%\iffalse -*-mode:Latex;tex-command:"latex *;dvips pst-slpe -o"-*- \fi %\iffalse % $Id: pst-slpe.dtx,v 1.7 1998/09/15 12:43:03 giese Exp $ % % Copyright 1998 Martin Giese, giese@ira.uka.de % 2005 Herbert Voss (using xkeyval) % % This file is distributed in the hope that it will be useful, % but WITHOUT ANY WARRANTY; without even the implied warranty of % MERCHANTABILITY or FITNESS FOR A PARTICULAR PURPOSE. % % IMPORTANT COPYRIGHT NOTICE: % % Permission is granted to copy this file to another file with a clearly % different name and to customize the declarations in that copy to serve % the needs of your installation, provided that you comply with % the conditions in the file legal.txt from the LaTeX2e distribution. % % However, NO PERMISSION is granted to produce or to distribute a % modified version of this file under its original name. % % You are NOT ALLOWED to change this file. % %\fi % \CharacterTable % {Upper-case \A\B\C\D\E\F\G\H\I\J\K\L\M\N\O\P\Q\R\S\T\U\V\W\X\Y\Z % Lower-case \a\b\c\d\e\f\g\h\i\j\k\l\m\n\o\p\q\r\s\t\u\v\w\x\y\z % Digits \0\1\2\3\4\5\6\7\8\9 % Exclamation \! Double quote \" Hash (number) \# % Dollar \$ Percent \% Ampersand \& % Acute accent \' Left paren \( Right paren \) % Asterisk \* Plus \+ Comma \, % Minus \- Point \. Solidus \/ % Colon \: Semicolon \; Less than \< % Equals \= Greater than \> Question mark \? % Commercial at \@ Left bracket \[ Backslash \\ % Right bracket \] Circumflex \^ Underscore \_ % Grave accent \` Left brace \{ Vertical bar \| % Right brace \} Tilde \~} % \CheckSum{163} % % \changes{v1.1}{2005/10/05}{% % using the extended pst-xkey instead of the old pst-key package; % creating a dtx file (hv)} % \changes{v1.0}{2005/03/05}{More compatible to the other PStricks % packages. (RN)} % %\iffalse %<*!prolog> \def\pstslpefileversion{1.1} \def\pstslpefiledate{2005/10/05} % %\fi % % \title{\textsf{pst-slpe} package \\ version \pstslpefileversion} % \author{Martin Giese\footnote{email:\texttt{giese@ira.uka.de}}} % \date{\pstslpefiledate} % \maketitle % %\section{Introduction} %As of the 97 release, PSTricks contains the |pst-grad| %package, which provides a gradient fill style for arbitrary shapes. %Although it often produces nice results, it has a number of %deficiencies: %\begin{enumerate} %\item It is not possible to go from a colour $A$ to $B$ to $C$, %etc. The most evident application of such a multi-colour gradient are %of course rainbow effects. But they can also be useful in informative %contexts, eg to identify modes of operation in a scale of values %(normal/danger/overload). %\item Colours are interpolated linearly in the RGB space. This is %often OK, but when you want to go from red $(1,0,0)$ to green %$(0,1,0)$, it looks much better to get there via yellow $(1,1,0)$ than %via brown $(0.5,0.5,0)$. The point is, that to get from one saturated %colour to another, the colours on the way should also be saturated to %produce an optically pleasing result. %\item |pst-grad| is limited to {\em linear} gradients, ie~there %is a (possibly rotated) rectilinear coordinate system, such that the %colour at every point depends only on the $x$ coordinate of the %point. In particular, there is no way to get circular patterns. %\end{enumerate} %|pst-slpe| solves {\em all} of the mentioned %problems in {\em one} package. % %Problems 1.~is addressed by permitting the user to specify an %arbitrary number of colours, along with the points at which these are %to be reached. A special form of each of the fill styles is provided, %which just needs two colours as parameters, and goes from one to the %other. This makes the fill styles easier to use in that simple case. % %Problem 2.