% \iffalse meta-comment
% An Infrastructure for Presenting Semantic Macros in sTeX
% Copyright (C) 2004-2007 Michael Kohlhase, all rights reserved
% This file is released under the LaTeX Project Public License (LPPL)
%
% The development version of this file can be found at
% https://svn.kwarc.info/repos/kwarc/projects/stex/sty/presentation.dtx
% \fi
%
% \iffalse
%\NeedsTeXFormat{LaTeX2e}[1999/12/01]
%\ProvidesPackage{presentation}[2007/09/03 v0.9e presentation for semantic macros]
%
%<*driver>
\documentclass{ltxdoc}
\usepackage{url,array,presentation,float}
\usepackage[show]{ed}
\usepackage{hyperref}
\makeindex
\floatstyle{boxed}
\newfloat{exfig}{thp}{lop}
\floatname{exfig}{Example}
\begin{document}\DocInput{presentation.dtx}\end{document}
%
% \fi
%
% \CheckSum{373}
%
% \changes{v0.9}{2005/06/14}{First Version with Documentation}
% \changes{v0.9a}{2005/07/01}{Completed Documentation}
% \changes{v0.9b}{2005/08/06}{Complete functionality and Updated Documentation}
% \changes{v0.9c}{2006/01/13}{more packaging}
% \changes{v0.9d}{2006/10/13}{adding mixfix declarations}
% \changes{v0.9d}{2006/10/13}{dealing with precedences in keyword arguments}
% \changes{v0.9e}{2007/09/03}{fixing argument precedences, adding LaTeXML bindings}
% \changes{v0.9f}{2007/12/09}{adding general elision}
%
% \GetFileInfo{presentation.sty}
%
% \MakeShortVerb{\|}
%\def\scsys#1{{{\sc #1}}\index{#1@{\sc #1}}}
% \def\stex{{\raisebox{-.5ex}S\kern-.5ex\TeX}}
% \def\sTeX{\stex}
% \def\xml{\scsys{Xml}}
% \def\mathml{\scsys{MathML}}
% \def\omdoc{\scsys{OMDoc}}
% \def\openmath{\scsys{OpenMath}}
% \def\latexml{\scsys{LaTeXML}}
% \def\perl{\scsys{Perl}}
% \def\cmathml{Content-{\sc MathML}\index{Content {\sc MathML}}\index{MathML@{\sc MathML}!content}}
% \def\activemath{\scsys{ActiveMath}}
% \def\twin#1#2{\index{#1!#2}\index{#2!#1}}
% \def\twintoo#1#2{{#1 #2}\twin{#1}{#2}}
% \def\atwin#1#2#3{\index{#1!#2!#3}\index{#3!#2 (#1)}}
% \def\atwintoo#1#2#3{{#1 #2 #3}\atwin{#1}{#2}{#3}}
% \title{An Infrastructure for Presenting Semantic Macros in {\stex}\thanks{Version {\fileversion} (last revised
% {\filedate})}}
% \author{Michael Kohlhase\\
% Jacobs University, Bremen\\
% \url{http://kwarc.info/kohlhase}}
% \maketitle
%
% \begin{abstract}
% The |presentation| packge is a central part of the {\stex} collection, a version of
% {\TeX/\LaTeX} that allows to markup {\TeX/\LaTeX} documents semantically without
% leaving the document format, essentially turning {\TeX/\LaTeX} into a document format
% for mathematical knowledge management (MKM).
%
% This package supplies an infrastructure that allows to specify the presentation of
% semantic macros, including preference-based bracket elision. This allows to markup the
% functional structure of mathematical formulae without having to lose high-quality
% human-oriented presentation in {\LaTeX}. Moreover, the notation definitions can be
% used by MKM systems for added-value services, either directly from the {\sTeX}
% sources, or after translation.
% \end{abstract}
% \setcounter{tocdepth}{2}\tableofcontents\newpage
%
%\section{Introduction}\label{sec:presentation}
%
% The |presentation| package supplies an infrastructure that allows to specify the
% presentation of semantic macros, including preference-based bracket elision. This allows
% to markup the functional structure of mathematical formulae without having to lose
% high-quality human-oriented presentation in {\LaTeX}. Moreover, the notation definitions
% can be used by MKM systems for added-value services, either directly from the {\sTeX}
% sources, or after translation.
%
% {\stex} is a version of {\TeX/\LaTeX} that allows to markup {\TeX/\LaTeX} documents
% semantically without leaving the document format, essentially turning {\TeX/\LaTeX} into
% a document format for mathematical knowledge management (MKM).
%
% The setup for semantic macros described in the {\stex} |modules| package works well for
% simple mathematical functions: we make use of the macro application syntax in {\TeX} to
% express function application. For a simple function called ``foo'', we would just
% declare |\symdef{foo}[1]{foo(#1)}| and have the concise and intuitive syntax |\foo{x}|
% for $foo(x)$. But mathematical notation is much more varied and interesting than just
% this.
%
% \section{The User Interface}
%
% In this package we will follow the {\sTeX} approach and assume that there are four basic
% types of mathematical expressions: symbols, variables, applications and
% binders. Presentation of the variables is relatively straightforward, so we will not
% concern ourselves with that. The application of functions in mathematics is mostly
% presented in the form $f(a_1,\ldots,a_n)$, where $f$ is the function and the $a_i$ are
% the arguments. However, many commonly-used functions from this presentational scheme:
% for instance binomial coefficients: $\bigl({n\atop k}\bigr)$, pairs: $\langle
% a,b\rangle$, sets: $\{x\in S\,\vert\, x^2\ne0\}$, or even simple addition: $3+5+7$. Note
% that in all these cases, the presentation is determined by the (functional) head of the
% expression, so we will bind the presentational infrastructure to the operator.
