples of expansion, by default, for two big operators: % \begin{quote} % (~\cs{sum} $\to$~) $\sum$ $\to$ \cs{sum_sym} $\to$ \cs{sumop}\cs{nolimits}\par % (~\cs{int} $\to$~) $\int$ $\to$ \cs{int_sym} $\to$ \cs{intop} % \end{quote} % \begin{macrocode} \cs_new:Npn \um_set_big_operator:nnn #1#2#3 { \group_begin: \char_make_active:n {#3} \char_gmake_mathactive:n {#3} \um@scanactivedef #3 \@nil { \csname\cs_to_str:N #2 _sym\endcsname } \group_end: \um_set_mathchar:cNnn {\cs_to_str:N #2 op} \mathop {#1} {#3} \cs_gset:cpx { \cs_to_str:N #2 _sym } { \exp_not:c { \cs_to_str:N #2 op } \exp_not:n { \tl_if_in:NnT \l_um_nolimits_tl {#2} \nolimits } } } % \end{macrocode} % \end{macro} % % % \begin{macro}{\um_set_mathcode:nnnn} % \begin{macro}{\um_set_mathcode:nnn} % \begin{macro}{\um_set_mathchar:NNnn} % \begin{macro}{\um_set_mathchar:cNnn} % \begin{macro}{\um_radical:nn} % \begin{macro}{\um_delimiter:Nnn} % \begin{macro}{\um_accent:Nnn} % \begin{macrocode} \cs_set:Npn \um_set_mathcode:nnnn #1#2#3#4 { \Umathcode \intexpr_eval:n {#1} = \mathchar@type#2 \csname sym#3\endcsname \intexpr_eval:n {#4} \scan_stop: } \cs_set:Npn \um_set_mathcode:nnn #1#2#3 { \Umathcode \intexpr_eval:n {#1} = \mathchar@type#2 \csname sym#3\endcsname \intexpr_eval:n {#1} \scan_stop: } \cs_set:Npn \um_set_mathchar:NNnn #1#2#3#4 { \Umathchardef #1 = \mathchar@type#2 \csname sym#3\endcsname \intexpr_eval:n {#4} \scan_stop: } \cs_new:Npn \um_radical:nn #1#2 { \Uradical \csname sym#1\endcsname #2 \scan_stop: } \cs_new:Npn \um_delimiter:Nnn #1#2#3 { \Udelimiter \mathchar@type#1 \csname sym#2\endcsname #3 \scan_stop: } \cs_new:Npn \um_accent:Nnn #1#2#3 { \Umathaccent \mathchar@type#1 \csname sym#2\endcsname #3 \scan_stop: } \cs_generate_variant:Nn \um_set_mathchar:NNnn {c} % \end{macrocode} % \end{macro} % \end{macro} % \end{macro} % \end{macro} % \end{macro} % \end{macro} % \end{macro} % % % \begin{macro}{\char_gmake_mathactive:N} % \begin{macro}{\char_gmake_mathactive:n} % \begin{macrocode} \cs_new:Npn \char_gmake_mathactive:N #1 { \global\mathcode `#1 = "8000 \scan_stop: } \cs_new:Npn \char_gmake_mathactive:n #1 { \global\mathcode #1 = "8000 \scan_stop: } % \end{macrocode} % \end{macro} % \end{macro} % % % \subsection{The main \cs{setmathfont} macro} % % Using a |range| including large character sets such as \cmd\mathrel, % \cmd\mathalpha, \etc, is \emph{very slow}! % I hope to improve the performance somehow. % % \begin{macro}{\setmathfont} % \doarg{font features} % \darg{font name} % \begin{macrocode} \cs_new:Npn \um_init: { % \end{macrocode} % \begin{itemize} % \item Erase any conception \LaTeX\ has of previously defined math symbol fonts; % this allows \cmd\DeclareSymbolFont\ at any point in the document. % \begin{macrocode} \let\glb@currsize\relax % \end{macrocode} % \item To start with, assume we're defining the font for every math symbol character. % \begin{macrocode} \bool_set_true:N \l_um_init_bool \seq_clear:N \l_um_char_range_seq \clist_clear:N \l_um_char_num_range_clist \seq_clear:N \l_um_mathalph_seq \clist_clear:N \l_um_unknown_keys_clist \seq_clear:N \l_um_missing_alph_seq % \end{macrocode} % \end{itemize} % \begin{macrocode} } \DeclareDocumentCommand \setmathfont { O{} m } { \um_init: % \end{macrocode} % \begin{itemize} % \item Grab the current size information % (is this robust enough? Maybe it should be preceded by \cmd\normalsize). % \begin{macrocode} \csname S@\f@size\endcsname % \end{macrocode} % \item Set the name of the math version being defined. % (obviously more needs to be done here!) % \end{itemize} % \begin{macrocode} \tl_set:Nn \l_um_mversion_tf {normal} \DeclareMathVersion{\l_um_mversion_tf} % \end{macrocode} % \item Define default font features for the script and scriptscript font. % \begin{macrocode} \tl_set:Nn \l_um_script_features_tl {ScriptStyle} \tl_set:Nn \l_um_sscript_features_tl {ScriptScriptStyle} \tl_set:Nn \l_um_script_font_tl {#2} \tl_set:Nn \l_um_sscript_font_tl {#2} % \end{macrocode} % Use \pkg{fontspec} to select a font to use. The macro \cmd\S@\meta{size} % contains the definitions of the sizes used for maths letters, subscripts and subsubscripts in % \cmd\tf@size, \cmd\sf@size, and \cmd\ssf@size, respectively. % \begin{macrocode} \keys_set:nn {unicode-math} {#1} \um_fontspec_select_font:n {#2} % \end{macrocode} % Check for the correct number of \cs{fontdimen}s: % \begin{macrocode} %% \ifdim \dimexpr\fontdimen9\l_um_font*65536\relax =65pt\relax %% \bool_set_true:N \l_um_ot_math_bool %% \else %% \bool_set_false:N \l_um_ot_math_bool %% \PackageWarningNoLine{unicode-math}{ %% The~ font~ '#2' ~is~ not~ a~ valid~ OpenType~ maths~ font.~ %% Some~ maths~ features~ will~ not~ be~ available~ or~ behave~ %% in~ a~ substandard~ manner %% } %% \fi % \end{macrocode} % If we're defining the full Unicode math repetoire, then we skip all % the parsing processing needed if we're only defining a subset. % \begin{itemize} % \item Math symbols are defined with \cmd\UnicodeMathSymbol; see \secref{mathsymbol} % for the individual definitions % \end{itemize} % \begin{macrocode} \bool_if:NTF \l_um_init_bool { \tl_set:Nn \um_symfont_tl {um_allsym} \msg_trace:nnx {unicode-math} {default-math-font} {#2} \cs_set_eq:NN \UnicodeMathSymbol \um_process_symbol_noparse:nnnn \cs_set_eq:NN \um_set_mathalphabet_char:Nnn \um_mathmap_noparse:Nnn \cs_set_eq:NN \um_remap_symbol:nnn \um_remap_symbol_noparse:nnn \cs_set_eq:NN \um_maybe_init_alphabet:n \um_init_alphabet:n \cs_set_eq:NN \um_map_char_single:nn \um_map_char_noparse:nn }{ \int_incr:N \g_um_fam_int \tl_set:Nx \um_symfont_tl {um_fam\int_use:N\g_um_fam_int} \cs_set_eq:NN \UnicodeMathSymbol \um_process_symbol_parse:nnnn \cs_set_eq:NN \um_set_mathalphabet_char:Nnn \um_mathmap_parse:Nnn \cs_set_eq:NN \um_remap_symbol:nnn \um_remap_symbol_parse:nnn \cs_set_eq:NN \um_maybe_init_alphabet:n \use_none:n \cs_set_eq:NN \um_map_char_single:nn \um_map_char_parse:nn } % \end{macrocode} % Now defined |\um_symfont_tl| as the \LaTeX\ math font to access everything: % \begin{macrocode} \DeclareSymbolFont{\um_symfont_tl} {\encodingdefault}{\zf@family}{\mddefault}{\updefault} % \end{macrocode} % And now we input every single maths char. See File~\ref{part:awk} for % the source to |unicode-math.tex| which is used to create % |unicode-math-table.tex|. % \begin{macrocode} \@input{unicode-math-table.tex} \cs_set_eq:NN \UnicodeMathSymbol \use_none:nnnn % \end{macrocode} % Finally, % \begin{itemize} % \item Remap symbols that don't take their natural mathcode % \item Activate any symbols that need to be math-active % \item Assign delimiter codes for symbols that need to grow % \item Setup the maths alphabets (\cs{mathbf} etc.) % \end{itemize} % \begin{macrocode} \um_remap_symbols: \um_setup_mathactives: \um_setup_delcodes: \um_setup_alphabets: % \end{macrocode} % Prevent spaces: % \begin{macrocode} \ignorespaces } % \end{macrocode} % \end{macro} % % % \begin{macro}{\um_fontspec_select_font:} % Select the font with \cs{fontspec} and define \cs{l_um_font} from it. % \begin{macrocode} \cs_new:Npn \um_fontspec_select_font:n #1 { \bool_set_true:N \l_um_fontspec_feature_bool \fontspec_select:xn { BoldFont = {}, ItalicFont = {}, Script = Math, SizeFeatures = { {Size = \tf@size-} , {Size = \sf@size-\tf@size , Font = \l_um_script_font_tl , \l_um_script_features_tl } , {Size = -\sf@size , Font = \l_um_sscript_font_tl , \l_um_sscript_features_tl } }, \l_um_unknown_keys_clist } {#1} \tl_set_eq:NN \l_um_font \zf@basefont \bool_set_false:N \l_um_fontspec_feature_bool } % \end{macrocode} % \end{macro} % % % \subsubsection{Functions for setting up symbols with mathcodes} % \seclabel{mathsymbol} % % \begin{macro}{\um_process_symbol_noparse:nnnn} % \begin{macro}{\um_process_symbol_parse:nnnn} % If the \feat{range} font feature has been used, then only % a subset of the Unicode glyphs are to be defined. % See \secref{rangeproc} for the code that enables this. % \begin{macrocode} \cs_set:Npn \um_process_symbol_noparse:nnnn #1#2#3#4 { \um_set_mathsymbol:nNNn {\um_symfont_tl} #2#3{#1} } % \end{macrocode} % \begin{macrocode} \cs_set:Npn \um_process_symbol_parse:nnnn #1#2#3#4 { \um@parse@term{#1}{#2}{#3}{ \um_process_symbol_noparse:nnnn{#1}{#2}{#3}{#4} } } % \end{macrocode} % \end{macro} % \end{macro} % % % \begin{macro}{\um_remap_symbols:} % \begin{macro}{\um_remap_symbol_noparse:nnn} % \begin{macro}{\um_remap_symbol_parse:nnn} % This function is used to define the mathcodes for those chars which should % be mapped to a different glyph than themselves. % \begin{macrocode} \cs_new:Npn \um_remap_symbols: { \um_remap_symbol:nnn{`\-}{\mathbin}{"02212}% hyphen to minus \um_remap_symbol:nnn{`\*}{\mathbin}{"02217}% text asterisk to "centred asterisk" \bool_if:NF \g_um_literal_colon_bool { \um_remap_symbol:nnn{`\:}{\mathrel}{"02236}% colon to ratio (i.e., punct to rel) } } % \end{macrocode} % \end{macro} % Where |\um_remap_symbol:nnn| is defined to be one of these two, depending % on the range setup: % \begin{macrocode} \cs_new:Npn \um_remap_symbol_parse:nnn #1#2#3 { \um@parse@term {#3} {\@nil} {#2} { \um_remap_symbol_noparse:nnn {#1} {#2} {#3} } } \cs_new:Npn \um_remap_symbol_noparse:nnn #1#2#3 { \clist_map_inline:nn {#1} { \um_set_mathcode:nnnn {##1} {#2} {\um_symfont_tl} {#3} } } % \end{macrocode} % \end{macro} % \end{macro} % % % \subsubsection{Active math characters} % % There are more math active chars later in the subscript/superscript section. % But they don't need to be able to be typeset directly. % % \begin{macro}{\um_setup_mathactives:} % \begin{macrocode} \cs_new:Npn \um_setup_mathactives: { \um_make_mathactive:nNN {"2032} \um_prime_single_mchar \mathord \um_make_mathactive:nNN {"2033} \um_prime_double_mchar \mathord \um_make_mathactive:nNN {"2034} \um_prime_triple_mchar \mathord \um_make_mathactive:nNN {"2057} \um_prime_quad_mchar \mathord \um_make_mathactive:nNN {"2035} \um_backprime_single_mchar \mathord \um_make_mathactive:nNN {"2036} \um_backprime_double_mchar \mathord \um_make_mathactive:nNN {"2037} \um_backprime_triple_mchar \mathord \um_make_mathactive:nNN {`\'} \mathstraightquote \mathord \um_make_mathactive:nNN {`\`} \mathbacktick \mathord } % \end{macrocode} % \end{macro} % % \begin{macro}{\um_make_mathactive:nNN} %: TODO : hook into range feature % Makes |#1| a mathactive char, and gives cs |#2| the meaning of mathchar |#1| % with class |#3|. % You are responsible for giving active |#1| a particular meaning! % \begin{macrocode} \cs_new:Npn \um_make_mathactive:nNN #1#2#3 { \um_set_mathchar:NNnn #2 #3 {\um_symfont_tl} {#1} \char_gmake_mathactive:n {#1} } % \end{macrocode} % \end{macro} % % \subsubsection{Delimiter codes} % % Some symbols that aren't mathopen/mathclose still need to have delimiter codes assigned. % The list of vertical arrows may be incomplete. % On the other hand, many fonts won't support them all being stretchy. % And some of them are probably not meant to stretch, either. But adding them here doesn't hurt. % \begin{macro}{\um_setup_delcodes:} % \begin{macrocode} \cs_new:Npn \um_setup_delcodes: { \um_set_delcode:nn {`\/} {\g_um_slash_delimiter_usv} \um_set_delcode:nn {"2044} {\g_um_slash_delimiter_usv} % fracslash \um_set_delcode:nn {"2215} {\g_um_slash_delimiter_usv} % divslash \um_set_delcode:n {"005C} % backslash \um_set_delcode:nn {`\<} {"27E8} % angle brackets with ascii notation \um_set_delcode:nn {`\>} {"27E9} % angle brackets with ascii notation \um_set_delcode:n {"2191} % up arrow \um_set_delcode:n {"2193} % down arrow \um_set_delcode:n {"2195} % updown arrow \um_set_delcode:n {"219F} % up arrow twohead \um_set_delcode:n {"21A1} % down arrow twohead \um_set_delcode:n {"21A5} % up arrow from bar \um_set_delcode:n {"21A7} % down arrow from bar \um_set_delcode:n {"21A8} % updown arrow from bar \um_set_delcode:n {"21BE} % up harpoon right \um_set_delcode:n {"21BF} % up harpoon left \um_set_delcode:n {"21C2} % down harpoon right \um_set_delcode:n {"21C3} % down harpoon left \um_set_delcode:n {"21C5} % arrows up down \um_set_delcode:n {"21F5} % arrows down up \um_set_delcode:n {"21C8} % arrows up up \um_set_delcode:n {"21CA} % arrows down down \um_set_delcode:n {"21D1} % double up arrow \um_set_delcode:n {"21D3} % double down arrow \um_set_delcode:n {"21D5} % double updown arrow \um_set_delcode:n {"21DE} % up arrow double stroke \um_set_delcode:n {"21DF} % down arrow double stroke \um_set_delcode:n {"21E1} % up arrow dashed \um_set_delcode:n {"21E3} % down arrow dashed \um_set_delcode:n {"21E7} % up white arrow \um_set_delcode:n {"21E9} % down white arrow \um_set_delcode:n {"21EA} % up white arrow from bar \um_set_delcode:n {"21F3} % updown white arrow } % \end{macrocode} % \end{macro} % % \begin{macro}{\um_set_delcode:nn} % \begin{macro}{\um_set_delcode:n} %: TODO : hook into range feature % \begin{macrocode} \cs_new:Npn \um_set_delcode:nn #1#2 { \Udelcode#1 = \csname sym\um_symfont_tl\endcsname #2 } \cs_new:Npn \um_set_delcode:n #1 { \Udelcode#1 = \csname sym\um_symfont_tl\endcsname #1 } % \end{macrocode} % \end{macro} % \end{macro} % % \subsubsection{Maths alphabets' character mapping} % \seclabel{mathmap} % % % \subsubsection{Functions for setting up the maths alphabets} % % \begin{macro}{\um_mathmap_noparse:Nnn} % \darg{Maths alphabet, \eg, \cmd\mathbb} % \darg{Input slot(s), \eg, the slot for `A' (comma separated)} % \darg{Output slot, \eg, the slot for `$\mathbb{A}$'} % Adds \cs{um_set_mathcode:nnnn} declarations to the specified maths alphabet's definition. % \begin{macrocode} \cs_set:Npn \um_mathmap_noparse:Nnn #1#2#3 { \clist_map_inline:nn {#2} { \tl_put_right:cx {um_switchto_\cs_to_str:N #1:} { \um_set_mathcode:nnnn{##1}{\mathalpha}{\um_symfont_tl}{#3} } } } % \end{macrocode} % \end{macro} % % \begin{macro}{\um_mathmap_parse:Nnn} % \darg{Maths alphabet, \eg, \cmd\mathbb} % \darg{Input slot(s), \eg, the slot for `A' (comma separated)} % \darg{Output slot, \eg, the slot for `$\mathbb{A}$'} % When \cmd\um@parse@term\ is executed, it populates the \cmd\l_um_char_num_range_clist\ % macro with slot numbers corresponding to the specified range. This range is used to % conditionally add \cs{um_set_mathcode:nnnn} declaractions to the maths alphabet definition. % \begin{macrocode} \cs_set:Npn \um_mathmap_parse:Nnn #1#2#3 { \clist_if_in:NnT \l_um_char_num_range_clist {#3} { \um_mathmap_noparse:Nnn {#1}{#2}{#3} } } % \end{macrocode} % \end{macro} % % % \subsection{(Big) operators} % % Turns out that \XeTeX\ is clever enough to deal with big operators for us % automatically with \cmd\Umathchardef. Amazing! % % However, the limits aren't set automatically; that is, we want to define, % a la Plain \TeX\ \etc, |\def\int{\intop\nolimits}|, so there needs to be a % transformation from \cmd\int\ to \cmd\intop\ during the expansion of % \cmd\UnicodeMathSymbol\ in the appropriate contexts. % % \begin{macro}{\l_um_nolimits_tl} % This macro is a sequence containing those maths operators that require a % \cmd\nolimits\ suffix. % This list is used when processing |unicode-math-table.tex| to define such % commands automatically (see the macro \cs{um_set_mathsymbol:nNNn}). % I've chosen essentially just the operators that look like integrals; % hopefully a better mathematician can help me out here. % I've a feeling that it's more useful \emph{not} to include the multiple % integrals such as $\iiiint$, but that might be a matter of preference. % \begin{macrocode} \tl_new:Nn \l_um_nolimits_tl { \int\iint\iiint\iiiint\oint\oiint\oiiint \intclockwise\varointclockwise\ointctrclockwise\sumint \intbar\intBar\fint\cirfnint\awint\rppolint \scpolint\npolint\pointint\sqint\intlarhk\intx \intcap\intcup\upint\lowint } % \end{macrocode} % \end{macro} % % \begin{macro}{\addnolimits} % This macro appends material to the macro containing the list of operators % that don't take limits. % \begin{macrocode} \DeclareDocumentCommand \addnolimits {m} { \tl_put_right:Nn \l_um_nolimits_tl {#1} } % \end{macrocode} % \end{macro} % % \begin{macro}{\removenolimits} % Can this macro be given a better name? % It removes an item from the nolimits list. % \begin{macrocode} \DeclareDocumentCommand \removenolimits {m} { \tl_remove_all_in:Nn \l_um_nolimits_tl {#1} } % \end{macrocode} % \end{macro} % % \subsection{Radicals} % % The radical for square root is organised in \cs{um_set_mathsymbol:nNNn} on % page. I think it's the only radical ever. % (Actually, there is also \cs{cuberoot} and \cs{fourthroot}, but they don't % seem to behave as proper radicals.) % % Also, what about right-to-left square roots? % % \begin{macro}{\um@radicals} % We organise radicals in the same way as nolimits-operators; that is, % in a comma-list. % \begin{macrocode} \tl_new:Nn \l_um_radicals_tl {\sqrt} % \end{macrocode} % \end{macro} % % \begin{example}{} % \setmathfont{Cambria Math} % \[ \sqrt[2]{1+\sqrt[3]{1+x}} \] % \end{example} % % \subsection{Delimiters} % \begin{macro}{\left} % We redefine the primitive to be preceded by \cmd\mathopen; % this gives much better spacing in cases such as \cmd\sin\cmd\left\dots. % Courtesy of Frank Mittelbach:\par % {\small\url{http://www.latex-project.org/cgi-bin/ltxbugs2html?pr=latex/3853&prlatex/3754}} % \begin{macrocode} \let\left@primitive\left \def\left{\mathopen{}\left@primitive} % \end{macrocode} % \end{macro} % No re-definition is made for \cmd\right\ because it's not % necessary. % % \subsection{Maths accents} % % Maths accents should just work \emph{if they are available in the font}. % % \section{Font features} % % \begin{macro}{\um@zf@feature} % Use the same method as \pkg{fontspec} for feature definition % (\ie, using \pkg{xkeyval}) but with a conditional to restrict % the scope of these features to \pkg{unicode-math} commands. % \begin{macrocode} \newcommand\um@zf@feature[2]{ \define@key[zf]{options}{#1}[]{ \bool_if:NTF \l_um_fontspec_feature_bool { #2 }{ \um_warning:n {maths-feature-only} } } } % \end{macrocode} % \end{macro} % % \subsection{OpenType maths font features} % \begin{macrocode} \um@zf@feature{ScriptStyle}{ \zf@update@ff{+ssty=0} } \um@zf@feature{ScriptScriptStyle}{ \zf@update@ff{+ssty=1} } % \end{macrocode} % % \subsection{Script and scriptscript font options} % \begin{macrocode} \keys_define:nn {unicode-math} { script-features .tl_set:N = \l_um_script_features_tl , sscript-features .tl_set:N = \l_um_sscript_features_tl , script-font .tl_set:N = \l_um_script_font_tl , sscript-font .tl_set:N = \l_um_sscript_font_tl , } % \end{macrocode} % % \subsection{Range processing} % \seclabel{rangeproc} % % \begin{macrocode} \seq_new:N \l_um_mathalph_seq \seq_new:N \l_um_char_range_seq \keys_define:nn {unicode-math} { range .code:n = { \bool_set_false:N \l_um_init_bool \seq_clear:N \l_um_char_range_seq \seq_clear:N \l_um_mathalph_seq \clist_map_inline:nn {#1} { \um_if_mathalph_decl:nTF {##1} { \seq_put_right:Nx \l_um_mathalph_seq { { \exp_not:V \l_um_tmpa_tl } { \exp_not:V \l_um_tmpb_tl } { \exp_not:V \l_um_tmpc_tl } } }{ \seq_put_right:Nn \l_um_char_range_seq {##1} } } } } % \end{macrocode} % % \begin{macro}{\um_if_mathalph_decl:nTF} % Possible forms of input:\\ % |\mathscr|\\ % |\mathscr->\mathup|\\ % |\mathscr/{Latin}|\\ % |\mathscr/{Latin}->\mathup|\\ % Outputs:\\ % |tmpa|: math style (\eg, |\mathscr|)\\ % |tmpb|: alphabets (\eg, |Latin|)\\ % |tmpc|: remap style (\eg, |\mathup|). Defaults to |tmpa|. % \begin{macrocode} \prg_new_conditional:Nnn \um_if_mathalph_decl:n {TF} { \KV_remove_surrounding_spaces:nw {\tl_set:Nf\l_um_tmpa_tl} #1 \q_nil \tl_clear:N \l_um_tmpb_tl \tl_clear:N \l_um_tmpc_tl \tl_if_in:NnT \l_um_tmpa_tl {->} { \exp_after:wN \um_split_arrow:w \l_um_tmpa_tl \q_nil } \tl_if_in:NnT \l_um_tmpa_tl {/} { \exp_after:wN \um_split_slash:w \l_um_tmpa_tl \q_nil } \tl_if_empty:NT \l_um_tmpc_tl { \tl_set_eq:NN \l_um_tmpc_tl \l_um_tmpa_tl } \seq_if_in:NVTF \g_um_mathalph_seq \l_um_tmpa_tl { \prg_return_true: }{ \prg_return_false: } } \cs_set:Npn \um_split_arrow:w #1->#2 \q_nil { \tl_set:Nn \l_um_tmpa_tl {#1} \tl_set:Nn \l_um_tmpc_tl {#2} } \cs_set:Npn \um_split_slash:w #1/#2 \q_nil { \tl_set:Nn \l_um_tmpa_tl {#1} \tl_set:Nn \l_um_tmpb_tl {#2} } % \end{macrocode} % \end{macro} % % Pretty basic comma separated range processing. % Donald Arseneau's \pkg{selectp} package has a cleverer technique. % % \begin{macro}{\um@parse@term} % \darg{Unicode character slot} % \darg{control sequence (character macro)} % \darg{control sequence (math type)} % \darg{code to execute} % This macro expands to |#4| % if any of its arguments are contained in \cmd\l_um_char_range_seq. % This list can contain either character ranges (for checking with |#1|) or control sequences. % These latter can either be the command name of a specific character, \emph{or} the math % type of one (\eg, \cmd\mathbin). % % Character ranges are passed to \cmd\um@parse@range, which accepts input in the form shown in \tabref{ranges}. % % \begin{table}[htbp] % \centering % \topcaption{Ranges accepted by \cmd\um@parse@range.} % \label{tab:ranges} % \begin{tabular}{>{\ttfamily}cc} % \textrm{Input} & Range \\ % \hline % x & $r=x$ \\ % x- & $r\geq x$ \\ % -y & $r\leq y$ \\ % x-y & $x \leq r \leq y$ \\ % \end{tabular} % \end{table} % % Start by iterating over the commalist, ignoring empties, and initialising the scratch conditional: % \begin{macrocode} \newcommand\um@parse@term[4]{ \seq_map_variable:NNn \l_um_char_range_seq \@ii { \unless\ifx\@ii\@empty \@tempswafalse % \end{macrocode} % Match to either the character macro (\cmd\alpha) or the math type (\cmd\mathbin): % \begin{macrocode} \expandafter\um@firstchar\expandafter{\@ii} \ifx\@tempa\um@backslash \expandafter\ifx\@ii#2\relax \@tempswatrue \else \expandafter\ifx\@ii#3\relax \@tempswatrue \fi \fi % \end{macrocode} % Otherwise, we have a number range, which is passed to another macro: % \begin{macrocode} \else \expandafter\um@parse@range\@ii-\@marker-\@nil#1\@nil \fi % \end{macrocode} % If we have a match, execute the code! % It also populates the % \cmd\l_um_char_num_range_clist\ macro, which is used when defining % \cmd\mathbf\ (\etc) \cmd\mathchar\ remappings. % \begin{macrocode} \if@tempswa \clist_put_right:Nx \l_um_char_num_range_clist { \intexpr_eval:n {#1} } #4 \fi \fi } } \def\um@firstof#1#2\@nil{#1} \edef\um@backslash{\expandafter\um@firstof\string\string\@nil} \def\um@firstchar#1{\edef\@tempa{\expandafter\um@firstof\string#1\@nil}} % \end{macrocode} % \end{macro} % % \begin{macro}{\um@parse@range} % Weird syntax. % As shown previously in \tabref{ranges}, this macro can be passed four different input types via \cmd\um@parse@term. % \begin{macrocode} \def\um@parse@range#1-#2-#3\@nil#4\@nil{ \def\@tempa{#1} \def\@tempb{#2} % \end{macrocode} % \begin{tabular}{@{}ll} % \hline % Range & $r=x$ \\ % C-list input & \cmd\@ii=|X| \\ % Macro input & |\um@parse@range X-\@marker-\@nil#1\@nil| \\ % Arguments & % \texttt{\textcolor{red}{\char`\#1}-\textcolor{blue}{\char`\#2}-\textcolor{Green}{\char`\#3}} % = \texttt{\textcolor{red}{X}-\textcolor{blue}{\cmd\@marker}-\textcolor{Green}{\char`\{\char`\}}} \\ % \hline % \end{tabular} % \begin{macrocode} \expandafter\ifx\expandafter\@marker\@tempb\relax \intexpr_compare:nT {#4=#1} \@tempswatrue \else % \end{macrocode} % \begin{tabular}{@{}ll} % \hline % Range & $r\geq x$ \\ % C-list input & \cmd\@ii=|X-| \\ % Macro input & |\um@parse@range X--\@marker-\@nil#1\@nil|\\ % Arguments & % \texttt{\textcolor{red}{\char`\#1}-\textcolor{blue}{\char`\#2}-\textcolor{Green}{\char`\#3}} % = \texttt{\textcolor{red}{X}-\textcolor{blue}{\char`\{\char`\}}-\textcolor{Green}{\cmd\@marker-}} \\ % \hline % \end{tabular} % \begin{macrocode} \ifx\@empty\@tempb \intexpr_compare:nT {#4>#1-1} \@tempswatrue \else % \end{macrocode} % \begin{tabular}{@{}ll} % \hline % Range & $r\leq y$ \\ % C-list input & \cmd\@ii=|-Y| \\ % Macro input & |\um@parse@range -Y-\@marker-\@nil#1\@nil|\\ % Arguments & % \texttt{\textcolor{red}{\char`\#1}-\textcolor{blue}{\char`\#2}-\textcolor{Green}{\char`\#3}} % = \texttt{\textcolor{red}{\char`\{\char`\}}-\textcolor{blue}{Y}-\textcolor{Green}{\cmd\@marker-}}\\ % \hline % \end{tabular} % \begin{macrocode} \ifx\@empty\@tempa \intexpr_compare:nT {#4<#2+1} \@tempswatrue % \end{macrocode} % \begin{tabular}{@{}ll} % \hline % Range & $x \leq r \leq y$ \\ % C-list input & \cmd\@ii=|X-Y| \\ % Macro input & |\um@parse@range X-Y-\@marker-\@nil#1\@nil|\\ % Arguments & % \texttt{\textcolor{red}{\char`\#1}-\textcolor{blue}{\char`\#2}-\textcolor{Green}{\char`\#3}} % = \texttt{\textcolor{red}{X}-\textcolor{blue}{Y}-\textcolor{Green}{\cmd\@marker-}}\\ % \hline % \end{tabular} % \begin{macrocode} \else \intexpr_compare:nT {#4>#1-1} { \intexpr_compare:nT {#4<#2+1} \@tempswatrue } \fi \fi \fi } % \end{macrocode} % \end{macro} % % % \subsection{Resolving Greek symbol name control sequences} % % \begin{macro}{\um_resolve_greek:} % This macro defines \cmd\Alpha\dots\cmd\omega\ as their corresponding % Unicode (mathematical italic) character. Remember that the mapping % to upright or italic happens with the mathcode definitions, whereas these macros % just stand for the literal Unicode characters. % \begin{macrocode} \AtBeginDocument{\um_resolve_greek:} \cs_new:Npn \um_resolve_greek: { \clist_map_inline:nn { Alpha,Beta,Gamma,Delta,Epsilon,Zeta,Eta,Theta,Iota,Kappa,Lambda, alpha,beta,gamma,delta, zeta,eta,theta,iota,kappa,lambda, Mu,Nu,Xi,Omicron,Pi,Rho,Sigma,Tau,Upsilon,Phi,Chi,Psi,Omega, mu,nu,xi,omicron,pi,rho,sigma,tau,upsilon, chi,psi,omega, varTheta, varsigma,vartheta,varkappa,varrho,varpi }{ \tl_set:cx {##1} { \exp_not:c { mit ##1 } } } \tl_set:Nn \epsilon { \bool_if:NTF \g_um_texgreek_bool \mitvarepsilon \mitepsilon } \tl_set:Nn \phi { \bool_if:NTF \g_um_texgreek_bool \mitvarphi \mitphi } \tl_set:Nn \varepsilon { \bool_if:NTF \g_um_texgreek_bool \mitepsilon \mitvarepsilon } \tl_set:Nn \varphi { \bool_if:NTF \g_um_texgreek_bool \mitphi \mitvarphi } } % \end{macrocode} % \end{macro} % % % \section{Maths alphabets mapping definitions} % \label{part:mathmap} % % Algorithm for setting alphabet fonts. % By default, when |range| is empty, we are in \emph{implicit} mode. % If |range| contains the name of the math alphabet, we are in \emph{explicit} % mode and do things slightly differently. % % Implicit mode: % \begin{itemize} % \item Try and set all of the alphabet shapes. % \item Check for the first glyph of each alphabet to detect if the font supports each % alphabet shape. % \item For alphabets that do exist, overwrite whatever's already there. % \item For alphabets that are not supported, \emph{do nothing}. % (This includes leaving the old alphabet definition in place.) % \end{itemize} % % Explicit mode: % \begin{itemize} % \item Only set the alphabets specified. % \item Check for the first glyph of the alphabet to detect if the font contains % the alphabet shape in the Unicode math plane. % \item For Unicode math alphabets, overwrite whatever's already there. % \item Otherwise, use the \ascii\ letters instead. % \end{itemize} % % \subsection{Defining the math style macros} % % We call the different shapes that a math alphabet can be a `math style'. % Note that different alphabets can exist within the same math style. E.g., % we call `bold' the math style |bf| and within it there are upper and lower % case Greek and Roman alphabets and Arabic numerals. % % \begin{macro}{\g_um_mathalph_seq} % This is every math style known to \pkg{unicode-math}. % \begin{macrocode} \seq_new:N \g_um_mathalph_seq % \end{macrocode} % % \begin{macrocode} \AtEndOfPackage{ \tl_map_inline:nn { \mathup\mathit\mathbb\mathbbit \mathscr\mathfrak\mathtt \mathsf\mathsfup\mathsfit \mathbf\mathbfup\mathbfit \mathbfscr\mathbffrak \mathbfsf\mathbfsfup\mathbfsfit }{ \seq_put_right:Nn \g_um_mathalph_seq {#1} \um_prepare_mathstyle:f {\exp_after:wN \use_none:nnnnn \token_to_str:N #1} } } % \end{macrocode} % \end{macro} % % \begin{macro}{\um_prepare_mathstyle:n} % \darg{math style name (e.g., \texttt{it} or \texttt{bb})} % Define the high level math alphabet macros (\cs{mathit}, etc.) in terms of % unicode-math definitions. Use \cs{bgroup}/\cs{egroup} so s'scripts scan the % whole thing. % \begin{macrocode} \cs_new:Npn \um_prepare_mathstyle:n #1 { \um_init_alphabet:x {#1} \cs_set:cpn {_um_math#1_aux:n} ##1 { \use:c {um_switchto_math#1:} ##1 \egroup } \cs_set_protected:cpx {math#1} { \exp_not:n{ \bgroup \mode_if_math:F { \egroup\expandafter \non@alpherr\expandafter{\csname math#1\endcsname\space} } } \exp_not:c {_um_math#1_aux:n} } } \cs_generate_variant:Nn \um_prepare_mathstyle:n {f} % \end{macrocode} % \end{macro} % % \begin{macro}{\um_init_alphabet:n} % \darg{math alphabet name (e.g., \texttt{it} or \texttt{bb})} % This macro initialises the macros used to set up a math alphabet. % First used with the math alphabet macro is first defined, but then used % later when redefining a particular maths alphabet. % \begin{macrocode} \cs_set:Npn \um_init_alphabet:n #1 { \um_trace:nx {alph-initialise} {#1} \cs_set_eq:cN {um_switchto_math#1:} \prg_do_nothing: } \cs_generate_variant:Nn \um_init_alphabet:n {x} % \end{macrocode} % Variants % \begin{macrocode} \cs_new:Npn \um_maybe_init_alphabet:V { \exp_args:NV \um_maybe_init_alphabet:n } % \end{macrocode} % \end{macro} % % \subsection{Defining the math alphabets per style} % % \begin{macro}{\g_um_default_mathalph_seq} % This sequence stores the alphabets in each math style. % \begin{macrocode} \seq_new:N \g_um_default_mathalph_seq % \end{macrocode} % % \begin{macrocode} \clist_map_inline:nn { {\mathup } {latin,Latin,greek,Greek,num,misc} {\mathup } , {\mathit } {latin,Latin,greek,Greek,misc} {\mathit } , {\mathbb } {latin,Latin,num,misc} {\mathbb } , {\mathbbit } {misc} {\mathbbit } , {\mathscr } {latin,Latin} {\mathscr } , {\mathfrak } {latin,Latin} {\mathfrak } , {\mathtt } {latin,Latin,num} {\mathtt } , {\mathsfup } {latin,Latin,num} {\mathsfup } , {\mathsfit } {latin,Latin} {\mathsfit } , {\mathbfup } {latin,Latin,greek,Greek,num,misc} {\mathbfup } , {\mathbfit } {latin,Latin,greek,Greek,misc} {\mathbfit } , {\mathbfscr } {latin,Latin} {\mathbfscr } , {\mathbffrak} {latin,Latin} {\mathbffrak} , {\mathbfsfup} {latin,Latin,greek,Greek,num,misc} {\mathbfsfup} , {\mathbfsfit} {latin,Latin,greek,Greek,misc} {\mathbfsfit} }{ \seq_put_right:Nn \g_um_default_mathalph_seq {#1} } % \end{macrocode} % \end{macro} % % Variables: % \begin{macrocode} \seq_new:N \l_um_missing_alph_seq % \end{macrocode} % % \begin{macro}{\um_setup_alphabets:} % This function is called within \cs{setmathfont} to configure the % mapping between characters inside math styles. % \begin{macrocode} \cs_new:Npn \um_setup_alphabets: { % \end{macrocode} % If |range=| has been used to configure styles, those choices will be in % |\l_um_mathalph_seq|. If not, set up the styles implicitly: % \begin{macrocode} \seq_if_empty:NTF \l_um_mathalph_seq { \um_trace:n {setup-implicit} \seq_set_eq:NN \l_um_mathalph_seq \g_um_default_mathalph_seq \bool_set_true:N \l_um_implicit_alph_bool \um_maybe_init_alphabet:n {sf} \um_maybe_init_alphabet:n {bf} \um_maybe_init_alphabet:n {bfsf} } % \end{macrocode} % If |range=| has been used then we're in explicit mode: % \begin{macrocode} { \um_trace:n {setup-explicit} \bool_set_false:N \l_um_implicit_alph_bool \cs_set_eq:NN \um_set_mathalphabet_char:Nnn \um_mathmap_noparse:Nnn \cs_set_eq:NN \um_map_char_single:nn \um_map_char_noparse:nn } % \end{macrocode} % Now perform the mapping: % \begin{macrocode} \seq_map_inline:Nn \l_um_mathalph_seq { \tl_set:No \l_um_tmpa_tl { \use_i:nnn ##1 } \tl_set:No \l_um_tmpb_tl { \use_ii:nnn ##1 } \tl_set:No \l_um_remap_style_tl { \use_iii:nnn ##1 } \tl_set:Nx \l_um_remap_style_tl { \exp_after:wN \exp_after:wN \exp_after:wN \use_none:nnnnn \exp_after:wN \token_to_str:N \l_um_remap_style_tl } \tl_if_empty:NT \l_um_tmpb_tl { \cs_set_eq:NN \um_maybe_init_alphabet:n \um_init_alphabet:n \tl_set:Nn \l_um_tmpb_tl { latin,Latin,greek,Greek,num,misc } } \um_setup_math_alphabet:VVV \l_um_tmpa_tl \l_um_tmpb_tl \l_um_remap_style_tl } \um_warn_missing_alphabets: } % \end{macrocode} % % \begin{macrocode} \cs_new:Npn \um_warn_missing_alphabets: { \seq_if_empty:NF \l_um_missing_alph_seq { \typeout{ Package~unicode-math~Warning:~ missing~math~alphabets~in~font~ \fontname\l_um_font } \seq_map_inline:Nn \l_um_missing_alph_seq { \typeout{\space\space\space\space##1} } } } % \end{macrocode} % \end{macro} % % \begin{macro}{\um_setup_math_alphabet:Nnn} % \darg{Math font style command (e.g., \cs{mathbb})} % \darg{Math alphabets, comma separated of \{latin,Latin,greek,Greek,num\}} % \darg{Name of the output math style (usually same as input \texttt{bb})} % \begin{macrocode} \cs_new:Npn \um_setup_math_alphabet:Nnn #1#2#3 { \tl_set:Nx \l_um_style_tl { \exp_after:wN \use_none:nnnnn \token_to_str:N #1 } % \end{macrocode} % First check that at least one of the alphabets for the font shape is defined\dots % \begin{macrocode} \clist_map_inline:nn {#2} { \cs_if_exist:cT {um_config_ \l_um_style_tl _##1:n} { \tl_if_eq:nnTF {##1}{misc} { \um_maybe_init_alphabet:V \l_um_style_tl \clist_map_break: }{ \um_glyph_if_exist:cT { \um_to_usv:nn {#3}{##1} }{ \um_maybe_init_alphabet:V \l_um_style_tl \clist_map_break: } } } } % \end{macrocode} % \dots and then loop through them defining the individual ranges: % \begin{macrocode} \clist_map_inline:nn {#2} { \cs_if_exist:cT {um_config_ \l_um_style_tl _##1:n} { \tl_if_eq:nnTF {##1}{misc} { \um_trace:nx {setup-alph} {math \l_um_style_tl~(##1)} \use:c {um_config_ \l_um_style_tl _##1:n} {#3} }{ \um_glyph_if_exist:cTF { \um_to_usv:nn {#3}{##1} } { \um_trace:nx {setup-alph} {math \l_um_style_tl~(##1)} \use:c {um_config_ \l_um_style_tl _##1:n} {#3} }{ \bool_if:NTF \l_um_implicit_alph_bool { \seq_put_right:Nx \l_um_missing_alph_seq { \@backslashchar math \l_um_style_tl \space (\tl_use:c{g_um_math_alphabet_name_##1_tl}) } }{ \use:c {um_config_ \l_um_style_tl _##1:n} {up} } } } } } } \cs_generate_variant:Nn \um_setup_math_alphabet:Nnn {VVV} % \end{macrocode} % \end{macro} % % % % \subsection{Mapping `naked' math characters} % % Before we show the definitions of the alphabet mappings using the functions % |\um_config_\l_um_style_tl_##1:n|, we first want to define some functions % to be used inside them to actually perform the character mapping. % % \darg{Starting input char (single)} % \darg{Starting output char} % Loops through character ranges setting \cmd\mathcode. % \begin{macrocode} \cs_set:Npn \um_map_chars_range:nnn #1#2#3 { \prg_stepwise_inline:nnnn {0}{1}{#1-1} { \um_map_char_single:nn {#2+##1}{#3+##1} } } \cs_generate_variant:Nn \um_map_chars_range:nnn {ncc} % \end{macrocode} % % \begin{macro}{\um_map_chars_range:nnnn} % \darg{Number of chars (26)} % \darg{From style, one or more (it)} % \darg{To style (up)} % \darg{Alphabet name (Latin)} % \begin{macrocode} \cs_new:Npn \um_map_chars_range:nnnn #1#2#3#4 { \um_map_chars_range:ncc {#1} { \um_to_usv:nn {#2}{#4} } { \um_to_usv:nn {#3}{#4} } } % \end{macrocode} % \end{macro} % % \begin{macrocode} \cs_new:Npn \um_map_char_noparse:nn #1#2 { \um_set_mathcode:nnnn {#1}{\mathalpha}{\um_symfont_tl}{#2} } \cs_new:Npn \um_map_char_parse:nn #1#2 { \um@parse@term {#1} {\@nil} {\mathalpha} { \um_map_char_noparse:nn {#1}{#2} } } \cs_set:Npn \um_map_chars_Latin:nn #1#2 { \clist_map_inline:nn {#1} { \um_map_chars_range:nnnn {26} {##1} {#2} {Latin} } } \cs_set:Npn \um_map_chars_latin:nn #1#2 { \clist_map_inline:nn {#1} { \um_map_chars_range:nnnn {26} {##1} {#2} {latin} } } \cs_set:Npn \um_map_chars_greek:nn #1#2 { \clist_map_inline:nn {#1} { \um_map_chars_range:nnnn {25} {##1} {#2} {greek} \um_map_char_single:nnn {##1} {#2} {varepsilon} \um_map_char_single:nnn {##1} {#2} {vartheta} \um_map_char_single:nnn {##1} {#2} {varkappa} \um_map_char_single:nnn {##1} {#2} {varphi} \um_map_char_single:nnn {##1} {#2} {varrho} \um_map_char_single:nnn {##1} {#2} {varpi} } } \cs_set:Npn \um_map_chars_Greek:nn #1#2 { \clist_map_inline:nn {#1} { \um_map_chars_range:nnnn {25} {##1} {#2} {Greek} \um_map_char_single:nnn {##1} {#2} {varTheta} } } \cs_set:Npn \um_map_chars_numbers:nn #1#2 { \um_map_chars_range:nnnn {10} {#1} {#2} {num} } % \end{macrocode} % % \begin{macro}{\um_map_single:nnn} % \darg{char name (`dotlessi')} % \darg{from alphabet(s)} % \darg{to alphabet} % \begin{macrocode} \cs_new:Npn \um_map_char_single:cc { \exp_args:Ncc \um_map_char_single:nn } \cs_new:Npn \um_map_char_single:nnn #1#2#3 { \um_map_char_single:cc { \um_to_usv:nn {#1}{#3} } { \um_to_usv:nn {#2}{#3} } } \cs_set:Npn \um_map_single:nnn #1#2#3 { \cs_if_exist:cT { \um_to_usv:nn {#3} {#1} } { \clist_map_inline:nn {#2} { \um_map_char_single:nnn {##1} {#3} {#1} } } } % \end{macrocode} % \end{macro} % % \subsection{Mapping chars inside a math style} % % \begin{macro}{\um_set_mathalph_range:Nnn} % \oarg{Number of iterations} % \darg{Maths alphabet} % \darg{Starting input char (single)} % \darg{Starting output char} % Loops through character ranges setting \cmd\mathcode. % \begin{macrocode} \cs_new:Npn \um_set_mathalph_range:nNnn #1#2#3#4 { \prg_stepwise_inline:nnnn {0}{1}{#1-1} { \um_set_mathalphabet_char:Nnn {#2} { ##1 + #3 } { ##1 + #4 } } } \cs_generate_variant:Nn \um_set_mathalph_range:nNnn {nNcc} % \end{macrocode} % % \begin{macrocode} \cs_new:Npn \um_set_mathalphabet_pos:Nnnn #1#2#3#4 { \cs_if_exist:cT { \um_to_usv:nn {#4}{#2} } { \clist_map_inline:nn {#3} { \um_set_mathalphabet_char:Nnnn #1 {##1} {#4} {#2} } } } \cs_new:Npn \um_set_mathalphabet_numbers:Nnn #1#2#3 { \clist_map_inline:nn {#2} { \um_set_mathalph_range:nNnnn {10} #1 {##1} {#3} {num} } } \cs_new:Npn \um_set_mathalphabet_Latin:Nnn #1#2#3 { \clist_map_inline:nn {#2} { \um_set_mathalph_range:nNnnn {26} #1 {##1} {#3} {Latin} } } \cs_new:Npn \um_set_mathalphabet_latin:Nnn #1#2#3 { \clist_map_inline:nn {#2} { \um_set_mathalph_range:nNnnn {26} #1 {##1} {#3} {latin} \um_set_mathalphabet_char:Nnnn #1 {##1} {#3} {h} } } \cs_new:Npn \um_set_mathalphabet_Greek:Nnn #1#2#3 { \clist_map_inline:nn {#2} { \um_set_mathalph_range:nNnnn {25} #1 {##1} {#3} {Greek} \um_set_mathalphabet_char:Nnnn #1 {##1} {#3} {varTheta} } } \cs_new:Npn \um_set_mathalphabet_greek:Nnn #1#2#3 { \clist_map_inline:nn {#2} { \um_set_mathalph_range:nNnnn {25} #1 {##1} {#3} {greek} \um_set_mathalphabet_char:Nnnn #1 {##1} {#3} {varepsilon} \um_set_mathalphabet_char:Nnnn #1 {##1} {#3} {vartheta} \um_set_mathalphabet_char:Nnnn #1 {##1} {#3} {varkappa} \um_set_mathalphabet_char:Nnnn #1 {##1} {#3} {varphi} \um_set_mathalphabet_char:Nnnn #1 {##1} {#3} {varrho} \um_set_mathalphabet_char:Nnnn #1 {##1} {#3} {varpi} } } \cs_new:Npn \um_set_mathalphabet_char:Ncc { \exp_args:NNcc \um_set_mathalphabet_char:Nnn } \cs_new:Npn \um_set_mathalphabet_char:Nnnn #1#2#3#4 { \um_set_mathalphabet_char:Ncc #1 { \um_to_usv:nn {#2} {#4} } { \um_to_usv:nn {#3} {#4} } } \cs_new:Npn \um_set_mathalph_range:nNnnn #1#2#3#4#5 { \um_set_mathalph_range:nNcc {#1} #2 { \um_to_usv:nn {#3} {#5} } { \um_to_usv:nn {#4} {#5} } } % \end{macrocode} % \end{macro} % % \subsection{Alphabets} % % \subsubsection{Upright: \cmd\mathup} % \begin{macrocode} \cs_new:Npn \um_config_up_num:n #1 { \um_map_chars_numbers:nn {up}{#1} \um_set_mathalphabet_numbers:Nnn \mathup {up}{#1} } \cs_new:Npn \um_config_up_Latin:n #1 { \bool_if:NTF \g_um_literal_bool { \um_map_chars_Latin:nn {up} {#1} }{ \bool_if:NT \g_um_upLatin_bool { \um_map_chars_Latin:nn {up,it} {#1} } } \um_set_mathalphabet_Latin:Nnn \mathup {up,it}{#1} } \cs_new:Npn \um_config_up_latin:n #1 { \bool_if:NTF \g_um_literal_bool { \um_map_chars_latin:nn {up} {#1} }{ \bool_if:NT \g_um_uplatin_bool { \um_map_chars_latin:nn {up,it} {#1} \um_map_single:nnn {h} {up,it} {#1} \um_map_single:nnn {dotlessi} {up,it} {#1} \um_map_single:nnn {dotlessj} {up,it} {#1} } } \um_set_mathalphabet_latin:Nnn \mathup {up,it}{#1} } \cs_new:Npn \um_config_up_Greek:n #1 { \bool_if:NTF \g_um_literal_bool { \um_map_chars_Greek:nn {up}{#1} }{ \bool_if:NT \g_um_upGreek_bool { \um_map_chars_Greek:nn {up,it}{#1} } } \um_set_mathalphabet_Greek:Nnn \mathup {up,it}{#1} } \cs_new:Npn \um_config_up_greek:n #1 { \bool_if:NTF \g_um_literal_bool { \um_map_chars_greek:nn {up} {#1} }{ \bool_if:NT \g_um_upgreek_bool { \um_map_chars_greek:nn {up,it} {#1} } } \um_set_mathalphabet_greek:Nnn \mathup {up,it} {#1} } \cs_new:Npn \um_config_up_misc:n #1 { \bool_if:NTF \g_um_literal_Nabla_bool { \um_map_single:nnn {Nabla}{up}{up} }{ \bool_if:NT \g_um_upNabla_bool { \um_map_single:nnn {Nabla}{up,it}{up} } } \bool_if:NTF \g_um_literal_partial_bool { \um_map_single:nnn {partial}{up}{up} }{ \bool_if:NT \g_um_uppartial_bool { \um_map_single:nnn {partial}{up,it}{up} } } \um_set_mathalphabet_pos:Nnnn \mathup {partial} {up,it} {#1} \um_set_mathalphabet_pos:Nnnn \mathup {Nabla} {up,it} {#1} \um_set_mathalphabet_pos:Nnnn \mathup {dotlessi} {up,it} {#1} \um_set_mathalphabet_pos:Nnnn \mathup {dotlessj} {up,it} {#1} } % \end{macrocode} % % \subsubsection{Italic: \cmd\mathit} % % \begin{macrocode} \cs_new:Npn \um_config_it_Latin:n #1 { \bool_if:NTF \g_um_literal_bool { \um_map_chars_Latin:nn {it} {#1} }{ \bool_if:NF \g_um_upLatin_bool { \um_map_chars_Latin:nn {up,it} {#1} } } \um_set_mathalphabet_Latin:Nnn \mathit {up,it}{#1} } \cs_new:Npn \um_config_it_latin:n #1 { \bool_if:NTF \g_um_literal_bool { \um_map_chars_latin:nn {it} {#1} \um_map_single:nnn {h}{it}{#1} }{ \bool_if:NF \g_um_uplatin_bool { \um_map_chars_latin:nn {up,it} {#1} \um_map_single:nnn {h}{up,it}{#1} \um_map_single:nnn {dotlessi}{up,it}{#1} \um_map_single:nnn {dotlessj}{up,it}{#1} } } \um_set_mathalphabet_latin:Nnn \mathit {up,it} {#1} \um_set_mathalphabet_pos:Nnnn \mathit {dotlessi} {up,it} {#1} \um_set_mathalphabet_pos:Nnnn \mathit {dotlessj} {up,it} {#1} } \cs_new:Npn \um_config_it_Greek:n #1 { \bool_if:NTF \g_um_literal_bool { \um_map_chars_Greek:nn {it}{#1} }{ \bool_if:NF \g_um_upGreek_bool { \um_map_chars_Greek:nn {up,it}{#1} } } \um_set_mathalphabet_Greek:Nnn \mathit {up,it}{#1} } \cs_new:Npn \um_config_it_greek:n #1 { \bool_if:NTF \g_um_literal_bool { \um_map_chars_greek:nn {it} {#1} }{ \bool_if:NF \g_um_upgreek_bool { \um_map_chars_greek:nn {it,up} {#1} } } \um_set_mathalphabet_greek:Nnn \mathit {up,it} {#1} } \cs_new:Npn \um_config_it_misc:n #1 { \bool_if:NTF \g_um_literal_Nabla_bool { \um_map_single:nnn {Nabla}{it}{it} }{ \bool_if:NF \g_um_upNabla_bool { \um_map_single:nnn {Nabla}{up,it}{it} } } \bool_if:NTF \g_um_literal_partial_bool { \um_map_single:nnn {partial}{it}{it} }{ \bool_if:NF \g_um_uppartial_bool { \um_map_single:nnn {partial}{up,it}{it} } } \um_set_mathalphabet_pos:Nnnn \mathit {partial} {up,it}{#1} \um_set_mathalphabet_pos:Nnnn \mathit {Nabla} {up,it}{#1} } % \end{macrocode} % % \subsubsection{Blackboard or double-struck: \cmd\mathbb\ and \cmd\mathbbit} % % \begin{macrocode} \cs_new:Npn \um_config_bb_latin:n #1 { \um_set_mathalphabet_latin:Nnn \mathbb {up,it}{#1} } \cs_new:Npn \um_config_bb_Latin:n #1 { \um_set_mathalphabet_Latin:Nnn \mathbb {up,it}{#1} \um_set_mathalphabet_pos:Nnnn \mathbb {C} {up,it} {#1} \um_set_mathalphabet_pos:Nnnn \mathbb {H} {up,it} {#1} \um_set_mathalphabet_pos:Nnnn \mathbb {N} {up,it} {#1} \um_set_mathalphabet_pos:Nnnn \mathbb {P} {up,it} {#1} \um_set_mathalphabet_pos:Nnnn \mathbb {Q} {up,it} {#1} \um_set_mathalphabet_pos:Nnnn \mathbb {R} {up,it} {#1} \um_set_mathalphabet_pos:Nnnn \mathbb {Z} {up,it} {#1} } \cs_new:Npn \um_config_bb_num:n #1 { \um_set_mathalphabet_numbers:Nnn \mathbb {up}{#1} } \cs_new:Npn \um_config_bb_misc:n #1 { \um_set_mathalphabet_pos:Nnnn \mathbb {Pi} {up,it} {#1} \um_set_mathalphabet_pos:Nnnn \mathbb {pi} {up,it} {#1} \um_set_mathalphabet_pos:Nnnn \mathbb {Gamma} {up,it} {#1} \um_set_mathalphabet_pos:Nnnn \mathbb {gamma} {up,it} {#1} \um_set_mathalphabet_pos:Nnnn \mathbb {summation} {up} {#1} } \cs_new:Npn \um_config_bbit_misc:n #1 { \um_set_mathalphabet_pos:Nnnn \mathbbit {D} {up,it} {#1} \um_set_mathalphabet_pos:Nnnn \mathbbit {d} {up,it} {#1} \um_set_mathalphabet_pos:Nnnn \mathbbit {e} {up,it} {#1} \um_set_mathalphabet_pos:Nnnn \mathbbit {i} {up,it} {#1} \um_set_mathalphabet_pos:Nnnn \mathbbit {j} {up,it} {#1} } % \end{macrocode} % % \subsubsection{Script or caligraphic: \cmd\mathscr\ and \cmd\mathcal} % % \begin{macrocode} \cs_new:Npn \um_config_scr_Latin:n #1 { \um_set_mathalphabet_Latin:Nnn \mathscr {up,it}{#1} \um_set_mathalphabet_pos:Nnnn \mathscr {B}{up,it}{#1} \um_set_mathalphabet_pos:Nnnn \mathscr {E}{up,it}{#1} \um_set_mathalphabet_pos:Nnnn \mathscr {F}{up,it}{#1} \um_set_mathalphabet_pos:Nnnn \mathscr {H}{up,it}{#1} \um_set_mathalphabet_pos:Nnnn \mathscr {I}{up,it}{#1} \um_set_mathalphabet_pos:Nnnn \mathscr {L}{up,it}{#1} \um_set_mathalphabet_pos:Nnnn \mathscr {M}{up,it}{#1} \um_set_mathalphabet_pos:Nnnn \mathscr {R}{up,it}{#1} } \cs_new:Npn \um_config_scr_latin:n #1 { \um_set_mathalphabet_latin:Nnn \mathscr {up,it}{#1} \um_set_mathalphabet_pos:Nnnn \mathscr {e}{up,it}{#1} \um_set_mathalphabet_pos:Nnnn \mathscr {g}{up,it}{#1} \um_set_mathalphabet_pos:Nnnn \mathscr {o}{up,it}{#1} } % \end{macrocode} % % \subsubsection{Fractur or fraktur or blackletter: \cmd\mathfrak} % % \begin{macrocode} \cs_new:Npn \um_config_frak_Latin:n #1 { \um_set_mathalphabet_Latin:Nnn \mathfrak {up,it}{#1} \um_set_mathalphabet_pos:Nnnn \mathfrak {C}{up,it}{#1} \um_set_mathalphabet_pos:Nnnn \mathfrak {H}{up,it}{#1} \um_set_mathalphabet_pos:Nnnn \mathfrak {I}{up,it}{#1} \um_set_mathalphabet_pos:Nnnn \mathfrak {R}{up,it}{#1} \um_set_mathalphabet_pos:Nnnn \mathfrak {Z}{up,it}{#1} } \cs_new:Npn \um_config_frak_latin:n #1 { \um_set_mathalphabet_latin:Nnn \mathfrak {up,it}{#1} } % \end{macrocode} % % \subsubsection{Sans serif upright: \cmd\mathsfup} % \begin{macrocode} \cs_new:Npn \um_config_sfup_num:n #1 { \um_set_mathalphabet_numbers:Nnn \mathsf {up}{#1} \um_set_mathalphabet_numbers:Nnn \mathsfup {up}{#1} } \cs_new:Npn \um_config_sfup_Latin:n #1 { \bool_if:NTF \g_um_sfliteral_bool { \um_map_chars_Latin:nn {sfup} {#1} \um_set_mathalphabet_Latin:Nnn \mathsf {up}{#1} }{ \bool_if:NT \g_um_upsans_bool { \um_map_chars_Latin:nn {sfup,sfit} {#1} \um_set_mathalphabet_Latin:Nnn \mathsf {up,it}{#1} } } \um_set_mathalphabet_Latin:Nnn \mathsfup {up,it}{#1} } \cs_new:Npn \um_config_sfup_latin:n #1 { \bool_if:NTF \g_um_sfliteral_bool { \um_map_chars_latin:nn {sfup} {#1} \um_set_mathalphabet_latin:Nnn \mathsf {up}{#1} }{ \bool_if:NT \g_um_upsans_bool { \um_map_chars_latin:nn {sfup,sfit} {#1} \um_set_mathalphabet_latin:Nnn \mathsf {up,it}{#1} } } \um_set_mathalphabet_latin:Nnn \mathsfup {up,it}{#1} } % \end{macrocode} % % \subsubsection{Sans serif italic: \cmd\mathsfit} % % \begin{macrocode} \cs_new:Npn \um_config_sfit_Latin:n #1 { \bool_if:NTF \g_um_sfliteral_bool { \um_map_chars_Latin:nn {sfit} {#1} \um_set_mathalphabet_Latin:Nnn \mathsf {it}{#1} }{ \bool_if:NF \g_um_upsans_bool { \um_map_chars_Latin:nn {sfup,sfit} {#1} \um_set_mathalphabet_Latin:Nnn \mathsf {up,it}{#1} } } \um_set_mathalphabet_Latin:Nnn \mathsfit {up,it}{#1} } \cs_new:Npn \um_config_sfit_latin:n #1 { \bool_if:NTF \g_um_sfliteral_bool { \um_map_chars_latin:nn {sfit} {#1} \um_set_mathalphabet_latin:Nnn \mathsf {it}{#1} }{ \bool_if:NF \g_um_upsans_bool { \um_map_chars_latin:nn {sfup,sfit} {#1} \um_set_mathalphabet_latin:Nnn \mathsf {up,it}{#1} } } \um_set_mathalphabet_latin:Nnn \mathsfit {up,it}{#1} } % \end{macrocode} % % \subsubsection{Typewriter or monospaced: \cmd\mathtt} % \begin{macrocode} \cs_new:Npn \um_config_tt_num:n #1 { \um_set_mathalphabet_numbers:Nnn \mathtt {up}{#1} } \cs_new:Npn \um_config_tt_Latin:n #1 { \um_set_mathalphabet_Latin:Nnn \mathtt {up,it}{#1} } \cs_new:Npn \um_config_tt_latin:n #1 { \um_set_mathalphabet_latin:Nnn \mathtt {up,it}{#1} } % \end{macrocode} % % % \subsubsection{Bold Italic: \cmd\mathbfit} % \begin{macrocode} \cs_new:Npn \um_config_bfit_Latin:n #1 { \bool_if:NF \g_um_bfupLatin_bool { \um_map_chars_Latin:nn {bfup,bfit} {#1} } \um_set_mathalphabet_Latin:Nnn \mathbfit {up,it}{#1} \bool_if:NTF \g_um_bfliteral_bool { \um_map_chars_Latin:nn {bfit} {#1} \um_set_mathalphabet_Latin:Nnn \mathbf {it}{#1} }{ \bool_if:NF \g_um_bfupLatin_bool { \um_map_chars_Latin:nn {bfup,bfit} {#1} \um_set_mathalphabet_Latin:Nnn \mathbf {up,it}{#1} } } } \cs_new:Npn \um_config_bfit_latin:n #1 { \bool_if:NF \g_um_bfuplatin_bool { \um_map_chars_latin:nn {bfup,bfit} {#1} } \um_set_mathalphabet_latin:Nnn \mathbfit {up,it}{#1} \bool_if:NTF \g_um_bfliteral_bool { \um_map_chars_latin:nn {bfit} {#1} \um_set_mathalphabet_latin:Nnn \mathbf {it}{#1} }{ \bool_if:NF \g_um_bfuplatin_bool { \um_map_chars_latin:nn {bfup,bfit} {#1} \um_set_mathalphabet_latin:Nnn \mathbf {up,it}{#1} } } } \cs_new:Npn \um_config_bfit_Greek:n #1 { \um_set_mathalphabet_Greek:Nnn \mathbfit {up,it}{#1} \bool_if:NTF \g_um_bfliteral_bool { \um_map_chars_Greek:nn {bfit}{#1} \um_set_mathalphabet_Greek:Nnn \mathbf {it}{#1} }{ \bool_if:NF \g_um_bfupGreek_bool { \um_map_chars_Greek:nn {bfup,bfit}{#1} \um_set_mathalphabet_Greek:Nnn \mathbf {up,it}{#1} } } } \cs_new:Npn \um_config_bfit_greek:n #1 { \um_set_mathalphabet_greek:Nnn \mathbfit {up,it} {#1} \bool_if:NTF \g_um_bfliteral_bool { \um_map_chars_greek:nn {bfit} {#1} \um_set_mathalphabet_greek:Nnn \mathbf {it} {#1} }{ \bool_if:NF \g_um_bfupgreek_bool { \um_map_chars_greek:nn {bfit,bfup} {#1} \um_set_mathalphabet_greek:Nnn \mathbf {up,it} {#1} } } } \cs_new:Npn \um_config_bfit_misc:n #1 { \bool_if:NTF \g_um_literal_Nabla_bool { \um_map_single:nnn {Nabla}{bfit}{#1} }{ \bool_if:NF \g_um_upNabla_bool { \um_map_single:nnn {Nabla}{bfup,bfit}{#1} } } \bool_if:NTF \g_um_literal_partial_bool { \um_map_single:nnn {partial}{bfit}{#1} }{ \bool_if:NF \g_um_uppartial_bool { \um_map_single:nnn {partial}{bfup,bfit}{#1} } } \um_set_mathalphabet_pos:Nnnn \mathbfit {partial} {up,it}{#1} \um_set_mathalphabet_pos:Nnnn \mathbfit {Nabla} {up,it}{#1} \bool_if:NTF \g_um_literal_partial_bool { \um_set_mathalphabet_pos:Nnnn \mathbf {partial} {it}{#1} }{ \bool_if:NF \g_um_uppartial_bool { \um_set_mathalphabet_pos:Nnnn \mathbf {partial} {up,it}{#1} } } \bool_if:NTF \g_um_literal_Nabla_bool { \um_set_mathalphabet_pos:Nnnn \mathbf {Nabla} {it}{#1} }{ \bool_if:NF \g_um_upNabla_bool { \um_set_mathalphabet_pos:Nnnn \mathbf {Nabla} {up,it}{#1} } } } % \end{macrocode} % % % \subsubsection{Bold Upright: \cmd\mathbfup} % \begin{macrocode} \cs_new:Npn \um_config_bfup_num:n #1 { \um_set_mathalphabet_numbers:Nnn \mathbf {up}{#1} \um_set_mathalphabet_numbers:Nnn \mathbfup {up}{#1} } \cs_new:Npn \um_config_bfup_Latin:n #1 { \bool_if:NT \g_um_bfupLatin_bool { \um_map_chars_Latin:nn {bfup,bfit} {#1} } \um_set_mathalphabet_Latin:Nnn \mathbfup {up,it}{#1} \bool_if:NTF \g_um_bfliteral_bool { \um_map_chars_Latin:nn {bfup} {#1} \um_set_mathalphabet_Latin:Nnn \mathbf {up}{#1} }{ \bool_if:NT \g_um_bfupLatin_bool { \um_map_chars_Latin:nn {bfup,bfit} {#1} \um_set_mathalphabet_Latin:Nnn \mathbf {up,it}{#1} } } } \cs_new:Npn \um_config_bfup_latin:n #1 { \bool_if:NT \g_um_bfuplatin_bool { \um_map_chars_latin:nn {bfup,bfit} {#1} } \um_set_mathalphabet_latin:Nnn \mathbfup {up,it}{#1} \bool_if:NTF \g_um_bfliteral_bool { \um_map_chars_latin:nn {bfup} {#1} \um_set_mathalphabet_latin:Nnn \mathbf {up}{#1} }{ \bool_if:NT \g_um_bfuplatin_bool { \um_map_chars_latin:nn {bfup,bfit} {#1} \um_set_mathalphabet_latin:Nnn \mathbf {up,it}{#1} } } } \cs_new:Npn \um_config_bfup_Greek:n #1 { \um_set_mathalphabet_Greek:Nnn \mathbfup {up,it}{#1} \bool_if:NTF \g_um_bfliteral_bool { \um_map_chars_Greek:nn {bfup}{#1} \um_set_mathalphabet_Greek:Nnn \mathbf {up}{#1} }{ \bool_if:NT \g_um_bfupGreek_bool { \um_map_chars_Greek:nn {bfup,bfit}{#1} \um_set_mathalphabet_Greek:Nnn \mathbf {up,it}{#1} } } } \cs_new:Npn \um_config_bfup_greek:n #1 { \um_set_mathalphabet_greek:Nnn \mathbfup {up,it} {#1} \bool_if:NTF \g_um_bfliteral_bool { \um_map_chars_greek:nn {bfup} {#1} \um_set_mathalphabet_greek:Nnn \mathbf {up} {#1} }{ \bool_if:NT \g_um_bfupgreek_bool { \um_map_chars_greek:nn {bfup,bfit} {#1} \um_set_mathalphabet_greek:Nnn \mathbf {up,it} {#1} } } } \cs_new:Npn \um_config_bfup_misc:n #1 { \bool_if:NTF \g_um_literal_Nabla_bool { \um_map_single:nnn {Nabla}{bfup}{#1} }{ \bool_if:NT \g_um_upNabla_bool { \um_map_single:nnn {Nabla}{bfup,bfit}{#1} } } \bool_if:NTF \g_um_literal_partial_bool { \um_map_single:nnn {partial}{bfup}{#1} }{ \bool_if:NT \g_um_uppartial_bool { \um_map_single:nnn {partial}{bfup,bfit}{#1} } } \um_set_mathalphabet_pos:Nnnn \mathbfup {partial} {up,it}{#1} \um_set_mathalphabet_pos:Nnnn \mathbfup {Nabla} {up,it}{#1} \um_set_mathalphabet_pos:Nnnn \mathbfup {digamma} {up}{#1} \um_set_mathalphabet_pos:Nnnn \mathbfup {Digamma} {up}{#1} \um_set_mathalphabet_pos:Nnnn \mathbf {digamma} {up}{#1} \um_set_mathalphabet_pos:Nnnn \mathbf {Digamma} {up}{#1} \bool_if:NTF \g_um_literal_partial_bool { \um_set_mathalphabet_pos:Nnnn \mathbf {partial} {up}{#1} }{ \bool_if:NT \g_um_uppartial_bool { \um_set_mathalphabet_pos:Nnnn \mathbf {partial} {up,it}{#1} } } \bool_if:NTF \g_um_literal_Nabla_bool { \um_set_mathalphabet_pos:Nnnn \mathbf {Nabla} {up}{#1} }{ \bool_if:NT \g_um_upNabla_bool { \um_set_mathalphabet_pos:Nnnn \mathbf {Nabla} {up,it}{#1} } } } % \end{macrocode} % % \subsubsection{Bold fractur or fraktur or blackletter: \cmd\mathbffrak} % \begin{macrocode} \cs_new:Npn \um_config_bffrak_Latin:n #1 { \um_set_mathalphabet_Latin:Nnn \mathbffrak {up,it}{#1} } \cs_new:Npn \um_config_bffrak_latin:n #1 { \um_set_mathalphabet_latin:Nnn \mathbffrak {up,it}{#1} } % \end{macrocode} % % \subsubsection{Bold script or calligraphic: \cmd\mathbfscr} % \begin{macrocode} \cs_new:Npn \um_config_bfscr_Latin:n #1 { \um_set_mathalphabet_Latin:Nnn \mathbfscr {up,it}{#1} } \cs_new:Npn \um_config_bfscr_latin:n #1 { \um_set_mathalphabet_latin:Nnn \mathbfscr {up,it}{#1} } % \end{macrocode} % % \subsubsection{Bold upright sans serif: \cmd\mathbfsfup} % \begin{macrocode} \cs_new:Npn \um_config_bfsfup_num:n #1 { \um_set_mathalphabet_numbers:Nnn \mathbfsf {up}{#1} \um_set_mathalphabet_numbers:Nnn \mathbfsfup {up}{#1} } \cs_new:Npn \um_config_bfsfup_Latin:n #1 { \bool_if:NTF \g_um_sfliteral_bool { \um_map_chars_Latin:nn {bfsfup} {#1} \um_set_mathalphabet_Latin:Nnn \mathbfsf {up}{#1} }{ \bool_if:NT \g_um_upsans_bool { \um_map_chars_Latin:nn {bfsfup,bfsfit} {#1} \um_set_mathalphabet_Latin:Nnn \mathbfsf {up,it}{#1} } } \um_set_mathalphabet_Latin:Nnn \mathbfsfup {up,it}{#1} } \cs_new:Npn \um_config_bfsfup_latin:n #1 { \bool_if:NTF \g_um_sfliteral_bool { \um_map_chars_latin:nn {bfsfup} {#1} \um_set_mathalphabet_latin:Nnn \mathbfsf {up}{#1} }{ \bool_if:NT \g_um_upsans_bool { \um_map_chars_latin:nn {bfsfup,bfsfit} {#1} \um_set_mathalphabet_latin:Nnn \mathbfsf {up,it}{#1} } } \um_set_mathalphabet_latin:Nnn \mathbfsfup {up,it}{#1} } \cs_new:Npn \um_config_bfsfup_Greek:n #1 { \bool_if:NTF \g_um_sfliteral_bool { \um_map_chars_Greek:nn {bfsfup}{#1} \um_set_mathalphabet_Greek:Nnn \mathbfsf {up}{#1} }{ \bool_if:NT \g_um_upsans_bool { \um_map_chars_Greek:nn {bfsfup,bfsfit}{#1} \um_set_mathalphabet_Greek:Nnn \mathbfsf {up,it}{#1} } } \um_set_mathalphabet_Greek:Nnn \mathbfsfup {up,it}{#1} } \cs_new:Npn \um_config_bfsfup_greek:n #1 { \bool_if:NTF \g_um_sfliteral_bool { \um_map_chars_greek:nn {bfsfup} {#1} \um_set_mathalphabet_greek:Nnn \mathbfsf {up} {#1} }{ \bool_if:NT \g_um_upsans_bool { \um_map_chars_greek:nn {bfsfup,bfsfit} {#1} \um_set_mathalphabet_greek:Nnn \mathbfsf {up,it} {#1} } } \um_set_mathalphabet_greek:Nnn \mathbfsfup {up,it} {#1} } \cs_new:Npn \um_config_bfsfup_misc:n #1 { \bool_if:NTF \g_um_literal_Nabla_bool { \um_map_single:nnn {Nabla}{bfsfup}{#1} }{ \bool_if:NT \g_um_upNabla_bool { \um_map_single:nnn {Nabla}{bfsfup,bfsfit}{#1} } } \bool_if:NTF \g_um_literal_partial_bool { \um_map_single:nnn {partial}{bfsfup}{#1} }{ \bool_if:NT \g_um_uppartial_bool { \um_map_single:nnn {partial}{bfsfup,bfsfit}{#1} } } \um_set_mathalphabet_pos:Nnnn \mathbfsfup {partial} {up,it}{#1} \um_set_mathalphabet_pos:Nnnn \mathbfsfup {Nabla} {up,it}{#1} \bool_if:NTF \g_um_literal_partial_bool { \um_set_mathalphabet_pos:Nnnn \mathbfsf {partial} {up}{#1} }{ \bool_if:NT \g_um_uppartial_bool { \um_set_mathalphabet_pos:Nnnn \mathbfsf {partial} {up,it}{#1} } } \bool_if:NTF \g_um_literal_Nabla_bool { \um_set_mathalphabet_pos:Nnnn \mathbfsf {Nabla} {up}{#1} }{ \bool_if:NT \g_um_upNabla_bool { \um_set_mathalphabet_pos:Nnnn \mathbfsf {Nabla} {up,it}{#1} } } } % \end{macrocode} % % % \subsubsection{Bold italic sans serif: \cmd\mathbfsfit} % \begin{macrocode} \cs_new:Npn \um_config_bfsfit_Latin:n #1 { \bool_if:NTF \g_um_sfliteral_bool { \um_map_chars_Latin:nn {bfsfit} {#1} \um_set_mathalphabet_Latin:Nnn \mathbfsf {it}{#1} }{ \bool_if:NF \g_um_upsans_bool { \um_map_chars_Latin:nn {bfsfup,bfsfit} {#1} \um_set_mathalphabet_Latin:Nnn \mathbfsf {up,it}{#1} } } \um_set_mathalphabet_Latin:Nnn \mathbfsfit {up,it}{#1} } \cs_new:Npn \um_config_bfsfit_latin:n #1 { \bool_if:NTF \g_um_sfliteral_bool { \um_map_chars_latin:nn {bfsfit} {#1} \um_set_mathalphabet_latin:Nnn \mathbfsf {it}{#1} }{ \bool_if:NF \g_um_upsans_bool { \um_map_chars_latin:nn {bfsfup,bfsfit} {#1} \um_set_mathalphabet_latin:Nnn \mathbfsf {up,it}{#1} } } \um_set_mathalphabet_latin:Nnn \mathbfsfit {up,it}{#1} } \cs_new:Npn \um_config_bfsfit_Greek:n #1 { \bool_if:NTF \g_um_sfliteral_bool { \um_map_chars_Greek:nn {bfsfit}{#1} \um_set_mathalphabet_Greek:Nnn \mathbfsf {it}{#1} }{ \bool_if:NF \g_um_upsans_bool { \um_map_chars_Greek:nn {bfsfup,bfsfit}{#1} \um_set_mathalphabet_Greek:Nnn \mathbfsf {up,it}{#1} } } \um_set_mathalphabet_Greek:Nnn \mathbfsfit {up,it}{#1} } \cs_new:Npn \um_config_bfsfit_greek:n #1 { \bool_if:NTF \g_um_sfliteral_bool { \um_map_chars_greek:nn {bfsfit} {#1} \um_set_mathalphabet_greek:Nnn \mathbfsf {it} {#1} }{ \bool_if:NF \g_um_upsans_bool { \um_map_chars_greek:nn {bfsfup,bfsfit} {#1} \um_set_mathalphabet_greek:Nnn \mathbfsf {up,it} {#1} } } \um_set_mathalphabet_greek:Nnn \mathbfsfit {up,it} {#1} } \cs_new:Npn \um_config_bfsfit_misc:n #1 { \bool_if:NTF \g_um_literal_Nabla_bool { \um_map_single:nnn {Nabla}{bfsfit}{#1} }{ \bool_if:NF \g_um_upNabla_bool { \um_map_single:nnn {Nabla}{bfsfup,bfsfit}{#1} } } \bool_if:NTF \g_um_literal_partial_bool { \um_map_single:nnn {partial}{bfsfit}{#1} }{ \bool_if:NF \g_um_uppartial_bool { \um_map_single:nnn {partial}{bfsfup,bfsfit}{#1} } } \um_set_mathalphabet_pos:Nnnn \mathbfsfit {partial} {up,it}{#1} \um_set_mathalphabet_pos:Nnnn \mathbfsfit {Nabla} {up,it}{#1} \bool_if:NTF \g_um_literal_partial_bool { \um_set_mathalphabet_pos:Nnnn \mathbfsf {partial} {it}{#1} }{ \bool_if:NF \g_um_uppartial_bool { \um_set_mathalphabet_pos:Nnnn \mathbfsf {partial} {up,it}{#1} } } \bool_if:NTF \g_um_literal_Nabla_bool { \um_set_mathalphabet_pos:Nnnn \mathbfsf {Nabla} {it}{#1} }{ \bool_if:NF \g_um_upNabla_bool { \um_set_mathalphabet_pos:Nnnn \mathbfsf {Nabla} {up,it}{#1} } } } % \end{macrocode} % % \section{Definitions of the active math characters} % % Here we define every Unicode math codepoint an equivalent macro name. % The two are equivalent, in a |\let\xyz=^^^^1234| kind of way. % % \begin{macro}{\um@scancharlet} % \begin{macro}{\um@scanactivedef} % We need to do some trickery to transform the |\UnicodeMathSymbol| argument % |"ABCDEF| into the \XeTeX\ `caret input' form |^^^^^abcdef|. It is \emph{very important} % that the argument has five characters. Otherwise we need to change the number of |^| chars. % % To do this, turn |^| into a regular `other' character and define the macro % to perform the lowercasing and |\let|. \cmd\scantokens\ changes the carets % back into their original meaning after the group has ended and |^|'s catcode returns to normal. % \begin{macrocode} \begingroup \char_make_other:N \^ \cs_gset:Npn \um@scancharlet#1="#2\@nil { \lowercase{ \tl_rescan:nn { \char_make_other:N \{ \char_make_other:N \} \char_make_other:N \& \char_make_other:N \% \char_make_other:N \$ }{ \global\let#1=^^^^^#2 } } } % \end{macrocode} % Making |^| the right catcode isn't strictly necessary right now but it helps to future proof us with, e.g., breqn. % \begin{macrocode} \gdef\um@scanactivedef"#1\@nil#2{ \lowercase{ \tl_rescan:nn{ \ExplSyntaxOn \char_make_math_superscript:N\^ }{ \global\def^^^^^#1{#2} } } } \endgroup % \end{macrocode} % \end{macro} % \end{macro} % % Now give \cmd\UnicodeMathSymbol\ a definition in terms of \cmd\um@scancharlet\ % and we're good to go. % Make sure |#| is an `other' so that we don't get confused with \cs{mathoctothorpe}. % \begin{macrocode} \AtBeginDocument{ \group_begin: \char_make_math_superscript:N\^ \def\UnicodeMathSymbol#1#2#3#4{ \bool_if:nF { \cs_if_eq_p:NN #3 \mathaccent || \cs_if_eq_p:NN #3 \mathopen || \cs_if_eq_p:NN #3 \mathclose } { \um@scancharlet#2=#1\@nil\ignorespaces } } \char_make_other:N \# \@input{unicode-math-table.tex} \group_end: } % \end{macrocode} % Fix \cs{backslash}, which is defined as the escape char character % above: % \begin{macrocode} \group_begin: \lccode`\*=`\\ \char_make_escape:N \| \char_make_other:N \\ |lowercase{ |AtBeginDocument{ |let|backslash=* } } |group_end: % \end{macrocode} % Fix \cs{backslash}: % \begin{macrocode} % \end{macrocode} % % \section{Epilogue} % % Lots of little things to tidy up. % % \subsection{Primes} % % We need a new `prime' algorithm. Unicode math has four pre-drawn prime glyphs. % \begin{quote}\obeylines % \unichar{2032} {prime} (\cs{prime}): $x\prime$ % \unichar{2033} {double prime} (\cs{dprime}): $x\dprime$ % \unichar{2034} {triple prime} (\cs{trprime}): $x\trprime$ % \unichar{2057} {quadruple prime} (\cs{qprime}): $x\qprime$ % \end{quote} % As you can see, they're all drawn at the correct height without being superscripted. % However, in a correctly behaving OpenType font, % we also see different behaviour after the \texttt{ssty} feature is applied: % \begin{quote} % \font\1="Cambria Math:script=math,+ssty=0"\1 % \char"1D465\char"2032\quad % \char"1D465\char"2033\quad % \char"1D465\char"2034\quad % \char"1D465\char"2057 % \end{quote} % The glyphs are now `full size' so that when placed inside a superscript, % their shape will match the originally sized ones. Many thanks to Ross Mills % of Tiro Typeworks for originally pointing out this behaviour. % % In regular \LaTeX, primes can be entered with the straight quote character % |'|, and multiple straight quotes chain together to produce multiple % primes. Better results can be achieved in \pkg{unicode-math} by chaining % multiple single primes into a pre-drawn multi-prime glyph; consider % $x\prime{}\prime{}\prime$ vs.