% \iffalse meta-comment % % Copyright (C) 2018-2019 by F. Pantigny % ----------------------------------- % % This file may be distributed and/or modified under the % conditions of the LaTeX Project Public License, either version 1.3 % of this license or (at your option) any later version. % The latest version of this license is in: % % http://www.latex-project.org/lppl.txt % % and version 1.3 or later is part of all distributions of LaTeX % version 2005/12/01 or later. % % \fi % \iffalse \def\myfileversion{2.1.4} \def\myfiledate{2019/01/28} % % %<*batchfile> \begingroup \input l3docstrip.tex \keepsilent \usedir{tex/latex/nicematrix} \preamble Copyright (C) 2018-2019 by F. Pantigny ----------------------------------- This file may be distributed and/or modified under the conditions of the LaTeX Project Public License, either version 1.3 of this license or (at your option) any later version. The latest version of this license is in: http://www.latex-project.org/lppl.txt and version 1.3 or later is part of all distributions of LaTeX version 2005/12/01 or later. \endpreamble \askforoverwritefalse \endgroup % % %<@@=nicem> %<*driver> \documentclass[dvipsnames]{l3doc}% dvipsnames is for xcolor (loaded by Tikz, loaded by nicematrix) \VerbatimFootnotes \usepackage{xltxtra} \usepackage{geometry} \geometry{left=2.8cm,right=2.8cm,top=2.5cm,bottom=2.5cm,papersize={21cm,29.7cm}} \usepackage{nicematrix} \usetikzlibrary{fit} \NewDocumentEnvironment {scope} {} {} {} \def\interitem{\vskip 7mm plus 2 mm minus 3mm} \def\emphase{\bgroup\color{RoyalPurple}\let\next=} \fvset{commandchars=\~\#\@,formatcom={\color{gray}}} \usepackage{titlesec} \titlespacing*{\section}{0pt}{6.5ex plus 1ex minus .2ex}{4.3ex plus .2ex} \titlespacing*{\subsection}{0pt}{4.5ex plus 1ex minus .2ex}{2ex plus .2ex} \usepackage{multicol} \setlength{\columnseprule}{0.4pt} \usepackage{colortbl} \usepackage{arydshln} \usepackage{footnotehyper} \parindent 0pt \DisableCrossrefs \begin{document} \DocInput{nicematrix.dtx} \end{document} % % \fi % \title{The package \pkg{nicematrix}\thanks{This document corresponds to the version~\myfileversion\space of \pkg{nicematrix}, % at the date of~\myfiledate.}} \author{F. Pantigny \\ \texttt{fpantigny@wanadoo.fr}} % % % \maketitle % % \begin{abstract} % The LaTeX package \pkg{nicematrix} provides new environments similar to the classical environments |{array}| and % |{matrix}| but with some additional features. Among these features are the possibilities to fix the width of the % columns and to draw continuous ellipsis dots between the cells of the array. % \end{abstract} % % \vspace{1cm} % \section{Presentation} % % % This package can be used with |xelatex|, |lualatex|, |pdflatex| but also by the classical workflow % |latex|-|dvips|-|ps2pdf| (or Adobe Distiller). Two or three compilations may be necessary. This package requires % and loads the packages \pkg{expl3}, \pkg{l3keys2e}, \pkg{xparse}, \pkg{array}, \pkg{amsmath} and \pkg{tikz}. It % also loads the Tikz library \pkg{fit}. % % % % \medskip % \begin{savenotes} % \begin{minipage}{0.6\linewidth} % This package provides some new tools to draw mathematical matrices. The main features are the following: % % \textbullet\ continuous dotted lines\footnote{If the class option |draft| is used, these dotted lines will not be % drawn for a faster compilation.}; % % \textbullet\ a first row and a last column for labels; % % \textbullet\ a control of the width of the columns. % \end{minipage} % \end{savenotes} % \hspace{1.4cm} % $\vcenter{ % \begin{bNiceArrayRC}{CCCC}[code-for-last-col=\color{blue}\scriptstyle, % code-for-first-row=\color{blue}\scriptstyle, % columns-width = auto] % C_1 & C_2 & \Cdots & C_n \\ % a_{11} & a_{12} & \Cdots & a_{1n} & L_1 \\ % a_{21} & a_{22} & \Cdots & a_{2n} & L_2 \\ % \Vdots & \Vdots & \Ddots & \Vdots & \Vdots \\ % a_{n1} & a_{n2} & \Cdots & a_{nn} & L_n % \end{bNiceArrayRC} % }$ % % \medskip % A command |\NiceMatrixOptions| is provided to fix the options (the scope of the options fixed by this command is % the current TeX group). % % % \bigskip % \textbf{An example for the continuous dotted lines} % % \medskip % \begin{minipage}{10cm} % For example, consider the following code which uses an environment |{pmatrix}| of \pkg{amsmath}. % % \smallskip % \begin{BVerbatim} % $A = \begin{pmatrix} % 1 & \cdots & \cdots & 1 \\ % 0 & \ddots & & \vdots \\ % \vdots & \ddots & \ddots & \vdots \\ % 0 & \cdots & 0 & 1 % \end{pmatrix}$ % \end{BVerbatim} % % \smallskip % This code composes the matrix $A$ on the right. % \end{minipage}\hspace{1cm} % $A = \begin{pmatrix} % 1 &\cdots &\cdots &1 \\ % 0 &\ddots & &\vdots \\ % \vdots &\ddots &\ddots &\vdots \\ % 0 &\cdots &0 &1 % \end{pmatrix}$ % % % \bigskip % \begin{scope} % \NiceMatrixOptions{transparent} % \begin{minipage}{10cm} % Now, if we use the package \pkg{nicematrix} with the option |transparent|, the same code will give the % result on the right. % \end{minipage}\hspace{1cm} % $A = \begin{pmatrix} % 1 & \cdots & \cdots & 1 \\ % 0 & \ddots & & \vdots \\ % \vdots & \ddots & \ddots & \vdots \\ % 0 & \cdots & 0 & 1 % \end{pmatrix}$ % \end{scope} % % % \section{The environments of this extension} % % The extension \pkg{nicematrix} defines the following new environments. % % \medskip % \begin{ttfamily} % \setlength{\tabcolsep}{3mm} % \begin{tabular}{llll} % \{NiceMatrix\} & \{NiceArray\} & \{pNiceArrayC\} & \{pNiceArrayRC\} \\ % \{pNiceMatrix\} & & \{bNiceArrayC\} & \{bNiceArrayRC\} \\ % \{bNiceMatrix\} & & \{BNiceArrayC\} & \{BNiceArrayRC\} \\ % \{BNiceMatrix\} & & \{vNiceArrayC\} & \{vNiceArrayRC\} \\ % \{vNiceMatrix\} & & \{VNiceArrayC\} & \{VNiceArrayRC\} \\ % \{VNiceMatrix\} & & \{NiceArrayCwithDelims\} & \{NiceArrayRCwithDelims\} \\ % \end{tabular} % \end{ttfamily} % % % \medskip % By default, the environments |{NiceMatrix}|, |{pNiceMatrix}|, |{bNiceMatrix}|, |{BNiceMatrix}|, |{vNiceMatrix}| % and |{VNiceMatrix}| behave almost exactly as the corresponding environments of \pkg{amsmath}: % |{matrix}|, |{pmatrix}|, |{bmatrix}|, |{Bmatrix}|, |{vmatrix}| and |{Vmatrix}|. % % % \medskip % The environment |{NiceArray}| is similar to the environment |{array}| of the package |{array}|. However, for % technical reasons, in the preamble of the environment |{NiceArray}|, the user must use the letters |L|, |C| % and~|R| instead of |l|, |c| and |r|. It's possible to use the constructions \verb|w{...}{...}|, % \verb|W{...}{...}|, \verb+|+, |>{...}|, |<{...}|, |@{...}|, |!{...}| and |*{n}{...}| but the letters |p|, |m| and % |b| should not be used. See p.~\pageref{NiceArray} the section relating to |{NiceArray}|. % % \medskip % The environments with |C| at the end of their name, |{pNiceArrayC}|, |{bNiceArrayC}|, |{BNiceArrayC}|, % |{vNiceArrayC}| and |{VNiceArrayC}| are similar to the environment |{NiceArray}| (especially the special letters % |L|, |C| and |R|) but create an exterior column (on the right of the closing delimiter). See % p.~\pageref{pNiceArrayC} the section relating to |{pNiceArrayC}|. % % \medskip % The environments with |RC|, |{pNiceArrayRC}|, |{bNiceArrayRC}|, |{BNiceArrayRC}|, |{vNiceArrayRC}|, % |{VNiceArrayRC}| are similar to the environment |{NiceArray}| but create an exterior row (above the main matrix) % and an exterior column. See p.~\pageref{pNiceArrayRC} the section relating to |{pNiceArrayRC}|. % % % % \section{The continuous dotted lines} % % Inside the environments of the extension \pkg{nicematrix}, new commands are defined: |\Ldots|, |\Cdots|, % |\Vdots|, |\Ddots|, and |\Iddots|. These commands are intended to be used in place of |\dots|, |\cdots|, % |\vdots|, |\ddots| and |\iddots|.\footnote{The command |\iddots|, defined in \pkg{nicematrix}, is a variant of % |\ddots| with dots going forward: \smash{$\iddots$}. If |mathdots| is loaded, the version of |mathdots| is used. % It corresponds to the command |\adots| of \pkg{unicode-math}.} % % \smallskip % Each of them must be used alone in the cell of the array and it draws a dotted line between the first non-empty % cells\footnote{The precise definition of a ``non-empty cell'' is given below (cf. p.~\pageref{empty-cells}).} on % both sides of the current cell. Of course, for |\Ldots| and |\Cdots|, it's an horizontal line; for |\Vdots|, it's % a vertical line and for |\Ddots| and |\Iddots| diagonal ones.\par\nobreak % \bigskip % \begin{BVerbatim}[baseline=c,boxwidth=10cm] % \begin{bNiceMatrix} % a_1 & \Cdots & & & a_1 \\ % \Vdots & a_2 & \Cdots & & a_2 \\ % & \Vdots & \Ddots \\ % \\ % a_1 & a_2 & & & a_n \\ % \end{bNiceMatrix} % \end{BVerbatim} % $\begin{bNiceMatrix} % a_1 & \Cdots & & & a_1 \\ % \Vdots & a_2 & \Cdots & & a_2 \\ % & \Vdots & \Ddots \\ % \\ % a_1 & a_2 & & & a_n \\ % \end{bNiceMatrix}$ % % \interitem % In order to represent the null matrix, one can use the following codage:\par\nobreak % \bigskip % \begin{BVerbatim}[baseline=c,boxwidth=10cm] % \begin{bNiceMatrix} % 0 & \Cdots & 0 \\ % \Vdots & & \Vdots \\ % 0 & \Cdots & 0 % \end{bNiceMatrix} % \end{BVerbatim} % $\begin{bNiceMatrix} % 0 & \Cdots & 0 \\ % \Vdots & & \Vdots \\ % 0 & \Cdots & 0 % \end{bNiceMatrix}$ % % \bigskip % However, one may want a larger matrix. Usually, in such a case, the users of LaTeX add a new row and a new % column. It's possible to use the same method with \pkg{nicematrix}:\par\nobreak % \bigskip % \begin{BVerbatim}[baseline=c,boxwidth=10cm] % \begin{bNiceMatrix} % 0 & \Cdots & \Cdots & 0 \\ % \Vdots & & & \Vdots \\ % \Vdots & & & \Vdots \\ % 0 & \Cdots & \Cdots & 0 % \end{bNiceMatrix} % \end{BVerbatim} % $\begin{bNiceMatrix} % 0 & \Cdots & \Cdots & 0 \\ % \Vdots & & & \Vdots \\ % \Vdots & & & \Vdots \\ % 0 & \Cdots & \Cdots & 0 % \end{bNiceMatrix}$ % % \bigskip % In the first column of this exemple, there are two instructions |\Vdots| but only one dotted line is drawn (there % is no overlapping graphic objects in the resulting \textsc{pdf}\footnote{And it's not possible to draw a |\Ldots| % and a |\Cdots| line between the same cells.}). % % However, useless computations are performed by TeX before detecting that both instructions would eventually yield % the same dotted line. That's why the package \pkg{nicematrix} provides starred versions of |\Ldots|, |\Cdots|, % etc.: |\Ldots*|, |\Cdots*|, etc. These versions are simply equivalent to |\hphantom{\ldots}|, % |\hphantom{\cdots}|, etc. The user should use these starred versions whenever a classical version has already % been used for the same dotted line.\par\nobreak % \bigskip % \begin{BVerbatim}[baseline=c,boxwidth=10cm] % \begin{bNiceMatrix} % 0 & \Cdots & ~emphase#\Cdots*@ & 0 \\ % \Vdots & & & \Vdots \\ % ~emphase#\Vdots*@ & & & ~emphase#\Vdots*@ \\ % 0 & \Cdots & ~emphase#\Cdots*@ & 0 % \end{bNiceMatrix} % \end{BVerbatim} % $\begin{bNiceMatrix} % 0 & \Cdots & & 0 \\ % \Vdots & & & \\ % & & & \Vdots \\ % 0 & & \Cdots & 0 % \end{bNiceMatrix}$ % % \bigskip % In fact, in this example, it would be possible to draw the same matrix without starred commands with the % following code:\par\nobreak % \bigskip % \begin{BVerbatim}[baseline=c,boxwidth=10cm] % \begin{bNiceMatrix} % 0 & \Cdots & & 0 \\ % \Vdots & & & \\ % & & & \Vdots \\ % 0 & & \Cdots & 0 % \end{bNiceMatrix} % \end{BVerbatim} % $\begin{bNiceMatrix} % 0 & \Cdots & & 0 \\ % \Vdots & & & \\ % & & & \Vdots \\ % 0 & & \Cdots & 0 % \end{bNiceMatrix}$ % % \bigskip % There are also other means to change the size of the matrix. Someone might want to use the optional argument of % the command~|\\| for the vertical dimension and a command~|\hspace*| in a cell for the horizontal % dimension.\footnote{Nevertheless, the best way to fix the width of a column is to use the environment % |{NiceArray}| with a column of type~|w| (or |W|).} % % However, a command~|\hspace*| might interfer with the construction of the dotted lines. That's why the package % \pkg{nicematrix} provides a command~|\Hspace| which is a variant of |\hspace| transparent for the dotted lines of % \pkg{nicematrix}.\par\nobreak % \bigskip % \begin{BVerbatim}[baseline=c,boxwidth=10cm] % \begin{bNiceMatrix} % 0 & \Cdots & ~emphase#\Hspace*{1cm}@ & 0 \\ % \Vdots & & & \Vdots \\~emphase#[1cm]@ % 0 & \Cdots & & 0 % \end{bNiceMatrix} % \end{BVerbatim} % $\begin{bNiceMatrix} % 0 & \Cdots & \Hspace*{1cm} & 0 \\ % \Vdots & & & \Vdots \\[1cm] % 0 & \Cdots & & 0 % \end{bNiceMatrix}$ % % \subsection{The option nullify-dots} % % Consider the following matrix composed classicaly with the environment |{pmatrix}|.\par\nobreak % \medskip % \begin{BVerbatim}[baseline=c,boxwidth=8cm] % $A = \begin{pmatrix} % a_0 & b \\ % a_1 & \\ % a_2 & \\ % a_3 & \\ % a_4 & \\ % a_5 & b % \end{pmatrix}$ % \end{BVerbatim} % $A = \begin{pmatrix} % a_0 & b \\ % a_1 & \\ % a_2 & \\ % a_3 & \\ % a_4 & \\ % a_5 & b % \end{pmatrix}$ % % % \bigskip % If we add |\vdots| instructions in the second column, the geometry of the matrix is modified.