~is solved by interpolating in the hue-saturation-value %colour space. Conversion between RGB and HSV is done behind the %scenes. The user specifies colours in RGB. % %Finally, |pst-slpe| provides {\em concentric} and {\em radial} %gradients. What these mean is best explained with a polar coordinate %system: In a concentric pattern, the colour of a point depends on the %radius coordinate, while in a radial pattern, it depends on the angle %coordinate. % %As a special bonus, the PostScript part of |pst-slpe| is somewhat %optimized for speed. In |ghostscript|, rendering is about 30\% faster %than with |pst-grad|. %\medskip % %For most of these problems, solutions have been posted in the %appropriate \TeX\ newsgroup over the years. |pst-slpe| has however %been developed independently from these proposals. It is based on %the original PSTricks 0.93 |gradient| code, most of which has been %changed or replaced. The %author is indebted to Denis Girou, whose encouragement triggered the %process of making this a shipable package instead of a private %experiment. %\medskip % %The new fill styles and the %graphics parameters provided to use them are described in %section 2 of this document. Section 3, if present, documents the %implementation consisting of a generic \TeX\ file and a PostScript %header for the |dvi|-to-PostScript converter. You can get section 3 %by calling \LaTeX\ as follows on most relevant systems: %\begin{verbatim} %latex '\AtBeginDocument{\AlsoImplementation}\input{pst-slpe.dtx}' %\end{verbatim} %\section{Package Usage} % To use |pst-slpe|, you have to say % \begin{verbatim} % \usepackage{pst-slpe} % \end{verbatim} % in the document prologue for \LaTeX, and % \begin{verbatim} % \input pst-slpe.tex % \end{verbatim} % in ``plain'' \TeX. % % \DescribeMacro{slope} % \DescribeMacro{slopes} % \DescribeMacro{ccslope} % \DescribeMacro{ccslopes} % \DescribeMacro{radslope} % \DescribeMacro{radslopes} % |pst-slpe| provides six new fill styles called |slope|, |slopes|, % |ccslope|, |ccslopes|, |radslope| and |radslopes|. These obviously % come in pairs: The $\ldots$|slope|-styles are simplified versions of % the general $\ldots$|slopes|-styles.\footnote{By the way, I use slope % as a synonym for gradient. It sounds less pretentious and avoids % name clashes.} The |cc|$\ldots$ styles paint concentric patterns, % and the |rad|$\ldots$ styles do radial ones. Here is a little % overview of what they look like: % \newcommand{\st}{$\vcenter to30pt{}$} % \begin{quote}\LARGE % \begin{tabular}{cc} % \psframebox[fillstyle=slope]{\st|slope|} &\qquad % \psframebox[fillstyle=slopes]{\st|slopes|} \\[2ex] % \psframebox[fillstyle=ccslope]{\st|ccslope|} &\qquad % \psframebox[fillstyle=ccslopes]{\st|ccslopes|} \\[2ex] % \psframebox[fillstyle=radslope]{\st|radslope|} &\qquad % \psframebox[fillstyle=radslopes]{\st|radslopes|} \\[2ex] % \end{tabular} % \end{quote} % These examples were produced by saying simply % \begin{verbatim} % \psframebox[fillstyle=slope]{...} % \end{verbatim} % etc.~without setting any further graphics parameters. The package % provides a number of parameters that can be used to control % the way these patterns % are painted. % \medskip % % \DescribeMacro{slopebegin} % \DescribeMacro{slopeend} % The graphics parameters |slopebegin| and |slopeend| set the colours % between which the three $\ldots$|slope| styles should interpolate. % Eg, % \begin{verbatim} % \psframebox[fillstyle=slope,slopebegin=red,slopeend=green]{...} % \end{verbatim} % produces: % \begin{quote}\Large % \psframebox[fillstyle=slope,slopebegin=red,slopeend=green]{\st slopes!} % \end{quote} % The same settings of |slopebegin| and |slopeend| for the |ccslope| % and |radslope| fillstyles produce % \begin{quote}\Large % \psframebox[fillstyle=ccslope,slopebegin=red,slopeend=green]{\st slopes!