%
% \subsection{Mixfix Notations}\label{sec:mixfix}
%
% For the presentation of ordinary operators, we will follow the approach used by the
% Isabelle theorem prover. There, the presentation of an $n$-ary function (i.e. one that
% takes $n$ arguments) is specified as
% \meta{pre}\meta{arg$_0$}\meta{mid$_1$}$\cdots$\meta{mid$_n$}\meta{arg$_n$}\meta{post},
% where the \meta{arg$_i$} are the arguments and \meta{pre}, \meta{post}, and the
% \meta{mid$_i$} are presentational material. For instance, in infix operators like the
% binary subset operator, \meta{pre} and $\meta{post}$ are empty, and \meta{mid$_1$} is
% $\subseteq$. For the ternary conditional operator in a programming language, we might
% have the presentation pattern
% |if|\meta{arg$_1$}|then|\meta{arg$_2$}|else|\meta{arg$_3$}|fi| that utilizes all
% presentation positions.
%
% \DescribeMacro{\mixfix*}The |presentation| package provides mixfix declaration macros
% |\mixfixi|, |\mixfixii|, and |\mixfixiii| for unary, binary, and ternary functions. This
% covers most of the cases, larger arities would need a different argument
% pattern.\footnote{If you really need larger arities, contact the author!} The call
% pattern of these macros is just the presentation pattern above. In general, the mixfix
% declaration of arity $i$ has $2n+1$ arguments, where the even-numbered ones are for the
% arguments of the functions and the odd-numbered ones are for presentation material. For
% instance, to define a semantic macro for the subset relation and the conditional, we
% would use the markup in Figure~\ref{fig:mixfix}.
% \begin{exfig}
% \begin{verbatim}
% \symdef{sseteq}[2]{\mixfixii{}{#1}{\subseteq}{#2}{}}
% \symdef{sseteq}[2]{\infix\subseteq{#1}{#2}}
% \symdef{ite}[2]{\mixfixiii{{\tt{if}}\;}{#1}
% {\;{\tt{then}}\;}{#2}
% {\;{\tt{else}}\;}{#3}{\;{\tt{fi}}}}
% \end{verbatim}
% \vspace*{-1.5em}
% \begin{center}
% \begin{tabular}{|l|l|}\hline
% source & presentation \\\hline
% |\sseteq{S}T| & $(S\subseteq T)$\\\hline
% |\ite{x<0}{-x}x| & ${\tt{if}}\,x<0\,{\tt{then}}\,-x\,{\tt{else}}\,x\,{\tt{fi}}$\\\hline
% \end{tabular}
% \end{center}
% \caption{Declaration of mixfix operators}\label{fig:mixfix}
% \end{exfig}
%
% For certain common cases, the |presentation| package provides shortcuts for the mixfix
% declarations. The \DescribeMacro{\prefix}|\prefix| macro allows to specify a prefix
% presentation for a function (the usual presentation in mathematics). Note that it is
% better to specify |\symdef{uminus}[1]{\prefix{-}{#1}}| than just
% |\symdef{uminus}[1]{-#1}|, since we can specify the bracketing behavior in the former
% (see Section~\ref{sec:elision}).
%
% The \DescribeMacro{\postfix}|\postfix| macro is similar, only that the function is
% presented after the argument as for e.g. the factorial function: $5!$ stands for the
% result of applying the factorial function to the number 5. Note that the function is
% still the first argument to the |\postfix| macro: we would specify the presentation for
% the factorial function with |\symdef{factorial}[1]{\postfix{!}{#1}}|.
%
% Finally, we provide the \DescribeMacro{\infix}|\infix| macro for binary operators that
% are written between their arguments (see Figure~\ref{fig:mixfix}).
%
% \subsection{\texorpdfstring{$n$}{n}-ary Associative Operators}\label{sec:assoc}
%
% Take for instance the operator for set union: formally, it is a binary function on
% sets that is associative (i.e. $(S_1\cup S_2)\cup S_3=S_1\cup (S_2\cup S_3)$), therefore
% the brackets are often elided, and we write $S_1\cup S_2\cup S_3$ instead (once we have
% proven associativity). Some authors even go so far to introduce set union as a $n$-ary
% operator, i.e. a function that takes an arbitrary (positive) number of arguments. We will
% call such operators {\bf{$n$-ary
% associative}\atwin{n-ary}{associative}{operator}}.
%
% Specifying the presentation\ednote{introduce the notion of presentation above} of
% $n$-ary associative operators in |\symdef| forms is not straightforward, so we provide
% some infrastructure for that. As we cannot predict the number of arguments for $n$-ary
% operators, we have to give them all at once, if we want to maintain our use of {\TeX}
% macro application to specify function application. So a semantic macro for an $n$-ary
% operator will be applied as |\nunion{|\meta{$a_1$}|,|\ldots|,|\meta{$a_n$}|}|, where the
% sequence of $n$ logical arguments \meta{$a_i$} are supplied as one {\TeX} argument which
% contains a comma-separated list. We provide variants of the mixfix declarations
% presented in section~\ref{sec:mixfix} which deal with associative arguments. For
% instance, the variant \DescribeMacro{\mixfixa}|\mixfixa| allows to specify $n$-ary
% associative operators.
