%%^^A%% um-code-mathmap.dtx -- part of UNICODE-MATH % \section{Mapping in maths alphabets} % \label{sec:mathmap} % % \begin{macrocode} %<*package> % \end{macrocode} % % Switching to a different style of alphabetic symbols was traditionally performed with % commands like \cmd\mathbf, which literally changes fonts to access alternate symbols. % This is not as simple with Unicode fonts. % % In traditional \TeX{} maths font setups, you simply switch between different `families' (\cmd\fam), which is analogous to changing from one font to another---a symbol such as `a' will be upright in one font, bold in another, and so on. % In pkg{unicode-math}, a different mechanism is used to switch between styles. For every letter (start with ascii a-zA-Z and numbers to keep things simple for now), they are assigned a `mathcode' with \cmd\Umathcode\ that maps from input letter to output font glyph slot. This is done with the equivalent of % \begin{Verbatim} % \Umathcode`\a = 7 1 "1D44E\relax % \Umathcode`\b = 7 1 "1D44F\relax % \Umathcode`\c = 7 1 "1D450\relax % ... % \end{Verbatim} % When switching from regular letters to, say, \cmd\mathrm, we now need to execute a new mapping: % \begin{Verbatim} % \Umathcode`\a = 7 1 `\a\relax % \Umathcode`\b = 7 1 `\b\relax % \Umathcode`\c = 7 1 `\c\relax % ... % \end{Verbatim} % This is fairly straightforward to perform when we're defining our own commands such as \cmd\symbf\ and so on. However, this means that `classical' \TeX\ font setups will break, because with the original mapping still in place, the engine will be attempting to insert unicode maths glyphs from a standard font. % % \subsection{Hooks into \LaTeXe} % % To overcome this, we patch \cs{use@mathgroup}. % (An alternative is to patch \cs{extract@alph@from@version}, which constructs the \cs{mathXYZ} commands, but this method fails if the command has been defined using \cs{DeclareSymbolFontAlphabet}.) % As far as I can tell, this is only used inside of commands such as \cs{mathXYZ}, so this shouldn't have any major side-effects. % % \begin{macrocode} \cs_set:Npn \use@mathgroup #1 #2 { \mode_if_math:T % <- not sure if this is really necessary since we've just checked for mmode and raised an error if not! { \math@bgroup \cs_if_eq:cNF {M@\f@encoding} #1 {#1} \@@_switchto_literal: \mathgroup #2 \relax \math@egroup } } % \end{macrocode} % % In LaTeX maths, the command |\operator@font| is defined that switches to the |operator| mathgroup. The classic example is the |\sin| in |$\sin{x}$|; essentially we're using |\mathrm| to typeset the upright symbols, but the syntax is |{\operator@font sin}|. % I thought that hooking into |\operator@font| would be hard because all other maths font selection in 2e uses |\mathrm{...