} % \quad{\normalsize resp.}\quad % \psframebox[fillstyle=radslope,slopebegin=red,slopeend=green]{\st slopes!} % \end{quote} % The default settings go from a greenish yellow to pure blue. % \medskip % % \DescribeMacro{slopecolors} % If you want to interpolate between more than two colours, you have % to use the $\ldots$|slopes| styles, which are controlled by the % |slopecolors| parameter instead of |slopebegin| and |slopeend|. The % idea is to specify the colour to use at certain points `on the % way'. To fill a shape with |slopes|, imagine a linear scale % from its left edge to its right edge. The left edge must lie at % coordinate 0. Pick an arbitrary value for the right edge, say 23. % Now you want to get light yellow at the left edge, a pastel green at $17/23$ % of the way and dark cyan at the right edge, like this: % \begin{quote}\psset{unit=0.45cm} % \begin{pspicture}(-1,0)(24,6) % \pscustom[fillstyle=slopes, % slopecolors=0 1 1 .9 17 .5 1 .5 23 0 0.5 0.5 3]{ % \psccurve(0,2.5)(12,3.5)(20,4)(23,2)(17,2.5)} % \psaxes(0,5)(-0.01,5)(23.01,5) % \psline(0,5)(0,1) % \psline(17,5)(17,1) % \psline(23,5)(23,1) % \end{pspicture} % \end{quote} % The RGB values for the three colours are $(1,1,0.9)$, $(0.5,1,0.5)$ % and $(0,0.5,0.5)$. The value for the |slopecolors| parameter is a list % of `colour infos' followed by the number of `colour infos'. % Each `colour info' consists % of the coordinate value where a colour is to be specified, followed by % the RGB values of that colour. All these values are separated by % white space. The correct setting for the example is thus: % \begin{verbatim} % slopecolors=0 1 1 .9 17 .5 1 .5 23 0 .5 .5 3 % \end{verbatim} % For |ccslopes|, specify the colours from the center outward. % For |radslopes| (with no rotation specified), 0 represents the ray % going `eastward'. Specify the colours anti-clockwise. If you want a % smooth gradient at the beginning and starting ray of |radslopes|, you % should pick the first and last colours identical. % % Please note, that the |slopecolors| parameter is not subject to any % parsing on the \TeX\ side. If you forget a number or specify the wrong % number of segments, the PostScript interpreter will probably crash. % % The default value for |slopecolors| specifies a rainbow. % % \medskip % % \DescribeMacro{slopesteps} % The parameter |slopesteps| controls the number of distinct colour steps % rendered. Higher values for this parameter result in better quality % but proportionally slower rendering. Eg, setting % |slopesteps| to 5 with the |slope| fill style results in % \begin{quote}\Large % \psframebox[fillstyle=slope,slopesteps=5]{\st slopes!} % \end{quote} % % The default value is 100, which % suffices for most purposes. Remember that the number of distinct colours % reproducible by a given device is limited. Pushing |slopesteps| to % high will result only in loss of performance at no gain in quality. % \medskip % % \DescribeMacro{slopeangle} % The |slope(s)| and |radslope(s)| patterns may be rotated. As usual, % the angles are given anti-clockwise. Eg, an angle of 30 degrees % gives % \begin{quote}\Large\psset{slopeangle=30} % \psframebox[fillstyle=slope]{\st slopes!} % \quad{\normalsize and}\quad % \psframebox[fillstyle=radslope]{\st slopes!