% |\mixfixa{|\meta{pre}|}{|\meta{arg}|}{|\meta{post}|}{|\meta{op}|}| specifies a
% presentation, where \meta{arg} is the associative argument and \meta{op} is the
% corresponding operator that is mapped over the argument list; as above, {\meta{pre}},
% \meta{post}, are prefix and postfix presentational material. For instance, the finite
% set constructor could be constructed as
% \begin{verbatim}
% \newcommand{\fset}[1]{\mixfixa[p=0]{\{}{#1}{\}}{,}}
% \end{verbatim}
%
% The \DescribeMacro{\assoc}|\assoc| macro is a convenient abbreviation of a |\mixfixa|
% that can be used in cases, where \meta{pre} and \meta{post} are empty (i.e. in the
% majority of cases). It takes two arguments: the presentation of a binary operator, and a
% comma-separated list of arguments, it replaces the commas in the second argument with
% the operator in the first one. For instance |\assoc\cup{S_1,S_2,S_3}| will be formatted
% to $S_1\cup S_2\cup S_3$. Thus we can use |\def\nunion#1{\assoc\cup{#1}}| or even
% |\def\nunion{\assoc\cup}|, to define the $n$-ary operator for set union in {\TeX}. For
% the definition of a semantic macro in {\stex}, we use the second form, since we are more
% conscious of the right number of arguments and would declare
% |\symdef{nunion}[1]{\assoc\cup{#1}}|.\ednote{think about big operators for ACI
% functions}
%
% These macros |\prefix| and |\postfix| have $n$-ary variants
% \DescribeMacro{\prefixa}|\prefixa| and \DescribeMacro{\postfixa}|\postfixa| that take an
% arbitrary number of arguments (mathematically; syntactically grouped into one {\TeX}
% argument). These take an extra separator argument.\ednote{think of a good example!}
% The |\mixfixii| macro has variants \DescribeMacro{\mixfixia}|\mixfixia|,
% \DescribeMacro{\mixfixai}|\mixfixai|, and \DescribeMacro{\mixfixaa}|\mixfixaa|, which
% allow to make one or two arguments in a binary function associative\footnote{If you
% really need larger arities with associative arguments, contact the package author!}. A
% use case for the second macro is an nary function type operator |\fntype|, which can be
% defined via
% \begin{verbatim}
% \def\fntype#1#2{\mixfixai{}{#1}\rightarrow{#2}{}\times}
% \end{verbatim}
% and which will format |\fntype{\alpha,\beta,\gamma}\delta| as
% $\alpha\times\beta\times\gamma\to\delta$.
%
% \subsection{Precedence-Based Bracket Elision}\label{sec:elision}
%
% With the infrastructure supplied by the |\assoc| macro we could now try to combine
% set union and set intersection in one formula. Then, writing
% \begin{equation}\label{cupcap}
% |\nunion{\ninters{a,b},\ninters{c,d}}|
% \end{equation}
% would yield $((a\cap b)\cup (c\cap d))$, and not $a\cap b\cup c\cap d$ as we would like,
% since $\cap$ binds stronger than $\cup$. Dropping outer brackets in the presentations of
% the presentation of the operators will not help in general: it would give the desired
% form for (\ref{cupcap}) but $a\cap b\cup c\cap d$ for (\ref{capcup}), where we would
% have liked $(a\cup b)\cap(c\cup d)$
% \begin{equation}\label{capcup}
% |\ninters{\nunion{a,b},\nunion{c,d}}|
% \end{equation}
%
% In mathematics, brackets are elided, whenever the author anticipates that the reader can
% understand the formula without them, and would be overwhelmed with them. To achieve
% this, there are set of common conventions that govern bracket elision. The most common
% is to assign precedences to all operators, and elide brackets, if the
% {\index*{precedence}} of the operator is lower than that of the context it is presented
% in. In our example above, we would assign $\cap$ a lower precedence than $\cup$ (and
% both a lower precedence than the initial precedence). To compute the presentation of
% (\ref{capcup}) we start out with the |\ninters|, elide its brackets (since the
% precedence $n$ of $\cup$ is lower than the initial precedence $i$), and set the context
% precedence for the arguments to $n$. When we present the arguments, we present the
% brackets, since the precedence of |nunion| is lower than the context precedence $n$.
%
% This algorithm, which we call {\bf{precedence-based bracket elision}} goes a long
% way towards approximating mathematical practice. Note that full bracket elision in
% mathematical practice is a reader-oriented process, it cannot be fully mechanical,
% e.g. in $(a\cap b\cap c\cap d\cap e\cap f\cap g)\cup h$ we better put the brackets
% around the septary intersection to help the reader even thoug they could have been
% elided by our algorithm. Therefore, the author has to retain full control over
% bracketing in a bracket elision architecture (otherwise it would become impossible to
% explain the concept of associativity).\ednote{think about how to implement that}.