}| style. % Then reading source2e a little more I stumbled upon: % \begin{macro}{\operator@font} % \begin{macrocode} \cs_set:Npn \operator@font { \@@_switchto_literal: \@fontswitch {} { \g_@@_operator_mathfont_tl } } % \end{macrocode} % \end{macro} % % % \subsection{Setting styles} % % Algorithm for setting alphabet fonts. % By default, when |range| is empty, we are in \emph{implicit} mode. % If |range| contains the name of the math alphabet, we are in \emph{explicit} % mode and do things slightly differently. % % Implicit mode: % \begin{itemize} % \item Try and set all of the alphabet shapes. % \item Check for the first glyph of each alphabet to detect if the font supports each % alphabet shape. % \item For alphabets that do exist, overwrite whatever's already there. % \item For alphabets that are not supported, \emph{do nothing}. % (This includes leaving the old alphabet definition in place.) % \end{itemize} % % Explicit mode: % \begin{itemize} % \item Only set the alphabets specified. % \item Check for the first glyph of the alphabet to detect if the font contains % the alphabet shape in the Unicode math plane. % \item For Unicode math alphabets, overwrite whatever's already there. % \item Otherwise, use the \ascii\ glyph slots instead. % \end{itemize} % % % % \subsection{Defining the math style macros} % % We call the different shapes that a math alphabet can be a `math style'. % Note that different alphabets can exist within the same math style. E.g., % we call `bold' the math style |bf| and within it there are upper and lower % case Greek and Roman alphabets and Arabic numerals. % % \begin{macro}{\@@_prepare_mathstyle:n} % \darg{math style name (e.g., \texttt{it} or \texttt{bb})} % Define the high level math alphabet macros (\cs{mathit}, etc.) in terms of % unicode-math definitions. Use \cs{bgroup}/\cs{egroup} so s'scripts scan the % whole thing. % % The flag \cs{l_@@_mathstyle_tl} is for other applications to query the % current math style. % \begin{macrocode} \cs_new:Nn \@@_prepare_mathstyle:n { \seq_put_right:Nn \g_@@_mathstyles_seq {#1} \@@_init_alphabet:n {#1} \cs_set:cpn {_@@_sym_#1_aux:n} { \use:c {@@_switchto_#1:} \math@egroup } \cs_set_protected:cpx {sym#1} { \exp_not:n { \math@bgroup \mode_if_math:F { \egroup\expandafter \non@alpherr\expandafter{\csname sym#1\endcsname\space} } \tl_set:Nn \l_@@_mathstyle_tl {#1} } \exp_not:c {_@@_sym_#1_aux:n} } } % \end{macrocode} % \end{macro} % % % \begin{macro}{\@@_init_alphabet:n} % \darg{math alphabet name (e.g., \texttt{it} or \texttt{bb})} % This macro initialises the macros used to set up a math alphabet. % First used when the math alphabet macro is first defined, but then used % later when redefining a particular maths alphabet. % \begin{macrocode} \cs_set:Nn \@@_init_alphabet:n { \@@_log:nx {alph-initialise} {#1} \cs_set_eq:cN {@@_switchto_#1:} \prg_do_nothing: } % \end{macrocode} % \end{macro} % % \subsection{Definition of alphabets and styles} % % First of all, we break up unicode into `named ranges', such as |up|, |bb|, |sfup|, and so on, which refer to specific blocks of unicode that contain various symbols (usually alphabetical symbols). % % \begin{macrocode} \cs_new:Nn \@@_new_named_range:n { \prop_new:c {g_@@_named_range_#1_prop} } \clist_set:Nn \g_@@_named_ranges_clist { up, it, tt, bfup, bfit, bb , bbit, scr, bfscr, cal, bfcal, frak, bffrak, sfup, sfit, bfsfup, bfsfit, bfsf } \clist_map_inline:Nn \g_@@_named_ranges_clist { \@@_new_named_range:n {#1} } % \end{macrocode} % % % Each alphabet style needs to be configured. % This happens in Section~\ref{sec:setupalphabets}. % \begin{macrocode} \cs_new:Nn \@@_new_alphabet_config:nnn { \prop_if_exist:cF {g_@@_named_range_#1_prop} { \@@_warning:nnn {no-named-range} {#1} {#2} } \prop_gput:cnn {g_@@_named_range_#1_prop} { alpha_tl } { \prop_item:cn {g_@@_named_range_#1_prop} { alpha_tl } {#2} } % Q: do I need to bother removing duplicates? \cs_new:cn { @@_config_#1_#2:n } {#3} } % \end{macrocode} % \begin{macrocode} \cs_new:Nn \@@_alphabet_config:nnn { \use:c {@@_config_#1_#2:n} {#3} } % \end{macrocode} % \begin{macrocode} \prg_new_conditional:Nnn \@@_if_alphabet_exists:nn {T,TF} { \cs_if_exist:cTF {@@_config_#1_#2:n} \prg_return_true: \prg_return_false: } % \end{macrocode} % % The linking between named ranges and symbol style commands happens here. % It's currently not using all of the machinery we're in the process of setting up above. % Baby steps. % \begin{macrocode} \cs_new:Nn \@@_default_mathalph:nnn { \seq_put_right:Nx \g_@@_named_ranges_seq { \tl_to_str:n {#1} } \seq_put_right:Nn \g_@@_default_mathalph_seq {{#1}{#2}{#3}} \prop_gput:cnn { g_@@_named_range_#1_prop } { default-alpha } {#2} } \@@_default_mathalph:nnn {up } {latin,Latin,greek,Greek,num,misc} {up } \@@_default_mathalph:nnn {it } {latin,Latin,greek,Greek,misc} {it } \@@_default_mathalph:nnn {bb } {latin,Latin,num,misc} {bb } \@@_default_mathalph:nnn {bbit } {misc} {bbit } \@@_default_mathalph:nnn {scr } {latin,Latin} {scr } \@@_default_mathalph:nnn {cal } {Latin} {scr } \@@_default_mathalph:nnn {bfcal } {Latin} {bfscr } \@@_default_mathalph:nnn {frak } {latin,Latin} {frak } \@@_default_mathalph:nnn {tt } {latin,Latin,num} {tt } \@@_default_mathalph:nnn {sfup } {latin,Latin,num} {sfup } \@@_default_mathalph:nnn {sfit } {latin,Latin} {sfit } \@@_default_mathalph:nnn {bfup } {latin,Latin,greek,Greek,num,misc} {bfup } \@@_default_mathalph:nnn {bfit } {latin,Latin,greek,Greek,misc} {bfit } \@@_default_mathalph:nnn {bfscr } {latin,Latin} {bfscr } \@@_default_mathalph:nnn {bffrak} {latin,Latin} {bffrak} \@@_default_mathalph:nnn {bfsfup} {latin,Latin,greek,Greek,num,misc} {bfsfup} \@@_default_mathalph:nnn {bfsfit} {latin,Latin,greek,Greek,misc} {bfsfit} % \end{macrocode} % % \subsubsection{Define symbol style commands} % Finally, all of the `symbol styles' commands are set up, which are the commands to access each of the named alphabet styles. There is not a one-to-one mapping between symbol style commands and named style ranges! % \begin{macrocode} \clist_map_inline:nn { up, it, bfup, bfit, sfup, sfit, bfsfup, bfsfit, bfsf, tt, bb, bbit, scr, bfscr, cal, bfcal, frak, bffrak, normal, literal, sf, bf, } { \@@_prepare_mathstyle:n {#1} } % \end{macrocode} % % % \subsubsection{New names for legacy textmath alphabet selection} % In case a package option overwrites, say, \cs{mathbf} with \cs{symbf}. % \begin{macrocode} \clist_map_inline:nn { rm, it, bf, sf, tt } { \cs_set_eq:cc { mathtext #1 } { math #1 } } % \end{macrocode} % Perhaps these should actually be defined using a hypothetical unicode-math interface to creating new such styles. To come. % % % \subsubsection{Replacing legacy pure-maths alphabets} % The following are alphabets which do not have a math/text ambiguity. % \begin{macrocode} \clist_map_inline:nn { normal, bb , bbit, scr, bfscr, cal, bfcal, frak, bffrak, tt, bfup, bfit, sfup, sfit, bfsfup, bfsfit, bfsf } { \cs_set:cpx { math #1 } { \exp_not:c { sym #1 } } } % \end{macrocode} % % % \subsubsection{New commands for ambiguous alphabets} % \begin{macrocode} \AtBeginDocument{ \clist_map_inline:nn { rm, it, bf, sf, tt } { \cs_set_protected:cpx { math #1 } { \exp_not:n { \bool_if:NTF } \exp_not:c { g_@@_ math #1 _text_bool} { \exp_not:c { mathtext #1 } } { \exp_not:c { sym #1 } } } }} % \end{macrocode} % % \paragraph{Alias \cs{mathrm} as legacy name for \cs{mathup}} % \begin{macrocode} \cs_set_protected:Npn \mathup { \mathrm } \cs_set_protected:Npn \symrm { \symup } % \end{macrocode} % % % % % \subsection{Defining the math alphabets per style} % % \begin{macro}{\@@_setup_alphabets:} % This function is called within \cs{setmathfont} to configure the % mapping between characters inside math styles. % \begin{macrocode} \cs_new:Npn \@@_setup_alphabets: { % \end{macrocode} % If |range=| has been used to configure styles, those choices will be in % |\l_@@_mathalph_seq|. If not, set up the styles implicitly: % \begin{macrocode} \seq_if_empty:NTF \l_@@_mathalph_seq { \@@_log:n {setup-implicit} \seq_set_eq:NN \l_@@_mathalph_seq \g_@@_default_mathalph_seq \bool_set_true:N \l_@@_implicit_alph_bool \@@_maybe_init_alphabet:n {sf} \@@_maybe_init_alphabet:n {bf} \@@_maybe_init_alphabet:n {bfsf} } % \end{macrocode} % If |range=| has been used then we're in explicit mode: % \begin{macrocode} { \@@_log:n {setup-explicit} \bool_set_false:N \l_@@_implicit_alph_bool \cs_set_eq:NN \@@_set_mathalphabet_char:nnn \@@_mathmap_noparse:nnn \cs_set_eq:NN \@@_map_char_single:nn \@@_map_char_noparse:nn } % Now perform the mapping: \seq_map_inline:Nn \l_@@_mathalph_seq { \tl_set:No \l_@@_style_tl { \use_i:nnn ##1 } \clist_set:No \l_@@_alphabet_clist { \use_ii:nnn ##1 } \tl_set:No \l_@@_remap_style_tl { \use_iii:nnn ##1 } % If no set of alphabets is defined: \clist_if_empty:NT \l_@@_alphabet_clist { \cs_set_eq:NN \@@_maybe_init_alphabet:n \@@_init_alphabet:n \prop_get:cnN { g_@@_named_range_ \l_@@_style_tl _prop } { default-alpha } \l_@@_alphabet_clist } \@@_setup_math_alphabet: } \seq_if_empty:NF \l_@@_missing_alph_seq { \@@_log:n { missing-alphabets } } } % \end{macrocode} % \end{macro} % % \begin{macro}{\@@_setup_math_alphabet:} % \begin{macrocode} \cs_new:Nn \@@_setup_math_alphabet: { % \end{macrocode} % First check that at least one of the alphabets for the font shape is defined % (this process is fast) \dots % \begin{macrocode} \clist_map_inline:Nn \l_@@_alphabet_clist { \tl_set:Nn \l_@@_alphabet_tl {##1} \@@_if_alphabet_exists:nnTF \l_@@_style_tl \l_@@_alphabet_tl { \str_if_eq_x:nnTF {\l_@@_alphabet_tl} {misc} { \@@_maybe_init_alphabet:n \l_@@_style_tl \clist_map_break: } { \@@_glyph_if_exist:NnT \l_@@_font { \@@_to_usv:nn {\l_@@_style_tl} {\l_@@_alphabet_tl} } { \@@_maybe_init_alphabet:n \l_@@_style_tl \clist_map_break: } } } { \msg_warning:nnx {unicode-math} {no-alphabet} { \l_@@_style_tl / \l_@@_alphabet_tl } } } % \end{macrocode} % \dots and then loop through them defining the individual ranges: % (currently this process is slow) % \begin{macrocode} % \csname TIC\endcsname \clist_map_inline:Nn \l_@@_alphabet_clist { \tl_set:Nx \l_@@_alphabet_tl { \tl_trim_spaces:n {##1} } \cs_if_exist:cT {@@_config_ \l_@@_style_tl _ \l_@@_alphabet_tl :n} { \exp_args:No \tl_if_eq:nnTF \l_@@_alphabet_tl {misc} { \@@_log:nx {setup-alph} {sym \l_@@_style_tl~(\l_@@_alphabet_tl)} \@@_alphabet_config:nnn {\l_@@_style_tl} {\l_@@_alphabet_tl} {\l_@@_remap_style_tl} } { \@@_glyph_if_exist:NnTF \l_@@_font { \@@_to_usv:nn {\l_@@_remap_style_tl} {\l_@@_alphabet_tl} } { \@@_log:nx {setup-alph} {sym \l_@@_style_tl~(\l_@@_alphabet_tl)} \@@_alphabet_config:nnn {\l_@@_style_tl} {\l_@@_alphabet_tl} {\l_@@_remap_style_tl} } { \bool_if:NTF \l_@@_implicit_alph_bool { \seq_put_right:Nx \l_@@_missing_alph_seq { \@backslashchar sym \l_@@_style_tl \space (\tl_use:c{c_@@_math_alphabet_name_ \l_@@_alphabet_tl _tl}) } } { \@@_alphabet_config:nnn {\l_@@_style_tl} {\l_@@_alphabet_tl} {up} } } } } } % \csname TOC\endcsname } % \end{macrocode} % \end{macro} % % % \subsection{Mapping `naked' math characters} % % Before we show the definitions of the alphabet mappings using the functions % |\@@_alphabet_config:nnn \l_@@_style_tl {##1} {...}|, we first want to define some functions % to be used inside them to actually perform the character mapping. % % \subsubsection{Functions} % % \begin{macro}{\@@_map_char_single:nn} % Wrapper for |\@@_map_char_noparse:nn| or |\@@_map_char_parse:nn| % depending on the context. % % \begin{macro}{\@@_map_char_noparse:nn} % \begin{macro}{\@@_map_char_parse:nn} % \begin{macrocode} \cs_new:Nn \@@_map_char_noparse:nn { \@@_set_mathcode:nnnn {#1}{\mathalpha}{\l_@@_symfont_label_tl}{#2} } % \end{macrocode} % % \begin{macrocode} \cs_new:Nn \@@_map_char_parse:nn { \@@_if_char_spec:nNNT {#1} {\@nil} {\mathalpha} { \@@_map_char_noparse:nn {#1}{#2} } } % \end{macrocode} % \end{macro} % \end{macro} % \end{macro} % % \begin{macro}{\@@_map_char_single:nnn} % \darg{char name (`dotlessi')} % \darg{from alphabet(s)} % \darg{to alphabet} % Logical interface to \cs{@@_map_char_single:nn}. % \begin{macrocode} \cs_new:Nn \@@_map_char_single:nnn { \@@_map_char_single:nn { \@@_to_usv:nn {#1}{#3} } { \@@_to_usv:nn {#2}{#3} } } % \end{macrocode} % \end{macro} % % % \begin{macro}{\@@_map_chars_range:nnnn} % \darg{Number of chars (26)} % \darg{From style, one or more (it)} % \darg{To style (up)} % \darg{Alphabet name (Latin)} % First the function with numbers: % \begin{macrocode} \cs_set:Nn \@@_map_chars_range:nnn { \int_step_inline:nnnn {0}{1}{#1-1} { \@@_map_char_single:nn {#2+##1}{#3+##1} } } % \end{macrocode} % And the wrapper with names: % \begin{macrocode} \cs_new:Nn \@@_map_chars_range:nnnn { \@@_map_chars_range:nnn {#1} { \@@_to_usv:nn {#2}{#4} } { \@@_to_usv:nn {#3}{#4} } } % \end{macrocode} % \end{macro} % % \subsubsection{Functions for `normal' alphabet symbols} % % \begin{macro}{\@@_set_normal_char:nnn} % \begin{macrocode} \cs_set:Nn \@@_set_normal_char:nnn { \@@_usv_if_exist:nnT {#3} {#1} { \clist_map_inline:nn {#2} { \@@_set_mathalphabet_pos:nnnn {normal} {#1} {##1} {#3} \@@_map_char_single:nnn {##1} {#3} {#1} } } } % \end{macrocode} % \end{macro} % % \begin{macrocode} \cs_new:Nn \@@_set_normal_Latin:nn { \clist_map_inline:nn {#1} { \@@_set_mathalphabet_Latin:nnn {normal} {##1} {#2} \@@_map_chars_range:nnnn {26} {##1} {#2} {Latin} } } % \end{macrocode} % % \begin{macrocode} \cs_new:Nn \@@_set_normal_latin:nn { \clist_map_inline:nn {#1} { \@@_set_mathalphabet_latin:nnn {normal} {##1} {#2} \@@_map_chars_range:nnnn {26} {##1} {#2} {latin} } } % \end{macrocode} % % \begin{macrocode} \cs_new:Nn \@@_set_normal_greek:nn { \clist_map_inline:nn {#1} { \@@_set_mathalphabet_greek:nnn {normal} {##1} {#2} \@@_map_chars_range:nnnn {25} {##1} {#2} {greek} \@@_map_char_single:nnn {##1} {#2} {epsilon} \@@_map_char_single:nnn {##1} {#2} {vartheta} \@@_map_char_single:nnn {##1} {#2} {varkappa} \@@_map_char_single:nnn {##1} {#2} {phi} \@@_map_char_single:nnn {##1} {#2} {varrho} \@@_map_char_single:nnn {##1} {#2} {varpi} \@@_set_mathalphabet_pos:nnnn {normal} {epsilon} {##1} {#2} \@@_set_mathalphabet_pos:nnnn {normal} {vartheta} {##1} {#2} \@@_set_mathalphabet_pos:nnnn {normal} {varkappa} {##1} {#2} \@@_set_mathalphabet_pos:nnnn {normal} {phi} {##1} {#2} \@@_set_mathalphabet_pos:nnnn {normal} {varrho} {##1} {#2} \@@_set_mathalphabet_pos:nnnn {normal} {varpi} {##1} {#2} } } % \end{macrocode} % % \begin{macrocode} \cs_new:Nn \@@_set_normal_Greek:nn { \clist_map_inline:nn {#1} { \@@_set_mathalphabet_Greek:nnn {normal} {##1} {#2} \@@_map_chars_range:nnnn {25} {##1} {#2} {Greek} \@@_map_char_single:nnn {##1} {#2} {varTheta} \@@_set_mathalphabet_pos:nnnn {normal} {varTheta} {##1} {#2} } } % \end{macrocode} % % \begin{macrocode} \cs_new:Nn \@@_set_normal_numbers:nn { \@@_set_mathalphabet_numbers:nnn {normal} {#1} {#2} \@@_map_chars_range:nnnn {10} {#1} {#2} {num} } % \end{macrocode} % % % \subsection{Mapping chars inside a math style} % % \subsubsection{Functions for setting up the maths alphabets} % % \begin{macro}{\@@_set_mathalphabet_char:Nnn} % This is a wrapper for either |\@@_mathmap_noparse:nnn| or % |\@@_mathmap_parse:Nnn|, depending on the context. % \end{macro} % % \begin{macro}{\@@_mathmap_noparse:nnn} % \darg{Maths alphabet, \eg, `bb'} % \darg{Input slot(s), \eg, the slot for `A' (comma separated)} % \darg{Output slot, \eg, the slot for `$\mathbb{A}$'} % Adds \cs{@@_set_mathcode:nnnn} declarations to the specified maths alphabet's definition. % \begin{macrocode} \cs_new:Nn \@@_mathmap_noparse:nnn { \clist_map_inline:nn {#2} { \tl_put_right:cx {@@_switchto_#1:} { \@@_set_mathcode:nnnn {##1} {\mathalpha} {\l_@@_symfont_label_tl} {#3} } } } % \end{macrocode} % \end{macro} % % \begin{macro}{\@@_mathmap_parse:nnn} % \darg{Maths alphabet, \eg, `bb'} % \darg{Input slot(s), \eg, the slot for `A' (comma separated)} % \darg{Output slot, \eg, the slot for `$\mathbb{A}$'} % When \cmd\@@_if_char_spec:nNNT\ is executed, it populates the \cmd\l_@@_char_nrange_clist\ % macro with slot numbers corresponding to the specified range. This range is used to % conditionally add \cs{@@_set_mathcode:nnnn} declaractions to the maths alphabet definition. % \begin{macrocode} \cs_new:Nn \@@_mathmap_parse:nnn { \clist_if_in:NnT \l_@@_char_nrange_clist {#3} { \@@_mathmap_noparse:nnn {#1}{#2}{#3} } } % \end{macrocode} % \end{macro} % % \begin{macro}{\@@_set_mathalphabet_char:nnnn} % \darg{math style command} % \darg{input