\ $x\trprime$. % % For Unicode maths, we wish to conserve this behaviour and augment it with % the possibility of adding any combination of Unicode prime or any of the % $n$-prime characters. E.g., the user might copy-paste a double prime from % another source and then later type another single prime after it; the output % should be the triple prime. % % Our algorithm is: % \begin{itemize}[nolistsep] % \item Prime encountered; pcount=1. % \item Scan ahead; if prime: pcount:=pcount+1; repeat. % \item If not prime, stop scanning. % \item If pcount=1, \cs{prime}, end. % \item If pcount=2, check \cs{dprime}; if it exists, use it, end; if not, goto last step. % \item Ditto pcount=3 \& \cs{trprime}. % \item Ditto pcount=4 \& \cs{qprime}. % \item If pcount>4 or the glyph doesn't exist, insert pcount \cs{prime}s with \cs{primekern} between each. % \end{itemize} % % \begin{macrocode} \muskip_new:N \g_um_primekern_muskip \muskip_gset:Nn \g_um_primekern_muskip { -\thinmuskip/2 }% arbitrary \int_new:N \l_um_primecount_int % \end{macrocode} % % \begin{macrocode} \cs_new:Npn \um_nprimes:Nn #1#2 { ^{ #1 \prg_replicate:nn {#2-1} { \mskip \g_um_primekern_muskip #1 } } } \cs_new:Npn \um_nprimes_select:nn #1#2 { \prg_case_int:nnn {#2}{ {1} { ^{#1} } {2} { \um_glyph_if_exist:nTF {"2033} { ^{\um_prime_double_mchar} } {\um_nprimes:Nn #1 {#2}} } {3} { \um_glyph_if_exist:nTF {"2034} {^{\um_prime_triple_mchar} } {\um_nprimes:Nn #1 {#2}} } {4} { \um_glyph_if_exist:nTF {"2057} { ^{\um_prime_quad_mchar} } {\um_nprimes:Nn #1 {#2}} } }{ \um_nprimes:Nn #1 {#2} } } \cs_new:Npn \um_nbackprimes_select:nn #1#2 { \prg_case_int:nnn {#2}{ {1} { ^{#1} } {2} { \um_glyph_if_exist:nTF {"2033} { ^{\um_backprime_double_mchar} } {\um_nprimes:Nn #1 {#2}} } {3} { \um_glyph_if_exist:nTF {"2034} {^{\um_backprime_triple_mchar} } {\um_nprimes:Nn #1 {#2}} } }{ \um_nprimes:Nn #1 {#2} } } % \end{macrocode} % % Scanning is annoying because I'm too lazy to do it for the general case. % % \begin{macrocode} \cs_new:Npn \um_scan_prime: { \int_zero:N \l_um_primecount_int \um_scanprime_collect:N \um_prime_single_mchar } \cs_new:Npn \um_scan_dprime: { \int_set:Nn \l_um_primecount_int {1} \um_scanprime_collect:N \um_prime_single_mchar } \cs_new:Npn \um_scan_trprime: { \int_set:Nn \l_um_primecount_int {2} \um_scanprime_collect:N \um_prime_single_mchar } \cs_new:Npn \um_scan_qprime: { \int_set:Nn \l_um_primecount_int {3} \um_scanprime_collect:N \um_prime_single_mchar } \cs_new:Npn \um_scanprime_collect:N #1 { \int_incr:N \l_um_primecount_int \peek_meaning_remove:NTF ' { \um_scanprime_collect:N #1 }{ \peek_meaning_remove:NTF \um_scan_prime: { \um_scanprime_collect:N #1 }{ \peek_meaning_remove:NTF ^^^^2032 { \um_scanprime_collect:N #1 }{ \peek_meaning_remove:NTF \um_scan_dprime: { \int_incr:N \l_um_primecount_int \um_scanprime_collect:N #1 }{ \peek_meaning_remove:NTF ^^^^2033 { \int_incr:N \l_um_primecount_int \um_scanprime_collect:N #1 }{ \peek_meaning_remove:NTF \um_scan_trprime: { \int_add:Nn \l_um_primecount_int {2} \um_scanprime_collect:N #1 }{ \peek_meaning_remove:NTF ^^^^2034 { \int_add:Nn \l_um_primecount_int {2} \um_scanprime_collect:N #1 }{ \peek_meaning_remove:NTF \um_scan_qprime: { \int_add:Nn \l_um_primecount_int {3} \um_scanprime_collect:N #1 }{ \peek_meaning_remove:NTF ^^^^2057 { \int_add:Nn \l_um_primecount_int {3} \um_scanprime_collect:N #1 }{ \um_nprimes_select:nn {#1} {\l_um_primecount_int} } } } } } } } } } } \cs_new:Npn \um_scan_backprime: { \int_zero:N \l_um_primecount_int \um_scanbackprime_collect:N \um_backprime_single_mchar } \cs_new:Npn \um_scan_backdprime: { \int_set:Nn \l_um_primecount_int {1} \um_scanbackprime_collect:N \um_backprime_single_mchar } \cs_new:Npn \um_scan_backtrprime: { \int_set:Nn \l_um_primecount_int {2} \um_scanbackprime_collect:N \um_backprime_single_mchar } \cs_new:Npn \um_scanbackprime_collect:N #1 { \int_incr:N \l_um_primecount_int \peek_meaning_remove:NTF ` { \um_scanbackprime_collect:N #1 }{ \peek_meaning_remove:NTF \um_scan_backprime: { \um_scanbackprime_collect:N #1 }{ \peek_meaning_remove:NTF ^^^^2035 { \um_scanbackprime_collect:N #1 }{ \peek_meaning_remove:NTF \um_scan_backdprime: { \int_incr:N \l_um_primecount_int \um_scanbackprime_collect:N #1 }{ \peek_meaning_remove:NTF ^^^^2036 { \int_incr:N \l_um_primecount_int \um_scanbackprime_collect:N #1 }{ \peek_meaning_remove:NTF \um_scan_backtrprime: { \int_add:Nn \l_um_primecount_int {2} \um_scanbackprime_collect:N #1 }{ \peek_meaning_remove:NTF ^^^^2037 { \int_add:Nn \l_um_primecount_int {2} \um_scanbackprime_collect:N #1 }{ \um_nbackprimes_select:nn {#1} {\l_um_primecount_int} } } } } } } } } % \end{macrocode} % % \begin{macrocode} \AtBeginDocument { \cs_set_eq:NN \prime \um_scan_prime: \cs_set_eq:NN \drime \um_scan_dprime: \cs_set_eq:NN \trprime \um_scan_trprime: \cs_set_eq:NN \qprime \um_scan_qprime: \cs_set_eq:NN \backprime \um_scan_backprime: \cs_set_eq:NN \backdprime \um_scan_backdprime: \cs_set_eq:NN \backtrprime \um_scan_backtrprime: } \group_begin: \char_make_active:N \' \char_make_active:N \` \char_make_active:n {"2032} \char_make_active:n {"2033} \char_make_active:n {"2034} \char_make_active:n {"2057} \char_make_active:n {"2035} \char_make_active:n {"2036} \char_make_active:n {"2037} \AtBeginDocument{ \cs_set_eq:NN ' \um_scan_prime: \cs_set_eq:NN ^^^^2032 \um_scan_prime: \cs_set_eq:NN ^^^^2033 \um_scan_dprime: \cs_set_eq:NN ^^^^2034 \um_scan_trprime: \cs_set_eq:NN ^^^^2057 \um_scan_qprime: \cs_set_eq:NN ` \um_scan_backprime: \cs_set_eq:NN ^^^^2035 \um_scan_backprime: \cs_set_eq:NN ^^^^2036 \um_scan_backdprime: \cs_set_eq:NN ^^^^2037 \um_scan_backtrprime: } \group_end: % \end{macrocode} % % \subsection{Unicode radicals} % % \begin{macro}{\r@@t} % \darg{A mathstyle (for \cmd\mathpalette)} % \darg{Leading superscript for the sqrt sign} % A re-implementation of \LaTeX's hard-coded n-root sign using the appropriate \cmd\fontdimen s. % \begin{macrocode} \cs_set_nopar:Npn \r@@t #1#2 { \setbox\z@\hbox{$\m@th #1\sqrtsign{#2}$} \um_mathstyle_scale:Nnn{#1}{\kern}{\fontdimen63\l_um_font} \raise \dimexpr( \um_fontdimen_to_percent:nn{65}{\l_um_font}\ht\z@- \um_fontdimen_to_percent:nn{65}{\l_um_font}\dp\z@ )\relax \copy \rootbox \um_mathstyle_scale:Nnn{#1}{\kern}{\fontdimen64\l_um_font} \box \z@ } % \end{macrocode} % \end{macro} % % % \begin{macro}{\um_fontdimen_to_percent:nn} % \darg{Font dimen number} % \darg{Font `variable'} % \cmd\fontdimen s |10|, |11|, and |65| aren't actually dimensions, they're percentage values given in units of |sp|. This macro takes a font dimension number and outputs the decimal value of the associated parameter. % \begin{macrocode} \cs_new:Npn \um_fontdimen_to_percent:nn #1#2 { 0.\strip@pt\dimexpr\fontdimen#1#2 *65536\relax } % \end{macrocode} % \end{macro} % % \begin{macro}{\um_mathstyle_scale:Nnn} % \darg{A math style (\cs{scriptstyle}, say)} % \darg{Macro that takes a non-delimited length argument (like \cmd\kern)} % \darg{Length control sequence to be scaled according to the math style} % This macro is used to scale the lengths reported by \cmd\fontdimen\ according to the scale factor for script- and scriptscript-size objects. % \begin{macrocode} \cs_new:Npn \um_mathstyle_scale:Nnn #1#2#3 { \ifx#1\scriptstyle #2\um_fontdimen_to_percent:nn{10}\l_um_font#3 \else \ifx#1\scriptscriptstyle #2\um_fontdimen_to_percent:nn{11}\l_um_font#3 \else #2#3 \fi \fi } % \end{macrocode} % \end{macro} % % \subsection{Unicode sub- and super-scripts} % % The idea here is to enter a scanning state after a superscript or subscript % is encountered. % If subsequent superscripts or subscripts (resp.) are found, % they are lumped together. % Each sub/super has a corresponding regular size % glyph which is used by \XeTeX\ to typeset the results; this means that the % actual subscript/superscript glyphs are never seen in the output % document~--- they are only used as input characters. % % Open question: should the superscript-like `modifiers' (\unichar{1D2C} % {modifier capital letter a} and on) be included here? % \begin{macrocode} \prop_new:N \g_um_supers_prop \prop_new:N \g_um_subs_prop \group_begin: % \end{macrocode} % \paragraph{Superscripts} % Populate a property list with superscript characters; their meaning as their % key, for reasons that will become apparent soon, and their replacement as % each key's value. % Then make the superscript active and bind it to the scanning function. % % \cs{scantokens} makes this process much simpler since we can activate the % char and assign its meaning in one step. % \begin{macrocode} \cs_set:Npn \um_setup_active_superscript:nn #1#2 { \prop_gput:Nxn \g_um_supers_prop {\meaning #1} {#2} \char_make_active:N #1 \char_gmake_mathactive:N #1 \scantokens{ \cs_gset:Npn #1 { \tl_set:Nn \l_um_ss_chain_tl {#2} \cs_set_eq:NN \um_sub_or_super:n \sp \tl_set:Nn \l_um_tmpa_tl {supers} \um_scan_sscript: } } } % \end{macrocode} % Bam: % \begin{macrocode} \um_setup_active_superscript:nn {^^^^2070} {0} \um_setup_active_superscript:nn {^^^^00b9} {1} \um_setup_active_superscript:nn {^^^^00b2} {2} \um_setup_active_superscript:nn {^^^^00b3} {3} \um_setup_active_superscript:nn {^^^^2074} {4} \um_setup_active_superscript:nn {^^^^2075} {5} \um_setup_active_superscript:nn {^^^^2076} {6} \um_setup_active_superscript:nn {^^^^2077} {7} \um_setup_active_superscript:nn {^^^^2078} {8} \um_setup_active_superscript:nn {^^^^2079} {9} \um_setup_active_superscript:nn {^^^^207a} {+} \um_setup_active_superscript:nn {^^^^207b} {-} \um_setup_active_superscript:nn {^^^^207c} {=} \um_setup_active_superscript:nn {^^^^207d} {(} \um_setup_active_superscript:nn {^^^^207e} {)} \um_setup_active_superscript:nn {^^^^2071} {i} \um_setup_active_superscript:nn {^^^^207f} {n} % \end{macrocode} % \paragraph{Subscripts} Ditto above. % \begin{macrocode} \cs_set:Npn \um_setup_active_subscript:nn #1#2 { \prop_gput:Nxn \g_um_subs_prop {\meaning #1} {#2} \char_make_active:N #1 \char_gmake_mathactive:N #1 \scantokens{ \cs_gset:Npn #1 { \tl_set:Nn \l_um_ss_chain_tl {#2} \cs_set_eq:NN \um_sub_or_super:n \sb \tl_set:Nn \l_um_tmpa_tl {subs} \um_scan_sscript: } } } % \end{macrocode} % A few more subscripts than superscripts: % \begin{macrocode} \um_setup_active_subscript:nn {^^^^2080} {0} \um_setup_active_subscript:nn {^^^^2081} {1} \um_setup_active_subscript:nn {^^^^2082} {2} \um_setup_active_subscript:nn {^^^^2083} {3} \um_setup_active_subscript:nn {^^^^2084} {4} \um_setup_active_subscript:nn {^^^^2085} {5} \um_setup_active_subscript:nn {^^^^2086} {6} \um_setup_active_subscript:nn {^^^^2087} {7} \um_setup_active_subscript:nn {^^^^2088} {8} \um_setup_active_subscript:nn {^^^^2089} {9} \um_setup_active_subscript:nn {^^^^208a} {+} \um_setup_active_subscript:nn {^^^^208b} {-} \um_setup_active_subscript:nn {^^^^208c} {=} \um_setup_active_subscript:nn {^^^^208d} {(} \um_setup_active_subscript:nn {^^^^208e} {)} \um_setup_active_subscript:nn {^^^^2090} {a} \um_setup_active_subscript:nn {^^^^2091} {e} \um_setup_active_subscript:nn {^^^^1d62} {i} \um_setup_active_subscript:nn {^^^^2092} {o} \um_setup_active_subscript:nn {^^^^1d63} {r} \um_setup_active_subscript:nn {^^^^1d64} {u} \um_setup_active_subscript:nn {^^^^1d65} {v} \um_setup_active_subscript:nn {^^^^2093} {x} \um_setup_active_subscript:nn {^^^^1d66} {\beta} \um_setup_active_subscript:nn {^^^^1d67} {\gamma} \um_setup_active_subscript:nn {^^^^1d68} {\rho} \um_setup_active_subscript:nn {^^^^1d69} {\phi} \um_setup_active_subscript:nn {^^^^1d6a} {\chi} % \end{macrocode} % % \begin{macrocode} \group_end: % \end{macrocode} % The scanning command, evident in its purpose: % \begin{macrocode} \cs_new:Npn \um_scan_sscript: { \um_scan_sscript:TF { \um_scan_sscript: }{ \um_sub_or_super:n {\l_um_ss_chain_tl} } } % \end{macrocode} % The main theme here is stolen from the source to the various \cs{peek_} functions. % Consider this function as simply boilerplate: % \begin{macrocode} \cs_new:Npn \um_scan_sscript:TF #1#2 { \tl_set:Nx \l_peek_true_aux_tl { \exp_not:n{ #1 } } \tl_set_eq:NN \l_peek_true_tl \c_peek_true_remove_next_tl \tl_set:Nx \l_peek_false_tl {\exp_not:n{\group_align_safe_end: #2}} \group_align_safe_begin: \peek_after:NN \um_peek_execute_branches_ss: } % \end{macrocode} % We do not skip spaces when scanning ahead, and we explicitly wish to % bail out on encountering a space or a brace. % \begin{macrocode} \cs_new:Npn \um_peek_execute_branches_ss: { \bool_if:nTF { \token_if_eq_catcode_p:NN \l_peek_token \c_group_begin_token || \token_if_eq_catcode_p:NN \l_peek_token \c_group_end_token || \token_if_eq_meaning_p:NN \l_peek_token \c_space_token } { \l_peek_false_tl } { \um_peek_execute_branches_ss_aux: } } % \end{macrocode} % This is the actual comparison code. % Because the peeking has already tokenised the next token, % it's too late to extract its charcode directly. Instead, % we look at its meaning, which remains a `character' even % though it is itself math-active. If the character is ever % made fully active, this will break our assumptions! % % If the char's meaning exists as a property list key, we % build up a chain of sub-/superscripts and iterate. (If not, exit and % typeset what we've already collected.) % \begin{macrocode} \cs_new:Npn \um_peek_execute_branches_ss_aux: { \prop_if_in:cxTF {g_um_\l_um_tmpa_tl _prop} {\meaning\l_peek_token} { \prop_get:cxN {g_um_\l_um_tmpa_tl _prop} {\meaning\l_peek_token} \l_um_tmpb_tl \tl_put_right:NV \l_um_ss_chain_tl \l_um_tmpb_tl \l_peek_true_tl } {\l_peek_false_tl} } % \end{macrocode} % % \subsubsection{Active fractions} % Active fractions can be setup independently of any maths font definition; % all it requires is a mapping from the Unicode input chars to the relevant % \LaTeX\ fraction declaration. % % \begin{macrocode} \cs_new:Npn \um_define_active_frac:Nw #1 #2/#3 { \char_make_active:N #1 \char_gmake_mathactive:N #1 \tl_rescan:nn { \ExplSyntaxOn }{ \cs_gset:Npx #1 { \bool_if:NTF \l_um_smallfrac_bool {\exp_not:N\tfrac} {\exp_not:N\frac} {#2} {#3} } } } % \end{macrocode} % These are redefined for each math font selection in case the |active-frac| % feature changes. % \begin{macrocode} \cs_new:Npn \um_setup_active_frac: { \group_begin: \um_define_active_frac:Nw ^^^^2152 1/{10} \um_define_active_frac:Nw ^^^^2151 1/9 \um_define_active_frac:Nw ^^^^215b 1/8 \um_define_active_frac:Nw ^^^^2150 1/7 \um_define_active_frac:Nw ^^^^2159 1/6 \um_define_active_frac:Nw ^^^^2155 1/5 \um_define_active_frac:Nw ^^^^00bc 1/4 \um_define_active_frac:Nw ^^^^2153 1/3 \um_define_active_frac:Nw ^^^^215c 3/8 \um_define_active_frac:Nw ^^^^2156 2/5 \um_define_active_frac:Nw ^^^^00bd 1/2 \um_define_active_frac:Nw ^^^^2157 3/5 \um_define_active_frac:Nw ^^^^215d 5/8 \um_define_active_frac:Nw ^^^^2154 2/3 \um_define_active_frac:Nw ^^^^00be 3/4 \um_define_active_frac:Nw ^^^^2158 4/5 \um_define_active_frac:Nw ^^^^215a 5/6 \um_define_active_frac:Nw ^^^^215e 7/8 \group_end: } \um_setup_active_frac: % \end{macrocode} % % \subsection{Synonyms and all the rest} % % These are symbols with multiple names. Eventually to be taken care of % automatically by the maths characters database. % \begin{macrocode} \def\to{\rightarrow} \def\overrightarrow{\vec} \def\le{\leq} \def\ge{\geq} \def\neq{\ne} \def\triangle{\mathord{\bigtriangleup}} \def\bigcirc{\mdlgwhtcircle} \def\circ{\vysmwhtcircle} \def\bullet{\smblkcircle} \def\mathyen{\yen} \def\mathsterling{\sterling} % \end{macrocode} % % \begin{macro}{\colon} % Define \cs{colon} as a mathpunct `|:|'. % This is wrong: it should be \unichar{003A} {colon} instead! % We hope no-one will notice. % \begin{macrocode} \@ifpackageloaded{amsmath}{ % define their own colon, perhaps I should just steal it. (It does look much better.) }{ \cs_set_protected:Npn \colon { \bool_if:NTF \g_um_literal_colon_bool {:} { \mathpunct{:} } } } % \end{macrocode} % \end{macro} % % \begin{macro}{\mathcal} % \begin{macrocode} \def\mathcal{\mathscr} % \end{macrocode} % \end{macro} % % \begin{macro}{\mathrm} % \begin{macrocode} \def\mathrm{\mathup} \let\mathfence\mathord % \end{macrocode} % \end{macro} % % \begin{macro}{\digamma} % \begin{macro}{\Digamma} % I might end up just changing these in the table. % \begin{macrocode} \def\digamma{\updigamma} \def\Digamma{\upDigamma} % \end{macrocode} % \end{macro} % \end{macro} % % % \subsection{Compatibility} % % We need to change \LaTeX's idea of the font used to typeset % things like \cmd\sin\ and \cmd\cos: % \begin{macrocode} \def\operator@font{\um_switchto_mathup:} % \end{macrocode} % % \begin{macro}{\um_patch_pkg:nn} % \darg{package} % \darg{code} % If \meta{package} is loaded either already or later in the preamble, \meta{code} % is executed (after the package is loaded in the latter case). % \begin{macrocode} \cs_new:Npn \um_patch_pkg:nn #1#2 { \@ifpackageloaded {#1} { #2 }{ \um_after_pkg:nn {#1} {#2} } } % \end{macrocode} % \end{macro} % % % \paragraph{\pkg{url}} % Simply need to get \pkg{url} in a state such that % when it switches to math mode and enters \ascii\ characters, the maths % setup (i.e., \pkg{unicode-math}) doesn't remap the symbols into Plane 1. % Which is, of course, what \cs{mathup} is doing. % % This is the same as writing, e.g., |\def\UrlFont{\ttfamily\um_switchto_mathup:}| % but activates automatically so old documents that might change the \cs{url} % font still work correctly. % \begin{macrocode} \um_patch_pkg:nn {url} { \tl_put_left:Nn \Url@FormatString { \um_switchto_mathup: } \tl_put_right:Nn \UrlSpecials { \do\`{\mathchar`\`} \do\'{\mathchar`\'} \do\${\mathchar`\$} \do\&{\mathchar`\&} } } % \end{macrocode} % % \paragraph{\pkg{amsmath}} % Since the mathcode of |`\-| is greater than eight bits, this piece of |\AtBeginDocument| code from \pkg{amsmath} dies if we try and set the maths font in the preamble: % \begin{macrocode} \um_patch_pkg:nn {amsmath} { \tl_remove_in:Nn \@begindocumenthook { \mathchardef\std@minus\mathcode`\-\relax \mathchardef\std@equal\mathcode`\=\relax } \def\std@minus{\Umathcharnum\Umathcodenum`\-\relax} \def\std@equal{\Umathcharnum\Umathcodenum`\=\relax} \def\@cdots{\mathinner{\cdots}} \cs_set_eq:NN \dotsb@ \cdots } % \end{macrocode} % \paragraph{\pkg{amsopn}} % This code is to improve the output of analphabetic symbols in text of operator names (\cs{sin}, \cs{cos}, etc.). Just comment out the offending lines for now: % \begin{macrocode} \um_patch_pkg:nn {amsopn} { \cs_set:Npn \newmcodes@ { \mathcode`\'39\scan_stop: \mathcode`\*42\scan_stop: \mathcode`\."613A\scan_stop: %% \ifnum\mathcode`\-=45 \else %% \mathchardef\std@minus\mathcode`\-\relax %% \fi \mathcode`\-45\scan_stop: \mathcode`\/47\scan_stop: \mathcode`\:"603A\scan_stop: } } % \end{macrocode} % \paragraph{Symbols} % \begin{macrocode} \cs_set:Npn \| {\Vert} % \end{macrocode} % \cs{mathinner} items: % \begin{macrocode} \cs_set:Npn \mathellipsis {\mathinner{\unicodeellipsis}} \cs_set:Npn \cdots {\mathinner{\unicodecdots}} % \end{macrocode} % \paragraph{Accents} % \begin{macrocode} \AtBeginDocument{ \def\widehat{\hat} \def\widetilde{\tilde} } % \end{macrocode} % % \paragraph{\pkg{beamer}} % At end of the package so the warnings are defined. % \begin{macrocode} \AtEndOfPackage{ \@ifclassloaded{beamer}{ \ifbeamer@suppressreplacements\else \um_warning:n {disable-beamer} \beamer@suppressreplacementstrue \fi }{} } % \end{macrocode} % % % \section{Error messages} % % Wrapper functions: % \begin{macrocode} \cs_new:Npn \um_warning:n { \msg_warning:nn {unicode-math} } \cs_new:Npn \um_trace:n { \msg_trace:nn {unicode-math} } \cs_new:Npn \um_trace:nx { \msg_trace:nnx {unicode-math} } % \end{macrocode} % % \begin{macrocode} \msg_new:nnn {unicode-math} {maths-feature-only} { The~ '#1'~ font~ feature~ can~ only~ be~ used~ for~ maths~ fonts. } \msg_new:nnn {unicode-math} {disable-beamer} { Disabling~ beamer's~ math~ setup.\\ Please~ load~ beamer~ with~ the~ [professionalfonts]~ class~ option. } \msg_new:nnn {unicode-math} {no-tfrac} { Small~ fraction~ command~ \protect\tfrac\ not~ defined.\\ Load~ amsmath~ or~ define~ it~ manually~ before~ loading~ unicode-math. } \msg_new:nnn {unicode-math} {default-math-font} { Defining~ the~ default~ maths~ font~ as~ '#1'. } \msg_new:nnn {unicode-math} {setup-implicit} { Setup~ alphabets:~ implicit~ mode. } \msg_new:nnn {unicode-math} {setup-explicit} { Setup~ alphabets:~ explicit~ mode. } \msg_new:nnn {unicode-math} {alph-initialise} { Initialising~ \@backslashchar math#1. } \msg_new:nnn {unicode-math} {setup-alph} { Setup~ alphabet:~ #1. } % \end{macrocode} % % The end. % \begin{macrocode} \ExplSyntaxOff \errorcontextlines=999 % \end{macrocode} % %\iffalse % %\fi % % % \section{\STIX\ table data extraction}\label{part:awk} %\iffalse %<*awk> %\fi % % The source for the \TeX\ names for the very large number of mathematical % glyphs are provided via Barbara Beeton's table file for the \STIX\ project % (|ams.org/STIX|). A version is located at % |http://www.ams.org/STIX/bnb/stix-tbl.asc| % but check |http://www.ams.org/STIX/| for more up-to-date info. % % This table is converted into a form suitable for reading by \XeTeX. % A single file is produced containing all (more than 3298) symbols. % Future optimisations might include generating various (possibly overlapping) subsets % so not all definitions must be read just to redefine a small range of symbols. % Performance for now seems to be acceptable without such measures. % % This file is currently developed outside this DTX file. It will be % incorporated when the final version is ready. (I know this is not how % things are supposed to work!) % % \begin{macrocode} < See stix-extract.sh for now. > % \end{macrocode} %\iffalse % %\fi % % \appendix % % \section{Documenting maths support in the NFSS} % % In the following, \meta{NFSS decl.} stands for something like |{T1}{lmr}{m}{n}|. % % \begin{description} % \item[Maths symbol fonts] Fonts for symbols: $\propto$, $\leq$, $\rightarrow$ % % \cmd\DeclareSymbolFont\marg{name}\meta{NFSS decl.}\\ % Declares a named maths font such as |operators| from which symbols are defined with \cmd\DeclareMathSymbol. % % \item[Maths alphabet fonts] Fonts for {\font\1=cmmi10 at 10pt\1 ABC}\,–\,{\font\1=cmmi10 at 10pt\1 xyz}, {\font\1=eufm10 at 10pt\1 ABC}\,–\,{\font\1=cmsy10 at 10pt\1 XYZ}, etc. % % \cmd\DeclareMathAlphabet\marg{cmd}\meta{NFSS decl.} % % For commands such as \cmd\mathbf, accessed % through maths mode that are unaffected by the current text font, and which are used for % alphabetic symbols in the \ascii\ range. % % \cmd\DeclareSymbolFontAlphabet\marg{cmd}\marg{name} % % Alternative (and optimisation) for \cmd\DeclareMathAlphabet\ if a single font is being used % for both alphabetic characters (as above) and symbols. % % \item[Maths `versions'] Different maths weights can be defined with the following, switched % in text with the \cmd\mathversion\marg{maths version} command. % % \cmd\SetSymbolFont\marg{name}\marg{maths version}\meta{NFSS decl.}\\ % \cmd\SetMathAlphabet\marg{cmd}\marg{maths version}\meta{NFSS decl.} % % \item[Maths symbols] Symbol definitions in maths for both characters (=) and macros (\cmd\eqdef): % \cmd\DeclareMathSymbol\marg{symbol}\marg{type}\marg{named font}\marg{slot} % This is the macro that actually defines which font each symbol comes from and how they behave. % \end{description} % Delimiters and radicals use wrappers around \TeX's \cmd\delimiter/\cmd\radical\ primitives, % which are re-designed in \XeTeX. The syntax used in \LaTeX's NFSS is therefore not so relevant here. % \begin{description} % \item[Delimiters] A special class of maths symbol which enlarge themselves in certain contexts. % % \cmd\DeclareMathDelimiter\marg{symbol}\marg{type}\marg{sym.\ font}\marg{slot}\marg{sym.\ font}\marg{slot} % % \item[Radicals] Similar to delimiters (\cmd\DeclareMathRadical\ takes the same syntax) but % behave `weirdly'. \cmd\sqrt\ might very well be the only one. % \end{description} % In those cases, glyph slots in \emph{two} symbol fonts are required; one for the small (`regular') case, % the other for situations when the glyph is larger. This is not the case in \XeTeX. % % Accents are not included yet. % % \paragraph{Summary} % % For symbols, something like: % \begin{verbatim} % \def\DeclareMathSymbol#1#2#3#4{ % \global\mathchardef#1"\mathchar@type#2 % \expandafter\hexnumber@\csname sym#2\endcsname % {\hexnumber@{\count\z@}\hexnumber@{\count\tw@}}} % \end{verbatim} % For characters, something like: % \begin{verbatim} % \def\DeclareMathSymbol#1#2#3#4{ % \global\mathcode`#1"\mathchar@type#2 % \expandafter\hexnumber@\csname sym#2\endcsname % {\hexnumber@{\count\z@}\hexnumber@{\count\tw@}}} % \end{verbatim} % % % \section{\XeTeX\ math font dimensions} % % These are the extended \cmd\fontdimen s available for suitable fonts % in \XeTeX. Note that Lua\TeX\ takes an alternative route, and this package % will eventually provide a wrapper interface to the two (I hope). % % \newcounter{mfdimen} % \setcounter{mfdimen}{9} % \newcommand\mathfontdimen[2]{^^A % \stepcounter{mfdimen}^^A % \themfdimen & {\scshape\small #1} & #2\vspace{0.5ex} \tabularnewline} % % \begin{longtable}{ % @{}c>{\raggedright\parfillskip=0pt}p{4cm}>{\raggedright}p{7cm}@{}} % \toprule \cmd\fontdimen & Dimension name & Description\tabularnewline\midrule \endhead % \bottomrule\endfoot % \mathfontdimen{Script\-Percent\-Scale\-Down} % {Percentage of scaling down for script level 1. Suggested value: 80\%.} % \mathfontdimen{Script\-Script\-Percent\-Scale\-Down} % {Percentage of scaling down for script level 2 (Script\-Script). Suggested value: 60\%.} % \mathfontdimen{Delimited\-Sub\-Formula\-Min\-Height} % {Minimum height required for a delimited expression to be treated as a subformula. Suggested value: normal line height\,×\,1.5.} % \mathfontdimen{Display\-Operator\-Min\-Height} % {Minimum height of n-ary operators (such as integral and summation) for formulas in display mode.