%
% \begin{figure}[htb]
% \begin{center}
% \begin{tabular}{|l|l|l|}\hline
% Precedence & Operators & Comment\\\hline\hline
% 200 & +,- & unary \\\hline
% 200 & $\hat{}$ & exponentiation \\\hline
% 400 & $*,\land,\cap$ & multiplicative \\\hline
% 500 & $+,-,\lor,\cup$ & additive\\\hline
% 600 & / & fraction \\\hline
% 700 & $=, \ne, \leq, <, >, \geq$ & relation\\\hline
% \end{tabular}
% \end{center}
% \caption{Common Operator Precedences}\label{fig:precedence}
% \end{figure}
%
% In {\stex} we supply an optional keyval arguments to the mixfix declarations and their
% abbreviations that allow to specify precedences: The key \DescribeMacro{p}|p| key is
% used to specify the {\bf{operator precedence}}, and the keys
% \DescribeMacro{pi}\DescribeMacro{pii}\DescribeMacro{piii}|p|\meta{i} can be used to
% specify the {\bf{argument precedence}s}. The latter will set the precedence level while
% processing the arguments, while the operator precedence invokes brackets, if it is
% larger than the current precedence level --- which is set by the appropriate argument
% precedence by the dominating operators or the outer precedence.
%
% If none of the precedences is specified, then the defaults are assumed. The operator
% precedence is set to the default operator precedence, which defaults to 1000 and can be
% set by {\DescribeMacro{\setDefaultPrecedence}}|\setDefaultPrecedence{|\meta{prec}|}|
% where \meta{prec} is an integer. The argument precedences default to the operator
% precedence.
%
% Figure~\ref{fig:precedence} gives an overview over commonly used precedences. Note that
% most operators have precedences lower than the default precedence of 1000, otherwise the
% brackets would not be elided. For our examples above, we would define
% \begin{verbatim}
% \newcommand{\nunion}[1]{\assoc[p=500]{\cup}{#1}}
% \newcommand{\ninters}[1]{\assoc[p=400]{\cap}{#1}}
% \end{verbatim}
% to get the desired behavior.
%
% Note that the presentation macros uses round brackets for grouping by default. We can
% specify other brackets via two more keywords: \DescribeMacro{lbrack}|lbrack| and
% \DescribeMacro{rbrack}|rbrack|. Just as above, we can also reset the default brackets
% with {\DescribeMacro{\setDefaultLeftBracket}}|\setDefaultLeftBracket{|\meta{lb}|}|and
% {\DescribeMacro{\setDefaultRightBracket}}|\setDefaultRightBracket{|\meta{rb}|}| where
% \meta{lb} and \meta{rb} expand to the desired brackets. Note that formula parts that
% look like brackets usually are not. For instance, we should not define the finite set
% constructor via
% \begin{verbatim}
% \newcommand{\fset}[1]{\assoc[lbrack=\{,rbrack=\}]{,}{#1}}
% \end{verbatim}
% where the curly braces are used as brackets, but as presented in section~\ref{sec:assoc}
% even though both would format |\fset{a,b,c}| as $\{a,b,c\}$. In the encoding here, an
% operator with suitably high operator precedence would be able to make the brackets
% disappear.
%
% \subsection{Flexible Elision}\label{sec:flexible-elision}
%
% There are several situations in which it is desirable to display only some parts of the
% presentation:
% \begin{itemize}
% \item We have alreday seen the case of redundant brackets above
% \item Arguments that are strictly necessary are omitted to simplify the notation, and the
% reader is trusted to fill them in from the context.
% \item Arguments are omitted because they have default values. For example $\log_{10}x$
% is often written as $\log x$.
% \item Arguments whose values can be inferred from the other arguments are usually
% omitted. For example, matrix multiplication formally takes five arguments, namely the
% dimensions of the multiplied matrices and the matrices themselves, but only the latter
% two are displayed.
% \end{itemize}
%
% Typically, these elisions are confusing for readers who are getting acquainted with a
% topic, but become more and more helpful as the reader advances. For experienced readers
% more is elided to focus on relevant material, for beginners representations are more
% explicit. In the process of writing a mathematical document for traditional (print)
% media, an author has to decide on the intended audience and design the level of elision
% (which need not be constant over the document though). With electronic media we have new
% possibilities: we can make elisions flexible. The author still chooses the elision level
% for the initial presentation, but the reader can adapt it to her level of competence and
% comfort, making details more or less explicit.
%
% \DescribeMacro{\elide} To provide this functionality, the |presentation| package
% provides the |\elide| macro allows to asociate a text with an integer
% {\bf{visibility level}} and group them into {\bf{elision groups}}. High levels
% mean high elidability.
%
% Elision can take various forms in print and digital media. In static media like
% traditional print on paper or the PostScript format, we have to fix the elision level,
% and can decide at presentation time which elidable tokens will be printed and which will
% not. In this case, the presentation algorithm will take visibility thresholds $T_g$ for
% every elidability group $g$ as a user parameter and then elide (i.e. not print) all
% tokens in visibility group $g$ with level $l>T_g$. \DescribeMacro{\setelevel} We specify
% this threshold for via the |\setelevel| macro. For instance in the example below, we
% have a two type annotations |par| for type parameters and |typ| for type annotations
% themselves.
%
% \begin{exfig}[ht]
% \begin{verbatim}
% $\mathbf{I}\elide{par}{500}{^\alpha}\elide{typ}{100}{_{\alpha\to\alpha}}
% :=\lambda{X\elide{ty}{500}{_\alpha}}.X$
% \end{verbatim}
% \vspace{-2em}
% \end{exfig}
%
% The visibility levels in the example encode how redundant the author thinks the elided
% parts of the formula are: low values show high redundancy. In our example the intuition
% is that the type paraemter on the $\mathbf{I}$ cominator and the type annotation on the
% bound variable $X$ in the $\lambda$ expression are of the same obviousness to the
% reader. So in a document that contains |\setegroup{typ}{1000}| and
% |\setegroup{an}{1000}| will show $\mathbf{I}:=\lambda{X}.X$ eliding all redundant
% information. If we have both values at 400, then we will see
% $\mathbf{I}^\alpha:=\lambda{X_\alpha}.X$ and only if the threshold for |typ| dips below
% 100, then we see the full information:
% $\mathbf{I}^\alpha_{\alpha\to\alpha}:=\lambda{X_\alpha}.X$.