\par\nobreak % \medskip % \begin{BVerbatim}[baseline=c,boxwidth=8cm] % $B = \begin{pmatrix} % a_0 & b \\ % a_1 & \vdots \\ % a_2 & \vdots \\ % a_3 & \vdots \\ % a_4 & \vdots \\ % a_5 & b % \end{pmatrix}$ % \end{BVerbatim} % $B = \begin{pmatrix} % a_0 & b \\ % a_1 & \vdots \\ % a_2 & \vdots \\ % a_3 & \vdots \\ % a_4 & \vdots \\ % a_5 & b % \end{pmatrix}$ % % \bigskip % By default, with \pkg{nicematrix}, if we replace |{pmatrix}| by |{pNiceMatrix}| and |\vdots| by % |\Vdots| (or |\Vdots*| for efficiency), the geometry of the matrix is not changed.\par\nobreak % \medskip % \begin{BVerbatim}[baseline=c,boxwidth=8cm] % $C = \begin{pNiceMatrix} % a_0 & b \\ % a_1 & \Vdots \\ % a_2 & \Vdots* \\ % a_3 & \Vdots* \\ % a_4 & \Vdots* \\ % a_5 & b % \end{pNiceMatrix}$ % \end{BVerbatim} % $C = \begin{pNiceMatrix} % a_0 & b \\ % a_1 & \Vdots \\ % a_2 & \Vdots* \\ % a_3 & \Vdots* \\ % a_4 & \Vdots* \\ % a_5 & b % \end{pNiceMatrix}$ % % \bigskip % However, one may prefer the geometry of the first matrix $A$ and would like to have such a geometry with a dotted % line in the second column. It's possible by using the option |nullify-dots| (and only one instruction |\Vdots| is % necessary).\par\nobreak % \medskip % \begin{BVerbatim}[baseline=c,boxwidth=8cm] % $D = \begin{pNiceMatrix}[~emphase#nullify-dots@] % a_0 & b \\ % a_1 & \Vdots \\ % a_2 & \\ % a_3 & \\ % a_4 & \\ % a_5 & b % \end{pNiceMatrix}$ % \end{BVerbatim} % $D = \begin{pNiceMatrix}[nullify-dots] % a_0 & b \\ % a_1 & \Vdots \\ % a_2 & \\ % a_3 & \\ % a_4 & \\ % a_5 & b % \end{pNiceMatrix}$ % % \medskip % The option |nullify-dots| smashes the instructions |\Ldots| (and the variants) vertically but also horizontally. % % \medskip % \textbf{There must be no space before the opening bracket (|[|) of the options of the environment.} % % \subsection{The command Hdotsfor} % % Some people commonly use the command |\hdotsfor| of \pkg{amsmath} in order to draw horizontal dotted lines in a % matrix. In the environments of \pkg{nicematrix}, one should use instead |\Hdotsfor| in order to draw dotted lines similar % to the other dotted lines drawn by the package \pkg{nicematrix}. % % As with the other commands of \pkg{nicematrix} (like |\Cdots|, |\Ldots|, |\Vdots|, etc.), the dotted line drawn % with |\Hdotsfor| extends until the contents of the cells on both sides. % % \medskip % \begin{BVerbatim}[baseline=c,boxwidth=7cm] % $\begin{pNiceMatrix} % 1 & 2 & 3 & 4 & 5 \\ % 1 & ~emphase#\Hdotsfor{3}@ & 5 \\ % 1 & 2 & 3 & 4 & 5 \\ % 1 & 2 & 3 & 4 & 5 \\ % \end{pNiceMatrix}$ % \end{BVerbatim} % $\begin{pNiceMatrix} % 1 & 2 & 3 & 4 & 5 \\ % 1 & \Hdotsfor{3} & 5 \\ % 1 & 2 & 3 & 4 & 5 \\ % 1 & 2 & 3 & 4 & 5 \\ % \end{pNiceMatrix}$ % % \bigskip % However, if these cells are empty, the dotted line extends only in the cells specified by the argument of % |\Hdotsfor| (by design). % % \medskip % \begin{BVerbatim}[baseline=c,boxwidth=7cm] % $\begin{pNiceMatrix} % 1 & 2 & 3 & 4 & 5 \\ % & ~emphase#\Hdotsfor{3}@ \\ % 1 & 2 & 3 & 4 & 5 \\ % 1 & 2 & 3 & 4 & 5 \\ % \end{pNiceMatrix}$ % \end{BVerbatim} % $\begin{pNiceMatrix} % 1 & 2 & 3 & 4 & 5 \\ % & \Hdotsfor{3} \\ % 1 & 2 & 3 & 4 & 5 \\ % 1 & 2 & 3 & 4 & 5 \\ % \end{pNiceMatrix}$ % % \bigskip % The command |\hdotsfor| of \pkg{amsmath} takes an optional argument (between square brackets) which is % used for fine tuning of the space beetween two consecutive dots. For homogeneity, |\Hdotsfor| has % also an optional argument but this argument is discarded silently. % % Remark: Unlike the command |\hdotsfor| of \pkg{amsmath}, the command |\Hdotsfor| is compatible with the extension % \pkg{colortbl}. % % \subsection{How to generate the continuous dotted lines transparently} % % The package \pkg{nicematrix} provides an option called |transparent| for using existing code transparently in the % environments |{matrix}|. This option can be set as option of |\usepackage| or with the command % |\NiceMatrixOptions|. % % % In fact, this option is an alias for the conjonction of two options: |renew-dots| and |renew-matrix|. % % \smallskip % % \begin{itemize} % \item The option |renew-dots|\par\nobreak % With this option, the commands |\ldots|, |\cdots|, |\vdots|, |\ddots|, |\iddots|\footnote{The command % |\iddots| is not a command of LaTeX but is defined by the package \pkg{nicematrix}. If |mathdots| is loaded, the % version of |mathdots| is used.} and |\hdotsfor| are redefined within the environments provided by \pkg{nicematrix} % and behave like |\Ldots|, |\Cdots|, |\Vdots|, |\Ddots|, |\Iddots| and |\Hdotsfor|; the command |\dots| (``automatic % dots'' of |amsmath|) is also redefined to behave like |\Ldots|. % % \item The option |renew-matrix|\par\nobreak % With this option, the environment |{matrix}| is redefined and behave like |{NiceMatrix}|, and so on for the five % variants. % \end{itemize} % % \bigskip % Therefore, with the option |transparent|, a classical code gives directly the ouput of \pkg{nicematrix}.\par\nobreak % \bigskip % \begin{scope} % \NiceMatrixOptions{transparent} % \begin{BVerbatim}[baseline=c,boxwidth=10cm] % ~emphase#\NiceMatrixOptions{transparent}@ % \begin{pmatrix} % 1 & \cdots & \cdots & 1 \\ % 0 & \ddots & & \vdots \\ % \vdots & \ddots & \ddots & \vdots \\ % 0 & \cdots & 0 & 1 % \end{pmatrix} % \end{BVerbatim} % $\begin{pmatrix} % 1 & \cdots & \cdots & 1 \\ % 0 & \ddots & & \vdots \\ % \vdots & \ddots & \ddots & \vdots \\ % 0 & \cdots & 0 & 1 % \end{pmatrix}$ % \end{scope} % % \section{The Tikz nodes created by nicematrix} % % The package \pkg{nicematrix} creates a Tikz node for each cell of the considered array. These nodes are used to % draw the dotted lines between the cells of the matrix. However, the user may wish to use directly these nodes. % It's possible. First, the user have to give a name to the array (with the key called |name|). Then, the nodes are % accessible through the names ``\textsl{name}-$i$-$j$'' where \textsl{name} is the name given to the array and % $i$ and $j$ the numbers of the row and the column of the considered cell. % % \medskip % \begin{BVerbatim}[baseline=c,boxwidth=11cm] % $\begin{pNiceMatrix}[name=~emphase#mymatrix@] % 1 & 2 & 3 \\ % 4 & 5 & 6 \\ % 7 & 8 & 9 \\ % \end{pNiceMatrix}$ % \tikz[remember picture,overlay] % \draw ~emphase#(mymatrix-2-2)@ circle (2mm) ; % \end{BVerbatim} % $\begin{pNiceMatrix}[name=mymatrix] % 1 & 2 & 3 \\ % 4 & 5 & 6 \\ % 7 & 8 & 9 \\ % \end{pNiceMatrix}$ % \tikz[remember picture,overlay] % \draw (mymatrix-2-2) circle (2mm) ; % % \medskip % Don't forget the options |remember picture| and |overlay|. % % \bigskip % In the following example, we have underlined all the nodes of the matrix. % \begin{scope} % \tikzset{every node/.style = {fill = red!15, inner sep = 0pt}} % \[\begin{pNiceMatrix} % a & a + b & a + b + c \\ % a & a & a + b \\ % a & a & a % \end{pNiceMatrix}\] % \end{scope} % % % \bigskip % In fact, the package \pkg{nicematrix} can create ``extra nodes''. These new nodes are created if the option % |create-extra-nodes| is used. There are two series of extra nodes: the ``medium nodes'' and the ``large nodes''. % % \medskip % The names of the ``medium nodes'' are constructed by adding the suffix ``|-medium|'' to the names of the ``normal % nodes''. In the following example, we have underlined the ``medium nodes''. We consider that this example is self-explanatory. % \[\begin{pNiceMatrix}[ % create-extra-nodes, % code-after = {\begin{tikzpicture} % [every node/.style = {fill = red!15, % blend mode = multiply, % inner sep = -\pgflinewidth/2}, % name suffix = -medium] % \node [fit = (1-1)] {} ; % \node [fit = (1-2)] {} ; % \node [fit = (1-3)] {} ; % \node [fit = (2-1)] {} ; % \node [fit = (2-2)] {} ; % \node [fit = (2-3)] {} ; % \node [fit = (3-1)] {} ; % \node [fit = (3-2)] {} ; % \node [fit = (3-3)] {} ; % \end{tikzpicture}}] % a & a + b & a + b + c \\ % a & a & a + b \\ % a & a & a % \end{pNiceMatrix}\] % % % \medskip % The names of the ``large nodes'' are constructed by adding the suffix ``|-large|'' to the names of the ``normal % nodes''. In the following example, we have underlined the ``large nodes''. We consider that this example is % self-explanatory.\footnote{In the environments like |{pNiceArrayC}| and |{pNiceArrayRC}|, there is not ``large % nodes'' created in the exterior row and column.} % % \[\begin{pNiceMatrix}[ % create-extra-nodes, % code-after = {\begin{tikzpicture} % [every node/.style = {blend mode = multiply, % inner sep = -\pgflinewidth/2}, % name suffix = -large] % \node [fit = (1-1),fill = red!15] {} ; % \node [fit = (1-3),fill = red!15] {} ; % \node [fit = (2-2),fill = red!15] {} ; % \node [fit = (3-1),fill = red!15] {} ; % \node [fit = (3-3),fill = red!15] {} ; % \node [fit = (1-2),fill = blue!15] {} ; % \node [fit = (2-1),fill = blue!15] {} ; % \node [fit = (2-3),fill = blue!15] {} ; % \node [fit = (3-2),fill = blue!15] {} ; % \end{tikzpicture}}] % a & a + b & a + b + c \\ % a & a & a + b \\ % a & a & a % \end{pNiceMatrix}\] % % % \medskip % The ``large nodes'' of the first column and last column may appear too small for some usage. That's why it's % possible to use the options |left-margin| and |right-margin| to add space on both sides of the array and also % space in the ``large nodes'' of the first column and last column. In the following example, we have used the % options |left-margin| and |right-margin|.\footnote{The options |left-margin| and |right-margin| take dimensions % as values but, if no value is given, the default value is used, which is |\arraycolsep|.} % \[\begin{pNiceMatrix}[ % create-extra-nodes,left-margin,right-margin, % code-after = {\begin{tikzpicture} % [every node/.style = {blend mode = multiply, % inner sep = -\pgflinewidth/2}, % name suffix = -large] % \node [fit = (1-1),fill = red!15] {} ; % \node [fit = (1-3),fill = red!15] {} ; % \node [fit = (2-2),fill = red!15] {} ; % \node [fit = (3-1),fill = red!15] {} ; % \node [fit = (3-3),fill = red!15] {} ; % \node [fit = (1-2),fill = blue!15] {} ; % \node [fit = (2-1),fill = blue!15] {} ; % \node [fit = (2-3),fill = blue!15] {} ; % \node [fit = (3-2),fill = blue!15] {} ; % \end{tikzpicture}}] % a & a + b & a + b + c \\ % a & a & a + b \\ % a & a & a % \end{pNiceMatrix}\] % % \medskip % It's also possible to add more space on both side of the array with the options |extra-left-margin| and % |extra-right-margin|. These margins are not incorporated in the ``large nodes''. In the following example, we % have used |extra-left-margin| and |extra-right-margin| with the value $3$~pt. % \[\begin{pNiceMatrix}[ % create-extra-nodes,left-margin,right-margin,extra-right-margin=3pt,extra-left-margin=3pt, % code-after = {\begin{tikzpicture} % [every node/.style = {blend mode = multiply, % inner sep = -\pgflinewidth/2}, % name suffix = -large] % \node [fit = (1-1),fill = red!15] {} ; % \node [fit = (1-3),fill = red!15] {} ; % \node [fit = (2-2),fill = red!15] {} ; % \node [fit = (3-1),fill = red!15] {} ; % \node [fit = (3-3),fill = red!15] {} ; % \node [fit = (1-2),fill = blue!15] {} ; % \node [fit = (2-1),fill = blue!15] {} ; % \node [fit = (2-3),fill = blue!15] {} ; % \node [fit = (3-2),fill = blue!15] {} ; % \end{tikzpicture}}] % a & a + b & a + b + c \\ % a & a & a + b \\ % a & a & a % \end{pNiceMatrix}\] % % \medskip % In this case, if we want a control over the height of the rows, we can add a |\strut| in each row of the array. % \[\begin{pNiceMatrix}[ % create-extra-nodes,left-margin,right-margin,extra-right-margin=3pt,extra-left-margin=3pt, % code-after = {\begin{tikzpicture} % [every node/.style = {blend mode = multiply, % inner sep = -\pgflinewidth/2}, % name suffix = -large] % \node [fit = (1-1),fill = red!15] {} ; % \node [fit = (1-3),fill = red!15] {} ; % \node [fit = (2-2),fill = red!15] {} ; % \node [fit = (3-1),fill = red!15] {} ; % \node [fit = (3-3),fill = red!15] {} ; % \node [fit = (1-2),fill = blue!15] {} ; % \node [fit = (2-1),fill = blue!15] {} ; % \node [fit = (2-3),fill = blue!15] {} ; % \node [fit = (3-2),fill = blue!15] {} ; % \end{tikzpicture}}] % \strut a & a + b & a + b + c \\ % \strut a & a & a + b \\ % \strut a & a & a % \end{pNiceMatrix}\] % % \bigskip % We explain below how to fill the nodes created by \pkg{nicematrix}. % % \section{The code-after} % % The option |code-after| may be used to give some code that will be excuted after the construction of the matrix % (and, hence, after the construction of all the Tikz nodes). % % In the |code-after|, the Tikz nodes should be accessed by a name of the form $i$-$j$ (without the prefix of the % name of the environment). % % Moreover, a special command, called |\line| is available to draw directly dotted lines between nodes. % % \medskip % \begin{BVerbatim}[baseline=c,boxwidth=12cm] % $\begin{pNiceMatrix}[~emphase#code-after = {\line {1-1} {3-3}}@] % 0 & 0 & 0 \\ % 0 & & 0 \\ % 0 & 0 & 0 \\ % \end{pNiceMatrix}$ % \end{BVerbatim} % $\begin{pNiceMatrix}[code-after = {\line {1-1} {3-3}}] % 0 & 0 & 0 \\ % 0 & & 0 \\ % 0 & 0 & 0 \\ % \end{pNiceMatrix}$ % % % \section{The environment \{NiceArray\}} % \label{NiceArray} % % The environment |{NiceArray}| is similar to the environment |{array}|. As for |{array}|, the mandatory argument % is the preamble of the array. However, for technical reasons, in this preamble, the user must use the letters % |L|, |C| and~|R|\footnote{The column types |L|, |C| and |R| are defined locally inside |{NiceArray}| with % |\newcolumntype| of \pkg{array}. This definition overrides an eventual previous definition.