% \iffalse meta-comment % % File: siunitx-unit.dtx Copyright (C) 2014-2023 Joseph Wright % % It may be distributed and/or modified under the conditions of the % LaTeX Project Public License (LPPL), either version 1.3c of this % license or (at your option) any later version. The latest version % of this license is in the file % % https://www.latex-project.org/lppl.txt % % This file is part of the "siunitx bundle" (The Work in LPPL) % and all files in that bundle must be distributed together. % % The released version of this bundle is available from CTAN. % % ----------------------------------------------------------------------- % % The development version of the bundle can be found at % % https://github.com/josephwright/siunitx % % for those people who are interested. % % ----------------------------------------------------------------------- % %<*driver> \documentclass{l3doc} % Additional commands needed in this source \ExplSyntaxOn \makeatletter \NewDocumentCommand \acro { m } { \textsc { \exp_args:NV \tl_if_head_eq_charcode:nNTF \f@series { m } { \text_lowercase:n } { \use:n } {#1} } } \makeatother \ExplSyntaxOff \ProvideDocumentCommand\email{m}{\href{mailto:#1}{\nolinkurl{#1}}} \ProvideDocumentCommand\foreign{m}{\textit{#1}} % The next line is needed so that \GetFileInfo will be able to pick up % version data \usepackage{siunitx} \begin{document} \DocInput{\jobname.dtx} \end{document} % % \fi % % \GetFileInfo{siunitx.sty} % % \title{^^A % \pkg{siunitx-unit} -- Parsing and formatting units^^A % \thanks{This file describes \fileversion, % last revised \filedate.}^^A % } % % \author{^^A % Joseph Wright^^A % \thanks{^^A % E-mail: % \email{joseph.wright@morningstar2.co.uk}^^A % }^^A % } % % \date{Released \filedate} % % \maketitle % % \begin{documentation} % % This submodule is dedicated to formatting physical units. The main function, % \cs{siunitx_unit_format:nN}, takes user input specifying physical units and % converts it into a formatted token list suitable for typesetting in math % mode. While the formatter will deal correctly with \enquote{literal} user % input, the key strength of the module is providing a method to describe % physical units in a \enquote{symbolic} manner. The output format of these % symbolic units can then be controlled by a number of key--value options % made available by the module. % % A small number of \LaTeXe{} math mode commands are assumed to be available % as part of the formatted output. The \cs{mathchoice} command % (normally the \TeX{} primitive) is needed when using different settings % for inline and siplay |per-mode|. The commands \cs{frac}, \cs{mathrm}, % \cs{mbox}, \verb*|\ | and \cs{,} are used by the standard module settings. % For the display of colored (highlighted) and cancelled units, the commands % \cs{textcolor} and \cs{cancel} are assumed to be available. % % \section{Formatting units} % % \begin{function}{\siunitx_unit_format:nN, \siunitx_unit_format:VN} % \begin{syntax} % \cs{siunitx_unit_format:nN} \Arg{units} \meta{tl~var} % \end{syntax} % This function converts the input \meta{units} into a processed % \meta{tl~var} which can then be inserted in math mode to typeset the % material. Where the \meta{units} are given in symbolic form, described % elsewhere, this formatting process takes place in two stages: the % \meta{units} are parsed into a structured form before the generation % of the appropriate output form based on the active settings. When the % \meta{units} are given as literals, processing is minimal: the % characters |.| and |~| are converted to unit products (boundaries). % In both cases, the result is a series of tokens intended to be typeset % in math mode with appropriate choice of font for typesetting of the % textual parts. % % For example, % \begin{verbatim} % \siunitx_unit_format:nN { \kilo \metre \per \second } \l_tmpa_tl % \end{verbatim} % will, with standard settings, result in \cs{l_tmpa_tl} being set to % \begin{verbatim} % \mathrm{km}\,\mathrm{s}^{-1} % \end{verbatim} % \end{function} % % \begin{function}{\siunitx_unit_format_extract_prefixes:nNN} % \begin{syntax} % \cs{siunitx_unit_format_extract_prefixes:nNN} \Arg{units} \meta{tl~var} \meta{fp~var} % \end{syntax} % This function formats the \meta{units} in the same way as described for % \cs{siunitx_unit_format:nN}. When the input is given in symbolic form, % any decimal unit prefixes will be extracted and the overall power of % ten that these represent will be stored in the \meta{fp~var}. % % For example, % \begin{verbatim} % \siunitx_unit_format_extract_prefixes:nNN { \kilo \metre \per \second } % \l_tmpa_tl \l_tmpa_fp % \end{verbatim} % will, with standard settings, result in \cs{l_tmpa_tl} being set to % \begin{verbatim} % \mathrm{m}\,\mathrm{s}^{-1} % \end{verbatim} % with \cs{l_tmpa_fp} taking value~$3$. Note that the latter is a floating % point variable: it is possible for non-integer values to be obtained here. % \end{function} % % \begin{function}{\siunitx_unit_format_combine_exponent:nnN} % \begin{syntax} % \cs{siunitx_unit_format_combine_exponent:nnN} \Arg{units} \Arg{exponent} \meta{tl~var} % \end{syntax} % This function formats the \meta{units} in the same way as described for % \cs{siunitx_unit_format:nN}. The \meta{exponent} is combined with any % prefix for the \emph{first} unit of the \meta{units}, and an updated % prefix is introduced. % % For example, % \begin{verbatim} % \siunitx_unit_format_combine_exponent:nnN { \metre \per \second } % { 3 } \l_tmpa_tl % \end{verbatim} % will, with standard settings, result in \cs{l_tmpa_tl} being set to % \begin{verbatim} % \mathrm{km}\,\mathrm{s}^{-1} % \end{verbatim} % \end{function} % % \begin{function} % { % \siunitx_unit_format_multiply:nnN , % \siunitx_unit_format_multiply_extract_prefixes:nnNN , % \siunitx_unit_format_multiply_combine_exponent:nnnN % } % \begin{syntax} % \cs{siunitx_unit_format_multiply:nnN} \Arg{units} \Arg{factor} \meta{tl~var} % \cs{siunitx_unit_format_multiply_extract_prefixes:nnNN} % \Arg{units} \Arg{factor} \meta{tl~var} \meta{fp~var} % \cs{siunitx_unit_format_multiply_combine_exponent:nnnN} % \Arg{units} \Arg{factor} \Arg{exponent} \meta{tl~var} % \end{syntax} % These function formats the \meta{units} in the same way as described for % \cs{siunitx_unit_format:nN}. The units are multiplied by the \meta{factor}, % and further processing takes place as previously described. % % For example, % \begin{verbatim} % \siunitx_unit_format_multiply:nnN { \metre \per \second } % { 3 } \l_tmpa_tl % \end{verbatim} % will, with standard settings, result in \cs{l_tmpa_tl} being set to % \begin{verbatim} % \mathrm{km}^{3}\,\mathrm{s}^{-3} % \end{verbatim} % \end{function} % % \section{Defining symbolic units} % % \begin{function}{\siunitx_declare_prefix:Nnn, \siunitx_declare_prefix:Nnx} % \begin{syntax} % \cs{siunitx_declare_prefix:Nnn} \meta{prefix} \Arg{power} \Arg{symbol} % \end{syntax} % Defines a symbolic \meta{prefix} (which should be a control sequence % such as |\kilo|) to be converted by the parser to the \meta{symbol}. % The latter should consist of literal content (\foreign{e.g.}~|k|). % In literal mode the \meta{symbol} will be typeset directly. The prefix % should represent an integer \meta{power} of $10$, and this information % may be used to convert from one or more \meta{prefix} symbols to an % overall power applying to a unit. See also % \cs{siunitx_declare_prefix:Nn}. % \end{function} % % \begin{function}{\siunitx_declare_prefix:Nn} % \begin{syntax} % \cs{siunitx_declare_prefix:Nn} \meta{prefix} \Arg{symbol} % \end{syntax} % Defines a symbolic \meta{prefix} (which should be a control sequence % such as |\kilo|) to be converted by the parser to the \meta{symbol}. % The latter should consist of literal content (\foreign{e.g.}~|k|). % In literal mode the \meta{symbol} will be typeset directly. In contrast % to \cs{siunitx_declare_prefix:Nnn}, there is no assumption about the % mathematical nature of the \meta{prefix}, \foreign{i.e.}~the prefix may % represent a power of any base. As a result, no conversion of the % \meta{prefix} to a numerical power will be possible. % \end{function} % % \begin{function}{\siunitx_declare_power:NNn} % \begin{syntax} % \cs{siunitx_declare_power:NNn} \meta{pre-power} \meta{post-power} \Arg{value} % \end{syntax} % Defines \emph{two} symbolic \meta{powers} (which should be control % sequences such as |\squared|) to be converted by the parser to the % \meta{value}. The latter should be an integer or floating point number in % the format defined for \pkg{l3fp}. Powers may precede a unit or be give % after it: both forms are declared at once, as indicated by the argument % naming. In literal mode, the \meta{value} will be applied as % a superscript to either the next token in the input (for the % \meta{pre-power}) or appended to the previously-typeset material % (for the \meta{post-power}). % \end{function} % % \begin{function}{\siunitx_declare_qualifier:Nn} % \begin{syntax} % \cs{siunitx_declare_qualifier:Nn} \meta{qualifier} \Arg{meaning} % \end{syntax} % Defines a symbolic \meta{qualifier} (which should be a control sequence % such as |\catalyst|) to be converted by the parser to the \meta{meaning}. % The latter should consist of literal content (\foreign{e.g.}~|cat|). In % literal mode the \meta{meaning} will be typeset following a space after % the unit to which it applies. % \end{function} % % \begin{function} % { % \siunitx_declare_unit:Nn, % \siunitx_declare_unit:Nx, % \siunitx_declare_unit:Nnn, % \siunitx_declare_unit:Nxn % } % \begin{syntax} % \cs{siunitx_declare_unit:Nn} \meta{unit} \Arg{meaning} % \cs{siunitx_declare_unit:Nnn} \meta{unit} \Arg{meaning} \Arg{options} % \end{syntax} % Defines a symbolic \meta{unit} (which should be a control sequence % such as |\kilogram|) to be converted by the parser to the \meta{meaning}. % The latter may consist of literal content (\foreign{e.g.}~|kg|), other % symbolic unit commands (\foreign{e.g.