%
% In an output format that is capable of interactively changing its appearance, e.g.
% dynamic XHTML+MathML (i.e. XHTML with embedded Presentation {\mathml} formulas, which can
% be manipulated via JavaScript in browsers), an application can export the information
% about elision groups and levels to the target format, and can then dynamically change the
% visibility thresholds by user interaction. Here the visibility threshold would also be
% used, but here it only determines the default rendering; a user can then fine-tune the
% document dynamically to reveal elided material to support understanding or to elide more
% to increase conciseness.
%
% The price the author has to pay for this enhanced user experience is that she has to
% specify elided parts of a formula that would have been left out in conventional
% {\LaTeX}. Some of this can be alleviated by good coding practices. Let us consider the log
% base case. This is elided in mathematics, since the reader is expected to pick it up from
% context. Using semantic macros, we can mimic this behavior: defining two semantic macros:
% |\logC| which picks up the log base from the context via the |\logbase|
% macro and |\logB| which takes it as a (first) argument.
%
% \begin{verbatim}
% \provideEdefault{logbase}{10}
% \symdef{logB}[2]{\prefix{\mathrm{log}\elide{base}{100}{_{#1}}}{#2}}
% \abbrdef{logC}[1]{\logB{\fromEcontext{logbase}}{#1}}
% \end{verbatim}
%
% \DescribeMacro{\provideEdefault} Here we use the |\provideEdefault| macor to initialize
% a {\LaTeX} token register for the |logbase| default, which we can pick up from the
% elision context using \DescribeMacro{\fromEcontext}|\fromEcontext| in the definition of
% |\logC|. Thus |\logC{x}| would render as $\mathrm{log}_{10}(x)$ with a threshold of 50
% for |base| and as $\mathrm{log}_2$, if the local {\TeX} group e.g. given by the
% |assertion| environment contains a
% \DescribeMacro{setEdefault}|\setEdefault{logbase}{2}|.
%
% \subsection{Hyperlinking}\label{sec:hyperlinking}
%
%\ednote{describe what we want to do here}
%
% \subsection{Variable Names}
%
% \ednote{what is the problem?}
%
% \DescribeMacro{\vname} |\vname| identifies a token sequence as a name, and provides an
% ASCII ({\xml}-compatible) identifier for it. The optional argument is the identifier,
% and the second one the LaTeX representation. The identifier can also be used with
% |\vnameref| for copy and paste.\ednote{does this really work}
%
% \StopEventually{\ednotemessage}
%
% \section{The Implementation}\label{sec:implementation}
%
% We first make sure that the KeyVal package is loaded (in the right
% version). For {\latexml}, we also initialize the package inclusions.
% \begin{macrocode}
%\RequirePackage{keyval}[1997/11/10]
%<*ltxml>
# -*- CPERL -*-
package LaTeXML::Package::Pool;
use strict;
use LaTeXML::Package;
RequirePackage('keyval');
%
% \end{macrocode}
% We will first specify the default precedences and brackets, together with the macros
% that allow to set them.
% \begin{macrocode}
%<*package>
\def\pres@default@precedence{1000}
\def\setDefaultPrecedence#1{\def\pres@default@precedence{#1}}
\def\pres@initial@precedence{1000}
\def\setInitialPrecedence#1{\def\pres@initial@precedence{#1}}
\def\pres@current@precedence{\pres@initial@precedence}
\def\pres@default@lbrack{(}\def\pres@lbrack{\pres@default@lbrack}
\def\pres@default@rbrack{)}\def\pres@rbrack{\pres@default@rbrack}
\def\setDefaultLeftBracket#1{\def\pres@default@lbrack{#1}}
\def\setDefaultRightBracket#1{\def\pres@default@rbrack{#1}}
%
% \end{macrocode}
%
% \subsection{The System Commands}\label{sec:impl:syscommands}
%
% \begin{macro}{\PrecSet}
% |\PrecSet| will set the default precedence.\ednote{need to implement this in {\latexml}?}
% \begin{macrocode}
%\def\PrecSet#1{\def\pres@default@precedence{#1}}
%<*ltxml>
%
% \end{macrocode}
% \end{macro}
%
% \begin{macro}{\PrecWrite}
% |\PrecWrite| will write a bracket, if the precedence mandates it, i.e. if |\pres@p| is
% greater than the current |\pres@current@precedence|
% \begin{macrocode}
%\def\PrecWrite#1{\ifnum\pres@current@precedence>\pres@p\else{#1}\fi}
% \end{macrocode}
% \end{macro}
%
% \subsection{Mixfix Operators}\label{sec:impl:mixfix}
%
% \begin{macrocode}
%<*package>
\def\clearkeys{\let\pres@p@key=\relax
\let\pres@pi@key=\relax%
\let\pres@pi@key=\relax%
\let\pres@pii@key=\relax%
\let\pres@piii@key=\relax}
\define@key{mi}{lbrack}{\def\pres@lbrack@key{#1}}
\define@key{mi}{rbrack}{\def\pres@lbrack@key{#1}}
\define@key{mi}{p}{\def\pres@p@key{#1}}
\define@key{mi}{pi}{\def\pres@pi@key{#1}}
\def\prep@keys@mi%
{\edef\pres@lbrack{\@ifundefined{pres@lbrack@key}{\pres@default@lbrack}{\pres@lbrack@key}}
\edef\pres@rbrack{\@ifundefined{pres@rbrack@key}{\pres@default@rbrack}{\pres@rbrack@key}}
\edef\pres@p{\@ifundefined{pres@p@key}{\pres@default@precedence}{\pres@p@key}}
\edef\pres@pi{\@ifundefined{pres@pi@key}{\pres@p}{\pres@pi@key}}}
%
%<*ltxml>
DefKeyVal('mi','lbrack','Semiverbatim');
DefKeyVal('mi','rbrack','Semiverbatim');
DefKeyVal('mi','p','Semiverbatim');
DefKeyVal('mi','pi','Semiverbatim');
%
% \end{macrocode}
%
% \begin{macro}{\mixfixi}
% \begin{macrocode}
%<*package>
\newcommand{\mixfixi}[4][]%key, pre, arg, post
{\setkeys{mi}{#1}\prep@keys@mi\clearkeys
\PrecWrite\pres@lbrack% write bracket if necessary
#2{\edef\pres@current@precedence{\pres@pi}#3}#4%
\PrecWrite\pres@rbrack}
%
%<*ltxml>
DefConstructor('\mixfixi OptionalKeyVals:mi {}{}{}',
""
. ""
. ""##### need to get $cd and $name here.