} instead of |l|, |c| % and |r|. It's possible to use the constructions \verb|w{...}{...}|, \verb|W{...}{...}|, \verb+|+, |>{...}|, % |<{...}|, |@{...}|, |!{...}| and |*{n}{...}| but the letters |p|, |m| and |b| should not be used.\footnote{In a % command |\multicolumn|, one should also use the letters |L|, |C|, |R|.} % % \medskip % The environment |{NiceArray}| accepts the classical options |t|, |c| and |b| of |{array}| but also other options % defined by \pkg{nicematrix} (|renew-dots|, |columns-width|, etc.). % % % \vspace{1cm} % An example with a linear system (we need |{NiceArray}| for the vertical rule): % % \bigskip % \begin{BVerbatim}[baseline=c,boxwidth=10cm] % $\left[\begin{NiceArray}{CCCC|C} % a_1 & ? & \Cdots & ? & ? \\ % 0 & & \Ddots & \Vdots & \Vdots\\ % \Vdots & \Ddots & \Ddots & ? \\ % 0 & \Cdots & 0 & a_n & ? \\ % \end{NiceArray}\right]$ % \end{BVerbatim} % $\left[\begin{NiceArray}{CCCC|C} % a_1 & ? & \Cdots & ? & ? \\ % 0 & & \Ddots & \Vdots & \Vdots\\ % \Vdots & \Ddots & \Ddots & ? \\ % 0 & \Cdots & 0 & a_n & ? \\ % \end{NiceArray}\right]$ % % \vspace{1cm} % An example where we use |{NiceArray}| because we want to use the types |L| and |R| for the columns: % % \bigskip % \begin{BVerbatim}[baseline=c,boxwidth=10cm] % $\left(\begin{NiceArray}{LCR} % a_{11} & \Cdots & a_{1n} \\ % a_{21} & & a_{2n} \\ % \Vdots & & \Vdots \\ % a_{n-1,1} & \Cdots & a_{n-1,n} \\ % \end{NiceArray}\right)$ % \end{BVerbatim} % $\left(\begin{NiceArray}{LCR} % a_{11} & \Cdots & a_{1n} \\ % a_{21} & & a_{2n} \\ % \Vdots & & \Vdots \\ % a_{n-1,1} & \Cdots & a_{n-1,n} \\ % \end{NiceArray}\right)$ % % % % % \section{The environment \{pNiceArrayC\} and its variants} % \label{pNiceArrayC} % % The environment |{pNiceArrayC}| composes a matrix with an exterior column. % % The environment |{pNiceArrayC}| takes a mandatory argument which is the preamble of the array. The types % of columns available are the same as for the environment |{NiceArray}|. \textbf{However, no specification must be % given for the last column.} It will automatically (and necessarily) be a |L|~column. % % A special option, called |code-for-last-col|, specifies tokens that will be inserted before each cell of the last % column. The option |columns-width| doesn't apply to this external column. % % \bigskip % % \begin{Verbatim} % $\begin{pNiceArrayC}{*6C|C}[nullify-dots,~emphase#code-for-last-col={\scriptstyle}@] % 1 & 1 & 1 &\Cdots & & 1 & 0 & \\ % 0 & 1 & 0 &\Cdots & & 0 & & L_2 \gets L_2-L_1 \\ % 0 & 0 & 1 &\Ddots & & \Vdots & & L_3 \gets L_3-L_1 \\ % & & &\Ddots & & & \Vdots & \Vdots \\ % \Vdots & & &\Ddots & & 0 & \\ % 0 & & &\Cdots & 0 & 1 & 0 & L_n \gets L_n-L_1 % \end{pNiceArrayC}$ % \end{Verbatim} % % \[\begin{pNiceArrayC}{*6C|C}[nullify-dots,code-for-last-col={\scriptstyle}] % 1 & 1 & 1 &\Cdots & & 1 & 0 & \\ % 0 & 1 & 0 &\Cdots & & 0 & & L_2 \gets L_2-L_1 \\ % 0 & 0 & 1 &\Ddots & & \Vdots & & L_3 \gets L_3-L_1 \\ % & & &\Ddots & & & \Vdots & \Vdots \\ % \Vdots & & &\Ddots & & 0 & \\ % 0 & & &\Cdots & 0 & 1 & 0 & L_n \gets L_n-L_1 % \end{pNiceArrayC}\] % % % \bigskip % In fact, the environment |{pNiceArrayC}| and its variants are based upon a more general environment, called % |{NiceArrayCwithDelims}|. The first two mandatory arguments of this environment are the left and right delimiters % used in the construction of the matrix. It's possible to use |{NiceArrayCwithDelims}| if we want to use atypical % delimiters. % % \medskip % \begin{BVerbatim}[baseline=c,boxwidth=11cm] % $\begin{NiceArrayCwithDelims} % {\downarrow}{\downarrow}{CCC} % 1 & 2 & 3 & L_1 \\ % 4 & 5 & 6 & L_2 \\ % 7 & 8 & 9 & L_3 % \end{NiceArrayCwithDelims}$ % \end{BVerbatim} % $\begin{NiceArrayCwithDelims} % {\downarrow}{\downarrow}{CCC} % 1 & 2 & 3 & L_1 \\ % 4 & 5 & 6 & L_2 \\ % 7 & 8 & 9 & L_3 % \end{NiceArrayCwithDelims}$ % % % \section{The environment \{pNiceArrayRC\} and its variants} % \label{pNiceArrayRC} % % The environment |{pNiceArrayRC}| composes a matrix with an exterior row and an exterior column. % % This environment |{pNiceArrayRC}| takes a mandatory argument which is the preamble of the array. As for the % environment |{pNiceArrayC}|, no specification must be given for the last column (it will automatically be a |L| % column). % % A special option, called |code-for-first-row|, specifies tokens that will be inserted before each cell of the % first row. % % \bigskip % \begin{BVerbatim}[baseline=c,boxwidth=11cm] % $\begin{pNiceArrayRC}{CCC}% (here, % is mandatory) % [columns-width = auto, % code-for-first-row = \color{blue}, % code-for-last-col = \color{blue}] % C_1 & C_2 & C_3 \\ % 1 & 2 & 3 & L_1\\ % 4 & 5 & 6 & L_2\\ % 7 & 8 & 9 & L_3\\ % \end{pNiceArrayRC}$ % \end{BVerbatim} % $\begin{pNiceArrayRC}{CCC}[columns-width=auto, % code-for-first-row = \color{blue}, % code-for-last-col = \color{blue}] % C_1 & C_2 & C_3 \\ % 1 & 2 & 3 & L_1 \\ % 4 & 5 & 6 & L_2 \\ % 7 & 8 & 9 & L_3 \\ % \end{pNiceArrayRC}$ % % % \bigskip % The first row of an environment |{pNiceArrayRC}| has the number $0$, and not $1$. This number is used for the % names of the Tikz nodes (the names of these nodes are used, for example, by the command |\line| in |code-after|). % % For technical reasons, it's not possible to use the option of the command |\\| after the first row (the placement % of the delimiters would be wrong). % % \bigskip % In fact, the environment |{pNiceArrayRC}| and its variants are based upon an more general environment, called % |{NiceArrayRCwithDelims}|. The first two mandatory arguments of this environment are the left and right delimiters % used in the construction of the matrix. It's possible to use |{NiceArrayRCwithDelims}| if we want to use atypical % delimiters. % % \medskip % \begin{BVerbatim}[baseline=c,boxwidth=11cm] % $\begin{NiceArrayRCwithDelims} % {\downarrow}{\downarrow}{CCC}[columns-width=auto] % C_1 & C_2 & C_3 \\ % 1 & 2 & 3 \\ % 4 & 5 & 6 \\ % 7 & 8 & 9 % \end{NiceArrayRCwithDelims}$ % \end{BVerbatim} % $\begin{NiceArrayRCwithDelims} % {\downarrow}{\downarrow}{CCC}[columns-width=auto] % C_1 & C_2 & C_3 \\ % 1 & 2 & 3 \\ % 4 & 5 & 6 \\ % 7 & 8 & 9 % \end{NiceArrayRCwithDelims}$ % % % \bigskip % If we want to write a linear system, we can use the following code, with a preamble \verb+CCC|C+: % % \medskip % \begin{BVerbatim}[baseline=c,boxwidth=11cm] % $\begin{pNiceArrayRC}{~emphase#CCC|C@} % C_1 & \Cdots & C_n \\ % a_{11} & \Cdots & a_{1n} & b_1 \\ % \Vdots & & \Vdots & \Vdots \\ % a_{n1} & \Cdots & a_{nn} & b_n \\ % \end{pNiceArrayRC}$ % \end{BVerbatim} % $\begin{pNiceArrayRC}{CCC|C} % C_1 & \Cdots & C_n \\ % a_{11} & \Cdots & a_{1n} & b_1 \\ % \Vdots & & \Vdots & \Vdots \\ % a_{n1} & \Cdots & a_{nn} & b_n \\ % \end{pNiceArrayRC}$ % % \medskip % The resultat may seem disappointing. It's possible to suppress the vertical rule in the first row with the % command |\multicolumn| in order to ``reconstruct'' the cell. % % % \bigskip % \begin{BVerbatim}[baseline=c,boxwidth=11cm] % $\begin{pNiceArrayRC}{CCC|C} % C_1 & \Cdots & ~emphase#\multicolumn{1}{C}{C_n}@ \\ % a_{11} & \Cdots & a_{1n} & b_1 \\ % \Vdots & & \Vdots & \Vdots \\ % a_{n1} & \Cdots & a_{nn} & b_n \\ % \end{pNiceArrayRC}$ % \end{BVerbatim} % $\begin{pNiceArrayRC}{CCC|C} % C_1 & \Cdots & \multicolumn{1}{C}{C_n} \\ % a_{11} & \Cdots & a_{1n} & b_1 \\ % \Vdots & & \Vdots & \Vdots \\ % a_{n1} & \Cdots & a_{nn} & b_n % \end{pNiceArrayRC}$ % % \bigskip % On the other side, we may remark that an horizontal line (with |\hline| or |\hdashline| of \pkg{arydshln}) % doesn't extend in the ``exterior column'' of an environment like |{pNiceArrayC}| or |{pNiceArrayRC}|. % % \medskip % \begin{BVerbatim}[baseline=c,boxwidth=11cm] % $\begin{pNiceArrayC}{CCC} % a_{11} & \Cdots & a_{1n} & L_1 \\ % \Vdots & & \Vdots & \Vdots \\ % a_{n1} & \Cdots & a_{nn} & L_n \\ % ~emphase#\hdashline@ % S_1 & \Cdots & S_n \\ % \end{pNiceArrayC}$ % \end{BVerbatim} % $\begin{pNiceArrayC}{CCC} % a_{11} & \Cdots & a_{1n} & L_1 \\ % \Vdots & & \Vdots & \Vdots \\ % a_{n1} & \Cdots & a_{nn} & L_n \\ % \hdashline % S_1 & \Cdots & S_n \\ % \end{pNiceArrayC}$ % % % \section{The width of the columns} % \label{width} % % In the environments with an explicit preamble (like |{NiceArray}|, |{pNiceArrayC}|, |{pNiceArrayRC}|, etc.), it's % possible to fix the width of a given column with the standard letters |w| and |W| of the package \pkg{array}. % % \medskip % \begin{BVerbatim}[baseline=c,boxwidth=10cm] % $\left(\begin{NiceArray}{~emphase#wc{1cm}@CC} % 1 & 12 & -123 \\ % 12 & 0 & 0 \\ % 4 & 1 & 2 % \end{NiceArray}\right)$ % \end{BVerbatim} % $\left(\begin{NiceArray}{wc{1cm}CC} % 1 & 12 & -123 \\ % 12 & 0 & 0 \\ % 4 & 1 & 2 % \end{NiceArray}\right)$ % % % \bigskip % It's also possible to fix the width of all the columns of a matrix directly with the option |columns-width| (in % all the environments of \pkg{nicematrix}). % % \medskip % \begin{BVerbatim}[baseline=c,boxwidth=10cm] % $\begin{pNiceMatrix}[~emphase#columns-width = 1cm@] % 1 & 12 & -123 \\ % 12 & 0 & 0 \\ % 4 & 1 & 2 % \end{pNiceMatrix}$ % \end{BVerbatim} % $\begin{pNiceMatrix}[columns-width = 1cm] % 1 & 12 & -123 \\ % 12 & 0 & 0 \\ % 4 & 1 & 2 % \end{pNiceMatrix}$ % % \medskip % Note that the space inserted between two columns (equal to 2 |\arraycolsep|) is not suppressed. % % \bigskip % It's possible to give the value |auto| to the option |columns-width|: all the columns of the array will % have a width equal to the widest cell of the array. \textbf{Two or three compilations may be necessary.}\par\nobreak % \medskip % \begin{BVerbatim}[baseline=c,boxwidth=10cm] % $\begin{pNiceMatrix}[~emphase#columns-width = auto@] % 1 & 12 & -123 \\ % 12 & 0 & 0 \\ % 4 & 1 & 2 % \end{pNiceMatrix}$ % \end{BVerbatim} % $\begin{pNiceMatrix}[columns-width = auto] % 1 & 12 & -123 \\ % 12 & 0 & 0 \\ % 4 & 1 & 2 % \end{pNiceMatrix}$ % % \bigskip % It's possible to fix the width of the columns of all the matrices of a current scope with the command % |\NiceMatrixOptions|.\par\nobreak % \medskip % \begin{BVerbatim}[baseline=c,boxwidth=8.5cm] % ~emphase#\NiceMatrixOptions{columns-width=10mm}@ % $\begin{pNiceMatrix} % a & b \\ c & d \\ % \end{pNiceMatrix} % = % \begin{pNiceMatrix} % 1 & 1245 \\ 345 & 2 \\ % \end{pNiceMatrix}$ % \end{BVerbatim} % \begin{scope} % \NiceMatrixOptions{columns-width=10mm} % $\begin{pNiceMatrix} % a & b \\ % c & d \\ % \end{pNiceMatrix} % = % \begin{pNiceMatrix} % 1 & 1245 \\ % 345 & 2 \\ % \end{pNiceMatrix}$ % \end{scope} % % % \bigskip % But it's also possible to fix a zone where all the matrices will have their columns of the same width, equal to % the widest cell of all the matrices. This construction uses the environment |{NiceMatrixBlock}| with the option % |auto-columns-width|.\footnote{At this time, this is the only usage of the environment |{NiceMatrixBlock}| but % it may have other usages in the future.} % % \medskip % \begin{BVerbatim}[baseline=c,boxwidth=8.5cm] % ~emphase#\begin{NiceMatrixBlock}[auto-columns-width]@ % $\begin{pNiceMatrix} % a & b \\ c & d \\ % \end{pNiceMatrix} % = % \begin{pNiceMatrix} % 1 & 1245 \\ 345 & 2 \\ % \end{pNiceMatrix}$ % ~emphase#\end{NiceMatrixBlock}@ % \end{BVerbatim} % \begin{NiceMatrixBlock}[auto-columns-width] % $\begin{pNiceMatrix} % a & b \\ c & d \\ % \end{pNiceMatrix} % = % \begin{pNiceMatrix} % 1 & 1245 \\ 345 & 2 \\ % \end{pNiceMatrix}$ % \end{NiceMatrixBlock} % % % \section{Technical remarks} % % \subsection{Diagonal lines} % % By default, all the diagonal lines\footnote{We speak of the lines created by |\Ddots| and not the lines created % by a command |\line| in |code-after|.