}~|\kilo\gram|) or a mixture of the two. % In literal mode the \meta{meaning} will be typeset directly. The version % taking an \meta{options} argument may be used to support per-unit % options: these are applied at the top level or using % \cs{siunitx_unit_options_apply:n}. % \end{function} % % \begin{variable}{\l_siunitx_unit_font_tl} % The font function which is applied to the text of units when constructing % formatted units: set by |font-command|. % \end{variable} % % \begin{variable}{\l_siunitx_unit_fraction_tl} % The fraction function which is applied whne constructing fractional units: % set by |fraction-command|. % \end{variable} % % \begin{variable}{\l_siunitx_unit_symbolic_seq} % This sequence contains all of the symbolic names defined: % these will be in the form of control sequences such as |\kilogram|. % The order of the sequence is unimportant. This includes prefixes and % powers as well as units themselves. % \end{variable} % % \begin{variable}{\l_siunitx_unit_seq} % This sequence contains all of the symbolic \emph{unit} names defined: % these will be in the form of control sequences such as |\kilogram|. % In contrast to \cs{l_siunitx_unit_symbolic_seq}, it \emph{only} holds % units themselves % \end{variable} % % \section{Per-unit options} % % \begin{function}{\siunitx_unit_options_apply:n} % \begin{syntax} % \cs{siunitx_unit_options_apply:n} \meta{unit(s)} % \end{syntax} % Applies any unit-specific options set up using % \cs{siunitx_declare_unit:Nnn}. This allows there use outside of unit % formatting, for example to influence spacing in quantities. The options % are applied only once at a given group level, which allows for user % over-ride \foreign{via} |\keys_set:nn { siunitx } { ... }|. % \end{function} % % \section{Units in (PDF) strings} % % \begin{function}{\siunitx_unit_pdfstring_context:} % \begin{syntax} % \cs{group_begin:} % \cs{siunitx_unit_pdfstring_context:} % \meta{Expansion context} \meta{units} % \cs{group_end:} % \end{syntax} % Sets symbol unit macros to generate text directly. This is needed in % expansion contexts where units must be converted to simple text. This % function is itself not expandable, so must be using within a % surrounding group as show in the example. % \end{function} % % \section{Pre-defined symbolic unit components} % % The unit parser is defined to recognise a number of pre-defined units, % prefixes and powers, and also interpret a small selection of % \enquote{generic} symbolic parts. % % Broadly, the pre-defined units are those defined by the \textsc{bipm} in the % documentation for the \emph{International System of Units} % (\acro{SI})~\cite{BIPM}. As far as possible, the names given to the command % names for units are those used by the \acro{bipm}, omitting spaces and using % only \acro{ASCII} characters. The standard symbols are also taken from the % same documentation. In the following documentation, the order of the % description of units broadly follows the \acro{SI}~Brochure. % % \begin{function} % { % \kilogram , % \metre , % \meter , % \mole , % \kelvin , % \candela , % \second , % \ampere % } % The base units as defined in the \acro{SI} Brochure~\cite{base-units}. % Notice that \cs{meter} is defined as an alias for \cs{metre} as the former % spelling is common in the US (although the latter is the official spelling). % \end{function} % % \begin{function}{\gram} % The base unit \cs{kilogram} is defined using an \acro{SI} prefix: as such % the (derived) unit \cs{gram} is required by the module to correctly produce % output for the \cs{kilogram}. % \end{function} % % \begin{function} % { % \quecto , % \ronto , % \yocto , % \zepto , % \atto , % \femto , % \pico , % \nano , % \micro , % \milli , % \centi , % \deci , % \deca , % \deka , % \hecto , % \kilo , % \mega , % \giga , % \tera , % \peta , % \exa , % \zetta , % \yotta , % \ronna , % \quetta % } % Prefixes, all of which are integer powers of $10$: the powers are stored % internally by the module and can be used for conversion from prefixes to % their numerical equivalent. These prefixes are documented in Section~3.1 % of the \acro{SI}~Brochure. % % Note that the \cs{kilo} prefix is required to % define the base \cs{kilogram} unit. Also note the two spellings available % for \cs{deca}/\cs{deka}. % \end{function} % % \begin{function} % { % \becquerel , % \degreeCelsius , % \coulomb , % \farad , % \gray , % \hertz , % \henry , % \joule , % \katal , % \lumen , % \lux , % \newton , % \ohm , % \pascal , % \radian , % \siemens , % \sievert , % \steradian , % \tesla , % \volt , % \watt , % \weber % } % The defined \acro{SI}~units with defined names and symbols, as given in % Table~4 of the \acro{SI}~Brochure. Notice that the names % of the units are lower case with the exception of \cs{degreeCelsius}, and % that this unit name includes \enquote{degree}. % \end{function} % % \begin{function} % { % \astronomicalunit , % \bel , % \dalton , % \day , % \decibel , % \electronvolt , % \hectare , % \hour , % \litre , % \liter , % \neper , % \minute , % \tonne % } % Units accepted for use with the \acro{SI}: here \cs{minute} is a unit of % time not of plane angle. These units are taken from Table~8 of the % \acro{SI}~Brochure. % % For the unit \cs{litre}, both |l| and |L| are listed % as acceptable symbols: the latter is the standard setting of the module. % The alternative spelling \cs{liter} is also given for this unit for US % users (as with \cs{metre}, the official spelling is \enquote{re}). % \end{function} % % \begin{function} % { % \arcminute , % \arcsecond , % \degree % } % Units for plane angles accepted for use with the \acro{SI}: to avoid a % clash with units for time, here \cs{arcminute} and \cs{arcsecond} are % used in place of \cs{minute} and \cs{second}. These units are taken from % Table~8 of the \acro{SI}~Brochure. % \end{function} % % \begin{function}{\percent} % The mathematical concept of percent, usable with the \acro{SI} as detailed % in Section~5.4.7 of the \acro{SI}~Brochure. % \end{function} % % \begin{function}{\square, \cubic} % \begin{syntax} % \cs{square} \meta{prefix} \meta{unit} % \cs{cubic} \meta{prefix} \meta{unit} % \end{syntax} % Pre-defined unit powers which apply to the next \meta{prefix}/\meta{unit} % combination. % \end{function} % % \begin{function}{\squared, \cubed} % \begin{syntax} % \meta{prefix} \meta{unit} \cs{squared} % \meta{prefix} \meta{unit} \cs{cubed} % \end{syntax} % Pre-defined unit powers which apply to the preceding % \meta{prefix}/\meta{unit} combination. % \end{function} % % \begin{function}{\per} % \begin{syntax} % \cs{per} \meta{prefix} \meta{unit} \meta{power} % \end{syntax} % Indicates that the next \meta{prefix}/\meta{unit}/\meta{power} combination % is reciprocal, \foreign{i.e.}~raises it to the power $-1$. This symbolic % representation may be applied in addition to a \cs{power}, and will work % correctly if the \cs{power} itself is negative. In literal mode \cs{per} % will print a slash (\enquote{$/$}). % \end{function} % % \begin{function}{\cancel} % \begin{syntax} % \cs{cancel} \meta{prefix} \meta{unit} \meta{power} % \end{syntax} % Indicates that the next \meta{prefix}/\meta{unit}/\meta{power} combination % should be \enquote{cancelled out}. In the parsed output, the entire unit % combination will be given as the argument to a function \cs{cancel}, which % is assumed to be available at a higher level. In literal mode, the same % higher-level \cs{cancel} will be applied to the next token. It is the % responsibility of the calling code to provide an appropriate definition % for \cs{cancel} outside of the scope of the unit parser. % \end{function} % % \begin{function}{\highlight} % \begin{syntax} % \cs{highlight} \Arg{color} \meta{prefix} \meta{unit} \meta{power} % \end{syntax} % Indicates that the next \meta{prefix}/\meta{unit}/\meta{power} combination % should be highlighted in the specified \meta{color}. In the parsed output, % the entire unit combination will be given as the argument to a function % \cs{textcolor}, which is assumed to be available at a higher level. In % literal mode, the same higher-level \cs{textcolor} will be applied to the % next token. It is the responsibility of the calling code to provide an % appropriate definition for \cs{textcolor} outside of the scope of the unit % parser. % \end{function} % % \begin{function}{\of} % \begin{syntax} % \meta{prefix} \meta{unit} \meta{power} \cs{of} \Arg{qualifier} % \end{syntax} % Indicates that the \meta{qualifier} applies to the current % \meta{prefix}/\meta{unit}/\meta{power} combination. In parsed mode, the % display of the result will depend upon module options. In literal mode, % the \meta{qualifier} will be printed in parentheses following the preceding % \meta{unit} and a full-width space. % \end{function} % % \begin{function}{\raiseto, \tothe} % \begin{syntax} % \cs{raiseto} \Arg{power} \meta{prefix} \meta{unit} % \meta{prefix} \meta{unit} \cs{tothe} \Arg{power} % \end{syntax} % Indicates that the \meta{power} applies to the current % \meta{prefix}/\meta{unit} combination. As shown, \cs{raiseto} applies to % the next \meta{unit} whereas \cs{tothe} applies to the preceding unit. In % literal mode the \cs{power} will be printed as a superscript attached to % the next token (\cs{raiseto}) or preceding token (\cs{tothe}) as % appropriate. % \end{function} % % \subsection{Key--value options} % % The options defined by this submodule are available within the \pkg{l3keys} % |siunitx| tree. % % \begin{function}{bracket-unit-denominator} % \begin{syntax} % |bracket-unit-denominator| = |true|\verb"|"|false| % \end{syntax} % Switch to determine whether brackets are added to the denominator part of % a unit when printed using inline fractional form (with |per-mode| as % |repeated-symbol| or |symbol|). The standard setting is |true|. % \end{function} % % \begin{function}{extract-mass-in-kilograms} % \begin{syntax} % |extract-mass-in-kilograms| = |true|\verb"|"|false| % \end{syntax} % Determines whether prefix extraction treats kilograms as a base unit; when % set |false|, grams are used. The standard setting is |true|. % \end{function} % % \begin{function}{forbid-literal-units} % \begin{syntax} % |forbid-literal-units| = |true|\verb"|"|false| % \end{syntax} % Switch which determines if literal units are allowed when parsing is % active; does not apply when |parse-units| is |false|. % \end{function} % % \begin{function}{fraction-command} % \begin{syntax} % |fraction-command| = \meta{command} % \end{syntax} % Command used to create fractional output when |per-mode| is set to % |fraction|. The standard setting is |\frac|. % \end{function} % % \begin{function}{inter-unit-product} % \begin{syntax} % |inter-unit-product| = \meta{separator} % \end{syntax} % Inserted between unit combinations in parsed mode, and used to replace % |.| and |~| in literal mode. The standard setting is |\,|. % \end{function} % % \begin{function}{parse-units} % \begin{syntax} % |parse-units| = |true|\verb"|"|false| % \end{syntax} % Determines whether parsing of unit symbols is attempted or literal % mode is used directly. The standard setting is |true|. % \end{function} % % \begin{function}{per-mode, inline-per-mode, display-per-mode} % \begin{syntax} % |per-mode| = |fraction|\verb"|"|power|\verb"|"|power-positive-first|\verb"|"|repeated-symbol|\verb"|"|single-symbol|\verb"|"|symbol| % \end{syntax} % Selects how the negative powers (\cs{per}) are formatted: a choice from % the options |fraction|, |power|, |power-positive-first|, |repeated-symbol|, % |single-symbol| and |symbol|. The option |fraction| % generates fractional output when appropriate using the command specified by % the |fraction-command| option. The setting |power| uses reciprocal powers % leaving the units in the order of input, while |power-positive-first| uses % the same display format but sorts units such that the positive powers % come before negative ones. The |symbol| setting uses a symbol (specified % by |per-symbol|) between positive and negative powers, while % |repeated-symbol| uses the same symbol but places it before \emph{every} % unit with a negative power (this is mathematically \enquote{wrong} but % often seen in real work). The option |single-symbol| will use a symbol if % exactly one is required (\foreign{i.e.}~with a single negative power), and % will otherwise use powers. The standard setting is |power|. % % The |inline-...| and |display-...| settings take the same options and work % in exactly the same way, but are restricted in where they apply. The % |display| version only applies in display math contexts, and the |inline| % version applies in all others. % \end{function} % % \begin{function}{per-symbol} % \begin{syntax} % |per-symbol| = \meta{symbol} % \end{syntax} % Specifies the symbol to be used to denote negative powers when the option % |per-mode| is set to |repeated-symbol| or |symbol|. The standard setting % is |/|. % \end{function} % % \begin{function}{per-symbol-script-correction} % \begin{syntax} % |per-symbol-script-correction| = \meta{insert} % \end{syntax} % Specifies the tokens used to correct spacing when the symbol set by % |per-symbol| is immediately preceded by a superscript power. The % standard setting is |\!