. ""
. ""
.""
.""
. ""
. "#2"
. ""
. "#4"
. ""
."",
mode=>'inline_math');
%
% \end{macrocode}
% \end{macro}
%
% \begin{macro}{\mixfixa}
% \begin{macrocode}
%<*package>
\newcommand{\mixfixa}[5][]%key, pre, arg, post, assocop
{\setkeys{mi}{#1}\prep@keys@mi\clearkeys%
\PrecWrite\pres@lbrack{#2}{\@assoc\pres@pi{#5}{#3}}{#4}\PrecWrite\pres@rbrack}
%
%<*ltxml>
DefConstructor('\mixfixa OptionalKeyVals:mi {}{}{}{}',
""
. ""
. ""##### need to get $cd and $name here.
. ""
. ""
. ""
. ""
.""
.""
. ""
. "#2"
. ""
. ""
. "#5"
. ""
. ""
. ""
. "#4"
. ""
."",
mode=>'inline_math');
%
% \end{macrocode}
% \end{macro}
%
% \begin{macrocode}
%<*package>
\define@key{mii}{lbrack}{\def\pres@lbrack@key{#1}}
\define@key{mii}{rbrack}{\def\pres@lbrack@key{#1}}
\define@key{mii}{p}{\def\pres@p@key{#1}}
\define@key{mii}{pi}{\def\pres@pi@key{#1}}
\define@key{mii}{pii}{\def\pres@pii@key{#1}}
\def\prep@keys@mii{\prep@keys@mi%
\edef\pres@pii{\@ifundefined{pres@pii@key}{\pres@p}{\pres@pii@key}}%
\let\pres@pii@key=\relax}
%
%<*ltxml>
DefKeyVal('mii','lbrack','Semiverbatim');
DefKeyVal('mii','rbrack','Semiverbatim');
DefKeyVal('mii','p','Semiverbatim');
DefKeyVal('mii','pi','Semiverbatim');
DefKeyVal('mii','pii','Semiverbatim');
%
% \end{macrocode}
%
% \begin{macro}{\mixfixii}
% \begin{macrocode}
%<*package>
\newcommand{\mixfixii}[6][]%key, pre, arg1, mid, arg2, post
{\setkeys{mii}{#1}\prep@keys@mii\clearkeys%
\PrecWrite\pres@lbrack% write bracket if necessary
#2{\edef\pres@current@precedence{\pres@pi}#3}%
#4{\edef\pres@current@precedence{\pres@pii}#5}#6%
\PrecWrite\pres@rbrack}
%
%<*ltxml>
DefConstructor('\mixfixii OptionalKeyVals:mi {}{}{}{}{}',
""
. ""
. ""##### need to get $cd and $name here.
. ""
. ""
. ""
.""
.""
. ""
. "#2"
. ""
. "#4"
. ""
. "#6"
. ""
."",
mode=>'inline_math');
%
% \end{macrocode}
% \end{macro}
%
% \begin{macro}{\mixfixia}
% \begin{macrocode}
%<*package>
\newcommand{\mixfixia}[7][]%key, pre, arg1, mid, arg2, post, assocop
{\setkeys{mii}{#1}\prep@keys@mii\clearkeys%
\PrecWrite\pres@lbrack% write bracket if necessary
#2{\edef\pres@current@precedence{\pres@pi}#3}%
#4{\@assoc\pres@pii{#7}{#5}}#6%
\PrecWrite\pres@rbrack}
%
%<*ltxml>
DefConstructor('\mixfixia OptionalKeyVals:mi {}{}{}{}{}{}',
""
. ""
. ""##### need to get $cd and $name here.
. ""
. ""
. ""
. ""
. ""
.""
.""