} of a same array are ``parallelized''. That means that the first diagonal % line is drawn and, then, the other lines are drawn parallel to the first one (by rotation around the left-most % extremity of the line). That's why the position of the instructions |\Ddots| in the array can have a marked % effect on the final result. % % \medskip % In the following examples, the first |\Ddots| instruction is written in color: % % \medskip % \begin{scope} % \begin{minipage}{9.5cm} % Example with parallelization (default): % \begin{Verbatim} % $A = \begin{pNiceMatrix} % 1 & \Cdots & & 1 \\ % a+b & ~emphase#\Ddots@~ & & \Vdots \\ % \Vdots & \Ddots & & \\ % a+b & \Cdots & a+b & 1 % \end{pNiceMatrix}$ % \end{Verbatim} % \end{minipage} % $A = \begin{pNiceMatrix} % 1 & \Cdots & & 1 \\ % a+b & \Ddots & & \Vdots \\ % \Vdots & \Ddots & & \\ % a+b & \Cdots & a+b & 1 % \end{pNiceMatrix}$ % % \bigskip % \NiceMatrixOptions{parallelize-diags=true}% % \begin{minipage}{9.5cm} % % \begin{Verbatim} % $A = \begin{pNiceMatrix} % 1 & \Cdots & & 1 \\ % a+b & & & \Vdots \\ % \Vdots & ~emphase#\Ddots@~ & \Ddots & \\ % a+b & \Cdots & a+b & 1 % \end{pNiceMatrix}$ % \end{Verbatim} % \end{minipage} % $A = \begin{pNiceMatrix} % 1 & \Cdots & & 1 \\ % a+b & & & \Vdots \\ % \Vdots & \Ddots & \Ddots & \\ % a+b & \Cdots & a+b & 1 % \end{pNiceMatrix}$ % % \bigskip % It's possible to turn off the parallelization with the option |parallelize-diags| set to |false|: \par\nobreak % % \medskip % \NiceMatrixOptions{parallelize-diags=false}% % \begin{minipage}{9.5cm} % The same example without parallelization: % \end{minipage} % $A = \begin{pNiceMatrix} % 1 & \Cdots & & 1 \\ % a+b & \Ddots & & \Vdots \\ % \Vdots & \Ddots & & \\ % a+b & \Cdots & a+b & 1 % \end{pNiceMatrix}$ % % % \end{scope} % % \subsection{The ``empty'' cells} % % \label{empty-cells} % An instruction like |\Ldots|, |\Cdots|, etc. tries to determine the first non-empty cells on both sides. However, % a empty cell is not necessarily a cell with no TeX content (that is to say a cell with no token between the two % ampersands~|&|). Indeed, a cell with contents |\hspace*{1cm}| may be considered as empty. % % \interitem % For \pkg{nicematrix}, the precise rules are as follow. % % \begin{itemize} % \item An implicit cell is empty. For example, in the following matrix: % % \begin{Verbatim} % \begin{pmatrix} % a & b \\ % c \\ % \end{pmatrix} % \end{Verbatim} % % the last cell (second row and second column) is empty. % % \medskip % \item Each cell whose TeX ouput has a width less than 0.5~pt is empty. % % \medskip % \item A cell which contains a command |\Ldots|, |\Cdots|, |\Vdots|, |\Ddots| or |\Iddots| and their starred % versions is empty. We recall that these commands should be used alone in a cell. % % \medskip % \item A cell with a command |\Hspace| (or |\Hspace*|) is empty. This command |\Hspace| is a command defined by % the package \pkg{nicematrix} with the same meaning as |\hspace| except that the cell where it is used is % considered as empty. This command can be used to fix the width of some columns of the matrix without interfering % with \pkg{nicematrix}. % % \end{itemize} % % % \subsection{The option exterior-arraycolsep} % % The environment |{array}| inserts an horizontal space equal to |\arraycolsep| before and after each column. In % particular, there is a space equal to |\arraycolsep| before and after the array. This feature of the environment % |{array}| was probably not a good idea.\footnote{In the documentation of |{amsmath}|, we can read: {\itshape The % extra space of |\arraycolsep| that \pkg{array} adds on each side is a waste so we remove it [in |{matrix}|] % (perhaps we should instead remove it from array in general, but that's a harder task).} It's possible to suppress % these spaces for a given environment |{array}| with a construction like |\begin{array}{@{}ccccc@{}}|.} % % The environment |{matrix}| and its variants (|{pmatrix}|, |{vmatrix}|, etc.) of \pkg{amsmath} prefer to delete % these spaces with explicit instructions |\hskip -\arraycolsep| and |{NiceArray}| does likewise. % % However, the user can change this behaviour with the boolean option |exterior-arraycolsep| of the command % |\NiceMatrixOptions|. With this option, |{NiceArray}| will insert the same horizontal spaces as the environment % |{array}|. % % This option is only for ``compatibility'' since the package \pkg{nicematrix} provides a more precise control with % the options |left-margin|, |right-margin|, |extra-left-margin| and |extra-right-margin|. % % % \subsection{The class option draft} % % The package \pkg{nicematrix} is rather slow when drawing the dotted lines (generated by |\Cdots|, |\Ldots|, |\Ddots|, % etc.).\footnote{The main reason is that we want dotted lines with round dots (and not square dots) with the same % space on both extremities of the lines. To achieve this goal, we have to construct our own systeme of dotted % lines.} % % That's why, when the class option |draft| is used, the dotted lines are not drawn, for a faster compilation. % % \subsection{A technical problem with the argument of \textbackslash\textbackslash} % % For technical, reasons, if you use the optional argument of the command |\\|, the vertical space added will also % be added to the ``normal'' node corresponding at the previous node. % % \medskip % \begin{BVerbatim}[baseline=c,boxwidth=11cm] % \begin{pNiceMatrix} % a & \frac AB \\~emphase#[2mm]@ % b & c % \end{pNiceMatrix} % \end{BVerbatim} % $\begin{pNiceMatrix}[ % code-after = {\tikz \node [inner sep = 0pt, % fill = red!15, % blend mode = multiply, % fit = (1-2) ] {} ; } ] % a & \frac AB \\[2mm] % b & c % \end{pNiceMatrix}$ % % \bigskip % There are two solutions to solve this problem. The first solution is to use a TeX command to insert space between % the rows. % % \medskip % \begin{BVerbatim}[baseline=c,boxwidth=11cm] % \begin{pNiceMatrix} % a & \frac AB \\ % ~emphase#\noalign{\kern2mm}@ % b & c % \end{pNiceMatrix} % \end{BVerbatim} % $\begin{pNiceMatrix}[ % code-after = {\tikz \node [inner sep = 0pt, % fill = red!15, % blend mode = multiply, % fit = (1-2) ] {} ; } ] % a & \frac AB \\ % \noalign{\kern2mm} % b & c % \end{pNiceMatrix}$ % % % \bigskip % The other solution is to use the command |\multicolumn| in the previous cell. % % \medskip % \begin{BVerbatim}[baseline=c,boxwidth=11cm] % \begin{pNiceMatrix} % a & ~emphase#\multicolumn1C{\frac AB}@ \\[2mm] % b & c % \end{pNiceMatrix} % \end{BVerbatim} % $\begin{pNiceMatrix}[ % code-after = {\tikz \node [inner sep = 0pt, % fill = red!15, % blend mode = multiply, % fit = (1-2) ] {} ; } ] % a & \multicolumn1C{\frac AB} \\[2mm] % b & c % \end{pNiceMatrix}$ % % % \subsection{A remark concerning a bug of Tikz} % % Due to a bug in Tikz, the construction |-- cycle| in a Tikz path is incompatible with the use of |name prefix| % and |name suffix|.\footnote{cf. |tex.stackexchange.com/questions/327007/tikz-fill-not-being-drawn-using-named-coordinates|} % % \bigskip % Since |name prefix| is implicitly used in the |code-after| of \pkg{nicematrix}, it's not % possible to use |-- cycle| in |code-after|. % % % \subsection{Compatibility with the extension dcolumn} % % \label{dcolumn} % If we want to make \pkg{nicematrix} compatible with \pkg{dcolumn}, it's necessary to patch the commands % |\DC@endcentre| and |\DC@endright| as follow. % % \bigskip % % \begin{scope} % \fvset{commandchars=\~\#\+} % \begin{Verbatim} % \def\DC@endcentre{$\egroup % \ifdim \wd\z@>\wd\tw@ % \setbox\tw@=\hbox to\wd\z@{\unhbox\tw@\hfill}% % \else % \setbox\z@=\hbox to\wd\tw@{\hfill\unhbox\z@}\fi % ~emphase#\@@_Cell:+\box\z@\box\tw@ ~emphase#\@@_end_Cell:+} % \end{Verbatim} % % \begin{Verbatim} % \def\DC@endright{$\hfil\egroup ~emphase#\@@_Cell:+\box\z@\box\tw@ ~emphase#\@@_end_Cell:+} % \end{Verbatim} % \end{scope} % % % % \section{Examples} % % \subsection{Dotted lines} % % \medskip % A tridiagonal matrix: % % \bigskip % \begin{BVerbatim}[baseline=c] % $\begin{pNiceMatrix}[nullify-dots] % a & b & 0 & & \Cdots & 0 \\ % b & a & b & \Ddots & & \Vdots \\ % 0 & b & a & \Ddots & & \\ % & \Ddots & \Ddots & \Ddots & & 0 \\ % \Vdots & & & & & b \\ % 0 & \Cdots & & 0 & b & a % \end{pNiceMatrix}$ % \end{BVerbatim} % \hspace{1.5cm} % $\begin{pNiceMatrix}[nullify-dots] % a & b & 0 & & \Cdots & 0 \\ % b & a & b & \Ddots & & \Vdots \\ % 0 & b & a & \Ddots & & \\ % & \Ddots & \Ddots & \Ddots & & 0 \\ % \Vdots & & & & & b \\ % 0 & \Cdots & & 0 & b & a % \end{pNiceMatrix}$ % % \vspace{2cm} % % A permutation matrix: % % \bigskip % \begin{BVerbatim}[baseline=c] % $\begin{pNiceMatrix} % 0 & 1 & 0 & & \Cdots & 0 \\ % \Vdots & & & \Ddots & & \Vdots \\ % & & & \Ddots & & \\ % & & & \Ddots & & 0 \\ % 0 & 0 & & & & 1 \\ % 1 & 0 & & \Cdots & & 0 % \end{pNiceMatrix}$ % \end{BVerbatim} % \hspace{2.5cm} % $\begin{pNiceMatrix} % 0 & 1 & 0 & & \Cdots & 0 \\ % \Vdots & & & \Ddots & & \Vdots \\ % & & & \Ddots & & \\ % & & & \Ddots & & 0 \\ % 0 & 0 & & & & 1 \\ % 1 & 0 & & \Cdots & & 0 % \end{pNiceMatrix}$ % % \vspace{2cm} % % An example with |\Iddots|: \par\nobreak % \bigskip % \begin{BVerbatim}[baseline=c] % $\begin{pNiceMatrix} % 1 & \Cdots & & 1 \\ % \Vdots & & & 0 \\ % & ~emphase#\Iddots@ & ~emphase#\Iddots@ & \Vdots \\ % 1 & 0 & \Cdots & 0 % \end{pNiceMatrix}$ % \end{BVerbatim} % \hspace{4cm} % $\begin{pNiceMatrix} % 1 & \Cdots & & 1 \\ % \Vdots & & & 0 \\ % & \Iddots & \Iddots & \Vdots \\ % 1 & 0 & \Cdots & 0 % \end{pNiceMatrix}$ % % % \vspace{2cm} % An example with |\multicolumn|:\par\nobreak % \bigskip % \begin{BVerbatim} % \begin{pNiceMatrix}[nullify-dots] % 1 & 2 & 3 & 4 & 5 & 6 & 7 & 8 & 9 & 10\\ % 1 & 2 & 3 & 4 & 5 & 6 & 7 & 8 & 9 & 10\\ % \Cdots & & ~emphase#\multicolumn{6}{C}{10 \text{ other rows}}@ & \Cdots \\ % 1 & 2 & 3 & 4 & 5 & 6 & 7 & 8 & 9 & 10 % \end{pNiceMatrix} % \end{BVerbatim} % % \bigskip % \[\begin{pNiceMatrix}[nullify-dots] % 1 & 2 & 3 & 4 & 5 & 6 & 7 & 8 & 9 & 10\\ % 1 & 2 & 3 & 4 & 5 & 6 & 7 & 8 & 9 & 10\\ % \Cdots & & \multicolumn{6}{C}{10 \text{ other rows}} & \Cdots \\ % 1 & 2 & 3 & 4 & 5 & 6 & 7 & 8 & 9 & 10 % \end{pNiceMatrix}\] % % \vspace{2cm} % An example with |\Hdotsfor|:\par\nobreak % \bigskip % \begin{BVerbatim}[baseline=c,boxwidth=11cm] % \begin{pNiceMatrix}[nullify-dots] % 0 & 1 & 1 & 1 & 1 & 0 \\ % 0 & 1 & 1 & 1 & 1 & 0 \\ % \Vdots & ~emphase#\Hdotsfor{4}@ & \Vdots \\ % & ~emphase#\Hdotsfor{4}@ & \\ % & ~emphase#\Hdotsfor{4}@ & \\ % & ~emphase#\Hdotsfor{4}@ & \\ % 0 & 1 & 1 & 1 & 1 & 0 % \end{pNiceMatrix} % \end{BVerbatim} % $\begin{pNiceMatrix}[nullify-dots] % 0 & 1 & 1 & 1 & 1 & 0 \\ % 0 & 1 & 1 & 1 & 1 & 0 \\ % \Vdots & \Hdotsfor{4} & \Vdots \\ % & \Hdotsfor{4} & \\ % & \Hdotsfor{4} & \\ % & \Hdotsfor{4} & \\ % 0 & 1 & 1 & 1 & 1 & 0 % \end{pNiceMatrix}$ % % \vspace{2cm} % An example for the resultant of two polynoms (the dashed line has been drawn with \pkg{arydshln}):\par\nobreak % \bigskip % \begin{BVerbatim} % \setlength{\extrarowheight}{1mm} % \[\begin{NiceArray}{|CCCC:CCC|}[columns-width=6mm] % a_0 & && &b_0 & & \\ % a_1 &\Ddots&& &b_1 &\Ddots& \\ % \Vdots&\Ddots&& &\Vdots &\Ddots&b_0 \\ % a_p & &&a_0 & & &b_1 \\ % &\Ddots&&a_1 &b_q & &\Vdots\\ % & &&\Vdots & &\Ddots& \\ % & &&a_p & & &b_q \\ % \end{NiceArray}\] % \end{BVerbatim} % % \bigskip % % \begin{scope} % \setlength{\extrarowheight}{1mm} % \[\begin{NiceArray}{|CCCC:CCC|}[columns-width=6mm] % a_0 & && &b_0 & & \\ % a_1 &\Ddots&& &b_1 &\Ddots& \\ % \Vdots&\Ddots&& &\Vdots &\Ddots&b_0 \\ % a_p & &&a_0 & & &b_1 \\ % &\Ddots&&a_1 &b_q & &\Vdots\\ % & &&\Vdots & &\Ddots& \\ % & &&a_p & & &b_q \\ % \end{NiceArray}\] % \end{scope} % % % \subsection{Width of the columns} % % \medskip % In the following example, we use |{NiceMatrixBlock}| with the option |auto-columns-width| because % we want the same automatic width for all the columns of the matrices. % % \bigskip % \begin{BVerbatim} % ~emphase#\begin{NiceMatrixBlock}[auto-columns-width]@ % \NiceMatrixOptions{code-for-last-col = \color{blue}\scriptstyle} % \setlength{\extrarowheight}{1mm} % \quad $\begin{pNiceArrayC}{CCCC|C} % 1&1&1&1&1&\\ % 2&4&8&16&9&\\ % 3&9&27&81&36&\\ % 4&16&64&256&100&\\ % \end{pNiceArrayC}$ % ... % ~emphase#\end{NiceMatrixBlock}@ % \end{BVerbatim} % % \bigskip % % \begin{multicols}{2} % \begin{NiceMatrixBlock}[auto-columns-width] % \NiceMatrixOptions{code-for-last-col = \color{blue}\scriptstyle} % \setlength{\extrarowheight}{1mm} % % \quad $\begin{pNiceArrayC}{CCCC|C} % 1&1&1&1&1&\\ % 2&4&8&16&9&\\ % 3&9&27&81&36&\\ % 4&16&64&256&100&\\ % \end{pNiceArrayC}$ % % \medskip % % \quad $\begin{pNiceArrayC}{CCCC|C} % 1&1&1&1&1&\\ % 0&2&6&14&7&L_2\gets-2L_1+L_2 \\ % 0&6&24&78&33&L_3\gets-3L_1+L_3 \\ % 0&12&60&252&96&L_4\gets-4L_1+L_4 \\ % \end{pNiceArrayC}$ % % \medskip % % \quad $\begin{pNiceArrayC}{CCCC|C} % 1&1&1&1&1&\\ % 0&1&3&7&\frac72&L_2\gets\frac12L_2\\ % 0&3&12&39&\frac{33}2&L_3\gets\frac12L_3 \\ % 0&1&5&21&8&L_4\gets\frac1{12}L_4 \\ % \end{pNiceArrayC}$ % % \medskip % % \quad $\begin{pNiceArrayC}{CCCC|C} % 1&1&1&1&1&\\ % 0&1&3&7&\frac72&\\ % 0&0&3&18&6&L_3 \gets -3L_2+L_3 \\ % 0&0&-2&-14&-\frac92&L_4 \gets L_2-L_4 \\ % \end{pNiceArrayC}$ % % \medskip % % \quad $\begin{pNiceArrayC}{CCCC|C} % 1&1&1&1&1&\\ % 0&1&3&7&\frac72&\\ % 0&0&1&6&2&L_3 \gets \frac13L_3\\ % 0&0&-2&-14&-\frac92&\\ % \end{pNiceArrayC}$ % % \medskip % % \quad $\begin{pNiceArrayC}{CCCC|C} % 1&1&1&1&1&\\ % 0&1&3&7&\frac72&\\ % 0&0&1&6&2& \\ % 0&0&0&-2&-\frac12 & L_4 \gets 2L_3+L_4 \\ % \end{pNiceArrayC}$ % \end{NiceMatrixBlock} % \end{multicols} % % % \subsection{How to highlight cells of the matrix} % % \medskip % In order to highlight a cell of a matrix, it's possible to ``draw'' one of the correspond nodes (the ``normal % node'', the ``medium node'' or the ``large node''). In the following example, we use the ``large nodes'' of the % diagonal of the matrix (with the Tikz key ``|name suffix|'', it's easy to use the ``large nodes''). In order to % have the continuity of the lines, we have to set |inner sep = -\pgflinewidth/2|. % % \begin{Verbatim} % $\left(\,\begin{NiceArray}{>{\strut}CCCC}% % [create-extra-nodes,left-margin,right-margin, % code-after = {\begin{tikzpicture} % [~emphase#name suffix = -large@, % every node/.style = {draw, % ~emphase#inner sep = -\pgflinewidth/2@}] % \node [fit = (1-1)] {} ; % \node [fit = (2-2)] {} ; % \node [fit = (3-3)] {} ; % \node [fit = (4-4)] {} ; % \end{tikzpicture}}] % a_{11} & a_{12} & a_{13} & a_{14} \\ % a_{21} & a_{22} & a_{23} & a_{24} \\ % a_{31} & a_{32} & a_{33} & a_{34} \\ % a_{41} & a_{42} & a_{43} & a_{44} % \end{NiceArray}\,\right)$ % \end{Verbatim} % % % \[\left(\,\begin{NiceArray}{>{\strut}CCCC}[ % create-extra-nodes,left-margin,right-margin, % code-after = {\begin{tikzpicture}[name suffix = -large, % every node/.style = {draw, % inner sep = -\pgflinewidth/2}] % \node [fit = (1-1)] {} ; % \node [fit = (2-2)] {} ; % \node [fit = (3-3)] {} ; % \node [fit = (4-4)] {} ; % \end{tikzpicture}}] % a_{11} & a_{12} & a_{13} & a_{14} \\ % a_{21} & a_{22} & a_{23} & a_{24} \\ % a_{31} & a_{32} & a_{33} & a_{34} \\ % a_{41} & a_{42} & a_{43} & a_{44} % \end{NiceArray}\,\right)\] % % % \vspace{1cm} % The package \pkg{nicematrix} is constructed upon the environment |{array}| and, therefore, it's possible to use % the package \pkg{colortbl} in the environments of \pkg{nicematrix}. % % \medskip % \begin{BVerbatim}[baseline=c] % $\begin{bNiceMatrix} % 0 & \Cdots & 0 \\ % ~emphase#\rowcolor{red!15}@ 1 & \Cdots & 1 \\ % 0 & \Cdots & 0 \\ % \end{bNiceMatrix}$ % \end{BVerbatim} % \hspace{2cm} % $\begin{bNiceMatrix} % 0 & \Cdots & 0 \\ % \rowcolor{red!15} 1 & \Cdots & 1 \\ % 0 & \Cdots & 0 \\ % \end{bNiceMatrix}$ % % \medskip % The result may be disappointing. We therefore propose another method to highlight a row of the matrix. We % create a rectangular Tikz node which encompasses the nodes of the second row with the Tikz library \pkg{fit}. This % Tikz node is filled after the construction of the matrix. In order to see the text \emph{under} this node, we % have to use transparency with the |blend mode| equal to |multiply|. Warning: some \textsc{pdf} readers are not % able to render transparency correctly. % % \tikzset{highlight/.style={rectangle, % fill=red!15, % blend mode = multiply, % rounded corners = 0.5 mm, % inner sep=1pt}} % % \medskip % \begin{Verbatim} % \tikzset{highlight/.style={rectangle, % fill=red!15, % ~emphase#blend mode = multiply@, % rounded corners = 0.5 mm, % inner sep=1pt}} % % $\begin{bNiceMatrix}[~emphase#code-after = {\tikz \node[highlight, fit = (2-1) (2-3)] {} ;}@] % 0 & \Cdots & 0 \\ % 1 & \Cdots & 1 \\ % 0 & \Cdots & 0 \\ % \end{bNiceMatrix}$ % \end{Verbatim} % % \[\begin{bNiceMatrix}[code-after = {\tikz \node[highlight, fit = (2-1) (2-3)] {} ;}] % 0 & \Cdots & 0 \\ % 1 & \Cdots & 1 \\ % 0 & \Cdots & 0 \\ % \end{bNiceMatrix}\] % % % \bigskip % This code fails with |latex|-|dvips|-|ps2pdf| because Tikz for |dvips|, as for now, doesn't support blend modes. However, the % following code, in the preamble, should activate blend modes in this way of compilation. % % % \begin{scope} \small % |\ExplSyntaxOn| % % |\makeatletter| % % |\tl_set:Nn \l_tmpa_tl {pgfsys-dvips.def}| % % |\tl_if_eq:NNT \l_tmpa_tl \pgfsysdriver| % % | {\cs_set:Npn\pgfsys@blend@mode#1{\special{ps:~/\tl_upper_case:n #1~.setblendmode}}}| % % |\makeatother| % % |\ExplSyntaxOff| % \end{scope} % % \vspace{1cm} % Considerer now the following matrix which we have named |example|. % % \medskip % \begin{Verbatim} % $\begin{pNiceArrayC}{CCC}[~emphase#name=example@,create-extra-nodes] % a & a + b & a + b + c & L_1\\ % a & a & a + b & L_2 \\ % a & a & a & L_3 % \end{pNiceArrayC}$ % \end{Verbatim} % % \[\begin{pNiceArrayC}{CCC} % a & a + b & a + b + c & L_1\\ % a & a & a + b & L_2 \\ % a & a & a & L_3 % \end{pNiceArrayC}\] % % \bigskip % If we want to highlight each row of this matrix, we can use the previous technique three times. % % \begin{Verbatim} % \tikzset{myoptions/.style={remember picture, % overlay, % name prefix = example-, % every node/.style = {fill = red!15, % blend mode = multiply, % inner sep = 0pt}}} % \end{Verbatim} % % % \tikzset{myoptions/.style={remember picture, % overlay, % name prefix = example-, % every node/.style = {fill = red!15, % blend mode = multiply, % inner sep = 0pt}}} % % \begin{Verbatim} % \begin{tikzpicture}[myoptions] % \node [fit = (1-1) (1-3)] {} ; % \node [fit = (2-1) (2-3)] {} ; % \node [fit = (3-1) (3-3)] {} ; % \end{tikzpicture} % \end{Verbatim} % % \medskip % We obtain the following matrix. % % \[\begin{pNiceArrayC}{CCC}[ % create-extra-nodes, % code-after = {\begin{tikzpicture}[every node/.style = {fill = red!15, % blend mode = multiply, % inner sep = 0pt}] % \node [fit = (1-1) (1-3)] {} ; % \node [fit = (2-1) (2-3)] {} ; % \node [fit = (3-1) (3-3)] {} ; % \end{tikzpicture}}] % a & a + b & a + b + c & L_1\\ % a & a & a + b & L_2 \\ % a & a & a & L_3 % \end{pNiceArrayC}\] % % \medskip % The result may seem disappointing. We can improve it by using the ``medium nodes'' instead of the ``normal nodes''. % % \begin{Verbatim} % \begin{tikzpicture}[myoptions, ~emphase#name suffix = -medium@] % \node [fit = (1-1) (1-3)] {} ; % \node [fit = (2-1) (2-3)] {} ; % \node [fit = (3-1) (3-3)] {} ; % \end{tikzpicture} % \end{Verbatim} % % \medskip % We obtain the following matrix. % % \[\begin{pNiceArrayC}{CCC}[ % create-extra-nodes, % code-after = {\begin{tikzpicture}[every node/.style = {fill = red!15, % blend mode = multiply, % inner sep = 0pt}, % name suffix = -medium] % \node [fit = (1-1) (1-3)] {} ; % \node [fit = (2-1) (2-3)] {} ; % \node [fit = (3-1) (3-3)] {} ; % \end{tikzpicture}}] % a & a + b & a + b + c & L_1\\ % a & a & a + b & L_2 \\ % a & a & a & L_3 % \end{pNiceArrayC}\] % % % \vspace{1cm} % % In the following example, we use the ``large nodes'' to highlight a zone of the matrix.\par\nobreak % \begin{Verbatim} % \left(\,\begin{NiceArray}{>{\strut}CCCC}% % [create-extra-nodes,left-margin,right-margin, % code-after = {\tikz \path [~emphase#name suffix = -large@, % fill = red!15, % blend mode = multiply] % (1-1.north west) % |- (2-2.north west) % |- (3-3.north west) % |- (4-4.north west) % |- (4-4.south east) % |- (1-1.north west) ; } ] % A_{11} & A_{12} & A_{13} & A_{14} \\ % A_{21} & A_{22} & A_{23} & A_{24} \\ % A_{31} & A_{32} & A_{33} & A_{34} \\ % A_{41} & A_{42} & A_{43} & A_{44} % \end{NiceArray}\,\right) % \end{Verbatim} % % \[\left(\,\begin{NiceArray}{>{\strut}CCCC}[ % create-extra-nodes,left-margin,right-margin, % code-after = {\tikz \path [name suffix = -large, % fill = red!15, % blend mode = multiply] % (1-1.north west) % |- (2-2.north west) % |- (3-3.north west) % |- (4-4.north west) % |- (4-4.south east) % |- (1-1.north west) ; } ] % A_{11} & A_{12} & A_{13} & A_{14} \\ % A_{21} & A_{22} & A_{23} & A_{24} \\ % A_{31} & A_{32} & A_{33} & A_{34} \\ % A_{41} & A_{42} & A_{43} & A_{44} % \end{NiceArray}\,\right)\] % % % \subsection{Block matrices} % % \medskip % In the following example, we use the ``large nodes'' to construct a block matrix (the dashed lines have been % drawn with \pkg{arydshln}). % \begin{Verbatim} % \left(\begin{NiceArray}{CC:CC}% % [create-extra-nodes, % ~emphase#code-after = { \tikz \node [fit = (1-1-large) (2-2-large), inner sep = 0 pt]@ % ~emphase# {$0_{22}$} ; }@ ] % & & a_{13} & a_{14} \\ % & & a_{23} & a_{24} \\ % \hdashline % a_{31} & a_{32} & a_{33} & a_{34} \\ % a_{41} & a_{42} & a_{34} & a_{44} % \end{NiceArray}\right) % \end{Verbatim} % % % \[D = \left(\begin{NiceArray}{CC:CC}[ % create-extra-nodes, % code-after = { \tikz \node [fit = (1-1-large) (2-2-large), inner sep = 0 pt] % {$0_{22}$} ; } ] % & & a_{13} & a_{14} \\ % & & a_{23} & a_{24} \\ % \hdashline % a_{31} & a_{32} & a_{33} & a_{34} \\ % a_{41} & a_{42} & a_{34} & a_{44} % \end{NiceArray}\right)\] % % % % % \section{Implementation} % % By default, the package \pkg{nicematrix} doesn't patch any existing code.\footnote{If we want \pkg{nicematrix} % compatible with \pkg{dcolumn}, we have to patch \pkg{dcolumn}: cf. p.~\pageref{dcolumn}.} % % \smallskip % However, when the option |renew-dots| is used, the commands |\cdots|, |\ldots|, |\dots|, |\vdots|, |\ddots| and % |\iddots| are redefined in the environments provided by \pkg{nicematrix} as explained previously. In the same way, % if the option |renew-matrix| is used, the environment |{matrix}| of \pkg{amsmath} is redefined. % % \smallskip % On the other hand, the environment |{array}| is never redefined. % % \smallskip % Of course, the package \pkg{nicematrix} uses the features of the package \pkg{array}. It tries to be independant of its % implementation. Unfortunately, it was not possible to be strictly independant: the package \pkg{nicematrix} relies upon the % fact that the package |{array}| uses |\ialign| to begin the |\halign|. % % \smallskip % The desire to do no modification to existing code leads to complications in the code of this extension. % % \subsection{Declaration of the package and extensions loaded} % % First, \pkg{tikz} and the Tikz library |fit| are loaded before the |\ProvidesExplPackage|. % They are loaded this way because |\usetikzlibrary| in |expl3| code fails.\footnote{cf. % |tex.stackexchange.com/questions/57424/using-of-usetikzlibrary-in-an-expl3-package-fails|} % % % \begin{macrocode} \RequirePackage{tikz} \usetikzlibrary{fit} \RequirePackage{expl3}[2018-01-01] % \end{macrocode} % % We give the traditionnal declaration of a package written with |expl3|: % \begin{macrocode} \RequirePackage{l3keys2e} \ProvidesExplPackage {nicematrix} {\myfiledate} {\myfileversion} {Several features to improve the typesetting of mathematical matrices with TikZ} % \end{macrocode} % % \bigskip % We test if the class option |draft| has been used. In this case, we raise the flag |\c_@@_draft_bool| because we % won't draw the dotted lines if the option |draft| is used. % \begin{macrocode} \bool_new:N \c_@@_draft_bool \DeclareOption {draft} {\bool_set_true:N \c_@@_draft_bool} \DeclareOption* {} \ProcessOptions \relax % \end{macrocode} % % The command for the treatment of the options of |\usepackage| is at the end of this package for technical reasons. % % \bigskip % We load \pkg{array} and \pkg{amsmath}. % \begin{macrocode} \RequirePackage{array} \RequirePackage{amsmath} \RequirePackage{xparse}[2018-10-17] % \end{macrocode} % % \subsection{Technical definitions} % % \begin{macrocode} \cs_new_protected:Nn \@@_error:n {\msg_error:nn {nicematrix} {#1}} \cs_new_protected:Nn \@@_error:nn {\msg_error:nn {nicematrix} {#1} {#2}} % \end{macrocode} % % \medskip % \begin{macrocode} \cs_new_protected:Nn \@@_bool_new:N {\bool_if_exist:NTF #1 {\bool_set_false:N #1} {\bool_new:N #1}} % \end{macrocode} % % First, we define a command |\iddots| similar to |\ddots| ($\ddots$) but with dots going forward ($\iddots$). We % use |\ProvideDocumentCommand| of \pkg{xparse}, and so, if the command |\iddots| has already been defined (for % example by the package \pkg{mathdots}), we don't define it again. % % \begin{macrocode} \ProvideDocumentCommand \iddots {} {\mathinner{\mkern 1mu \raise \p@ \hbox{.} \mkern 2mu \raise 4\p@ \hbox{.} \mkern 2mu \raise 7\p@ \vbox{\kern 7pt \hbox{.