math alphabet name} % \darg{output math alphabet name} % \darg{char name to map} % \begin{macrocode} \cs_new:Nn \@@_set_mathalphabet_char:nnnn { \@@_set_mathalphabet_char:nnn {#1} { \@@_to_usv:nn {#2} {#4} } { \@@_to_usv:nn {#3} {#4} } } % \end{macrocode} % \end{macro} % % \begin{macro}{\@@_set_mathalph_range:nnnn} % \darg{Number of iterations} % \darg{Maths alphabet} % \darg{Starting input char (single)} % \darg{Starting output char} % Loops through character ranges setting \cmd\mathcode. % First the version that uses numbers: % \begin{macrocode} \cs_new:Nn \@@_set_mathalph_range:nnnn { \int_step_inline:nnnn {0} {1} {#1-1} { \@@_set_mathalphabet_char:nnn {#2} { ##1 + #3 } { ##1 + #4 } } } % \end{macrocode} % Then the wrapper version that uses names: % \begin{macrocode} \cs_new:Nn \@@_set_mathalph_range:nnnnn { \@@_set_mathalph_range:nnnn {#1} {#2} { \@@_to_usv:nn {#3} {#5} } { \@@_to_usv:nn {#4} {#5} } } % \end{macrocode} % \end{macro} % % \subsubsection{Individual mapping functions for different alphabets} % % \begin{macrocode} \cs_new:Nn \@@_set_mathalphabet_pos:nnnn { \@@_usv_if_exist:nnT {#4} {#2} { \clist_map_inline:nn {#3} { \@@_set_mathalphabet_char:nnnn {#1} {##1} {#4} {#2} } } } % \end{macrocode} % % \begin{macrocode} \cs_new:Nn \@@_set_mathalphabet_numbers:nnn { \clist_map_inline:nn {#2} { \@@_set_mathalph_range:nnnnn {10} {#1} {##1} {#3} {num} } } % \end{macrocode} % % \begin{macrocode} \cs_new:Nn \@@_set_mathalphabet_Latin:nnn { \clist_map_inline:nn {#2} { \@@_set_mathalph_range:nnnnn {26} {#1} {##1} {#3} {Latin} } } % \end{macrocode} % % \begin{macrocode} \cs_new:Nn \@@_set_mathalphabet_latin:nnn { \clist_map_inline:nn {#2} { \@@_set_mathalph_range:nnnnn {26} {#1} {##1} {#3} {latin} \@@_set_mathalphabet_char:nnnn {#1} {##1} {#3} {h} } } % \end{macrocode} % % \begin{macrocode} \cs_new:Nn \@@_set_mathalphabet_Greek:nnn { \clist_map_inline:nn {#2} { \@@_set_mathalph_range:nnnnn {25} {#1} {##1} {#3} {Greek} \@@_set_mathalphabet_char:nnnn {#1} {##1} {#3} {varTheta} } } % \end{macrocode} % % \begin{macrocode} \cs_new:Nn \@@_set_mathalphabet_greek:nnn { \clist_map_inline:nn {#2} { \@@_set_mathalph_range:nnnnn {25} {#1} {##1} {#3} {greek} \@@_set_mathalphabet_char:nnnn {#1} {##1} {#3} {epsilon} \@@_set_mathalphabet_char:nnnn {#1} {##1} {#3} {vartheta} \@@_set_mathalphabet_char:nnnn {#1} {##1} {#3} {varkappa} \@@_set_mathalphabet_char:nnnn {#1} {##1} {#3} {phi} \@@_set_mathalphabet_char:nnnn {#1} {##1} {#3} {varrho} \@@_set_mathalphabet_char:nnnn {#1} {##1} {#3} {varpi} } } % \end{macrocode} % % \begin{macrocode} % % \end{macrocode} \endinput % /© % % ------------------------------------------------ % The UNICODE-MATH package % ------------------------------------------------ % This package is free software and may be redistributed and/or modified under % the conditions of the LaTeX Project Public License, version 1.3c or higher % (your choice): . % ------------------------------------------------ % Copyright 2006-2017 Will Robertson, LPPL "maintainer" % Copyright 2010-2017 Philipp Stephani % Copyright 2011-2017 Joseph Wright % Copyright 2012-2015 Khaled Hosny % ------------------------------------------------ % % ©/