} % \end{quote} % with the |slope| and |radslope| fillstyles. % \medskip % % \DescribeMacro{slopecenter} % For the |cc|$\ldots$ and |rad|$\ldots$ styles, it is possible to % set the center of the pattern. The |slopecenter| parameter is set to % the coordinates of that center relative to the bounding box of the % current path. The following effect: % \begin{quote}\psset{unit=0.45cm} % \begin{pspicture}(-1,-1)(24,5) % \pscustom[fillstyle=radslope,slopecenter=0.2 0.4]{ % \pspolygon(0,2.5)(12,2.5)(20,4)(23,2)(17,2.5)(3,0)} % \psaxes[axesstyle=frame,Dx=0.1,dx=2.2999,Dy=0.2,dy=0.7999](0,0)(23,4) % \psline(4.6,0)(4.6,4) % \psline(0,1.6)(23,1.6) % \end{pspicture} % \end{quote} % was achieved with % \begin{verbatim} % fillstyle=radslope,slopecenter=0.2 0.4 % \end{verbatim} % The default value for |slopecenter| is |0.5 0.5|, which is the % center for symmetrical shapes. Note that this parameter is not % parsed by \TeX, so setting it to anything else than two numbers % between 0 and 1 might crash the PostScript interpreter. % \medskip % % \DescribeMacro{sloperadius} % Normally, the |cc|$\ldots$ and |rad|$\ldots$ styles distribute the % given colours so that the center is painted in the first colour given, % and the points of the shape furthest from the center are painted in % the last colour. In other words the maximum radius to which the % |slopecolors| parameter refers is the maximum distance from the % center (defined by |slopecenter|) to any point on the periphery % of the shape. This radius can be explicitly set with |sloperadius|. % Eg, setting |sloperadius=0.5cm| gives % \begin{quote}\Large\psset{sloperadius=0.5cm} % \psframebox[fillstyle=ccslope]{\st slopes!} % \end{quote} % Any point further from the center than the given |sloperadius| is % painted with the last colour in |slopeclours|, resp.~|slopeend|. % % The default value for |sloperadius| is 0, which invokes the default % behaviour of automatically calculating the radius. % % \StopEventually{} %\section{The Code} % \subsection{Producing the documentation} % % A short driver is provided that can be extracted if necessary by % the \textsc{docstrip} program provided with \LaTeXe. % \begin{macrocode} %<*driver> \NeedsTeXFormat{LaTeX2e} \documentclass{ltxdoc} \usepackage{pst-slpe} \usepackage{pst-plot} \DisableCrossrefs \MakeShortVerb{\|} \newcommand\Lopt[1]{\textsf{#1}} \newcommand\file[1]{\texttt{#1}} \AtEndDocument{ \PrintChanges %\PrintIndex } %\OnlyDescription \begin{document} \DocInput{pst-slpe.dtx} \end{document} % % \end{macrocode} % % \subsection{The \file{pst-slpe.sty} file} % The \file{pst-slpe.sty} file is very simple. It just loads % the generic \file{pst-slpe.tex} file. % \begin{macrocode} %<*stylefile> \RequirePackage{pstricks} \ProvidesPackage{pst-slpe}[2005/03/05 package wrapper for `pst-slpe.tex'] \input{pst-slpe.tex} \ProvidesFile{pst-slpe.tex} [\pstslpefiledate\space v\pstslpefileversion\space `pst-slpe' (Martin Giese)] % % \end{macrocode} % % \subsection{The \file{pst-slpe.tex} file} % \file{pst-slpe.tex} contains the \TeX-side of things. We begin % by identifying ourselves and setting things up, the same as in % other PSTricks packages. % \begin{macrocode} %<*texfile> \message{ v\pstslpefileversion, \pstslpefiledate} \csname PstSlopeLoaded\endcsname \let\PstSlopeLoaded\endinput \ifx\PSTricksLoaded\endinput\else \def\next{\input pstricks.tex }\expandafter\next \fi \ifx\PSTXKeyLoaded\endinput\else\input pst-xkey \fi % --> hv \edef\TheAtCode{\the\catcode`\@} \catcode`\@=11 \pst@addfams{pst-slpe} % --> hv \pstheader{pst-slpe.pro} % \end{macrocode} % \begin{macro}{slopebegin} % \begin{macro}{slopeend} % \begin{macro}{slopesteps} % \begin{macro}{slopeangle} % \subsubsection{New graphics parameters} % We now define the various new parameters needed by the |slope| % fill styles and install default values. First come the colours, % ie~graphics parameters |slopebegin| and |slopeend|, followed % by the number of steps, |slopesteps|, and the rotation angle, % |slopeangle|. % \begin{macrocode} \newrgbcolor{slopebegin}{0.9 1 0} \define@key[psset]{pst-slpe}{slopebegin}{\pst@getcolor{#1}\psslopebegin}% --> hv \psset[pst-slpe]{slopebegin=slopebegin} % --> hv \newrgbcolor{slopeend}{0 0 1} \define@key[psset]{pst-slpe}{slopeend}{\pst@getcolor{#1}\psslopeend}% --> hv \psset[pst-slpe]{slopeend=slopeend}% --> hv \define@key[psset]{pst-slpe}{slopesteps}{\pst@getint{#1}\psslopesteps}% --> hv \psset[pst-slpe]{slopesteps=100}% --> hv \define@key[psset]{pst-slpe}{slopeangle}{\pst@getangle{#1}\psx@slopeangle}% --> hv \psset[pst-slpe]{slopeangle=0}% --> hv % \end{macrocode} % \end{macro} % \end{macro} % \end{macro} % \end{macro} % \begin{macro}{slopecolors} % The value for |slopecolors| is not parsed. It is directly copied % to the PostScript output. This is certainly not the way it % should be, but it's simple. The default value is a rainbow from % red to magenta. % \begin{macrocode} \define@key[psset]{pst-slpe}{slopecolors}{\def\psx@slopecolors{#1}}% --> hv \psset[pst-slpe]{slopecolors={% --> hv 0.0 1 0 0 0.4 0 1 0 0.8 0 0 1 1.0 1 0 1 4}} % \end{macrocode} % \end{macro} % \begin{macro}{slopecenter} % The argument to |slopecenter| isn't parsed either. But there's % probably not much that can go wrong with two decimal numbers. % \begin{macrocode} \define@key[psset]{pst-slpe}{slopecenter}{\def\psx@slopecenter{#1}}% --> hv \psset[pst-slpe]{slopecenter={0.5 0.5}}% --> hv % \end{macrocode} % \end{macro} % \begin{macro}{sloperadius} % The default value for |sloperadius| is 0, which makes the % PostScript procedure |PatchRadius| determine a value for the radius. % \begin{macrocode} \define@key[psset]{pst-slpe}{sloperadius}{\pst@getlength{#1}\psx@sloperadius}% --> hv \psset[pst-slpe]{sloperadius=0}% --> hv % \end{macrocode} % \end{macro} % % \subsubsection{Fill style macros} % % Now come the fill style definitions that use these parameters. % There is one macro for each fill style named |\psfs@|$style$. % PSTricks calls this macro whenever the current path needs to % be filled in that style. The current path should not be % clobbered by the PostScript code output by the macro. % % \begin{macro}{slopes} % For the slopes fill style we produce PostScript code that % first puts the |slopecolors| parameter onto the stack. Note that % the number of colours listed, which comes last in |slopecolors| is % now on the top of the stack. Next come the |slopesteps| and % |slopeangle| parameters. We switch to the dictionary established % by the \file{pst-slop.pro} Prolog and call |SlopesFill|, which % does the artwork and takes care to leave the path alone. % \begin{macrocode} \def\psfs@slopes{% \addto@pscode{ \psx@slopecolors\space \psslopesteps \psx@slopeangle tx@PstSlopeDict begin SlopesFill end}} % \end{macrocode} % \end{macro} % % \begin{macro}{slope} % The |slope| style uses parameters |slopebegin| and |slopeend| % instead of |slopecolors|. So the produced PostScript uses these % parameters to build a stack in |slopecolors| format. The % |\pst@usecolor| generates PostScript to set the current colour. % We can query the RGB values with |currentrgbcolor|. % A |gsave|/|grestore| pair is used to avoid changing the % PostScript graphics state. Once the stack is set up, % |SlopesFill| is called as before. % \begin{macrocode} \def\psfs@slope{% \addto@pscode{% gsave 0 \pst@usecolor\psslopebegin currentrgbcolor 1 \pst@usecolor\psslopeend currentrgbcolor 2 grestore \psslopesteps \psx@slopeangle tx@PstSlopeDict begin SlopesFill end}} % \end{macrocode} % \end{macro} % % \begin{macro}{ccslopes} % \begin{macro}{ccslope} % \begin{macro}{radslopes} % The code for the other fill styles is about the same, except for a few % parameters more or less and different PostScript procedures called % to do the work. % \begin{macrocode} \def\psfs@ccslopes{% \addto@pscode{% \psx@slopecolors\space \psslopesteps \psx@slopecenter\space \psx@sloperadius\space