|. % \end{function} % % \begin{function}{power-half-as-sqrt} % \begin{syntax} % |power-half-as-sqrt| = |true|\verb"|"|false| % \end{syntax} % Used to determine whether a power of exactly half is converted to % \cs{sqrt} in the output. The standard setting is |false|. % \end{function} % % \begin{function}{qualifier-mode} % \begin{syntax} % |qualifier-mode| = |bracket|\verb"|"|combine|\verb"|"|phrase|\verb"|"|subscript| % \end{syntax} % Selects how qualifiers are formatted: a choice from the options |bracket|, % |combine|, |phrase| and |subscript|. The option |bracket| wraps the qualifier % in parenthesis, |combine| joins the qualifier with the unit directly, |phrase| % joins the material using |qualifier-phrase| as a link, and % |subscript| formats the qualifier as a subscript. The standard setting is % |subscript|. % \end{function} % % \begin{function}{qualifier-phrase} % \begin{syntax} % |qualifier-phrase| = \meta{phrase} % \end{syntax} % Defines the \meta{phrase} used when |qualifier-mode| is set to |phrase|. % \end{function} % % \begin{function}{sticky-per} % \begin{syntax} % |sticky-per| = |true|\verb"|"|false| % \end{syntax} % Used to determine whether \cs{per} should be applied one a unit-by-unit % basis (when |false|) or should apply to all following units % (when |true|). The latter mode is somewhat akin conceptually to the % \TeX{} \cs{over} primitive. The standard setting is |false|. % \end{function} % % \begin{function}{unit-font-command} % \begin{syntax} % |unit-font-command| = \meta{command} % \end{syntax} % Command applied to text during output of units: should be command usable % in math mode for font selection. Notice that in a typical unit this does % not (necessarily) apply to all output, for example powers or brackets. % The standard setting is |\mathrm|. % \end{function} % % \end{documentation} % % \begin{implementation} % % \section{\pkg{siunitx-unit} implementation} % % Start the \pkg{DocStrip} guards. % \begin{macrocode} %<*package> % \end{macrocode} % % Identify the internal prefix (\LaTeX3 \pkg{DocStrip} convention): only % internal material in this \emph{submodule} should be used directly. % \begin{macrocode} %<@@=siunitx_unit> % \end{macrocode} % % \subsection{Initial set up} % % The mechanisms defined here need a few variables to exist and to be % correctly set: these don't belong to one subsection and so are created % in a small general block. % % Variants not provided by \pkg{expl3}. % \begin{macrocode} \cs_generate_variant:Nn \tl_replace_all:Nnn { NnV } % \end{macrocode} % % \begin{variable}{\l_@@_tmp_bool} % \begin{variable}{\l_@@_tmp_fp} % \begin{variable}{\l_@@_tmp_int} % \begin{variable}{\l_@@_tmp_tl} % Scratch space. % \begin{macrocode} \bool_new:N \l_@@_tmp_bool \fp_new:N \l_@@_tmp_fp \int_new:N \l_@@_tmp_int \tl_new:N \l_@@_tmp_tl % \end{macrocode} % \end{variable} % \end{variable} % \end{variable} % \end{variable} % % \begin{variable}{\c_@@_math_subscript_tl} % Useful tokens with awkward category codes. % \begin{macrocode} \tl_const:Nx \c_@@_math_subscript_tl { \char_generate:nn { `\_ } { 8 } } % \end{macrocode} % \end{variable} % % \begin{variable}{\l_@@_parsing_bool} % A boolean is used to indicate when the symbolic unit functions should % produce symbolic or literal output. This is used when the symbolic names % are used along with literal input, and ensures that there is a sensible % fall-back for these cases. % \begin{macrocode} \bool_new:N \l_@@_parsing_bool % \end{macrocode} % \end{variable} % % \begin{variable}{\l_@@_test_bool} % A switch used to indicate that the code is testing the input to find % if there is any typeset output from individual unit macros. This is needed % to allow the \enquote{base} macros to be found, and also to pick up the % difference between symbolic and literal unit input. % \begin{macrocode} \bool_new:N \l_@@_test_bool % \end{macrocode} % \end{variable} % % \begin{macro}{\@@_if_symbolic:nTF} % The test for symbolic units is needed in two places. First, there is the % case of \enquote{pre-parsing} input to check if it can be parsed. Second, % when parsing there is a need to check if the current unit is built up % from others (symbolic) or is defined in terms of some literals. To do this, % the approach used is to set all of the symbolic unit commands expandable % and to do nothing, with the few special cases handled manually. We expand % the input here twice: this handles the case where there is a mapping or % similar in |#1| which returns its result in \cs{exp_not:n}. % \begin{macrocode} \prg_new_protected_conditional:Npnn \@@_if_symbolic:n #1 { TF } { \group_begin: \bool_set_true:N \l_@@_test_bool \protected@edef \l_@@_tmp_tl {#1} \protected@edef \l_@@_tmp_tl { \l_@@_tmp_tl } \exp_args:NNV \group_end: \tl_if_blank:nTF \l_@@_tmp_tl { \prg_return_true: } { \prg_return_false: } } % \end{macrocode} % \end{macro} % % \subsection{Defining symbolic unit} % % Unit macros and related support are created here. These exist only within % the scope of the unit processor code, thus not polluting document-level % namespace and allowing overlap with other areas in the case of useful short % names (for example \cs{pm}). Setting up the mechanisms to allow this requires % a few additional steps on top of simply saving the data given by the user % in creating the unit. % % \begin{variable}{\l_siunitx_unit_symbolic_seq} % A list of all of the symbolic units, \foreign{etc.}, set up. This is needed % to allow the symbolic names to be defined within the scope of the unit % parser but not elsewhere using simple mappings. % \begin{macrocode} \seq_new:N \l_siunitx_unit_symbolic_seq % \end{macrocode} % \end{variable} % % \begin{variable}{\l_siunitx_unit_seq} % A second list featuring only the units themselves. % \begin{macrocode} \seq_new:N \l_siunitx_unit_seq % \end{macrocode} % \end{variable} % % \begin{macro}{\@@_set_symbolic:Nnn} % \begin{macro}{\@@_set_symbolic:Npnn} % \begin{macro}{\@@_set_symbolic:Nnnn} % The majority of the work for saving each symbolic definition is the same % irrespective of the item being defined (unit, prefix, power, qualifier). % This is therefore all carried out in a single internal function which % does the common tasks. The three arguments here are the symbolic macro % name, the literal output and the code to insert when doing full unit % parsing. To allow for the \enquote{special cases} (where arguments are % required) the entire mechanism is set up in a two-part fashion allowing % for flexibility at the slight cost of additional functions. % % Importantly, notice that the unit macros are declared as expandable. This % is required so that literals can be correctly converted into a token list % of material which does not depend on local redefinitions for the unit % macros. That is required so that the unit formatting system can be grouped. % \begin{macrocode} \cs_new_protected:Npn \@@_set_symbolic:Nnn #1 { \@@_set_symbolic:Nnnn #1 { } } \cs_new_protected:Npn \@@_set_symbolic:Npnn #1#2# { \@@_set_symbolic:Nnnn #1 {#2} } \cs_new_protected:Npn \@@_set_symbolic:Nnnn #1#2#3#4 { \seq_put_right:Nn \l_siunitx_unit_symbolic_seq {#1} \cs_set:cpn { @@_ \token_to_str:N #1 :w } #2 { \bool_if:NF \l_@@_test_bool { \bool_if:NTF \l_@@_parsing_bool {#4} {#3} } } } % \end{macrocode} % \end{macro} % \end{macro} % \end{macro} % % \begin{macro}{\siunitx_declare_power:NNn} % Powers can come either before or after the unit. As they always come % (logically) in matching, we handle this by declaring two commands, % and setting each up separately. % \begin{macrocode} \cs_new_protected:Npn \siunitx_declare_power:NNn #1#2#3 { \@@_set_symbolic:Nnn #1 { \@@_literal_power:nn {#3} } { \@@_parse_power:nnN {#1} {#3} \c_true_bool } \@@_set_symbolic:Nnn #2 { ^ {#3} } { \@@_parse_power:nnN {#2} {#3} \c_false_bool } } % \end{macrocode} % \end{macro} % % \begin{macro}{\siunitx_declare_prefix:Nn} % \begin{macro}{\siunitx_declare_prefix:Nnn, \siunitx_declare_prefix:Nnx} % \begin{variable} % {\l_@@_prefixes_forward_prop, \l_@@_prefixes_reverse_prop} % For prefixes there are a couple of options. In all cases, the basic % requirement is to set up to parse the prefix using the appropriate % internal function. For prefixes which are powers of $10$, there is also % the need to be able to do conversion to/from the numerical equivalent. % That is handled using two properly lists which can be used to supply % the conversion data later. % \begin{macrocode} \cs_new_protected:Npn \siunitx_declare_prefix:Nn #1#2 { \@@_set_symbolic:Nnn #1 {#2} { \@@_parse_prefix:Nn #1 {#2} } } \cs_new_protected:Npn \siunitx_declare_prefix:Nnn #1#2#3 { \siunitx_declare_prefix:Nn #1 {#3} \prop_put:Nnn \l_@@_prefixes_forward_prop {#3} {#2} \prop_put:Nnn \l_@@_prefixes_reverse_prop {#2} {#3} } \cs_generate_variant:Nn \siunitx_declare_prefix:Nnn { Nnx } \prop_new:N \l_@@_prefixes_forward_prop \prop_new:N \l_@@_prefixes_reverse_prop % \end{macrocode} % \end{variable} % \end{macro} % \end{macro} % % \begin{macro}{\siunitx_declare_qualifier:Nn} % Qualifiers are relatively easy to handle: nothing to do other than save % the input appropriately. % \begin{macrocode} \cs_new_protected:Npn \siunitx_declare_qualifier:Nn #1#2 { \@@_set_symbolic:Nnn #1 { ~ ( #2 ) } { \@@_parse_qualifier:nn {#1} {#2} } } % \end{macrocode} % \end{macro} % % \begin{macro}{\siunitx_declare_unit:Nn, \siunitx_declare_unit:Nx} % \begin{macro}{\siunitx_declare_unit:Nnn, \siunitx_declare_unit:Nxn} % For the unit parsing, allowing for variations in definition order requires % that a test is made for the output of each unit at point of use. % \begin{macrocode} \cs_new_protected:Npn \siunitx_declare_unit:Nn #1#2 { \siunitx_declare_unit:Nnn #1 {#2} { } } \cs_generate_variant:Nn \siunitx_declare_unit:Nn { Nx } \cs_new_protected:Npn \siunitx_declare_unit:Nnn #1#2#3 { \seq_put_right:Nn \l_siunitx_unit_seq {#1} \@@_set_symbolic:Nnn #1 {#2} { \@@_if_symbolic:nTF {#2} {#2} { \@@_parse_unit:Nn #1 {#2} } } \tl_clear_new:c { l_@@_options_ \token_to_str:N #1 _tl } \tl_if_empty:nF {#3} { \tl_set:cn { l_@@_options_ \token_to_str:N #1 _tl } {#3} } } \cs_generate_variant:Nn \siunitx_declare_unit:Nnn { Nx } % \end{macrocode} % \end{macro} % \end{macro} % % \subsection{Applying unit options} % % \begin{variable}{\l_@@_options_bool} % \begin{macrocode} \bool_new:N \l_@@_options_bool % \end{macrocode} % \end{variable} % % \begin{macro}{\siunitx_unit_options_apply:n} % Options apply only if they have not already been set at this group % level. % \begin{macrocode} \cs_new_protected:Npn \siunitx_unit_options_apply:n #1 { \bool_if:NF \l_@@_options_bool { \tl_if_single_token:nT {#1} { \tl_if_exist:cT { l_@@_options_ \token_to_str:N #1 _tl } { \keys_set:nv { siunitx } { l_@@_options_ \token_to_str:N #1 _tl } } } } \bool_set_true:N \l_@@_options_bool } % \end{macrocode} % \end{macro} % % \subsection{Non-standard symbolic units} % % A few of the symbolic units require non-standard definitions: these are % created here. They all use parts of the more general code but have particular % requirements which can only be addressed by hand. Some of these could in % principle be used in place of the dedicated definitions above, but at point % of use that would then require additional expansions for each unit parsed: % as the macro names would still be needed, this does not offer any real % benefits. % % \begin{macro}{\per} % The \cs{per} symbolic unit is a bit special: it has a mechanism entirely % different from everything else, so has to be set up by hand. In literal % mode it is represented by a very simple symbol! % \begin{macrocode} \@@_set_symbolic:Nnn \per { / } { \@@_parse_per: } % \end{macrocode} % \end{macro} % % \begin{macro}{\cancel} % \begin{macro}{\highlight} % The two special cases, \cs{cancel} and \cs{highlight}, are easy to deal % with when parsing. When not parsing, a precaution is taken to ensure that % the user level equivalents always get a braced argument. % \begin{macrocode} \@@_set_symbolic:Npnn \cancel { } { \@@_parse_special:n { \cancel } } \@@_set_symbolic:Npnn \highlight #1 { \@@_literal_special:nN { \textcolor {#1} } } { \@@_parse_special:n { \textcolor {#1} } } % \end{macrocode} % \end{macro} % \end{macro} % % \begin{macro}{\of} % The generic qualifier is simply the same as the dedicated ones except for % needing to grab an argument. % \begin{macrocode} \@@_set_symbolic:Npnn \of #1 { \ ( #1 ) } { \@@_parse_qualifier:nn { \of {#1} } {#1} } % \end{macrocode} % \end{macro} % % \begin{macro}{\raiseto, \tothe} % Generic versions of the pre-defined power macros. These require an % argument and so cannot be handled using the general approach. Other than % that, the code here is very similar to that in % \cs{siunitx_unit_power_set:NnN}. % \begin{macrocode} \@@_set_symbolic:Npnn \raiseto #1 { \@@_literal_power:nn {#1} } { \@@_parse_power:nnN { \raiseto {#1} } {#1} \c_true_bool } \@@_set_symbolic:Npnn \tothe #1 { ^ {#1} } { \@@_parse_power:nnN { \tothe {#1} } {#1} \c_false_bool } % \end{macrocode} % \end{macro} % % \subsection{Main formatting routine} % % Unit input can take two forms, \enquote{literal} units (material to be % typeset directly) or \enquote{symbolic} units (macro-based). Before any % parsing or typesetting is carried out, a small amount of pre-parsing has to % be carried out to decide which of these cases applies. % % \begin{variable} % {\l_siunitx_unit_font_tl, \l_@@_product_tl, \l_@@_mass_kilogram_bool} % Options which apply to the main formatting routine, and so are not tied % to either symbolic or literal input. % \begin{macrocode} \keys_define:nn { siunitx } { extract-mass-in-kilograms .bool_set:N = \l_@@_mass_kilogram_bool , inter-unit-product .tl_set:N = \l_@@_product_tl , unit-font-command .tl_set:N = \l_siunitx_unit_font_tl } % \end{macrocode} % \end{variable} % % \begin{variable}{\l_@@_formatted_tl} % A token list for the final formatted result: may or may not be generated % by the parser, depending on the nature of the input. % \begin{macrocode} \tl_new:N \l_@@_formatted_tl % \end{macrocode} % \end{variable} % % \begin{macro}{\siunitx_unit_format:nN, \siunitx_unit_format:VN} % \begin{macro}{\siunitx_unit_format_extract_prefixes:nNN} % \begin{macro}{\siunitx_unit_format_combine_exponent:nnN} % \begin{macro}{\siunitx_unit_format_multiply:nnN} % \begin{macro}{\siunitx_unit_format_multiply_extract_prefixes:nnNN} % \begin{macro}{\siunitx_unit_format_multiply_combine_exponent:nnnN} % \begin{macro}{\@@_format:nNN} % \begin{macro}{\@@_format_aux:} % Formatting parsed units can take place either with the prefixes printed or % separated out into a power of ten. This variation is handled using two % separate functions: as this submodule does not really deal with numbers, % formatting the numeral part here would be tricky and it is better therefore % to have a mechanism to return a simple numerical power. At the same time, % most uses will no want this more complex return format and so a version of % the code which does not do this is also provided. % % The main unit formatting routine groups all of the parsing/formatting, so % that the only value altered will be the return token list. As definitions % for the various unit macros are not globally created, the first step is to % map over the list of names and active the unit definitions: these do % different things depending on the switches set. There is then a decision to % be made: is the unit input one that can be parsed (\enquote{symbolic}), or % is is one containing one or more literals. In the latter case, there is a % still the need to convert the input into an expanded token list as some % parts of the input could still be using unit macros. % % Notice that for \cs{siunitx_unit_format:nN} a second return value from the % auxiliary has to be allowed for, but is simply discarded. % \begin{macrocode} \cs_new_protected:Npn \siunitx_unit_format:nN #1#2 { \bool_set_false:N \l_@@_prefix_exp_bool \fp_zero:N \l_@@_combine_exp_fp \fp_set:Nn \l_@@_multiple_fp { \c_one_fp } \@@_format:nNN {#1} #2 \l_@@_tmp_fp } \cs_generate_variant:Nn \siunitx_unit_format:nN { V } \cs_new_protected:Npn \siunitx_unit_format_extract_prefixes:nNN #1#2#3 { \bool_set_true:N \l_@@_prefix_exp_bool \fp_zero:N \l_@@_combine_exp_fp \fp_set:Nn \l_@@_multiple_fp { \c_one_fp } \@@_format:nNN {#1} #2 #3 } \cs_new_protected:Npn \siunitx_unit_format_combine_exponent:nnN #1#2#3 { \bool_set_false:N \l_@@_prefix_exp_bool \fp_set:Nn \l_@@_combine_exp_fp {#2} \fp_set:Nn \l_@@_multiple_fp { \c_one_fp } \@@_format:nNN {#1} #3 \l_@@_tmp_fp } \cs_new_protected:Npn \siunitx_unit_format_multiply:nnN #1#2#3 { \bool_set_false:N \l_@@_prefix_exp_bool \fp_zero:N \l_@@_combine_exp_fp \fp_set:Nn \l_@@_multiple_fp {#2} \@@_format:nNN {#1} #3 \l_@@_tmp_fp } \cs_new_protected:Npn \siunitx_unit_format_multiply_extract_prefixes:nnNN #1#2#3#4 { \bool_set_true:N \l_@@_prefix_exp_bool \fp_zero:N \l_@@_combine_exp_fp \fp_set:Nn \l_@@_multiple_fp {#2} \@@_format:nNN {#1} #3 #4 } \cs_new_protected:Npn \siunitx_unit_format_multiply_combine_exponent:nnnN #1#2#3#4 { \bool_set_false:N \l_@@_prefix_exp_bool \fp_set:Nn \l_@@_combine_exp_fp {#3} \fp_set:Nn \l_@@_multiple_fp {#2} \@@_format:nNN {#1} #4 \l_@@_tmp_fp } \cs_new_protected:Npn \@@_format:nNN #1#2#3 { \group_begin: \seq_map_inline:Nn \l_siunitx_unit_symbolic_seq { \cs_set_eq:Nc ##1 { @@_ \token_to_str:N ##1 :w } } \tl_clear:N \l_@@_formatted_tl \fp_zero:N \l_@@_prefix_fp \bool_if:NTF \l_@@_parse_bool { \@@_if_symbolic:nTF {#1} { \@@_parse:n {#1} \prop_if_empty:NF \l_@@_parsed_prop { \@@_format_parsed: } } { \bool_if:NTF \l_@@_forbid_literal_bool { \msg_error:nnn { siunitx } { literal-unit } {#1} } { \@@_format_literal:n {#1} } } } { \@@_format_literal:n {#1} } \cs_set_protected:Npx \@@_format_aux: { \tl_set:Nn \exp_not:N #2 { \exp_not:V \l_@@_formatted_tl } \fp_set:Nn \exp_not:N #3 { \fp_use:N \l_@@_prefix_fp } } \exp_after:wN \group_end: \@@_format_aux: } \cs_new_protected:Npn \@@_format_aux: { } % \end{macrocode} % \end{macro} % \end{macro} % \end{macro} % \end{macro} % \end{macro} % \end{macro} % \end{macro} % \end{macro} % % \subsection{Formatting literal units} % % While in literal mode no parsing occurs, there is a need to provide a few % auxiliary functions to handle one or two special cases. % % \begin{macro}[EXP]{\@@_literal_power:nn} % For printing literal units which are given before the unit they apply to, % there is a slight rearrangement. This is ex[EXP]pandable to cover the case of % creation of a PDF string. % \begin{macrocode} \cs_new:Npn \@@_literal_power:nn #1#2 { #2 ^ {#1} } % \end{macrocode} % \end{macro} % % \begin{macro}{\@@_literal_special:nN} % When dealing with the special cases, there is an argument to absorb. This % should be braced to be passed up to the user level, which is dealt with % here. % \begin{macrocode} \cs_new:Npn \@@_literal_special:nN #1#2 { #1 {#2} } % \end{macrocode} % \end{macro} % % \begin{macro}{\@@_format_literal:n} % \begin{macro} % { % \@@_format_literal_tilde: , % \@@_format_literal_subscript: , % \@@_format_literal_superscript: % } % \begin{macro}{\@@_format_literal_auxi:w} % \begin{macro}{\@@_format_literal_auxii:w} % \begin{macro}{\@@_format_literal_auxiii:w} % \begin{macro}{\@@_format_literal_auxiv:n} % \begin{macro}{\@@_format_literal_auxv:nw} % \begin{macro} % { % \@@_format_literal_auxvi:nN , % \@@_format_literal_auxvii:nN , % \@@_format_literal_auxviii:nN % } % \begin{macro}{\@@_format_literal_super:nn, \@@_format_literal_sub:nn} % \begin{macro}{\@@_format_literal_add:n} % \begin{macro}{\@@_format_literal_auxix:nn} % \begin{macro}{\@@_format_literal_auxx:nw} % \begin{variable}{\l_@@_separator_tl} % To format literal units, there are two tasks to do. The input is % \texttt{x}-type expanded to force any symbolic units to be converted into % their literal representation: this requires setting the appropriate % switch. In the resulting token list, all |.| and |~| tokens are then % replaced by the current unit product token list. To enable this to happen % correctly with a normal (active) |~|, a small amount of % \enquote{protection} is needed first. To cover active sub- and superscript % tokens, appropriate definitions are provided at this stage. Those have % to be expandable macros rather than implicit character tokens. % % As with other code dealing with user input, \cs{protected@edef} is used % here rather than \cs{tl_set:Nx} as \LaTeXe{} robust commands may be % present. % \begin{macrocode} \group_begin: \char_set_catcode_active:n { `\~ } \cs_new_protected:Npx \@@_format_literal:n #1 { \group_begin: \exp_not:n { \bool_set_false:N \l_@@_parsing_bool } \tl_set:Nn \exp_not:N \l_@@_tmp_tl {#1} \tl_replace_all:Nnn \exp_not:N \l_@@_tmp_tl { \token_to_str:N ^ } { ^ } \tl_replace_all:Nnn \exp_not:N \l_@@_tmp_tl { \token_to_str:N _ } { \c_@@_math_subscript_tl } \cs_set_eq:NN \exp_not:N \text \scan_stop: \char_set_active_eq:NN ^ \exp_not:N \@@_format_literal_superscript: \char_set_active_eq:NN _ \exp_not:N \@@_format_literal_subscript: \char_set_active_eq:NN \exp_not:N ~ \exp_not:N \@@_format_literal_tilde: \exp_not:n { \protected@edef \l_@@_tmp_tl { \l_@@_tmp_tl } \tl_clear:N \l_@@_formatted_tl \tl_if_empty:NF \l_@@_tmp_tl { \exp_after:wN \@@_format_literal_auxi:w \l_@@_tmp_tl . \q_recursion_tail . \q_recursion_stop } \exp_args:NNNV \group_end: \tl_set:Nn \l_@@_formatted_tl \l_@@_formatted_tl } } \group_end: \cs_new:Npx \@@_format_literal_subscript: { \c_@@_math_subscript_tl } \cs_new:Npn \@@_format_literal_superscript: { ^ } \cs_new:Npn \@@_format_literal_tilde: { . } % \end{macrocode} % To introduce the font changing commands while still allowing for line % breaks in literal units, a loop is needed to replace one |.