}} \mkern 1mu}} % \end{macrocode} % % This definition is a variant of the standard definition of |\ddots|. % % % \bigskip % The following counter will count the environments |{NiceArray}|. The value of this counter will be used to % prefix the names of the Tikz nodes created in the array. % \begin{macrocode} \int_new:N \g_@@_env_int % \end{macrocode} % % \bigskip % The dimension |\l_@@_columns_width_dim| will be used when the options specify that all the columns must have the % same width. % \begin{macrocode} \dim_new:N \l_@@_columns_width_dim % \end{macrocode} % % \bigskip % The sequence |\g_@@_names_seq| will be the list of all the names of environments used (via the option |name|) in % the document: two environments must not have the same name. % \begin{macrocode} \seq_new:N \g_@@_names_seq % \end{macrocode} % % \bigskip % The integer |\l_@@_nb_first_row_int| is the number of the first row of the array. The default value is $1$, but, % in the environments like |{pNiceArrayRC}|, the value will be~$0$. % \begin{macrocode} \int_new:N \l_@@_nb_first_row_int \int_set:Nn \l_@@_nb_first_row_int 1 % \end{macrocode} % % \bigskip % The flag |\l_@@_exterior_column_bool| will indicate if we are in an environment of the type of |{pNiceArrayC}| or % |{pNiceArrayRC}|. It will be used for the creation of the ``large nodes''. % \begin{macrocode} \bool_new:N \l_@@_exterior_column_bool % \end{macrocode} % % \bigskip % \subsection{The options} % % The token list |\l_@@_pos_env_tl| will contain one of the three values |t|, |c| or |b| and will indicate the % position of the environment as in the option of the environment |{array}|. For the environment |{pNiceMatrix}|, % |{pNiceArrayC}|, |{pNiceArrayRC}| and their variants, the value will programmatically be fixed to |c|. For the % environment |{NiceArray}|, however, the three values |t|, |c| and |b| are possible. % \begin{macrocode} \tl_new:N \l_@@_pos_env_tl \tl_set:Nn \l_@@_pos_env_tl c % \end{macrocode} % % \bigskip % The flag |\l_@@_exterior_arraycolsep_bool| corresponds to the option |exterior-arraycolsep|. If this option is % set, a space equal to |\arraycolsep| will be put on both sides of an environment |{NiceArray}| (but neither for % |{NiceMatrix}|, |{pNiceArrayC}|, |{pNiceArrayRC}| and their variants even if these environments rely upon |{NiceArray}|). % \begin{macrocode} \bool_new:N \l_@@_exterior_arraycolsep_bool % \end{macrocode} % % \bigskip % The flag |\l_@@_parallelize_diags_bool| controls wether the diagonals are parallelized. The initial value % is~|true|. % \begin{macrocode} \bool_new:N \l_@@_parallelize_diags_bool \bool_set_true:N \l_@@_parallelize_diags_bool % \end{macrocode} % % \bigskip % The flag |\l_@@_nullify_dots_bool| corresponds to the option |nullify-dots|. When the flag is down, the % instructions like |\vdots| are inserted within a |\hphantom| (and so the constructed matrix has exactly the same % size as a matrix constructed with the classical |{matrix}| and |\ldots|, |\vdots|, etc.) % \begin{macrocode} \bool_new:N \l_@@_nullify_dots_bool % \end{macrocode} % % % \bigskip % The following flag will be used when the current options specify that all the columns of the array must have the % same width equal to the largest width of a cell of the array (except the cell of the ``exterior column'' of an % environment of the kind of |{pNiceArrayC}|). % \begin{macrocode} \bool_new:N \l_@@_auto_columns_width_bool % \end{macrocode} % % \bigskip % The token list |\l_@@_code_for_last_col_tl| will contain code inserted at the beginning of each cell of the last % column in the environment |{pNiceArrayC}| (and its variants). It corresponds to the option |code-for-last-col|. % \begin{macrocode} \tl_new:N \l_@@_code_for_last_col_tl % \end{macrocode} % % \bigskip % We don't want to patch any existing code. That's why some code must be executed in a |\group_insert_after:N|. That's why % the parameters used in that code must be transfered outside the current group. To do this, we copy those % quantities in global variables just before the |\group_insert_after:N|. Therefore, for those quantities, we have two % parameters, one local and one global. For example, we have |\l_@@_name_tl| and |\g_@@_name_tl|. % % \bigskip % The token list |\l_@@_name_tl| will contain the optional name of the environment: this name can be used to % access to the Tikz nodes created in the array from outside the environment. % \begin{macrocode} \tl_new:N \g_@@_name_tl \tl_new:N \l_@@_name_tl % \end{macrocode} % % \bigskip % The boolean |\l_@@_extra_nodes_bool| will be used to indicate wether the ``medium nodes'' and ``large nodes'' are % created in the array. % \begin{macrocode} \bool_new:N \l_@@_extra_nodes_bool \bool_new:N \g_@@_extra_nodes_bool % \end{macrocode} % % \bigskip % The dimensions |\l_@@_left_margin_dim| and |\l_@@_right_margin_dim| correspond to the options |left-margin| and |right-margin|. % \begin{macrocode} \dim_new:N \l_@@_left_margin_dim \dim_new:N \l_@@_right_margin_dim \dim_new:N \g_@@_left_margin_dim \dim_new:N \g_@@_right_margin_dim % \end{macrocode} % % \bigskip % The dimensions |\l_@@_extra_left_margin_dim| and |\l_@@_extra_right_margin_dim| correspond to the options % |extra-left-margin| and |extra-right-margin|. % \begin{macrocode} \dim_new:N \l_@@_extra_left_margin_dim \dim_new:N \l_@@_extra_right_margin_dim \dim_new:N \g_@@_extra_right_margin_dim % \end{macrocode} % % % \bigskip % We define a set of options which will be used with the command |NiceMatrixOptions|.\footnote{Before the version % 1.3, the names of the options were in ``camel-case style'' (like |ParallelizeDiagonals|) which was not a good idea. In % version 1.4, the names are converted in lowercase with hyphens (like |parallelize-diags|). For compatibility, the % old names are conversed.} % \begin{macrocode} \keys_define:nn {NiceMatrix/NiceMatrixOptions} {parallelize-diags .bool_set:N = \l_@@_parallelize_diags_bool, parallelize-diags .default:n = true, ParallelizeDiagonals .meta:n = parallelize-diags, % \end{macrocode} % % \bigskip % With the option |renew-dots|, the command |\cdots|, |\ldots|, |\vdots| and |\ddots| are redefined and behave like the % commands |\Cdots|, |\Ldots|, |\Vdots| and |\Ddots|. % \begin{macrocode} renew-dots .bool_set:N = \l_@@_renew_dots_bool, renew-dots .default:n = true, RenewDots .meta:n = renew-dots, % \end{macrocode} % % \bigskip % With the option |renew-matrix|, the environment |{matrix}| of \pkg{amsmath} and its variants are redefined to % behave like the environment |{NiceMatrix}| and its variants. % \begin{macrocode} renew-matrix .code:n = \@@_renew_matrix:, renew-matrix .value_forbidden:n = true, RenewMatrix .meta:n = renew-matrix, transparent .meta:n = {renew-dots,renew-matrix}, transparent .value_forbidden:n = true, Transparent .meta:n = transparent, % \end{macrocode} % % \bigskip % Without the option |nullify-dots|, the instructions like |\vdots| are inserted within a % |\hphantom| (and so the constructed matrix has exactly the same size as a matrix constructed with the % classical |{matrix}| and |\ldots|, |\vdots|, etc.). This option is set by default. % \begin{macrocode} nullify-dots .bool_set:N = \l_@@_nullify_dots_bool , nullify-dots .default:n = true, NullifyDots .meta:n = nullify-dots, % \end{macrocode} % % % \bigskip % The following option is only for the environment |{pNiceArrayC}| and its variants. It will contain code inserted % at the beginning of each cell of the last column.\footnote{In an environment |{pNiceArrayC}|, the last column is % composed outside the parentheses of the array.} % \begin{macrocode} code-for-last-col .tl_set:N = \l_@@_code_for_last_col_tl, code-for-last-col .value_required:n = true, % \end{macrocode} % % \bigskip % Idem for the first row in environments like |{pNiceArrayRC}|. % \begin{macrocode} code-for-first-row .tl_set:N = \l_@@_code_for_first_row_tl, code-for-first-row .value_required:n = true, % \end{macrocode} % % \bigskip % The option |exterior-arraycolsep| will have effect only in |{NiceArray}| for those who want to have for % |{NiceArray}| the same behaviour as |{array}|. % \begin{macrocode} exterior-arraycolsep .bool_set:N = \l_@@_exterior_arraycolsep_bool , exterior-arraycolsep .default:n = true, % \end{macrocode} % % \bigskip % If the option |columns-width| is used, all the columns will have the same width. % % In |\NiceMatrixOptions|, the special value |auto| is not available. % \begin{macrocode} columns-width .code:n = \str_if_eq:nnTF {#1} {auto} {\@@_error:n {Option~auto~for~columns-width}} {\dim_set:Nn \l_@@_columns_width_dim {#1}}, % \end{macrocode} % % \bigskip % \begin{macrocode} create-extra-nodes .bool_set:N = \l_@@_extra_nodes_bool, create-extra-nodes .default:n = true, % \end{macrocode} % % % \bigskip % \begin{macrocode} left-margin .dim_set:N = \l_@@_left_margin_dim, left-margin .default:n = \arraycolsep, right-margin .dim_set:N = \l_@@_right_margin_dim, right-margin .default:n = \arraycolsep, % \end{macrocode} % % \bigskip % \begin{macrocode} unknown .code:n = \@@_error:n {Unknown~key~for~NiceMatrixOptions}} % \end{macrocode} % \begin{macrocode} \msg_new:nnnn {nicematrix} {Unknown~key~for~NiceMatrixOptions} {The~key~"\tl_use:N\l_keys_key_tl"~is~unknown~for~the~command~ \token_to_str:N \NiceMatrixOptions.\\ If~you~go~on,~it~will~be~ignored.\\ For~a~list~of~the~available~keys,~type~H~.} {The~available~keys~are~(in~alphabetic~order):~ code-for-last-col,~ exterior-arraycolsep,~ left-margin,~ nullify-dots,~ parallelize-diags,~ renew-dots,~ renew-matrix,~ right-margin,~ and~transparent} % \end{macrocode} % % \begin{macrocode} \msg_new:nnn {nicematrix} {Option~auto~for~columns-width} {You~can't~give~the~value~"auto"~to~the~option~"columns-width"~here.~ If~you~go~on,~the~option~will~be~ignored.} % \end{macrocode} % % \bigskip % |\NiceMatrixOptions| is the command of the \pkg{nicematrix} package to fix options at the document level. The % scope of these specifications is the current TeX group. % \begin{macrocode} \NewDocumentCommand \NiceMatrixOptions {m} {\keys_set:nn {NiceMatrix/NiceMatrixOptions} {#1}} % \end{macrocode} % % % \bigskip % \begin{macrocode} \keys_define:nn {NiceMatrix/NiceMatrix} {parallelize-diags .bool_set:N = \l_@@_parallelize_diags_bool, parallelize-diags .default:n = true, renew-dots .bool_set:N = \l_@@_renew_dots_bool, renew-dots .default:n = true, nullify-dots .bool_set:N = \l_@@_nullify_dots_bool , nullify-dots .default:n = true, % \end{macrocode} % The option |columns-width| is the width of the columns if we want the same width for all the columns of the % array. A value of 0~pt means that the width of the column will be the natural width of the column. % \begin{macrocode} columns-width .code:n = \str_if_eq:nnTF {#1} {auto} {\bool_set_true:N \l_@@_auto_columns_width_bool} {\dim_set:Nn \l_@@_columns_width_dim {#1}}, name .code:n = {\seq_if_in:NnTF \g_@@_names_seq {#1} {\@@_error:nn {Duplicate~name} {#1}} {\seq_gput_left:Nn \g_@@_names_seq {#1}} \tl_set:Nn \l_@@_name_tl {#1}}, name .value_required:n = true, code-after .tl_set:N = \l_@@_code_after_tl, code-after .initial:n = \c_empty_tl, code-after .value_required:n = true, % \end{macrocode} % % The key |create-extra-nodes| indicates wether the ``medium nodes'' and ``large nodes'' will be created for each % cell of the array. % \begin{macrocode} create-extra-nodes .bool_set:N = \l_@@_extra_nodes_bool, create-extra-nodes .default:n = true, % \end{macrocode} % % \begin{macrocode} left-margin .dim_set:N = \l_@@_left_margin_dim, left-margin .default:n = \arraycolsep, right-margin .dim_set:N = \l_@@_right_margin_dim, right-margin .default:n = \arraycolsep, extra-left-margin .dim_set:N = \l_@@_extra_left_margin_dim, extra-right-margin .dim_set:N = \l_@@_extra_right_margin_dim, unknown .code:n = \@@_error:n {Unknown~option~for~NiceMatrix}} % \end{macrocode} % % \begin{macrocode} \msg_new:nnnn {nicematrix} {Unknown~option~for~NiceMatrix} {The~option~"\tl_use:N\l_keys_key_tl"~is~unknown~for~the~environment~ \{NiceMatrix\}~and~its~variants.\\ If~you~go~on,~it~will~be~ignored.\\ For~a~list~of~the~available~options,~type~H~.} {The~available~options~are~(in~alphabetic~order):~ code-after,~ columns-width,~ create-extra-nodes,~ extra-left-margin,~ extra-right-margin,~ left-margin,~ name,~ nullify-dots,~ parallelize-diags,~ renew-dots~ and~right-margin.} % \end{macrocode} % % \bigskip % \begin{macrocode} \msg_new:nnnn {nicematrix} {Duplicate~name} {The~name~"#1"~is~already~used~and~you~shouldn't~use~ the~same~environment~name~twice.~You~can~go~on,~but,~ maybe,~you~will~have~incorrect~results~especially~ if~you~use~"columns-width=auto".\\ For~a~list~of~the~names~already~used,~type~H~.} {The~names~already~defined~in~this~document~are:~ \seq_use:Nnnn~\g_@@_names_seq~{,~} {,~} {~and~}.