. ""
. "#2"
. ""
. "#4"
. ""
. ""
. "#7"
. ""
. ""
. ""
. "#6"
. ""
."",
mode=>'inline_math');
%
% \end{macrocode}
% \end{macro}
%
% \begin{macro}{\mixfixai}
% \begin{macrocode}
%<*package>
\newcommand{\mixfixai}[7][]%key, pre, arg1, mid, arg2, post, assocop
{\setkeys{mii}{#1}\prep@keys@mii\clearkeys%
\PrecWrite\pres@lbrack% write bracket if necessary
#2{\@assoc\pres@pi{#7}{#3}}%
#4{\edef\pres@current@precedence{\pres@pii}#5}#6%
\PrecWrite\pres@rbrack}
%
%<*ltxml>
DefConstructor('\mixfixai OptionalKeyVals:mi {}{}{}{}{}{}',
""
. ""
. ""##### need to get $cd and $name here.
. ""
. ""
. ""
. ""
. ""
.""
.""
. ""
. "#2"
. ""
. ""
. "#7"
. ""
. ""
. ""
. "#4"
. ""
. "#6"
. ""
."",
mode=>'inline_math');
%
% \end{macrocode}
% \end{macro}
%
% \begin{macrocode}
%<*package>
\define@key{miii}{lbrack}{\def\pres@lbrack@key{#1}}
\define@key{miii}{rbrack}{\def\pres@lbrack@key{#1}}
\define@key{miii}{p}{\def\pres@p@key{#1}}
\define@key{miii}{pi}{\def\pres@pi@key{#1}}
\define@key{miii}{pii}{\def\pres@pii@key{#1}}
\define@key{miii}{piii}{\def\pres@piii@key{#1}}
\def\prep@keys@miii{\prep@keys@mii\edef\pres@piii{\@ifundefined{pres@piii@key}{\pres@p}{\pres@piii@key}}}
%
%<*ltxml>
DefKeyVal('miii','lbrack','Semiverbatim');
DefKeyVal('miii','rbrack','Semiverbatim');
DefKeyVal('miii','p','Semiverbatim');
DefKeyVal('miii','pi','Semiverbatim');
DefKeyVal('miii','pii','Semiverbatim');
DefKeyVal('miii','piii','Semiverbatim');
%
% \end{macrocode}
%
% \begin{macro}{\mixfixiii}
% \begin{macrocode}
%<*package>
\newcommand{\mixfixiii}[8][]%key, pre, arg1, mid1, arg2, mid2, arg3, post
{\setkeys{miii}{#1}\prep@keys@miii\clearkeys%
\PrecWrite\pres@lbrack% write bracket if necessary
#2{\edef\pres@current@precedence{\pres@pi}#3}%
#4{\edef\pres@current@precedence{\pres@pii}#5}%
#6{\edef\pres@current@precedence{\pres@pii}#7}#8%
\PrecWrite\pres@rbrack}
%
%<*ltxml>
DefConstructor('\mixfixiii OptionalKeyVals:mi {}{}{}{}{}{}{}',
""
. ""
. ""##### need to get $cd and $name here.
. ""
. ""
. ""
. ""
.""
.""
. ""
. "#2"
. ""
. "#4"
. ""
. "#6"
. ""
. "#8"
. ""
."",
mode=>'inline_math');
%
% \end{macrocode}
% \end{macro}
%
% \begin{macro}{\prefix, \postfix}
% |\prefix|, |\prefixa|, |\postfix| and |\postfixa|\ednote{need prefixl and postfixl as
% well, use counters for precedences here.} are simple special cases of |\mixfixi| and
% |\mixfixa|.
% \begin{macrocode}
%<*package>
\newcommand{\prefix}[3][]%key, fn, arg
{\setkeys{mi}{#1}\prep@keys@mi\clearkeys
#2\PrecWrite\pres@lbrack% write bracket if necessary
{\edef\pres@current@precedence{\pres@pi}#3}%
\PrecWrite\pres@rbrack}
\newcommand{\postfix}[3][]%key, fn, arg
{\setkeys{mi}{#1}\prep@keys@mi\clearkeys
\PrecWrite\pres@lbrack% write bracket if necessary
{\edef\pres@current@precedence{\pres@pi}#3}%
\PrecWrite\pres@rbrack{#2}}
\newcommand{\prefixa}[4][]{\mixfixa[#1]{#2}{#3}{}{#4}}
\newcommand{\postfixa}[4][]{{#1}\mixfixa[#1]{}{#3}{#2}{#4}}
%
%<*ltxml>
DefConstructor('\prefix OptionalKeyVals:mi {}{}',
""
. ""
. ""##### need to get $cd and $name here.
. ""
. ""
.""
.""
. ""
. "#2"
. ""
. ""
."",
mode=>'inline_math');
DefConstructor('\postfix OptionalKeyVals:mi {}{}',
""
. ""
. ""##### need to get $cd and $name here.
. ""
. ""
.""
.""
. ""
. ""
. "#2"
. ""
."",
mode=>'inline_math');
%
% \end{macrocode}
% \end{macro}
%
% \begin{macro}{\infix}
% |\infix|\ednote{need infixl as well, use counters for precedences here.} is a simple
% special case of |\mixfixii|.
% \begin{macrocode}
%<*package>
\newcommand{\infix}[4][]{\mixfixii[#1]{}{#3}{#2}{#4}{}}
%
%<*ltxml>
DefMacro('\infix []{}{}{}','\mixfixii[#1]{}{#3}{#2}{#4}{}');
%
% \end{macrocode}
% \end{macro}
%
% \subsection{Associative Operators}\label{sec:impl:assoc}
%
% \begin{macro}{\@assoc}
% We are using functionality from the {\LaTeX} core packages here to iterate over the
% arguments.