| at a time. % To also allow for division, a second loop is used within that to handle % |/|: as a result, the separator between parts has to be tracked. % \begin{macrocode} \cs_new_protected:Npn \@@_format_literal_auxi:w #1 . { \quark_if_recursion_tail_stop:n {#1} \@@_format_literal_auxii:n {#1} \tl_set_eq:NN \l_@@_separator_tl \l_@@_product_tl \@@_format_literal_auxi:w } \cs_set_protected:Npn \@@_format_literal_auxii:n #1 { \@@_format_literal_auxiii:w #1 / \q_recursion_tail / \q_recursion_stop } \cs_new_protected:Npn \@@_format_literal_auxiii:w #1 / { \quark_if_recursion_tail_stop:n {#1} \@@_format_literal_auxiv:n {#1} \tl_set:Nn \l_@@_separator_tl { / } \@@_format_literal_auxiii:w } \cs_new_protected:Npn \@@_format_literal_auxiv:n #1 { \@@_format_literal_auxv:nw { } #1 \q_recursion_tail \q_recursion_stop } % \end{macrocode} % To deal properly with literal formatting, we have to worry about super- % and subscript markers. That can be complicated as they could come anywhere % in the input: we handle that by iterating through the input and picking % them out. This avoids any issue with losing braces for mid-input scripts. % We also have to deal with fractions, hence needing a series of nested % loops and a change of separator. % \begin{macrocode} \cs_new_protected:Npn \@@_format_literal_auxv:nw #1#2 \q_recursion_stop { \tl_if_head_is_N_type:nTF {#2} { \@@_format_literal_auxvi:nN } { \tl_if_head_is_group:nTF {#2} { \@@_format_literal_auxix:nn } { \@@_format_literal_auxx:nw } } {#1} #2 \q_recursion_stop } \cs_new_protected:Npx \@@_format_literal_auxvi:nN #1#2 { \exp_not:N \quark_if_recursion_tail_stop_do:Nn #2 { \exp_not:N \@@_format_literal_add:n {#1} } \exp_not:N \token_if_eq_meaning:NNTF #2 ^ { \exp_not:N \@@_format_literal_super:nn {#1} } { \exp_not:N \token_if_eq_meaning:NNTF #2 \c_@@_math_subscript_tl { \exp_not:N \@@_format_literal_sub:nn {#1} } { \exp_not:N \@@_format_literal_auxvii:nN {#1} #2 } } } % \end{macrocode} % We need to make sure |\protect| sticks with the next token. % \begin{macrocode} \cs_new_protected:Npn \@@_format_literal_auxvii:nN #1#2 { \str_if_eq:nnTF {#2} { \protect } { \@@_format_literal_auxviii:nN {#1} } { \@@_format_literal_auxv:nw {#1#2} } } \cs_new_protected:Npn \@@_format_literal_auxviii:nN #1#2 { \@@_format_literal_auxv:nw { #1 \protect #2 } } \cs_new_protected:Npn \@@_format_literal_super:nn #1#2 { \quark_if_recursion_tail_stop:n {#2} \@@_format_literal_add:n {#1} \tl_put_right:Nn \l_@@_formatted_tl { ^ {#2} } \@@_format_literal_auxvi:nN { } } \cs_new_protected:Npx \@@_format_literal_sub:nn #1#2 { \exp_not:N \quark_if_recursion_tail_stop:n {#2} \exp_not:N \@@_format_literal_add:n {#1} \tl_put_right:Nx \exp_not:N \l_@@_formatted_tl { \c_@@_math_subscript_tl { \exp_not:N \exp_not:V \exp_not:N \l_siunitx_unit_font_tl { \exp_not:N \exp_not:n {#2} } } } \exp_not:N \@@_format_literal_auxvi:nN { } } \cs_new_protected:Npn \@@_format_literal_add:n #1 { \tl_put_right:Nx \l_@@_formatted_tl { \tl_if_empty:NF \l_@@_formatted_tl { \exp_not:V \l_@@_separator_tl } \tl_if_empty:nF {#1} { \exp_not:V \l_siunitx_unit_font_tl { \exp_not:n {#1} } } } \tl_clear:N \l_@@_separator_tl } \cs_new_protected:Npn \@@_format_literal_auxix:nn #1#2 { \@@_format_literal_auxv:nw { #1 {#2} } } \use:x { \cs_new_protected:Npn \exp_not:N \@@_format_literal_auxx:nw ##1 \c_space_tl } { \@@_format_literal_auxv:nw {#1} } \tl_new:N \l_@@_separator_tl % \end{macrocode} % \end{variable} % \end{macro} % \end{macro} % \end{macro} % \end{macro} % \end{macro} % \end{macro} % \end{macro} % \end{macro} % \end{macro} % \end{macro} % \end{macro} % \end{macro} % % \subsection{(PDF) String creation} % % \begin{macro}{\siunitx_unit_pdfstring_context:} % A simple function that sets up to make units equal to their text % representation. % \begin{macrocode} \cs_new_protected:Npn \siunitx_unit_pdfstring_context: { \bool_set_false:N \l_@@_parsing_bool \seq_map_inline:Nn \l_siunitx_unit_symbolic_seq { \cs_set_eq:Nc ##1 { @@_ \token_to_str:N ##1 :w } } } % \end{macrocode} % \end{macro} % % \subsection{Parsing symbolic units} % % Parsing units takes place by storing information about each unit in a % \texttt{prop}. As well as the unit itself, there are various other optional % data points, for example a prefix or a power. Some of these can come before % the unit, others only after. The parser therefore tracks the number of units % read and uses the current position to allocate data to individual units. % % The result of parsing is a property list (\cs{l_@@_parsed_prop}) which % contains one or more entries for each unit: % \begin{itemize} % \item \texttt{prefix-$n$} The symbol for the prefix which applies to this % unit, \foreign{e.g.} for \cs{kilo} with (almost certainly) would be % |k|. % \item \texttt{unit-$n$} The symbol for the unit itself, \foreign{e.g.}~for % \cs{metre} with (almost certainly) would be |m|. % \item \texttt{power-$n$} The power which a unit is raised to. During % initial parsing this will (almost certainly) be positive, but is combined % with \texttt{per-$n$} to give a \enquote{fully qualified} power before % any formatting takes place % \item \texttt{per-$n$} Indicates that \texttt{per} applies to the current % unit: stored during initial parsing then combined with \texttt{power-$n$} % (and removed from the list) before further work. % \item \texttt{qualifier-$n$} Any qualifier which applies to the current % unit. % \item \texttt{special-$n$} Any \enquote{special effect} to apply to the % current unit. % \item \texttt{command-$1$} The command corresponding to \texttt{unit-$n$}: % needed to track base units; used for \cs{gram} only. % \end{itemize} % % \begin{variable}{\l_@@_sticky_per_bool} % There is one option when \emph{parsing} the input (as opposed to % \emph{formatting} for output): how to deal with \cs{per}. % \begin{macrocode} \keys_define:nn { siunitx } { sticky-per .bool_set:N = \l_@@_sticky_per_bool } % \end{macrocode} % \end{variable} % % \begin{variable}{\l_@@_parsed_prop} % \begin{variable}{\l_@@_per_bool} % \begin{variable}{\l_@@_position_int} % Parsing units requires a small number of variables are available: a % \texttt{prop} for the parsed units themselves, a \texttt{bool} to % indicate if \cs{per} is active and an \texttt{int} to track how many units % have be parsed. % \begin{macrocode} \prop_new:N \l_@@_parsed_prop \bool_new:N \l_@@_per_bool \int_new:N \l_@@_position_int % \end{macrocode} % \end{variable} % \end{variable} % \end{variable} % % \begin{macro}{\@@_parse:n} % The main parsing function is quite simple. After initialising the variables, % each symbolic unit is set up. The input is then simply inserted into the % input stream: the symbolic units themselves then do the real work of % placing data into the parsing system. There is then a bit of tidying up to % ensure that later stages can rely on the nature of the data here. % \begin{macrocode} \cs_new_protected:Npn \@@_parse:n #1 { \prop_clear:N \l_@@_parsed_prop \bool_set_true:N \l_@@_parsing_bool \bool_set_false:N \l_@@_per_bool \bool_set_false:N \l_@@_test_bool \int_zero:N \l_@@_position_int \siunitx_unit_options_apply:n {#1} #1 \int_step_inline:nn \l_@@_position_int { \@@_parse_finalise:n {##1} } \@@_parse_finalise: } % \end{macrocode} % \end{macro} % % \begin{macro}{\@@_parse_add:nnnn} % In all cases, storing a data item requires setting a temporary \texttt{tl} % which will be used as the key, then using this to store the value. The % \texttt{tl} is set using \texttt{x}-type expansion as this will expand the % unit index and any additional calculations made for this. % \begin{macrocode} \cs_new_protected:Npn \@@_parse_add:nnnn #1#2#3#4 { \tl_set:Nx \l_@@_tmp_tl { #1 - #2 } \prop_if_in:NVTF \l_@@_parsed_prop \l_@@_tmp_tl { \msg_error:nnxx { siunitx } { duplicate-part } { \exp_not:n {#1} } { \token_to_str:N #3 } } { \prop_put:NVn \l_@@_parsed_prop \l_@@_tmp_tl {#4} } } % \end{macrocode} % \end{macro} % % \begin{macro}{\@@_parse_prefix:Nn} % \begin{macro}{\@@_parse_power:nnN} % \begin{macro}{\@@_parse_qualifier:nn} % \begin{macro}{\@@_parse_special:n} % Storage of the various optional items follows broadly the same pattern % in each case. The data to be stored is passed along with an appropriate % key name to the underlying storage system. The details for each type of % item should be relatively clear. For example, prefixes have to come before % their \enquote{parent} unit and so there is some adjustment to do to add % them to the correct unit. % \begin{macrocode} \cs_new_protected:Npn \@@_parse_prefix:Nn #1#2 { \int_set:Nn \l_@@_tmp_int { \l_@@_position_int + 1 } \@@_parse_add:nnnn { prefix } { \int_use:N \l_@@_tmp_int } {#1} {#2} } \cs_new_protected:Npn \@@_parse_power:nnN #1#2#3 { \tl_set:Nx \l_@@_tmp_tl { unit- \int_use:N \l_@@_position_int } \bool_lazy_or:nnTF {#3} { \prop_if_in_p:NV \l_@@_parsed_prop \l_@@_tmp_tl } { \@@_parse_add:nnnn { power } { \int_eval:n { \l_@@_position_int \bool_if:NT #3 { + 1 } } } {#1} {#2} } { \msg_error:nnxx { siunitx } { part-before-unit } { power } { \token_to_str:N #1 } } } \cs_new_protected:Npn \@@_parse_qualifier:nn #1#2 { \tl_set:Nx \l_@@_tmp_tl { unit- \int_use:N \l_@@_position_int } \prop_if_in:NVTF \l_@@_parsed_prop \l_@@_tmp_tl { \@@_parse_add:nnnn { qualifier } { \int_use:N \l_@@_position_int } {#1} {#2} } { \msg_error:nnnn { siunitx } { part-before-unit } { qualifier } { \token_to_str:N #1 } } } % \end{macrocode} % Special (exceptional) items should always come before the relevant units. % \begin{macrocode} \cs_new_protected:Npn \@@_parse_special:n #1 { \@@_parse_add:nnnn { special } { \int_eval:n { \l_@@_position_int + 1 } } {#1} {#1} } % \end{macrocode} % \end{macro} % \end{macro} % \end{macro} % \end{macro} % % \begin{macro}{\@@_parse_unit:Nn} % Parsing units is slightly more involved than the other cases: this is the % one place where the tracking value is incremented. If the switch % \cs{l_@@_per_bool} is set true then the current unit is also % reciprocal: this can only happen if \cs{l_@@_sticky_per_bool} is also % true, so only one test is required. % \begin{macrocode} \cs_new_protected:Npn \@@_parse_unit:Nn #1#2 { \int_incr:N \l_@@_position_int \tl_if_eq:nnT {#1} { \gram } { \@@_parse_add:nnnn { command } { \int_use:N \l_@@_position_int } {#1} {#1} } \@@_parse_add:nnnn { unit } { \int_use:N \l_@@_position_int } {#1} {#2} \bool_if:NT \l_@@_per_bool { \@@_parse_add:nnnn { per } { \int_use:N \l_@@_position_int } { \per } { true } } } % \end{macrocode} % \end{macro} % % \begin{macro}{\@@_parse_per:} % Storing the \cs{per} command requires adding a data item separate from % the power which applies: this makes later formatting much more % straight-forward. This data could in principle be combined with the % \texttt{power}, but depending on the output format required that may make % life more complex. Thus this information is stored separately for later % retrieval. If \cs{per} is set to be \enquote{sticky} then after parsing % the first occurrence, any further uses are in error. % \begin{macrocode} \cs_new_protected:Npn \@@_parse_per: { \bool_if:NTF \l_@@_sticky_per_bool { \bool_set_true:N \l_@@_per_bool \cs_set_protected:Npn \per { \msg_error:nn { siunitx } { duplicate-sticky-per } } } { \@@_parse_add:nnnn { per } { \int_eval:n { \l_@@_position_int + 1 } } { \per } { true } } } % \end{macrocode} % \end{macro} % % \begin{macro}{\@@_parse_finalise:n} % If \cs{per} applies to the current unit, the power needs to be multiplied % by $-1$. That is done using an \texttt{fp} operation so that non-integer % powers are supported. The flag for \cs{per} is also removed as this means % we don't have to check that the original power was positive. To be on % the safe side, there is a check for a trivial power at this stage. % \begin{macrocode} \cs_new_protected:Npn \@@_parse_finalise:n #1 { \tl_set:Nx \l_@@_tmp_tl { per- #1 } \prop_if_in:NVT \l_@@_parsed_prop \l_@@_tmp_tl { \prop_remove:NV \l_@@_parsed_prop \l_@@_tmp_tl \tl_set:Nx \l_@@_tmp_tl { power- #1 } \prop_get:NVNTF \l_@@_parsed_prop \l_@@_tmp_tl \l_@@_part_tl { \tl_set:Nx \l_@@_part_tl { \fp_eval:n { \l_@@_part_tl * -1 } } \fp_compare:nNnTF \l_@@_part_tl = 1 { \prop_remove:NV \l_@@_parsed_prop \l_@@_tmp_tl } { \prop_put:NVV \l_@@_parsed_prop \l_@@_tmp_tl \l_@@_part_tl } } { \prop_put:NVn \l_@@_parsed_prop \l_@@_tmp_tl { -1 } } } } % \end{macrocode} % \end{macro} % % \begin{macro}{\@@_parse_finalise:} % The final task is to check that there is not a \enquote{dangling} power % or prefix: these are added to the \enquote{next} unit so are easy to % test for. % \begin{macrocode} \cs_new_protected:Npn \@@_parse_finalise: { \clist_map_inline:nn { per , power , prefix } { \tl_set:Nx \l_@@_tmp_tl { ##1 - \int_eval:n { \l_@@_position_int + 1 } } \prop_if_in:NVT \l_@@_parsed_prop \l_@@_tmp_tl { \msg_error:nnn { siunitx } { dangling-part } { ##1 } } } } % \end{macrocode} % \end{macro} % % \subsection{Formatting parsed units} % % \begin{variable} % { % \l_siunitx_unit_fraction_tl , % \l_@@_denominator_bracket_bool , % \l_@@_forbid_literal_bool , % \l_@@_parse_bool , % \l_@@_per_symbol_tl , % \l_@@_per_script_tl , % \l_@@_half_sqrt_bool , % \l_@@_qualifier_mode_tl , % \l_@@_qualifier_phrase_tl % } % Set up the options which apply to formatting. % \begin{macrocode} \keys_define:nn { siunitx } { bracket-unit-denominator .bool_set:N = \l_@@_denominator_bracket_bool , display-per-mode .choices:nn = { fraction , power , power-positive-first , repeated-symbol , symbol , single-symbol } { \str_set:Nn \l_@@_per_display_str {#1} } , forbid-literal-units .bool_set:N = \l_@@_forbid_literal_bool , fraction-command .tl_set:N = \l_siunitx_unit_fraction_tl , parse-units .bool_set:N = \l_@@_parse_bool , inline-per-mode .choices:nn = { fraction , power , power-positive-first , repeated-symbol , symbol , single-symbol } { \str_set:Nn \l_@@_per_inline_str {#1} } , per-mode .meta:n = { display-per-mode = {#1} , inline-per-mode = {#1} } , per-symbol .tl_set:N = \l_@@_per_symbol_tl , per-symbol-script-correction .tl_set:N = \l_@@_per_script_tl , power-half-as-sqrt .bool_set:N = \l_@@_half_sqrt_bool , qualifier-mode .choices:nn = { bracket , combine , phrase , subscript } { \tl_set_eq:NN \l_@@_qualifier_mode_tl \l_keys_choice_tl } , qualifier-phrase .tl_set:N = \l_@@_qualifier_phrase_tl } % \end{macrocode} % \end{variable} % % \begin{variable}{\l_@@_bracket_bool} % A flag to indicate that the unit currently under construction will require % brackets if a power is added. % \begin{macrocode} \bool_new:N \l_@@_bracket_bool % \end{macrocode} % \end{variable} % % \begin{variable}{\l_@@_bracket_open_tl, \l_@@_bracket_close_tl} % Abstracted out but currently purely internal. % \begin{macrocode} \tl_new:N \l_@@_bracket_open_tl \tl_new:N \l_@@_bracket_close_tl \tl_set:Nn \l_@@_bracket_open_tl { ( } \tl_set:Nn \l_@@_bracket_close_tl { ) } % \end{macrocode} % \end{variable} % % \begin{variable}{\l_@@_font_bool} % A flag to control when font wrapping is applied to the output. % \begin{macrocode} \bool_new:N \l_@@_font_bool % \end{macrocode} % \end{variable} % % \begin{variable}{\l_@@_per_display_str, \l_@@_per_inline_str} % The data storage for |per-mode| settings. % \begin{macrocode} \str_new:N \l_@@_per_display_str \str_new:N \l_@@_per_inline_str % \end{macrocode} % \end{variable} % % \begin{variable} % { % \l_@@_powers_positive_bool , % \l_@@_per_symbol_bool , % \l_@@_two_part_bool % } % Dealing with the various ways that reciprocal (\cs{per}) can be handled % requires a few different switches. % \begin{macrocode} \bool_new:N \l_@@_per_symbol_bool \bool_new:N \l_@@_powers_positive_bool \bool_new:N \l_@@_two_part_bool % \end{macrocode} % \end{variable} % % \begin{variable}{\l_@@_numerator_bool} % Indicates that the current unit should go into the numerator when splitting % into two parts (fractions or other \enquote{sorted} styles). % \begin{macrocode} \bool_new:N \l_@@_numerator_bool % \end{macrocode} % \end{variable} % % \begin{variable}{\l_@@_qualifier_mode_tl} % For storing the text of options which are best handled by picking % function names. % \begin{macrocode} \tl_new:N \l_@@_qualifier_mode_tl % \end{macrocode} % \end{variable} % % \begin{variable}{\l_@@_combine_exp_fp} % For combining an exponent with the first unit. % \begin{macrocode} \fp_new:N \l_@@_combine_exp_fp % \end{macrocode} % \end{variable} % % \begin{variable}{\l_@@_prefix_exp_bool} % Used to determine if prefixes are converted into powers. Note that % while this may be set as an option \enquote{higher up}, at this point it % is handled as an internal switch (see the two formatting interfaces for % reasons). % \begin{macrocode} \bool_new:N \l_@@_prefix_exp_bool % \end{macrocode} % \end{variable} % % \begin{variable}{\l_@@_prefix_fp} % When converting prefixes to powers, the calculations are done as an % \texttt{fp}. % \begin{macrocode} \fp_new:N \l_@@_prefix_fp % \end{macrocode} % \end{variable} % % \begin{variable}{\l_@@_multiple_fp} % For multiplying units. % \begin{macrocode} \fp_new:N \l_@@_multiple_fp % \end{macrocode} % \end{variable} % % \begin{variable}{\l_@@_current_script_bool, \l_@@_script_bool} % A pair of flags to track whether the last entry in the numerator has a % superscript. This is tracked to deal with spacing immediately before % a slash (symbol), if required. Two flags are needed as otherwise the % denominator interferes. % \begin{macrocode} \bool_new:N \l_@@_current_script_bool \bool_new:N \l_@@_script_bool % \end{macrocode} % \end{variable} % % \begin{variable}{\l_@@_current_tl, \l_@@_part_tl} % Building up the (partial) formatted unit requires some token list storage. % Each part of the unit combination that is recovered also has to be % placed in a token list: this is a dedicated one to leave the scratch % variables available. % \begin{macrocode} \tl_new:N \l_@@_current_tl \tl_new:N \l_@@_part_tl % \end{macrocode} % \end{variable} % % \begin{variable}{\l_@@_denominator_tl} % For fraction-like units, space is needed for the denominator as well as % the numerator (which is handled using \cs{l_@@_formatted_tl}). % \begin{macrocode} \tl_new:N \l_@@_denominator_tl % \end{macrocode} % \end{variable} % % \begin{variable}{\l_@@_total_int} % The formatting routine needs to know both the total number of units and % the current unit. Thus an \texttt{int} is required in addition to % \cs{l_@@_position_int}. % \begin{macrocode} \int_new:N \l_@@_total_int % \end{macrocode} % \end{variable} % % \begin{macro}{\@@_format_parsed:} % \begin{macro} % {\@@_format_parsed:n, \@@_format_parsed:V, \@@_format_parsed_aux:n} % The main formatting routine is essentially a loop over each position, % reading the various parts of the unit to build up complete unit % combination. When the two types of output need to be different, the % formatter has to be run twice. % \begin{macrocode} \cs_new_protected:Npn \@@_format_parsed: { \str_if_eq:NNTF \l_@@_per_inline_str \l_@@_per_display_str { \@@_format_parsed:V \l_@@_per_inline_str } { \group_begin: \@@_format_parsed:V \l_@@_per_inline_str \exp_args:NNNV \group_end: \tl_set:Nn \l_@@_tmp_tl \l_@@_formatted_tl \group_begin: \@@_format_parsed:V \l_@@_per_display_str \exp_args:NNNV \group_end: \tl_set:Nn \l_@@_formatted_tl \l_@@_formatted_tl \tl_set:Nx \l_@@_formatted_tl { \mathchoice { \exp_not:V \l_@@_formatted_tl } { \exp_not:V \l_@@_tmp_tl } { \exp_not:V \l_@@_tmp_tl } { \exp_not:V \l_@@_tmp_tl } } } } \cs_new_protected:Npn \@@_format_parsed:n #1 { \int_set_eq:NN \l_@@_total_int \l_@@_position_int \use:c { @@_format_init_ #1 : } \tl_clear:N \l_@@_denominator_tl \tl_clear:N \l_@@_formatted_tl \fp_zero:N \l_@@_prefix_fp \int_zero:N \l_@@_position_int \fp_compare:nNnF \l_@@_combine_exp_fp = \c_zero_fp { \@@_format_combine_exp: } \fp_compare:nNnF \l_@@_multiple_fp = \c_one_fp { \@@_format_multiply: } \bool_lazy_and:nnT { \l_@@_prefix_exp_bool } { \l_@@_mass_kilogram_bool } { \@@_format_mass_to_kilogram: } \int_do_while:nNnn \l_@@_position_int < \l_@@_total_int { \bool_set_false:N \l_@@_bracket_bool \bool_set_false:N \l_@@_current_script_bool \tl_clear:N \l_@@_current_tl \bool_set_false:N \l_@@_font_bool \bool_set_true:N \l_@@_numerator_bool \int_incr:N \l_@@_position_int \clist_map_inline:nn { prefix , unit , qualifier , power , special } { \@@_format_parsed_aux:n {##1} } \@@_format_output: } \@@_format_finalise: } \cs_generate_variant:Nn \@@_format_parsed:n { V } \cs_new_protected:Npn \@@_format_parsed_aux:n #1 { \tl_set:Nx \l_@@_tmp_tl { #1 - \int_use:N \l_@@_position_int } \prop_get:NVNT \l_@@_parsed_prop \l_@@_tmp_tl \l_@@_part_tl { \use:c { @@_format_ #1 : } } } % \end{macrocode} % \end{macro} % \end{macro} % % \begin{macro} % { % \@@_format_init_fracton: , % \@@_format_init_power: , % \@@_format_init_power-positive-first: , % \@@_format_init_repeated-symbol: , % \@@_format_init_symbol: , % \@@_format_init_single-symbol: , % } % To set up the various versions of |per-mode|. % \begin{macrocode} \cs_new_protected:Npn \@@_format_init_fraction: { \bool_set_false:N \l_@@_per_symbol_bool \bool_set_true:N \l_@@_powers_positive_bool \bool_set_true:N \l_@@_two_part_bool } \cs_new_protected:Npn \@@_format_init_power: { \bool_set_false:N \l_@@_per_symbol_bool \bool_set_false:N \l_@@_powers_positive_bool \bool_set_false:N \l_@@_two_part_bool } \cs_new_protected:cpn { @@_format_init_power-positive-first: } { \bool_set_false:N \l_@@_per_symbol_bool \bool_set_false:N \l_@@_powers_positive_bool \bool_set_true:N \l_@@_two_part_bool } \cs_new_protected:cpn { @@_format_init_repeated-symbol: } { \bool_set_true:N \l_@@_per_symbol_bool \bool_set_true:N \l_@@_powers_positive_bool \bool_set_false:N \l_@@_two_part_bool } \cs_new_protected:Npn \@@_format_init_symbol: { \bool_set_true:N \l_@@_per_symbol_bool \bool_set_true:N \l_@@_powers_positive_bool \bool_set_true:N \l_@@_two_part_bool } \cs_new_protected:cpn { @@_format_init_single-symbol: } { \@@_format_init_power: \@@_format_symbol_or_power: } % \end{macrocode} % \end{macro} % % \begin{macro}{\@@_format_combine_exp:} % To combine an exponent into the first prefix, we first adjust for any % power, then deal with any existing prefix, before looking up the % final result. % \begin{macrocode} \cs_new_protected:Npn \@@_format_combine_exp: { \prop_get:NnNF \l_@@_parsed_prop { power-1 } \l_@@_tmp_tl { \tl_set:Nn \l_@@_tmp_tl { 1 } } \fp_set:Nn \l_@@_tmp_fp { \l_@@_combine_exp_fp / \l_@@_tmp_tl } \prop_get:NnNTF \l_@@_parsed_prop { prefix-1 } \l_@@_tmp_tl { \prop_get:NVNF \l_@@_prefixes_forward_prop \l_@@_tmp_tl \l_@@_tmp_tl { \prop_get:NnN \l_@@_parsed_prop { prefix-1 } \l_@@_tmp_tl \msg_error:nnx { siunitx } { non-numeric-exponent } { \l_@@_tmp_tl } \tl_set:Nn \l_@@_tmp_tl { 0 } } } { \tl_set:Nn \l_@@_tmp_tl { 0 } } \tl_set:Nx \l_@@_tmp_tl { \fp_eval:n { \l_@@_tmp_fp + \l_@@_tmp_tl } } \fp_compare:nNnTF \l_@@_tmp_tl = \c_zero_fp { \prop_remove:Nn \l_@@_parsed_prop { prefix-1 } } { \prop_get:NVNTF \l_@@_prefixes_reverse_prop \l_@@_tmp_tl \l_@@_tmp_tl { \prop_put:NnV \l_@@_parsed_prop { prefix-1 } \l_@@_tmp_tl } { \msg_error:nnx { siunitx } { non-convertible-exponent } { \l_@@_tmp_tl } } } } % \end{macrocode} % \end{macro} % % \begin{macro}{\@@_format_multiply:} % A simple mapping. % \begin{macrocode} \cs_new_protected:Npn \@@_format_multiply: { \int_step_inline:nn { \prop_count:N \l_@@_parsed_prop } { \prop_get:NnNF \l_@@_parsed_prop { power- ##1 } \l_@@_tmp_tl { \tl_set:Nn \l_@@_tmp_tl { 1 } } \fp_set:Nn \l_@@_tmp_fp { \l_@@_tmp_tl * \l_@@_multiple_fp } \fp_compare:nNnTF \l_@@_tmp_fp = \c_one_fp { \prop_remove:N \l_@@_parsed_prop { power- ##1 } } { \prop_put:Nnx \l_@@_parsed_prop { power- ##1 } { \fp_use:N \l_@@_tmp_fp } } } } % \end{macrocode} % \end{macro} % % \begin{macro}{\@@_format_mass_to_kilogram:} % To deal correctly with prefix extraction in combination with kilograms, we % need to coerce the prefix for grams. Currently, only this one special case % is recorded in the property list, so we do not actually need to check the % value. If there is then no prefix we do a bit of gymnastics to create one % and then shift the starting point for the prefix extraction. % \begin{macrocode} \cs_new_protected:Npn \@@_format_mass_to_kilogram: { \int_step_inline:nn \l_@@_total_int { \prop_if_in:NnT \l_@@_parsed_prop { command- ##1 } { \prop_if_in:NnF \l_@@_parsed_prop { prefix- ##1 } { \group_begin: \bool_set_false:N \l_@@_parsing_bool \tl_set:Nx \l_@@_tmp_tl { \kilo } \exp_args:NNNV \group_end: \tl_set:Nn \l_@@_tmp_tl \l_@@_tmp_tl \prop_put:NnV \l_@@_parsed_prop { prefix- ##1 } \l_@@_tmp_tl \prop_get:NnNF \l_@@_parsed_prop { power- ##1 } \l_@@_tmp_tl { \tl_set:Nn \l_@@_tmp_tl { 1 } } \fp_set:Nn \l_@@_prefix_fp { \l_@@_prefix_fp - 3 * \l_@@_tmp_tl } } } } } % \end{macrocode} % \end{macro} % % \begin{macro}{\@@_format_symbol_or_power:} % Check if there is exactly one negative power align with at least one % positive one. Assuming there is, flip from (effectively) |power| to % |symbol|. % \begin{macrocode} \cs_new_protected:Npn \@@_format_symbol_or_power: { \int_compare:nNnT \l_@@_total_int > 1 { \bool_set_false:N \l_@@_tmp_bool \int_step_inline:nn \l_@@_total_int { \prop_get:NnNT \l_@@_parsed_prop { power- ##1 } \l_@@_tmp_tl { \int_compare:nNnT \l_@@_tmp_tl < 0 { \bool_if:NTF \l_@@_tmp_bool { \bool_set_false:N \l_@@_tmp_bool } { \bool_set_true:N \l_@@_tmp_bool } } } } \bool_if:NT \l_@@_tmp_bool { \@@_format_init_symbol: } } } % \end{macrocode} % \end{macro} % % \begin{macro}[EXP]{\@@_format_bracket:N} % A quick utility function which wraps up a token list variable in brackets % if they are required. % \begin{macrocode} \cs_new:Npn \@@_format_bracket:N #1 { \bool_if:NTF \l_@@_bracket_bool { \exp_not:V \l_@@_bracket_open_tl \exp_not:V #1 \exp_not:V \l_@@_bracket_close_tl } { \exp_not:V #1 } } % \end{macrocode} % \end{macro} % % \begin{macro}{\@@_format_power:} % \begin{macro}[EXP]{\@@_format_power_aux:w} % \begin{macro} % { % \@@_format_power_positive: , % \@@_format_power_negative: % } % \begin{macro}[EXP]{\@@_format_power_negative_aux:w} % \begin{macro}{\@@_format_power_superscript:} % Formatting powers requires a test for negative numbers and depending on % output format requests some adjustment to the stored value. This could be % done using an \texttt{fp} function, but that would be slow compared to % a dedicated if lower-level approach based on delimited arguments. % \begin{macrocode} \cs_new_protected:Npn \@@_format_power: { \@@_format_font: \exp_after:wN \@@_format_power_aux:w \l_@@_part_tl - \q_stop { \@@_format_power_negative: } { \@@_format_power_positive: } } \cs_new:Npn \@@_format_power_aux:w #1 - #2 \q_stop { \tl_if_empty:nTF {#1} } % \end{macrocode} % In the case of positive powers, there is little to do: add the power % as a superscript (the parser ensures that this is $\neq 1$, so we do not % need a test here). % \begin{macrocode} \cs_new_protected:Npn \@@_format_power_positive: { \@@_format_power_superscript: } % \end{macrocode} % Dealing with negative powers starts by flipping the switch used to track % where in the final output the current part should get added to. For the % case where the output is fraction-like, strip off the |~| then ensure that % the result is not the trivial power~$1$. Assuming all is well, addition % to the current unit combination goes ahead. % \begin{macrocode} \cs_new_protected:Npn \@@_format_power_negative: { \bool_set_false:N \l_@@_numerator_bool \bool_if:NTF \l_@@_powers_positive_bool { \tl_set:Nx \l_@@_part_tl { \exp_after:wN \@@_format_power_negative_aux:w \l_@@_part_tl \q_stop } \str_if_eq:VnF \l_@@_part_tl { 1 } { \@@_format_power_superscript: } } { \@@_format_power_superscript: } } \cs_new:Npn \@@_format_power_negative_aux:w - #1 \q_stop { \exp_not:n {#1} } % \end{macrocode} % Adding the power as a superscript has the slight complication that there % is the possibility of needing some brackets. % \begin{macrocode} \cs_new_protected:Npn \@@_format_power_superscript: { \bool_lazy_and:nnTF { \l_@@_half_sqrt_bool } { \str_if_eq_p:Vn \l_@@_part_tl { 0.5 } } { \tl_set:Nx \l_@@_current_tl { \exp_not:N \sqrt { \exp_not:V \l_@@_current_tl } } } { \exp_after:wN \@@_format_power_superscipt:w \l_@@_part_tl . . \q_stop } } \cs_new_protected:Npn \@@_format_power_superscipt:w #1 . #2 . #3 \q_stop { \tl_if_blank:nTF {#2} { \tl_set:Nx \l_@@_current_tl { \@@_format_bracket:N \l_@@_current_tl ^ { \exp_not:n {#1} } } } { \tl_set:Nx \l_@@_tmp_tl { { } \tl_if_head_eq_charcode:nNTF {#1} - { { - } { \exp_not:o { \use_none:n #1 } } } { { } { \exp_not:n {#1} } } {#2} { } { } { 0 } } \tl_set:Nx \l_@@_current_tl { \@@_format_bracket:N \l_@@_current_tl ^ { \siunitx_number_output:N \l_@@_tmp_tl } } } \bool_set_true:N \l_@@_current_script_bool \bool_set_false:N \l_@@_bracket_bool } % \end{macrocode} % \end{macro} % \end{macro} % \end{macro} % \end{macro} % \end{macro} % % \begin{macro}{\@@_format_prefix:} % \begin{macro} % { % \@@_format_prefix_exp: , % \@@_format_prefix_gram: , % \@@_format_prefix_symbol: % } % Formatting for prefixes depends on whether they are to be expressed as % symbols or collected up to be returned as a power of $10$. The latter % case requires a bit of processing, which includes checking that the % conversion is possible and allowing for any power that applies to the % current unit. % \begin{macrocode} \cs_new_protected:Npn \@@_format_prefix: { \bool_if:NTF \l_@@_prefix_exp_bool { \@@_format_prefix_exp: } { \@@_format_prefix_symbol: } } \cs_new_protected:Npn \@@_format_prefix_exp: { \prop_get:NVNTF \l_@@_prefixes_forward_prop \l_@@_part_tl \l_@@_part_tl { \bool_if:NT \l_@@_mass_kilogram_bool { \tl_set:Nx \l_@@_tmp_tl { command- \int_use:N \l_@@_position_int } \prop_if_in:NVT \l_@@_parsed_prop \l_@@_tmp_tl { \@@_format_prefix_gram: } } \tl_set:Nx \l_@@_tmp_tl { power- \int_use:N \l_@@_position_int } \prop_get:NVNF \l_@@_parsed_prop \l_@@_tmp_tl \l_@@_tmp_tl { \tl_set:Nn \l_@@_tmp_tl { 1 } } \fp_add:Nn \l_@@_prefix_fp { \l_@@_tmp_tl * \l_@@_part_tl } } { \@@_format_prefix_symbol: } } % \end{macrocode} % When the units in use are grams, we may need to deal with conversion to % kilograms. % \begin{macrocode} \cs_new_protected:Npn \@@_format_prefix_gram: { \tl_set:Nx \l_@@_part_tl { \int_eval:n { \l_@@_part_tl - 3 } } \group_begin: \bool_set_false:N \l_@@_parsing_bool \tl_set:Nx \l_@@_current_tl { \kilo } \exp_args:NNNV \group_end: \tl_set:Nn \l_@@_current_tl \l_@@_current_tl } \cs_new_protected:Npn \@@_format_prefix_symbol: { \tl_set_eq:NN \l_@@_current_tl \l_@@_part_tl } % \end{macrocode} % \end{macro} % \end{macro} % % \begin{macro}{\@@_format_qualifier:} % \begin{macro} % { % \@@_format_qualifier_bracket: , % \@@_format_qualifier_combine: , % \@@_format_qualifier_phrase: , % \@@_format_qualifier_subscript: % } % There are various ways that a qualifier can be added to the output. The % idea here is to modify the \enquote{base} text appropriately and then add % to the current unit. Notice that when the qualifier is just treated as % \enquote{text}, the auxiliary is actually a no-op. % \begin{macrocode} \cs_new_protected:Npn \@@_format_qualifier: { \bool_set_false:N \l_@@_current_script_bool \use:c { @@_format_qualifier_ \l_@@_qualifier_mode_tl : } \tl_put_right:NV \l_@@_current_tl \l_@@_part_tl } \cs_new_protected:Npn \@@_format_qualifier_bracket: { \@@_format_font: \tl_set:Nx \l_@@_part_tl { \exp_not:V \l_@@_bracket_open_tl \exp_not:V \l_siunitx_unit_font_tl { \exp_not:V \l_@@_part_tl } \exp_not:V \l_@@_bracket_close_tl } } \cs_new_protected:Npn \@@_format_qualifier_combine: { } \cs_new_protected:Npn \@@_format_qualifier_phrase: { \@@_format_font: \tl_set:Nx \l_@@_part_tl { \exp_not:V \l_@@_qualifier_phrase_tl \exp_not:V \l_siunitx_unit_font_tl { \exp_not:V \l_@@_part_tl } } } \cs_new_protected:Npn \@@_format_qualifier_subscript: { \@@_format_font: \tl_set:Nx \l_@@_part_tl { \c_@@_math_subscript_tl { \exp_not:V \l_siunitx_unit_font_tl { \exp_not:V \l_@@_part_tl } } } } % \end{macrocode} % \end{macro} % \end{macro} % % \begin{macro}{\@@_format_special:} % Any special odds and ends are handled by simply making the current % combination into an argument for the recovered code. Font control % needs to be \emph{inside} the special formatting here. % \begin{macrocode} \cs_new_protected:Npn \@@_format_special: { \tl_set:Nx \l_@@_current_tl { \exp_not:V \l_@@_part_tl { \bool_if:NTF \l_@@_font_bool { \use:n } { \exp_not:V \l_siunitx_unit_font_tl } { \exp_not:V \l_@@_current_tl } } } \bool_set_true:N \l_@@_font_bool } % \end{macrocode} % \end{macro} % % \begin{macro}{\@@_format_unit:} % A very simple task: add the unit to the output currently being % constructed. % \begin{macrocode} \cs_new_protected:Npn \@@_format_unit: { \tl_put_right:NV \l_@@_current_tl \l_@@_part_tl } % \end{macrocode} % \end{macro} % % \begin{macro}{\@@_format_output:} % \begin{macro} % {\@@_format_output_aux:, \@@_format_output_denominator:} % \begin{macro} % { % \@@_format_output_aux:nn , % \@@_format_output_aux:nV , % \@@_format_output_aux:nv % } % The first step here is to make a choice based on whether the current % part should be stored as part of the numerator or denominator of a % fraction. In all cases, if the switch \cs{l_@@_numerator_bool} is % true then life is simple: add the current part to the numerator with % a standard separator % \begin{macrocode} \cs_new_protected:Npn \@@_format_output: { \@@_format_font: \bool_set_false:N \l_@@_bracket_bool \use:c { @@_format_output_ \bool_if:NTF \l_@@_numerator_bool { aux: } { denominator: } } } \cs_new_protected:Npn \@@_format_output_aux: { \bool_set_eq:NN \l_@@_script_bool \l_@@_current_script_bool \@@_format_output_aux:nV { formatted } \l_@@_product_tl } % \end{macrocode} % There are a few things to worry about at this stage if the current part % is in the denominator. Powers have already been dealt with and some % formatting outcomes only need a branch at the final point of building % the entire unit. That means that there are three possible outcomes here: % if collecting two separate parts, add to the denominator with a product % separator, or if only building one token list there may be a need to use % a symbol separator. When the |repeated-symbol| option is in use there may % be a need to add a leading |1| to the output in the case where the % first unit is in the denominator: that can be picked up by looking for % empty output in combination with the flag for using a symbol in the output % but not a two-part strategy. % \begin{macrocode} \cs_new_protected:Npn \@@_format_output_denominator: { \bool_if:NTF \l_@@_two_part_bool { \bool_lazy_and:nnT { \l_@@_denominator_bracket_bool } { ! \tl_if_empty_p:N \l_@@_denominator_tl } { \bool_set_true:N \l_@@_bracket_bool } \@@_format_output_aux:nV { denominator } \l_@@_product_tl } { \bool_lazy_and:nnT { \l_@@_per_symbol_bool } { \tl_if_empty_p:N \l_@@_formatted_tl } { \tl_set:Nn \l_@@_formatted_tl { 1 } } \@@_format_output_aux:nv { formatted } { l_@@_ \bool_if:NTF \l_@@_per_symbol_bool { per_symbol } { product } _tl } } } \cs_new_protected:Npn \@@_format_output_aux:nn #1#2 { \tl_set:cx { l_@@_ #1 _tl } { \exp_not:v { l_@@_ #1 _tl } \tl_if_empty:cF { l_@@_ #1 _tl } { \exp_not:n {#2} } \exp_not:V \l_@@_current_tl } } \cs_generate_variant:Nn \@@_format_output_aux:nn { nV , nv } % \end{macrocode} % \end{macro} % \end{macro} % \end{macro} % % \begin{macro}{\@@_format_font:} % A short auxiliary which checks if the font has been applied to the % main part of the output: if not, add it and set the flag. % \begin{macrocode} \cs_new_protected:Npn \@@_format_font: { \bool_if:NF \l_@@_font_bool { \tl_set:Nx \l_@@_current_tl { \exp_not:V \l_siunitx_unit_font_tl { \exp_not:V \l_@@_current_tl } } \bool_set_true:N \l_@@_font_bool } } % \end{macrocode} % \end{macro} % % \begin{macro}{\@@_format_finalise:} % \begin{macro} % { % \@@_format_finalise_autofrac: , % \@@_format_finalise_fractional: , % \@@_format_finalise_power: % } % Finalising the unit format is really about picking up the cases involving % fractions: these require assembly of the parts with the need to add % additional material in some cases % \begin{macrocode} \cs_new_protected:Npn \@@_format_finalise: { \tl_if_empty:NF \l_@@_denominator_tl { \bool_if:NTF \l_@@_powers_positive_bool { \@@_format_finalise_fractional: } { \@@_format_finalise_power: } } } % \end{macrocode} % For fraction-like output, there are three possible choices and two % actual styles. In all cases, if the numerator is empty then it is set % here to |1|. To deal with the \enquote{auto-format} case, the two % styles (fraction and symbol) are handled in auxiliaries: this allows both % to be used at the same time! Beyond that, the key here is to use a % single \cs{tl_set:Nx} to keep down the number of assignments. % \begin{macrocode} \cs_new_protected:Npn \@@_format_finalise_fractional: { \tl_if_empty:NT \l_@@_formatted_tl { \tl_set:Nn \l_@@_formatted_tl { 1 } } \bool_if:NTF \l_@@_per_symbol_bool { \@@_format_finalise_symbol: } { \@@_format_finalise_fraction: } } % \end{macrocode} % When using a fraction function the two parts are now assembled. % \begin{macrocode} \cs_new_protected:Npn \@@_format_finalise_fraction: { \tl_set:Nx \l_@@_formatted_tl { \exp_not:V \l_siunitx_unit_fraction_tl { \exp_not:V \l_@@_formatted_tl } { \exp_not:V \l_@@_denominator_tl } } } % \end{macrocode} % Add the correction if required: no \cs{relax} needed as we know there is a % non-expandable token following. % \begin{macrocode} \cs_new_protected:Npn \@@_format_finalise_symbol: { \tl_set:Nx \l_@@_formatted_tl { \exp_not:V \l_@@_formatted_tl \bool_if:NT \l_@@_script_bool { \exp_not:V \l_@@_per_script_tl } \exp_not:V \l_@@_per_symbol_tl \@@_format_bracket:N \l_@@_denominator_tl } } % \end{macrocode} % In the case of sorted powers, there is a test to make sure there was % at least one positive power, and if so a simple join of the two parts % with the appropriate product. % \begin{macrocode} \cs_new_protected:Npn \@@_format_finalise_power: { \tl_if_empty:NTF \l_@@_formatted_tl { \tl_set_eq:NN \l_@@_formatted_tl \l_@@_denominator_tl } { \tl_set:Nx \l_@@_formatted_tl { \exp_not:V \l_@@_formatted_tl \exp_not:V \l_@@_product_tl \exp_not:V \l_@@_denominator_tl } } } % \end{macrocode} % \end{macro} % \end{macro} % % \subsection{Non-Latin character support} % % \begin{macro}{\@@_non_latin:n} % A shortcut. % \begin{macrocode} \cs_new:Npn \@@_non_latin:n #1 { \codepoint_generate:nn {#1} { \char_value_catcode:n {#1} } } % \end{macrocode} % \end{macro} % % \subsection{Pre-defined unit components} % % Quite a number of units can be predefined: while this is a code-level module, % there is little point having a unit parser which does not start off able to % parse any units! % % \begin{macro} % { % \kilogram , % \metre , % \meter , % \mole , % \kelvin , % \candela , % \second , % \ampere % } % The basic \acro{SI} units: technically the correct spelling is \cs{metre} % but US users tend to use \cs{meter}. % \begin{macrocode} \siunitx_declare_unit:Nn \kilogram { \kilo \gram } \siunitx_declare_unit:Nn \metre { m } \siunitx_declare_unit:Nn \meter { \metre } \siunitx_declare_unit:Nn \mole { mol } \siunitx_declare_unit:Nn \second { s } \siunitx_declare_unit:Nn \ampere { A } \siunitx_declare_unit:Nn \kelvin { K } \siunitx_declare_unit:Nn \candela { cd } % \end{macrocode} % \end{macro} % % \begin{macro}{\gram} % The gram is an odd unit as it is needed for the base unit kilogram. % \begin{macrocode} \siunitx_declare_unit:Nn \gram { g } % \end{macrocode} % \end{macro} % % \begin{macro} % { % \quecto , % \ronto , % \yocto , % \zepto , % \atto , % \femto , % \pico , % \nano , % \micro , % \milli , % \centi , % \deci % } % The various \acro{SI} multiple prefixes are defined here: first the small % ones. % \begin{macrocode} \siunitx_declare_prefix:Nnn \quecto { -30 } { q } \siunitx_declare_prefix:Nnn \ronto { -27 } { r } \siunitx_declare_prefix:Nnn \yocto { -24 } { y } \siunitx_declare_prefix:Nnn \zepto { -21 } { z } \siunitx_declare_prefix:Nnn \atto { -18 } { a } \siunitx_declare_prefix:Nnn \femto { -15 } { f } \siunitx_declare_prefix:Nnn \pico { -12 } { p } \siunitx_declare_prefix:Nnn \nano { -9 } { n } \siunitx_declare_prefix:Nnx \micro { -6 } { \@@_non_latin:n { "03BC } } \siunitx_declare_prefix:Nnn \milli { -3 } { m } \siunitx_declare_prefix:Nnn \centi { -2 } { c } \siunitx_declare_prefix:Nnn \deci { -1 } { d } % \end{macrocode} % \end{macro} % \begin{macro} % { % \deca , % \deka , % \hecto , % \kilo , % \mega , % \giga , % \tera , % \peta , % \exa , % \zetta , % \yotta , % \ronna , % \quetta % } % Now the large ones. % \begin{macrocode} \siunitx_declare_prefix:Nnn \deca { 1 } { da } \siunitx_declare_prefix:Nnn \deka { 1 } { da } \siunitx_declare_prefix:Nnn \hecto { 2 } { h } \siunitx_declare_prefix:Nnn \kilo { 3 } { k } \siunitx_declare_prefix:Nnn \mega { 6 } { M } \siunitx_declare_prefix:Nnn \giga { 9 } { G } \siunitx_declare_prefix:Nnn \tera { 12 } { T } \siunitx_declare_prefix:Nnn \peta { 15 } { P } \siunitx_declare_prefix:Nnn \exa { 18 } { E } \siunitx_declare_prefix:Nnn \zetta { 21 } { Z } \siunitx_declare_prefix:Nnn \yotta { 24 } { Y } \siunitx_declare_prefix:Nnn \ronna { 27 } { R } \siunitx_declare_prefix:Nnn \quetta { 30 } { Q } % \end{macrocode} % \end{macro} % % \begin{macro} % { % \becquerel , % \degreeCelsius , % \coulomb , % \farad , % \gray , % \hertz , % \henry , % \joule , % \katal , % \lumen , % \lux % } % Named derived units: first half of alphabet. % \begin{macrocode} \siunitx_declare_unit:Nn \becquerel { Bq } \siunitx_declare_unit:Nx \degreeCelsius { \@@_non_latin:n { "00B0 } C } \siunitx_declare_unit:Nn \coulomb { C } \siunitx_declare_unit:Nn \farad { F } \siunitx_declare_unit:Nn \gray { Gy } \siunitx_declare_unit:Nn \hertz { Hz } \siunitx_declare_unit:Nn \henry { H } \siunitx_declare_unit:Nn \joule { J } \siunitx_declare_unit:Nn \katal { kat } \siunitx_declare_unit:Nn \lumen { lm } \siunitx_declare_unit:Nn \lux { lx } % \end{macrocode} % \end{macro} % \begin{macro} % { % \newton , % \ohm , % \pascal , % \radian , % \siemens , % \sievert , % \steradian , % \tesla , % \volt , % \watt , % \weber % } % Named derived units: second half of alphabet. % \begin{macrocode} \siunitx_declare_unit:Nn \newton { N } \siunitx_declare_unit:Nx \ohm { \@@_non_latin:n { "2126 } } \siunitx_declare_unit:Nn \pascal { Pa } \siunitx_declare_unit:Nn \radian { rad } \siunitx_declare_unit:Nn \siemens { S } \siunitx_declare_unit:Nn \sievert { Sv } \siunitx_declare_unit:Nn \steradian { sr } \siunitx_declare_unit:Nn \tesla { T } \siunitx_declare_unit:Nn \volt { V } \siunitx_declare_unit:Nn \watt { W } \siunitx_declare_unit:Nn \weber { Wb } % \end{macrocode} % \end{macro} % % \begin{macro} % { % \astronomicalunit , % \bel , % \dalton , % \day , % \decibel , % \electronvolt , % \hectare , % \hour , % \litre , % \liter , % \minute , % \neper , % \tonne % } % Non-\acro{SI}, but accepted for general use. Once again there are two % spellings, here for litre and with different output in this case. % \begin{macrocode} \siunitx_declare_unit:Nn \astronomicalunit { au } \siunitx_declare_unit:Nn \bel { B } \siunitx_declare_unit:Nn \decibel { \deci \bel } \siunitx_declare_unit:Nn \dalton { Da } \siunitx_declare_unit:Nn \day { d } \siunitx_declare_unit:Nn \electronvolt { eV } \siunitx_declare_unit:Nn \hectare { ha } \siunitx_declare_unit:Nn \hour { h } \siunitx_declare_unit:Nn \litre { L } \siunitx_declare_unit:Nn \liter { \litre } \siunitx_declare_unit:Nn \minute { min } \siunitx_declare_unit:Nn \neper { Np } \siunitx_declare_unit:Nn \tonne { t } % \end{macrocode} % \end{macro} % \begin{macro} % { % \arcminute , % \arcsecond , % \degree % } % Arc units: again, non-\acro{SI}, but accepted for general use. % \begin{macrocode} \siunitx_declare_unit:Nx \arcminute { \@@_non_latin:n { "02B9 } } \siunitx_declare_unit:Nx \arcsecond { \@@_non_latin:n { "02BA } } \siunitx_declare_unit:Nx \degree { \@@_non_latin:n { "00B0 } } % \end{macrocode} % \end{macro} % % \begin{macro}{\percent} % For percent, the raw character is the most flexible way of handling output. % \begin{macrocode} \siunitx_declare_unit:Nx \percent { \cs_to_str:N \% } % \end{macrocode} % \end{macro} % % \begin{macro}{\square, \squared, \cubic, \cubed} % Basic powers. % \begin{macrocode} \siunitx_declare_power:NNn \square \squared { 2 } \siunitx_declare_power:NNn \cubic \cubed { 3 } % \end{macrocode} % \end{macro} % % \subsection{Messages} % % \begin{macrocode} \msg_new:nnnn { siunitx } { dangling-part } { Found~#1~part~with~no~unit. } { Each~#1~part~must~be~associated~with~a~unit:~a~#1~part~was~found~ but~no~following~unit~was~given. } \msg_new:nnnn { siunitx } { duplicate-part } { Duplicate~#1~part:~#2. } { Each~unit~may~have~only~one~#1:\\ the~additional~#1~part~'#2'~will~be~ignored. } \msg_new:nnnn { siunitx } { duplicate-sticky-per } { Duplicate~\token_to_str:N \per. } { When~the~'sticky-per'~option~is~active,~only~one~ \token_to_str:N \per \ may~appear~in~a~unit. } \msg_new:nnnn { siunitx } { literal-unit } { Literal~units~disabled. } { You~gave~the~literal~input~'#1'~ but~literal~unit~output~is~disabled. } \msg_new:nnnn { siunitx } { non-convertible-exponent } { Exponent~'#1'~cannot~be~converted~into~a~symbolic~prefix. } { The~exponent~'#1'~does~not~match~with~any~of~the~symbolic~prefixes~ set~up. } \msg_new:nnnn { siunitx } { non-numeric-exponent } { Prefix~'#1'~does~not~have~a~numerical~value. } { The~prefix~'#1'~needs~to~be~combined~with~a~number,~but~it~has~no numerical~value. } \msg_new:nnnn { siunitx } { part-before-unit } { Found~#1~part~before~first~unit:~#2. } { The~#1~part~'#2'~must~follow~after~a~unit:~ it~cannot~appear~before~any~units~and~will~therefore~be~ignored. } % \end{macrocode} % % \subsection{Deprecated options} % % To handle |per-mode = symbol-or-fraction|, there needs to be allowance for % the fact that it is set up as a meta-option. That is done with appropriate % code here for the two newer options. % \begin{macrocode} \keys_define:nn { siunitx } { display-per-mode / symbol-or-fraction .code:n = { \msg_info:nnnn { siunitx } { option-deprecated } { per-mode~=~symbol-or-fraction } { display-per-mode~=~fraction,~inline-per-mode~=~symbol } \str_set:Nn \l_@@_per_display_str { fraction } } , inline-per-mode / symbol-or-fraction .code:n = { \msg_info:nnnn { siunitx } { option-deprecated } { per-mode~=~symbol-or-fraction } { display-per-mode~=~fraction,~inline-per-mode~=~symbol } \str_set:Nn \l_@@_per_inline_str { symbol } } } % \end{macrocode} % % \subsection{Standard settings for module options} % % Some of these follow naturally from the point of definition % (\foreign{e.g.}~boolean variables are always |false| to begin with), % but for clarity everything is set here. % \begin{macrocode} \keys_set:nn { siunitx } { bracket-unit-denominator = true , forbid-literal-units = false , fraction-command = \frac , inter-unit-product = \, , extract-mass-in-kilograms = true , parse-units = true , per-mode = power , per-symbol = / , per-symbol-script-correction = \! , power-half-as-sqrt = false , qualifier-mode = subscript , qualifier-phrase = , sticky-per = false , unit-font-command = \mathrm } % \end{macrocode} % % Cover the case where the default font is sanserif with \pkg{beamer}. % \begin{macrocode} \AtBeginDocument { \@ifclassloaded { beamer } { \str_if_eq:eeT { \exp_not:o { \familydefault } } { \exp_not:n { \sfdefault } } { \keys_set:nn { siunitx } { unit-font-command = \mathsf } } } { } } % \end{macrocode} % % \begin{macrocode} % % \end{macrocode} % % \end{implementation} % % \begin{thebibliography}{1} % \bibitem{BIPM} % \emph{The International System of Units (\acro{SI})}, % \url{https://www.bipm.org/en/measurement-units/}. % \bibitem{base-units} % \emph{SI base units}, % \url{https://www.bipm.org/en/measurement-units/si-base-units}. % \end{thebibliography} % % \PrintIndex