} % \end{macrocode} % % \bigskip % \begin{macrocode} \keys_define:nn {NiceMatrix/NiceArray} {parallelize-diags .bool_set:N = \l_@@_parallelize_diags_bool, parallelize-diags .default:n = true, renew-dots .bool_set:N = \l_@@_renew_dots_bool, renew-dots .default:n = true, nullify-dots .bool_set:N = \l_@@_nullify_dots_bool , nullify-dots .default:n = true, columns-width .code:n = \str_if_eq:nnTF {#1} {auto} {\bool_set_true:N \l_@@_auto_columns_width_bool} {\dim_set:Nn \l_@@_columns_width_dim {#1}}, columns-width .value_required:n = true, name .code:n = {\seq_if_in:NnTF \g_@@_names_seq {#1} {\@@_error:nn {Duplicate~name} {#1}} {\seq_gput_left:Nn \g_@@_names_seq {#1}} \tl_set:Nn \l_@@_name_tl {#1}}, name .value_required:n = true, % \end{macrocode} % % \bigskip % The options |c|, |t| and |b| of the environment |{NiceArray}| have the same meaning as the option of the classical % environment |{array}|. % \begin{macrocode} c .code:n = \tl_set:Nn \l_@@_pos_env_tl c, t .code:n = \tl_set:Nn \l_@@_pos_env_tl t, b .code:n = \tl_set:Nn \l_@@_pos_env_tl b, code-after .tl_set:N = \l_@@_code_after_tl, code-after .initial:n = \c_empty_tl, code-after .value_required:n = true, create-extra-nodes .bool_set:N = \l_@@_extra_nodes_bool, create-extra-nodes .default:n = true, left-margin .dim_set:N = \l_@@_left_margin_dim, left-margin .default:n = \arraycolsep, right-margin .dim_set:N = \l_@@_right_margin_dim, right-margin .default:n = \arraycolsep, extra-left-margin .dim_set:N = \l_@@_extra_left_margin_dim, extra-right-margin .dim_set:N = \l_@@_extra_right_margin_dim, unknown .code:n = \@@_error:n {Unknown~option~for~NiceArray}} % \end{macrocode} % % \begin{macrocode} \msg_new:nnnn {nicematrix} {Unknown~option~for~NiceArray} {The~option~"\tl_use:N\l_keys_key_tl"~is~unknown~for~the~environment~ \{NiceArray\}.\\ If~you~go~on,~it~will~be~ignored.\\ For~a~list~of~the~available~options,~type~H~.} {The~available~options~are~(in~alphabetic~order):~ b,~ c,~ code-after,~ create-extra-nodes,~ columns-width,~ extra-left-margin,~ extra-right-margin,~ left-margin,~ name,~ nullify-dots,~ parallelize-diags,~ renew-dots,~ right-margin,~ and~t.} % \end{macrocode} % % \subsection{The environments \{NiceArray\} and \{NiceMatrix\}} % % The pseudo-environment |\@@_Cell:|--|\@@_end_Cell:| will be used to format the cells of the array. In the code, % the affectations are global because this pseudo-environment will be used in the cells of a |\halign| (via an % environment |{array}|). % % \begin{macrocode} \cs_new_protected:Nn \@@_Cell: { % \end{macrocode} % We increment |\g_@@_column_int|, which is the counter of the columns. % \begin{macrocode} \int_gincr:N \g_@@_column_int % \end{macrocode} % Now, we increment the counter of the rows. We don't do this incrementation in the |\everycr| because some % packages, like \pkg{arydshln}, create special rows in the |\halign| that we don't want to take into account. % \begin{macrocode} \int_compare:nNnT \g_@@_column_int = 1 {\int_gincr:N \g_@@_row_int} \int_gset:Nn \g_@@_column_total_int {\int_max:nn \g_@@_column_total_int \g_@@_column_int} \hbox_set:Nw \l_tmpa_box $ % $ \int_compare:nNnT \g_@@_row_int = 0 \l_@@_code_for_first_row_tl} % \end{macrocode} % % \begin{macrocode} \cs_new_protected:Nn \@@_end_Cell: {$ % $ \hbox_set_end: % \end{macrocode} % % We want to compute in |\l_@@_max_cell_width_dim| the width of the widest cell of the array (except the cells of % the last column of an environment of the kind of |{pNiceArrayC}|). % \begin{macrocode} \dim_gset:Nn \g_@@_max_cell_width_dim {\dim_max:nn \g_@@_max_cell_width_dim {\box_wd:N \l_tmpa_box}} % \end{macrocode} % % % \begin{macrocode} \int_compare:nNnT \g_@@_row_int = 0 {\dim_gset:Nn \g_@@_max_dp_row_zero_dim {\dim_max:nn \g_@@_max_dp_row_zero_dim {\box_dp:N \l_tmpa_box}} \dim_gset:Nn \g_@@_max_ht_row_zero_dim {\dim_max:nn \g_@@_max_ht_row_zero_dim {\box_ht:N \l_tmpa_box}}} \int_compare:nNnT \g_@@_row_int = 1 {\dim_gset:Nn \g_@@_max_ht_row_one_dim {\dim_max:nn \g_@@_max_ht_row_one_dim {\box_ht:N \l_tmpa_box}}} % \end{macrocode} % % Now, we can create the Tikz node of the cell. % \begin{macrocode} \tikz[remember~picture, inner~sep = 0pt, minimum~width = 0pt, baseline] \node [anchor = base, name = nm-\int_use:N \g_@@_env_int- \int_use:N \g_@@_row_int- \int_use:N \g_@@_column_int, alias = \tl_if_empty:NF \l_@@_name_tl {\tl_use:N \l_@@_name_tl- \int_use:N \g_@@_row_int- \int_use:N \g_@@_column_int} ] \bgroup \box_use:N \l_tmpa_box \egroup ;} % \end{macrocode} % % % \interitem % The environment |{NiceArray}| is the main environment of the extension \pkg{nicematrix}. % % In order to clarify the explanations, we will first give the definition of the environment |{NiceMatrix}|. % % Our environment |{NiceMatrix}| must have the same second part as the environment |{matrix}| of \pkg{amsmath} % (because of the programmation of the option |renew-matrix|). Hence, this second part is the following: % % \begin{Verbatim} % \endarray % \skip_horizontal:n {-\arraycolsep} % \end{Verbatim} % % That's why, in the definition of |{NiceMatrix}|, we must use |\NiceArray| and not |\begin{NiceArray}| % (and, in the definition of |{NiceArray}|, we will have to use |\array|, and not |\begin{array}|: see below). % % \medskip % Here's the definition of |{NiceMatrix}|: % \begin{macrocode} \NewDocumentEnvironment {NiceMatrix} {!O{}} {\keys_set:nn {NiceMatrix/NiceMatrix} {#1} \tl_set:Nn \l_@@_pos_env_tl c \bool_set_false:N \l_@@_exterior_arraycolsep_bool \NiceArray{*\c@MaxMatrixCols{C}} } {\endarray \skip_horizontal:n {-\arraycolsep} \skip_horizontal:n {\g_@@_right_margin_dim + \g_@@_extra_right_margin_dim}} % \end{macrocode} % % \interitem % For the definition of |{NiceArray}| (just below), we have the following constraints: % \begin{itemize} % \item we must use |\array| in the first part of |{NiceArray}| and, therefore, |\endarray| in the second part; % \item we have to put a |\group_insert_after:N \@@_after_array:| in the first part of |{NiceArray}| so that |\@@_draw_lines| % will be executed at the end of the current environment (either |{NiceArray}| or |{NiceMatrix}|). % \end{itemize} % % \begin{macrocode} \cs_generate_variant:Nn \dim_set:Nn {Nx} % \end{macrocode} % % % \bigskip % \begin{macrocode} \msg_new:nnn {nicematrix} {We~are~yet~in~an~environment~NiceArray} {Environments~\{NiceArray\}~(or~\{NiceMatrix\},~etc.)~can't~be~ nested.~We~can~go~on,~but,~maybe,~you~will~have~errors~or~an~incorrect~ result.} % \end{macrocode} % % % \bigskip % The command |\@@_define_dots:| will be used in the environment |{NiceArray}| to define the commands |\Ldots|, % |\Cdots|, etc. % \begin{macrocode} \cs_new_protected:Npn \@@_define_dots: {\cs_set_eq:NN \Ldots \@@_Ldots \cs_set_eq:NN \Cdots \@@_Cdots \cs_set_eq:NN \Vdots \@@_Vdots \cs_set_eq:NN \Ddots \@@_Ddots \cs_set_eq:NN \Iddots \@@_Iddots \bool_if:NT \l_@@_renew_dots_bool {\cs_set_eq:NN \ldots \@@_Ldots \cs_set_eq:NN \cdots \@@_Cdots \cs_set_eq:NN \vdots \@@_Vdots \cs_set_eq:NN \ddots \@@_Ddots \cs_set_eq:NN \iddots \@@_Iddots \cs_set_eq:NN \dots \@@_Ldots \cs_set_eq:NN \hdotsfor \@@_Hdotsfor}} % \end{macrocode} % % \bigskip % With |\@@_define_dots_to_nil:|, the commands like |\Ldots|, |\Cdots|, are defined, but with no effect. This % command will be used if the class option |draft| is used. % \begin{macrocode} \cs_new_protected:Npn \@@_define_dots_to_nil: {\cs_set_eq:NN \Ldots \prg_do_nothing: \cs_set_eq:NN \Cdots \prg_do_nothing: \cs_set_eq:NN \Vdots \prg_do_nothing: \cs_set_eq:NN \Ddots \prg_do_nothing: \cs_set_eq:NN \Iddots \prg_do_nothing: \bool_if:NT \l_@@_renew_dots_bool {\cs_set_eq:NN \ldots \prg_do_nothing: \cs_set_eq:NN \cdots \prg_do_nothing: \cs_set_eq:NN \vdots \prg_do_nothing: \cs_set_eq:NN \ddots \prg_do_nothing: \cs_set_eq:NN \iddots \prg_do_nothing: \cs_set_eq:NN \dots \prg_do_nothing: \cs_set_eq:NN \hdotsfor \@@_Hdotsfor}} % \end{macrocode} % % % \bigskip % First, we test if we are yet in an environment |{NiceArray}| (nested environment are forbidden). It's easy to % test whether we are in an environment |{NiceArray}| : a special command |\@@_in_NiceArray:| is defined. % \begin{macrocode} \NewDocumentEnvironment {NiceArray} {O{} m !O{}} {\cs_if_exist:NT \@@_in_NiceArray: {\@@_error:n {We~are~yet~in~an~environment~NiceArray}} % \end{macrocode} % We deactivate Tikz externalization (since we use Tikz pictures with the options |overlay| and % |remember picture|, there would be errors). % \begin{macrocode} \cs_if_exist:NT \tikz@library@external@loaded {\tikzset{external/export = false}} \cs_set:Npn \@@_in_NiceArray: {--Void--} \group_insert_after:N \@@_after_array: \tl_gclear_new:N \g_@@_lines_to_draw_tl % \end{macrocode} % % We increment the counter |\g_@@_env_int| which counts the environments |{NiceArray}|. % \begin{macrocode} \int_gincr:N \g_@@_env_int \bool_if:NF \l_@@_block_auto_columns_width_bool {\dim_gzero_new:N \g_@@_max_cell_width_dim} % \end{macrocode} % % For the following variables, maybe we should create it only if we use the environment |{pNiceArrayRC}| or its variants. % \begin{macrocode} \dim_gzero_new:N \g_@@_max_dp_row_zero_dim \dim_gzero_new:N \g_@@_max_ht_row_zero_dim \dim_gzero_new:N \g_@@_max_ht_row_one_dim % \end{macrocode} % % \begin{macrocode} \keys_set:nn {NiceMatrix/NiceArray} {#1,#3} % \end{macrocode} % % If the user requires all the columns to have a width equal to the widest cell of the array, we read this length in % the file |.aux| (of, course, this is possible only on the second run of LaTeX : on the first run, the dimension % |\l_@@_columns_width_dim| will be set to zero --- and the columns will have their natural width). % \begin{macrocode} \bool_if:NT \l_@@_auto_columns_width_bool {\group_insert_after:N \@@_write_max_cell_width: \cs_if_free:cTF {_@@_max_cell_width_\int_use:N \g_@@_env_int} {\dim_set:Nn \l_@@_columns_width_dim \c_zero_dim} {\dim_set:Nx \l_@@_columns_width_dim {\use:c {_@@_max_cell_width_\int_use:N \g_@@_env_int}}} % \end{macrocode} % If the environment has a name, we read the value of the maximal value of the columns from % |_@@_name_cell_width|{\ttfamily\slshape name} (the value will be the correct value even if the number of the % environment has changed (for example because the user has created or deleted an environment before the current one). % \begin{macrocode} \tl_if_empty:NF \l_@@_name_tl {\cs_if_free:cF {_@@_max_cell_width_\l_@@_name_tl} {\dim_set:Nx \l_@@_columns_width_dim {\use:c {_@@_max_cell_width_\l_@@_name_tl}}}} } % \end{macrocode} % We don't want to patch any code and that's why some code is excuted in a |\group_insert_after:N|. In particular, in this % |\group_insert_after:N|, we will have to know the value of some parameters like |\l_@@_extra_nodes_bool|. That's why we transit via a global % version for some variables. % \begin{macrocode} \bool_gset_eq:NN \g_@@_extra_nodes_bool \l_@@_extra_nodes_bool \dim_gset_eq:NN \g_@@_left_margin_dim \l_@@_left_margin_dim \dim_gset_eq:NN \g_@@_right_margin_dim \l_@@_right_margin_dim \dim_gset_eq:NN \g_@@_extra_right_margin_dim \l_@@_extra_right_margin_dim \tl_gset_eq:NN \g_@@_code_after_tl \l_@@_code_after_tl \tl_gset_eq:NN \g_@@_name_tl \l_@@_name_tl % \end{macrocode} % The environment |{array}| uses internally the command |\ialign| and, in particular, this command |\ialign| sets % |\everycr| to |{}|. However, we want to use |\everycr| in our array. % The solution is to give to |\ialign| a new definition (giving to |\everycr| the value we want) % that will revert automatically to its default definition after the first utilisation.