% \begin{macrocode}
%<*package>
\def\@assoc#1#2#3{% precedence, function, argv
\let\@tmpop=\relax% do not print the function the first time round
\@for\@I:=#3\do{\@tmpop% print the function
% write the i-th argument with locally updated precedence
{\edef\pres@current@precedence{#1}\@I}%
\let\@tmpop=#2}}%update the function
%
% \end{macrocode}
% \end{macro}
%
% \begin{macro}{\assoc}
% With the internal macro above, associatifivity is easily specified.
% \begin{macrocode}
%\newcommand{\assoc}[3][]{\mixfixa[#1]{}{#3}{}{#2}}
%<*ltxml>
DefConstructor('\assoc OptionalKeyVals:mi {}{}',
""
. ""
. ""##### need to get $cd and $name here.
. ""
. ""
. ""
. ""
.""
.""
. ""
. ""
. ""
. "#3"
. ""
. ""
. ""
. ""
."",
mode=>'inline_math');
%
% \end{macrocode}
% \end{macro}
%
% \subsection{General Elision}\label{sec:impl:elision}
%
% \begin{macro}{\setegroup}
% The elision macros are quite simple, a group |foo| is internally represented by a
% macro |foo@egroup|, which we set by a |\gdef|.
% \begin{macrocode}
%\def\setegroup#1#2{\expandafter\def\csname #1@egroup\endcsname{#2}}
%<*ltxml>
%
% \end{macrocode}
% \end{macro}
%
% \begin{macro}{\setegroup}
% Then the elision command is picks up on this (flags an error) if the internal macro
% does not exist and prints the third argument, if the elision value threshold is above
% the elision group threshold in the paper.
% \begin{macrocode}
%<*package>
\def\elide#1#2#3{\@ifundefined{#1@egroup}%
{\def\@elevel{1000}
\PackageError{presentation}{undefined egroup #1, assuming value 1000}%
{When calling \protect\elide{#1}... the elision group #1 has be have\MessageBreak
been set by \protect\setegroup before, e.g. by \protect\setegroup{an}{1000}.}}%
{\edef\@elevel{\csname #1@egroup\endcsname}}%
\ifnum\@elevel>#2\else{#3}\fi}
%
%<*ltxml>
%
% \end{macrocode}
% \end{macro}
%
% \begin{macro}{\provideEdefault}
% The |\provideEdefault| macro sets up the context for an elision default by locally
% defining the internal macro \meta{default}|@edefault| and (if necessary) exporting it
% from the module.
% \begin{macrocode}
%<*package>
\def\provideEdefault#1#2{\expandafter\def\csname#1@edefault\endcsname{#2}
\@ifundefined{this@module}{}%
{\expandafter\g@addto@macro\this@module{\expandafter\def\csname#1@edefault\endcsname{#2}}}}
%
%<*ltxml>
%
% \end{macrocode}
% \end{macro}
%
% \begin{macro}{\setEdefault}
% The |\setEdefault| macro just redefines the internal \meta{default}|@edefault| in the
% local group
% \begin{macrocode}
%\def\setEdefault#1#2{\expandafter\def\csname #1@edfault\endcsname{#2}}
%<*ltxml>
%
% \end{macrocode}
% \end{macro}
%
% \begin{macro}{\fromEcontext}
% The |\fromEcontext| macro just calls internal \meta{default}|@edefault| macro.
% \begin{macrocode}
%\def\fromEcontext#1{\csname #1@edefault\endcsname}
%<*ltxml>
%
% \end{macrocode}
% \end{macro}
%
% \subsection{Variable Names}
%
% \begin{macro}{\vname}
% a name macro\ednote{add some documentation here}\ednote{maybe this should go into the
% structuresharing package?}
% \begin{macrocode}
%<*package>
\def\MOD@namedef#1{\expandafter\def\csname MOD@name@#1\endcsname}
\def\MOD@name[#1]#2{#2\def\@test{#2}\ifx\@test\empty\else\MOD@namedef{#1}{#2}\fi}
\def\vname{\@ifnextchar[\MOD@name{\MOD@name[]}}
%
%<*ltxml>
%
% \end{macrocode}
% \end{macro}
% \begin{macro}{\vnameref}
% \begin{macrocode}
%\def\vnref#1{\csname MOD@name@#1\endcsname}
% \end{macrocode}
% \end{macro}
%
% \subsection{Hyperlinking}
%
% this only works for internal links\ednote{actually not at all!}
% \begin{macrocode}
%\def\hrcr#1#2{\hyperlink{#1@\mod@id}{#2}}
%<*ltxml>
%
% \end{macrocode}
% the following would work for external ones, if we could know the proper extension.
% except that we should use |\char????| instead of |\#|, so that it parses
% |\def\hrcr#1#2{\href{\hr@baseURL\jobname.\hr@EXT\##1@\mod@id}{#2}}|
% where |\hr@baseURL| and |\hr@EXT| are defined in the file itself (they will need to go into
% the |SMS| file as well)
%
% \subsection{Finale}
%
% Finally, we need to terminate the file with a success mark for perl.
% \begin{macrocode}
%1;
% \end{macrocode}
% \Finale
\endinput
% LocalWords: dtx CPERL RequirePackage keyval lbrack rbrack DefKeyVal omdoc
% LocalWords: Semiverbatim DefConstructor OptionalKeyVals pmml ltx XMath mii
% LocalWords: inline pii miii piii KeyVal egroup namedef