} % \mathfontdimen{Math\-Leading} % {White space to be left between math formulas to ensure proper line spacing. For example, for applications that treat line gap as a part of line ascender, formulas with ink going above (os2.sTypoAscender + os2.sTypoLineGap – MathLeading) or with ink going below os2.sTypoDescender will result in increasing line height.} % \mathfontdimen{Axis\-Height} % {Axis height of the font. } % \mathfontdimen{Accent\-Base\-Height} % {Maximum (ink) height of accent base that does not require raising the accents. Suggested: x-height of the font (os2.sxHeight) plus any possible overshots. } % \mathfontdimen{Flattened\-Accent\-Base\-Height} % {Maximum (ink) height of accent base that does not require flattening the accents. Suggested: cap height of the font (os2.sCapHeight).} % \mathfontdimen{Subscript\-Shift\-Down} % {The standard shift down applied to subscript elements. Positive for moving in the downward direction. Suggested: os2.ySubscriptYOffset.} % \mathfontdimen{Subscript\-Top\-Max} % {Maximum allowed height of the (ink) top of subscripts that does not require moving subscripts further down. Suggested: /5 x-height.} % \mathfontdimen{Subscript\-Baseline\-Drop\-Min} % {Minimum allowed drop of the baseline of subscripts relative to the (ink) bottom of the base. Checked for bases that are treated as a box or extended shape. Positive for subscript baseline dropped below the base bottom.} % \mathfontdimen{Superscript\-Shift\-Up} % {Standard shift up applied to superscript elements. Suggested: os2.ySuperscriptYOffset.} % \mathfontdimen{Superscript\-Shift\-Up\-Cramped} % {Standard shift of superscripts relative to the base, in cramped style.} % \mathfontdimen{Superscript\-Bottom\-Min} % {Minimum allowed height of the (ink) bottom of superscripts that does not require moving subscripts further up. Suggested: ¼ x-height.} % \mathfontdimen{Superscript\-Baseline\-Drop\-Max} % {Maximum allowed drop of the baseline of superscripts relative to the (ink) top of the base. Checked for bases that are treated as a box or extended shape. Positive for superscript baseline below the base top.} % \mathfontdimen{Sub\-Superscript\-Gap\-Min} % {Minimum gap between the superscript and subscript ink. Suggested: 4×default rule thickness.} % \mathfontdimen{Superscript\-Bottom\-Max\-With\-Subscript} % {The maximum level to which the (ink) bottom of superscript can be pushed to increase the gap between superscript and subscript, before subscript starts being moved down. % Suggested: /5 x-height.} % \mathfontdimen{Space\-After\-Script} % {Extra white space to be added after each subscript and superscript. Suggested: 0.5pt for a 12 pt font.} % \mathfontdimen{Upper\-Limit\-Gap\-Min} % {Minimum gap between the (ink) bottom of the upper limit, and the (ink) top of the base operator. } % \mathfontdimen{Upper\-Limit\-Baseline\-Rise\-Min} % {Minimum distance between baseline of upper limit and (ink) top of the base operator.} % \mathfontdimen{Lower\-Limit\-Gap\-Min} % {Minimum gap between (ink) top of the lower limit, and (ink) bottom of the base operator.} % \mathfontdimen{Lower\-Limit\-Baseline\-Drop\-Min} % {Minimum distance between baseline of the lower limit and (ink) bottom of the base operator.} % \mathfontdimen{Stack\-Top\-Shift\-Up} % {Standard shift up applied to the top element of a stack.} % \mathfontdimen{Stack\-Top\-Display\-Style\-Shift\-Up} % {Standard shift up applied to the top element of a stack in display style.} % \mathfontdimen{Stack\-Bottom\-Shift\-Down} % {Standard shift down applied to the bottom element of a stack. Positive for moving in the downward direction.} % \mathfontdimen{Stack\-Bottom\-Display\-Style\-Shift\-Down} % {Standard shift down applied to the bottom element of a stack in display style. Positive for moving in the downward direction.} % \mathfontdimen{Stack\-Gap\-Min} % {Minimum gap between (ink) bottom of the top element of a stack, and the (ink) top of the bottom element. Suggested: 3×default rule thickness.} % \mathfontdimen{Stack\-Display\-Style\-Gap\-Min} % {Minimum gap between (ink) bottom of the top element of a stack, and the (ink) top of the bottom element in display style. Suggested: 7×default rule thickness.} % \mathfontdimen{Stretch\-Stack\-Top\-Shift\-Up} % {Standard shift up applied to the top element of the stretch stack.} % \mathfontdimen{Stretch\-Stack\-Bottom\-Shift\-Down} % {Standard shift down applied to the bottom element of the stretch stack. Positive for moving in the downward direction.} % \mathfontdimen{Stretch\-Stack\-Gap\-Above\-Min} % {Minimum gap between the ink of the stretched element, and the (ink) bottom of the element above. Suggested: Upper\-Limit\-Gap\-Min} % \mathfontdimen{Stretch\-Stack\-Gap\-Below\-Min} % {Minimum gap between the ink of the stretched element, and the (ink) top of the element below. Suggested: Lower\-Limit\-Gap\-Min.} % \mathfontdimen{Fraction\-Numerator\-Shift\-Up} % {Standard shift up applied to the numerator. } % \mathfontdimen{Fraction\-Numerator\-Display\-Style\-Shift\-Up} % {Standard shift up applied to the numerator in display style. Suggested: Stack\-Top\-Display\-Style\-Shift\-Up.} % \mathfontdimen{Fraction\-Denominator\-Shift\-Down} % {Standard shift down applied to the denominator. Positive for moving in the downward direction.} % \mathfontdimen{Fraction\-Denominator\-Display\-Style\-Shift\-Down} % {Standard shift down applied to the denominator in display style. Positive for moving in the downward direction. Suggested: Stack\-Bottom\-Display\-Style\-Shift\-Down.} % \mathfontdimen{Fraction\-Numerator\-Gap\-Min} % {Minimum tolerated gap between the (ink) bottom of the numerator and the ink of the fraction bar. Suggested: default rule thickness} % \mathfontdimen{Fraction\-Num\-Display\-Style\-Gap\-Min} % {Minimum tolerated gap between the (ink) bottom of the numerator and the ink of the fraction bar in display style. Suggested: 3×default rule thickness.} % \mathfontdimen{Fraction\-Rule\-Thickness} % {Thickness of the fraction bar. Suggested: default rule thickness.} % \mathfontdimen{Fraction\-Denominator\-Gap\-Min} % {Minimum tolerated gap between the (ink) top of the denominator and the ink of the fraction bar. Suggested: default rule thickness} % \mathfontdimen{Fraction\-Denom\-Display\-Style\-Gap\-Min} % {Minimum tolerated gap between the (ink) top of the denominator and the ink of the fraction bar in display style. Suggested: 3×default rule thickness.} % \mathfontdimen{Skewed\-Fraction\-Horizontal\-Gap} % {Horizontal distance between the top and bottom elements of a skewed fraction.} % \mathfontdimen{Skewed\-Fraction\-Vertical\-Gap} % {Vertical distance between the ink of the top and bottom elements of a skewed fraction.} % \mathfontdimen{Overbar\-Vertical\-Gap} % {Distance between the overbar and the (ink) top of he base. Suggested: 3×default rule thickness.} % \mathfontdimen{Overbar\-Rule\-Thickness} % {Thickness of overbar. Suggested: default rule thickness.} % \mathfontdimen{Overbar\-Extra\-Ascender} % {Extra white space reserved above the overbar. Suggested: default rule thickness.} % \mathfontdimen{Underbar\-Vertical\-Gap} % {Distance between underbar and (ink) bottom of the base. Suggested: 3×default rule thickness.} % \mathfontdimen{Underbar\-Rule\-Thickness} % {Thickness of underbar. Suggested: default rule thickness.} % \mathfontdimen{Underbar\-Extra\-Descender} % {Extra white space reserved below the underbar. Always positive. Suggested: default rule thickness.} % \mathfontdimen{Radical\-Vertical\-Gap} % {Space between the (ink) top of the expression and the bar over it. Suggested: 1¼ default rule thickness.} % \mathfontdimen{Radical\-Display\-Style\-Vertical\-Gap} % {Space between the (ink) top of the expression and the bar over it. Suggested: default rule thickness + ¼ x-height. } % \mathfontdimen{Radical\-Rule\-Thickness} % {Thickness of the radical rule. This is the thickness of the rule in designed or constructed radical signs. Suggested: default rule thickness.} % \mathfontdimen{Radical\-Extra\-Ascender} % {Extra white space reserved above the radical. Suggested: Radical\-Rule\-Thickness.} % \mathfontdimen{Radical\-Kern\-Before\-Degree} % {Extra horizontal kern before the degree of a radical, if such is present. Suggested: 5/18 of em.} % \mathfontdimen{Radical\-Kern\-After\-Degree} % {Negative kern after the degree of a radical, if such is present. Suggested: −10/18 of em.} % \mathfontdimen{Radical\-Degree\-Bottom\-Raise\-Percent} % {Height of the bottom of the radical degree, if such is present, in proportion to the ascender of the radical sign. Suggested: 60\%.} % \end{longtable} % % \Finale % % \iffalse % %<*dtx-style> % \begin{macrocode} \ProvidesPackage{dtx-style} \GetFileInfo{\jobname.dtx} \let\umfiledate\filedate \let\umfileversion\fileversion \CheckSum{0} \EnableCrossrefs \CodelineIndex \errorcontextlines=999 \def\@dotsep{1000} \setcounter{tocdepth}{2} \setlength\columnseprule{0.4pt} \renewcommand\tableofcontents{\relax \begin{multicols}{2}[\section*{\contentsname}]\relax \@starttoc{toc}\relax \end{multicols}} \setcounter{IndexColumns}{2} \renewenvironment{theglossary} {\small\list{}{} \item\relax \glossary@prologue\GlossaryParms \let\item\@idxitem \ignorespaces \def\pfill{\hspace*{\fill}}} {\endlist} \usepackage[svgnames]{xcolor} \usepackage{array,booktabs,calc,enumitem,fancyvrb,graphicx,ifthen,longtable,refstyle,subfig,topcapt,url,varioref,underscore} \setcounter{LTchunksize}{100} \usepackage[slash-delimiter=frac]{unicode-math} \usepackage{metalogo} %\usepackage[rm,small]{titlesec} \setmainfont[Mapping=tex-text]{TeX Gyre Pagella} \setsansfont[Scale=MatchLowercase,Mapping=tex-text]{Candara} \setmonofont[Scale=MatchLowercase]{Consolas} \setmathfont{Cambria Math} \newfontface\umfont{STIXGeneral} \usepackage{hyperref} \linespread{1.069} % A bit more space between lines \frenchspacing % Remove ugly extra space after punctuation \definecolor{niceblue}{rgb}{0.2,0.4,0.8} \newenvironment{example}[1] {\VerbatimEnvironment \def\Options{#1} \begin{VerbatimOut}[gobble=4]{\examplefilename}} {\end{VerbatimOut}\relax \typesetexample} \def\theCodelineNo{\textcolor{niceblue}{\sffamily\tiny\arabic{CodelineNo}}} \let\examplesize\normalsize \let\auxwidth\relax \newlength\examplewidth\newlength\verbatimwidth \newlength\exoutdent \newlength\exverbgap \setlength\exverbgap{1em} \setlength\exoutdent{-0.15\textwidth} \newsavebox\verbatimbox \edef\examplefilename{\jobname.example} \newcommand\typesetexample{\relax \smallskip \noindent \begin{minipage}{\linewidth} \color{niceblue} \hrulefill\par \edef\@tempa{[gobble=0,fontsize=\noexpand\scriptsize,\Options]} \begin{lrbox}{\verbatimbox}\relax \expandafter\BVerbatimInput\@tempa{\examplefilename} \end{lrbox} \begin{list}{}{\setlength\itemindent{0pt} \setlength\leftmargin\exoutdent \setlength\rightmargin{0pt}}\item \ifx\auxwidth\relax \setlength\verbatimwidth{\wd\verbatimbox} \else \setlength\verbatimwidth{\auxwidth} \fi \begin{minipage}[c]{\textwidth-\exoutdent-\verbatimwidth-\exverbgap} \catcode`\%=14\centering\input\examplefilename\relax \end{minipage}\hfill \begin{minipage}[c]{\verbatimwidth} \usebox\verbatimbox \end{minipage} \end{list} \par\noindent\hrulefill \end{minipage} \smallskip} \newcommand*\setverbwidth[1]{\def\auxwidth{#1}} \newcommand*\name[1]{{#1}} \newcommand*\pkg[1]{\textsf{#1}} \newcommand*\feat[1]{\texttt{#1}} \newcommand*\opt[1]{\texttt{#1}} \newcommand*\note[1]{\unskip\footnote{#1}} \let\latin\textit \def\eg{\latin{e.g.}} \def\Eg{\latin{E.g.}} \def\ie{\latin{i.e.}} \def\etc{\@ifnextchar.{\latin{etc}}{\latin{etc.}\@}} \def\STIX{\textsc{stix}} \def\MacOSX{Mac~OS~X} \def\ascii{\textsc{ascii}} \def\OMEGA{Omega} \newcounter{argument} \g@addto@macro\endmacro{\setcounter{argument}{0}} \newcommand*\darg[1]{% \stepcounter{argument}% {\ttfamily\char`\#\theargument~:~}#1\par\noindent\ignorespaces } \newcommand*\doarg[1]{% \stepcounter{argument}% {\ttfamily\makebox[0pt][r]{[}\char`\#\theargument]:~}#1\par\noindent\ignorespaces } \newcommand\codeline[1]{\par{\centering#1\par\noindent}\ignorespaces} \newcommand\unichar[1]{\textsc{u}+\texttt{\small#1}} \setlength\parindent{2em} \def \MakePrivateLetters {% \catcode`\@=11\relax \catcode`\_=11\relax \catcode`\:=11\relax } % \end{macrocode} % %\fi % % \typeout{*************************************************************} % \typeout{*} % \typeout{* To finish the installation you have to move the following} % \typeout{* file into a directory searched by XeTeX:} % \typeout{*} % \typeout{* \space\space\space unicode-math.sty} % \typeout{*} % \typeout{*************************************************************} % \endinput