tx@PstSlopeDict begin CcSlopesFill end}} \def\psfs@ccslope{% \addto@pscode{% gsave 0 \pst@usecolor\psslopebegin currentrgbcolor 1 \pst@usecolor\psslopeend currentrgbcolor 2 grestore \psslopesteps \psx@slopecenter\space \psx@sloperadius\space tx@PstSlopeDict begin CcSlopesFill end}} \def\psfs@radslopes{% \addto@pscode{% \psx@slopecolors\space \psslopesteps\psx@slopecenter\space\psx@sloperadius\space\psx@slopeangle tx@PstSlopeDict begin RadSlopesFill end}} % \end{macrocode} % \end{macro} % \end{macro} % \end{macro} % \begin{macro}{radslope} % |radslope| is slightly different: Just going from one colour to % another in 360 degrees is usually not what is wanted. |radslope| just % does something pretty with the colours provided. % \begin{macrocode} \def\psfs@radslope{% \addto@pscode{% gsave 0 \pst@usecolor\psslopebegin currentrgbcolor 1 \pst@usecolor\psslopeend currentrgbcolor 2 \pst@usecolor\psslopebegin currentrgbcolor 3 \pst@usecolor\psslopeend currentrgbcolor 4 \pst@usecolor\psslopebegin currentrgbcolor 5 grestore \psslopesteps\psx@slopecenter\space\psx@sloperadius\space\psx@slopeangle tx@PstSlopeDict begin RadSlopesFill end}} \catcode`\@=\TheAtCode\relax % % \end{macrocode} % \end{macro} % % \subsection{The \file{pst-slpe.pro} file} % The file \file{pst-slpe.pro} contains PostScript definitions % to be included in the PostScript output by the % |dvi|-to-PostScript converter, eg |dvips|. % First thing is to define a % dictionary to keep definitions local. % \begin{macrocode} %<*prolog> /tx@PstSlopeDict 60 dict def tx@PstSlopeDict begin % \end{macrocode} % % \begin{macro}{max} % $x1 \quad x2 \quad \mathtt{max}\quad max$\\ % |max| is a utility function that calculates the maximum % of two numbers. % \begin{macrocode} /max {2 copy lt {exch} if pop} bind def % \end{macrocode} % \end{macro} % % \begin{macro}{Iterate} % $p_1\quad r_1\quad g_1\quad b_1\quad\ldots\quad % p_n\quad r_n\quad g_n\quad b_n\quad n\quad \mathtt{Iterate}\quad -$\\ % This is the actual iteration, which goes through the colour % information and plots the segments. % It uses the value of |NumSteps| which is set by the wrapper % procedures. |DrawStep| is called all of |NumSteps| times, so % it had better be fast. % % First, the number of colour infos is read from the % top of the stack and decremented, to get the number of segments. % \begin{macrocode} /Iterate { 1 sub /NumSegs ED % \end{macrocode} % Now we get the first colour. This is really the {\em last} % colour given in the |slopecolors| argument. We have to work % {\em down} the stack, so we shall be careful to plot the segments % in reverse order. The |dup mul| stuff squares the RGB % components. This does a kind-of-gamma correction, without % which primary colours tend to take up too much space in the % slope. This is nothing deep, it just looks better in my opinion. % The following lines convert RGB to HSB and store the resulting % components, as well as the |Pt| coordinate in four variables. % \begin{macrocode} dup mul 3 1 roll dup mul 3 1 roll dup mul 3 1 roll setrgbcolor currenthsbcolor /ThisB ED /ThisS ED /ThisH ED /ThisPt ED % \end{macrocode} % To avoid gaps, we fill the whole path in that first colour. % \begin{macrocode} gsave fill grestore % \end{macrocode} % The body of the following outer loop is executed % once for each segment. % It expects a current colour and |Pt| coordinate in the |This*| % variables and pops the next colour and point from the stack. It % then draws the single steps of that segment. % \begin{macrocode} NumSegs { dup mul 3 1 roll dup mul 3 1 roll dup mul 3 1 roll setrgbcolor currenthsbcolor /NextB ED /NextS ED /NextH ED /NextPt ED % \end{macrocode} % |NumSteps| always contains the remaining number of steps available. % These are evenly distributed between |Pt| coordinates |ThisPt| % to 0, so for the current segment we may use % $|NumSteps|*(|ThisPt|-|NextPt|)/|ThisPt|$ steps. % \begin{macrocode} ThisPt NextPt sub ThisPt div NumSteps mul cvi /SegSteps exch def /NumSteps NumSteps SegSteps sub def % \end{macrocode} % |SegSteps| may be zero. In that case there is nothing to do for % this segment. % \begin{macrocode} SegSteps 0 eq not { % \end{macrocode} % If one of the colours is gray, ie~0 saturation, its hue is % useless. In this case, instead of starting of with a random hue, % we take the hue of the other endpoint. (If both have saturation % 0, we have a pure gray scale and no harm is done) % \begin{macrocode} ThisS 0 eq {/ThisH NextH def} if NextS 0 eq {/NextH ThisH def} if % \end{macrocode} % To interpolate between two colours of different hue, we want to % go the shorter way around the colour circle. The following code % assures that this happens if we go linearly from |This*| to % |Next*| by conditionally adding 1.0 to one of the hue values. % The new hue values can lie between 0.0 and 2.0, so we will later % have to subtract 1.0 from values greater than one. % \begin{macrocode} ThisH NextH sub 0.5 gt {/NextH NextH 1.0 add def} { NextH ThisH sub 0.5 ge {/ThisH ThisH 1.0 add def} if } ifelse % \end{macrocode} % We define three variables to hold the current colour coordinates % and calculate the corresponding increments per step. % \begin{macrocode} /B ThisB def /S ThisS def /H ThisH def /BInc NextB ThisB sub SegSteps div def /SInc NextS ThisS sub SegSteps div def /HInc NextH ThisH sub SegSteps div def % \end{macrocode} % The body of the following inner loop sets the current colour, % according to |H|, |S| and |B| and % undoes the kind-of-gamma correction by converting to RGB colour. % It then calls |DrawStep|, which draws one step and maybe updates % the current point or user space, or variables of its own. Finally, % it increments the three colour variables. % \begin{macrocode} SegSteps { H dup 1. gt {1. sub} if S B sethsbcolor currentrgbcolor sqrt 3 1 roll sqrt 3 1 roll sqrt 3 1 roll setrgbcolor DrawStep /H H HInc add def /S S SInc add def /B B BInc add def } bind repeat % \end{macrocode} % The outer loop ends by moving on to the |Next| colour and point. % % \begin{macrocode} /ThisH NextH def /ThisS NextS def /ThisB NextB def /ThisPt NextPt def } if } bind repeat } def % \end{macrocode} % \end{macro} % % \begin{macro}{PatchRadius} % $-\quad\mathtt{PatchRadius}\quad-$\\ % This macro inspects the value of the variable |Radius|. If it is % 0, it is set to the maximum distance of any point in the % current path from the origin of user space. This has the effect % that the current path will be totally filled. To find the maximum % distance, we flatten the path and call |UpdRR| for each endpoint % of the generated polygon. The current maximum square distance is % gathered in |RR|. % \begin{macrocode} /PatchRadius { Radius 0 eq { /UpdRR { dup mul exch dup mul add RR max /RR ED } bind def gsave flattenpath /RR 0 def {UpdRR} {UpdRR} {} {} pathforall grestore /Radius RR sqrt def } if } def % \end{macrocode} % \end{macro} % % \begin{macro}{SlopesFill} % $p_1\quad r_1\quad g_1\quad b_1\quad\ldots\quad % p_n\quad r_n\quad g_n\quad b_n\quad n\quad s\quad\alpha\quad % \mathtt{SlopesFill}\quad -$\\ % Fill the current path with a slope described by $p_1,\ldots,b_n,n$. % Use a total of $s$ single steps. Rotate the slope by $\alpha$ % degrees, 0 meaning $r_1,g_1,b_1$ left to $r_n,g_n,b_n$ right. % % After saving the current path, we do the rotation and get the % number of steps, which is later needed by |Iterate|. Remember, % that iterate calls |DrawStep| in the reverse order, ie~from % right to left. We work around this by adding 180 degrees to % the rotation. Filling % works by clipping to the path and painting an appropriate sequence % of rectangles. |DrawStep| is set up for |Iterate| to draw a % rectangle of width |XInc| high enough to cover the whole % clippath (we use the Level 2 operator |rectfill| for speed) and % translate the user system by |XInc|. % \begin{macrocode} /SlopesFill { gsave 180 add rotate /NumSteps ED clip pathbbox /h ED /w ED 2 copy translate h sub neg /h ED w sub neg /w ED /XInc w NumSteps div def /DrawStep { 0 0 XInc h rectfill XInc 0 translate } bind def Iterate grestore } def % \end{macrocode} % \end{macro} % % \begin{macro}{CcSlopesFill} $p_1\quad r_1\quad g_1\quad % b_1\quad\ldots\quad p_n\quad r_n\quad g_n\quad b_n\quad n\quad % c_x\quad c_y \quad r\quad \mathtt{CcSlopesFill}\quad -$\\ Fills % the current path with a concentric pattern, % ie~in a polar coordinate system, the colour depends on the % radius and not on the angle. % Centered around a point with coordinates $(c_x,c_y)$ relative to % the bounding box of the path, ie~for a rectangle, $(0,0)$ will % center the pattern around the lower left corner of the rectangle, % $(0.5,0.5)$ around its center. The largest circle has a radius of % $r$. If $r=0$, $r$ is taken to be the maximum distance of any % point on the current path from the center defined by $(c_x,c_y)$. % The colours are given from the center outwards, % ie~$(r_1,g_1,b_1)$ describe the colour at the center. % % The code is similar to that of |SlopesFill|. The main differences % are the call to |PatchRadius|, which catches the case that $r=0$ % and the different definition for |DrawStep|, Which now fills a % circle of radius |Rad| and decreases that Variable. Of course, % drawing starts on the outside, so we work down the stack and circles % drawn later partially cover those drawn first. Painting % non-overlapping, `donut-shapes' would be slower. % \begin{macrocode} /CcSlopesFill { gsave /Radius ED /CenterY ED /CenterX ED /NumSteps ED clip pathbbox /h ED /w ED 2 copy translate h sub neg /h ED w sub neg /w ED w CenterX mul h CenterY mul translate PatchRadius /RadPerStep Radius NumSteps div neg def /Rad Radius def /DrawStep { 0 0 Rad 0 360 arc closepath fill /Rad Rad RadPerStep add def } bind def Iterate grestore } def % \end{macrocode} % \end{macro} % % \begin{macro}{RadSlopesFill} % $p_1\quad r_1\quad g_1\quad b_1\quad\ldots % \quad p_n\quad r_n\quad g_n\quad b_n\quad n\quad % c_x\quad c_y \quad r\quad\alpha\quad \mathtt{CcSlopesFill}\quad -$\\ % This fills the current path with a radial pattern, ie~in a % polar coordinate system the colour depends on the angle and not on % the radius. All this is very similar to |CcSlopesFill|. There % is an extra parameter $\alpha$, which rotates the pattern. % % The only new thing in the code is the |DrawStep| procedure. % This does {\em not} draw a circular arc, but a triangle, which is % considerably faster. One of the short sides of the triangle is % determined by |Radius|, the other one by |dY|, which is calculated % as $|dY|:=|Radius|\times\tan(|AngleIncrement|)$. % \begin{macrocode} /RadSlopesFill { gsave rotate /Radius ED /CenterY ED /CenterX ED /NumSteps ED clip pathbbox /h ED /w ED 2 copy translate h sub neg /h ED w sub neg /w ED w CenterX mul h CenterY mul translate PatchRadius /AngleIncrement 360 NumSteps div neg def /dY AngleIncrement sin AngleIncrement cos div Radius mul def /DrawStep { 0 0 moveto Radius 0 rlineto 0 dY rlineto closepath fill AngleIncrement rotate } bind def Iterate grestore } def % \end{macrocode} % \end{macro} % Last, but not least, we have to close the private dictionary. % \begin{macrocode} end % % \end{macrocode} % \Finale %