\footnote{With this programmation, we will % have, in the cells of the array, a clean version of |\ialign|. That's necessary: the user will probably not employ directly % |\ialign| in the array... but more likely environments that utilize |\ialign| internally (e.g.: |{substack}|)} % \begin{macrocode} \cs_set:Npn \ialign {\everycr{\noalign{\int_gzero:N \g_@@_column_int}} \tabskip = \c_zero_skip \cs_set:Npn \ialign {\everycr{} \tabskip = \c_zero_skip \halign} \halign} % \end{macrocode} % % We define the new column types |L|, |C| and |R| that must be used instead of |l|, |c| and |r| in the preamble of % |{NiceArray}|. % \begin{macrocode} \dim_compare:nNnTF \l_@@_columns_width_dim = \c_zero_dim {\newcolumntype{L}{>{\@@_Cell:}l<{\@@_end_Cell:}} \newcolumntype{C}{>{\@@_Cell:}c<{\@@_end_Cell:}} \newcolumntype{R}{>{\@@_Cell:}r<{\@@_end_Cell:}}} % \end{macrocode} % If there is an option that specify that all the columns must have the same width, the column types~|L|, |C| % and~|R| are in fact defined upon the column type~|w| of array which is, in fact, redefined below. % \begin{macrocode} {\newcolumntype{L}{wl{\dim_use:N \l_@@_columns_width_dim}} \newcolumntype{C}{wc{\dim_use:N \l_@@_columns_width_dim}} \newcolumntype{R}{wr{\dim_use:N \l_@@_columns_width_dim}}} % \end{macrocode} % % We nullify the definitions of the column types |w| and |W| because we want to avoid a warning in the log file % for a redefinition of a column type. % \begin{macrocode} \cs_set_eq:NN \NC@find@w \relax \cs_set_eq:NN \NC@find@W \relax % \end{macrocode} % % We redefine the column types |w| and |W| of the package \pkg{array}. % \begin{macrocode} \newcolumntype{w}[2] {>{\hbox_set:Nw \l_tmpa_box \@@_Cell:} c <{\@@_end_Cell: \hbox_set_end: \makebox[##2][##1]{\box_use:N \l_tmpa_box}}} \newcolumntype{W}[2] {>{\hbox_set:Nw \l_tmpa_box \@@_Cell:} c <{\@@_end_Cell: \hbox_set_end: \cs_set_eq:NN \hss \hfil \makebox[##2][##1]{\box_use:N \l_tmpa_box}}} % \end{macrocode} % % The commands |\Ldots|, |\Cdots|, etc. will be defined only in the environment |{NiceArray}|. If the class option % |draft| is used, these commands will be defined to be no-op (the dotted lines are not drawn). % \begin{macrocode} \bool_if:NTF \c_@@_draft_bool \@@_define_dots_to_nil: \@@_define_dots: \cs_set_eq:NN \Hspace \@@_Hspace: \cs_set_eq:NN \Hdotsfor \@@_Hdotsfor \cs_set_eq:NN \multicolumn \@@_multicolumn:nnn % \end{macrocode} % % % The sequence |\g_@@_empty_cells_seq| will contain a list of ``empty'' cells (not all the empty cells of the % matrix). If we want to indicate that the cell in row~$i$ and column~$j$ must be considered as empty, the token % list ``|i-j|'' will be put in this sequence. % \begin{macrocode} \seq_gclear_new:N \g_@@_empty_cells_seq % \end{macrocode} % % The sequence |\g_@@_multicolumn_cells_seq| will contain the list of the cells of the array where a command % |\multicolumn{|$n$|}{...}{...}| with $n>1$ is issued. In |\g_@@_multicolumn_sizes_seq|, the ``sizes'' (that is to say % the values of $n$) correspondant will be stored. These lists will be used for the creation of the ``medium nodes'' % (if they are created). % \begin{macrocode} \seq_gclear_new:N \g_@@_multicolumn_cells_seq \seq_gclear_new:N \g_@@_multicolumn_sizes_seq % \end{macrocode} % % % The counter |\g_@@_row_int| will be used to count the rows of the array (its incrementation will be in % the first cell of the row). At the end of the environment |{array}|, this counter will give the total number of % rows of the matrix. % \begin{macrocode} \int_gzero_new:N \g_@@_row_int \int_gset:Nn \g_@@_row_int {\l_@@_nb_first_row_int - 1} % \end{macrocode} % % The counter |\g_@@_column_int| will be used to count the columns of the array. Since we want to % know the total number of columns of the matrix, we also create a counter |\g_@@_column_total_int|. % These counters are updated in the command |\@@_Cell:| executed at the beginning of each cell. % \begin{macrocode} \int_gzero_new:N \g_@@_column_int \int_gzero_new:N \g_@@_column_total_int \cs_set_eq:NN \@ifnextchar \new@ifnextchar % \end{macrocode} % % The extra horizontal spaces on both sides of an environment |{array}| should be considered as a bad idea of % standard LaTeX. In the environment |{matrix}| the package \pkg{amsmath} prefers to suppress these spaces with % instructions ``|\hskip -\arraycolsep|''. In the same way, we decide to suppress them in |{NiceArray}|. However, for better % compatibility, we give an option |exterior-arraycolsep| to control this feature. % \begin{macrocode} \bool_if:NF \l_@@_exterior_arraycolsep_bool {\skip_horizontal:n {-\arraycolsep}} % \end{macrocode} % % \begin{macrocode} \skip_horizontal:n {\l_@@_left_margin_dim + \l_@@_extra_left_margin_dim} % \end{macrocode} % % % Eventually, the environment |{NiceArray}| is defined upon the environment |{array}|. The token list |\l_@@_pos_tl| % will contain one of the values |t|, |c| or |b|. % \begin{macrocode} \array[\l_@@_pos_env_tl]{#2}} % \end{macrocode} % % \bigskip % \begin{macrocode} {\endarray \bool_if:NF \l_@@_exterior_arraycolsep_bool {\skip_horizontal:n {-\arraycolsep}} \skip_horizontal:n {\g_@@_right_margin_dim + \g_@@_extra_right_margin_dim}} % \end{macrocode} % % % \interitem % We create the variants of the environment |{NiceMatrix}|. % \begin{macrocode} \NewDocumentEnvironment {pNiceMatrix} {} {\left(\begin{NiceMatrix}} {\end{NiceMatrix}\right)} % \end{macrocode} % % \begin{macrocode} \NewDocumentEnvironment {bNiceMatrix} {} {\left[\begin{NiceMatrix}} {\end{NiceMatrix}\right]} % \end{macrocode} % % \begin{macrocode} \NewDocumentEnvironment {BNiceMatrix} {} {\left\{\begin{NiceMatrix}} {\end{NiceMatrix}\right\}} % \end{macrocode} % % \begin{macrocode} \NewDocumentEnvironment {vNiceMatrix} {} {\left\lvert\begin{NiceMatrix}} {\end{NiceMatrix}\right\rvert} % \end{macrocode} % % \begin{macrocode} \NewDocumentEnvironment {VNiceMatrix} {} {\left\lVert\begin{NiceMatrix}} {\end{NiceMatrix}\right\rVert} % \end{macrocode} % % \interitem % For the option \verb|columns-width=auto| (or the option |auto-columns-width| of the environment % |{NiceMatrixBlock}|), we want to know the maximal width of the cells of the array (except % the cells of the ``exterior'' column of an environment of the kind of |{pNiceAccayC}|). This length can be known % only after the end of the construction of the array (or at the end of the environment |{NiceMatrixBlock}|). % That's why we store this value in the main |.aux| file and it will be available in the next run. We write a % dedicated command for this because it will be called in a~|\group_insert_after:N|. % \begin{macrocode} \cs_new_protected:Nn \@@_write_max_cell_width: {\bool_if:NF \l_@@_block_auto_columns_width_bool {\iow_now:Nn \@mainaux {\ExplSyntaxOn} \iow_now:Nx \@mainaux {\cs_gset:cpn {@@_max_cell_width_\int_use:N \g_@@_env_int} {\dim_use:N \g_@@_max_cell_width_dim} } % \end{macrocode} % If the environment has a name, we also create an alias named |\@@_max_cell_width_|{\ttfamily\slshape name}. % \begin{macrocode} \iow_now:Nx \@mainaux {\cs_gset:cpn {@@_max_cell_width_\g_@@_name_tl} {\dim_use:N \g_@@_max_cell_width_dim} } \iow_now:Nn \@mainaux {\ExplSyntaxOff}}} % \end{macrocode} % % \interitem % The conditionnal |\@@_if_not_empty_cell:nnT| tests wether a cell is empty. The first two arguments must be LaTeX3 % counters for the row and the column of the considered cell. % \begin{macrocode} \prg_set_conditional:Npnn \@@_if_not_empty_cell:nn #1#2 {T,TF} % \end{macrocode} % If the cell is an implicit cell (that is after the symbol |\\| of end of row), the cell must, of course, be % considered as empty. It's easy to check wether we are in this situation considering the correspondant Tikz node. % \begin{macrocode} {\cs_if_exist:cTF {pgf@sh@ns@nm-\int_use:N \g_@@_env_int- \int_use:N #1- \int_use:N #2} % \end{macrocode} % We manage a list of ``empty cells'' called |\g_@@_empty_cells_seq|. In fact, this list is not a list of all the % empty cells of the array but only those explicitely declared empty for some reason. It's easy to check if the % current cell is in this list. % \begin{macrocode} {\seq_if_in:NxTF \g_@@_empty_cells_seq {\int_use:N #1-\int_use:N #2} {\prg_return_false:} % \end{macrocode} % In the general case, we consider the width of the Tikz node corresponding to the cell. In order to compute this % width, we have to extract the coordinate of the west and east anchors of the node. This extraction needs a % command environment |{pgfpicture}| but, in fact, nothing is drawn. % \begin{macrocode} {\begin{pgfpicture} % \end{macrocode} % We store the name of the node corresponding to the cell in |\l_tmpa_tl|. % \begin{macrocode} \tl_set:Nx \l_tmpa_tl {nm-\int_use:N \g_@@_env_int- \int_use:N #1- \int_use:N #2} \pgfpointanchor \l_tmpa_tl {east} \dim_gset:Nn \g_tmpa_dim \pgf@x \pgfpointanchor \l_tmpa_tl {west} \dim_gset:Nn \g_tmpb_dim \pgf@x \end{pgfpicture} \dim_compare:nNnTF {\dim_abs:n {\g_tmpb_dim-\g_tmpa_dim}} < {0.5 pt} \prg_return_false: \prg_return_true: }} \prg_return_false: } % \end{macrocode} % % \interitem % The argument of the following command |\@@_instruction_of_type:n| is the type of the instruction (|Cdots|, % |Vdots|, |Ddots|, etc.). This command writes in |\g_@@_lines_to_draw_tl| the instruction that will really draw % the line after the construction of the matrix. % % \medskip % For example, for the following matrix, % % \smallskip % \begin{BVerbatim}[baseline=c,boxwidth=11cm] % \begin{pNiceMatrix} % 1 & 2 & 3 & 4 \\ % 5 & \Cdots & & 6 \\ % 7 & \Hdotsfor{2} \\ % \end{pNiceMatrix} % \end{BVerbatim} % $\begin{pNiceMatrix} % 1 & 2 & 3 & 4 \\ % 5 & \Cdots & & 6 \\ % 7 & \Hdotsfor{2} \\ % \end{pNiceMatrix}$ % % the content of |\g_@@_lines_to_draw_tl| will be: % % \begin{scope} % \color{gray} % \verb|\@@_draw_Cdots:nn {2}{2}| % % \verb|\@@_draw_Hdotsfor:nnn {3}{2}{2}| % \end{scope} % % \begin{macrocode} \cs_new_protected:Nn \@@_instruction_of_type:n {\tl_gput_right:Nx \g_@@_lines_to_draw_tl {\exp_not:c {@@_draw_#1:nn} {\int_use:N \g_@@_row_int} {\int_use:N \g_@@_column_int}}} % \end{macrocode} % % % \subsection{After the construction of the array} % % First, we deactivate Tikz externalization (since we use Tikz pictures with the options |overlay| and % |remember picture|, there would be errors). % \begin{macrocode} \cs_new_protected:Nn \@@_after_array: {\group_begin: \cs_if_exist:NT \tikz@library@external@loaded {\tikzset{external/export = false}} % \end{macrocode} % Now, the definition of the counters |\g_@@_column_int| and |\g_@@_column_total_int| change: |\g_@@_column_int| % will be the number of columns without the exterior column (in an environment like |{pNiceArrayC}|) and % |\g_@@_column_total_int| will be the number of columns with this exterior column. % \begin{macrocode} \int_gset_eq:NN \g_@@_column_int \g_@@_column_total_int \bool_if:NT \l_@@_exterior_column_bool {\int_gdecr:N \g_@@_column_int} % \end{macrocode} % % The sequence |\g_@@_yet_drawn_seq| contains a list of lines which have been drawn previously in the matrix. We % maintain this sequence because we don't want to draw two overlapping lines. % \begin{macrocode} \seq_gclear_new:N \g_@@_yet_drawn_seq % \end{macrocode} % % By default, the diagonal lines will be parallelized\footnote{It's possible to use the option % |parallelize-diags| to disable this parallelization.}. There are two types of diagonals lines: the $|\Ddots|$ % diagonals and the |\Iddots| diagonals. We have to count both types in order to know wether a diagonal is the % first of its type in the current |{NiceArray}| environment. % \begin{macrocode} \bool_if:NT \l_@@_parallelize_diags_bool {\int_zero_new:N \l_@@_ddots_int \int_zero_new:N \l_@@_iddots_int % \end{macrocode} % % The dimensions |\l_@@_delta_x_one_dim| and |\l_@@_delta_y_one_dim| will contain the $\Delta_x$ and $\Delta_y$ of the % first |\Ddots| diagonal. We have to store these values in order to draw the others |\Ddots| diagonals parallel to % the first one. Similarly |\l_@@_delta_x_two_dim| and |\l_@@_delta_y_two_dim| are the $\Delta_x$ and $\Delta_y$ of % the first |\Iddots| diagonal. % \begin{macrocode} \dim_zero_new:N \l_@@_delta_x_one_dim \dim_zero_new:N \l_@@_delta_y_one_dim \dim_zero_new:N \l_@@_delta_x_two_dim \dim_zero_new:N \l_@@_delta_y_two_dim} % \end{macrocode} % % If the user has used the option |create-extra-nodes|, the ``medium nodes'' and ``large nodes'' are created. We % recall that the command |\@@_create_extra_nodes:|, when used once, becomes no-op (in the current TeX group). % \begin{macrocode} \bool_if:NT \g_@@_extra_nodes_bool \@@_create_extra_nodes: % \end{macrocode} % % \bigskip % Now, we really draw the lines. The code to draw the lines has been constructed in the token list |\g_@@_lines_to_draw_tl|. % \begin{macrocode} \tl_if_empty:NF \g_@@_lines_to_draw_tl {\int_zero_new:N \l_@@_initial_i_int \int_zero_new:N \l_@@_initial_j_int \int_zero_new:N \l_@@_final_i_int \int_zero_new:N \l_@@_final_j_int \@@_bool_new:N \l_@@_initial_open_bool \@@_bool_new:N \l_@@_final_open_bool \g_@@_lines_to_draw_tl} \tl_gclear:N \g_@@_lines_to_draw_tl % \end{macrocode} % % \bigskip % Now, the |code-after|. % \begin{macrocode} \tikzset{every~picture/.style = {overlay, remember~picture, name~prefix = nm-\int_use:N \g_@@_env_int-}} \cs_set_eq:NN \line \@@_line:nn \g_@@_code_after_tl \group_end:} % \end{macrocode} % % \bigskip % A dotted line will be said \emph{open} in one of its extremities when it stops on the edge of the matrix and \emph{closed} % otherwise. In the following matrix, the dotted line is closed on its left extremity and open on its right. % \[ \begin{pNiceMatrix} % a+b+c & a+b & a\\ % a & \Cdots \\ % a & a+b & a+b+c % \end{pNiceMatrix}\] % For a closed extremity, we use the normal node and for a open one, we use the ``medium node'' (the medium and % large nodes are created with |\@@_create_extra_nodes:| if they have not been created yet). % \[ \begin{pNiceMatrix}[create-extra-nodes, % code-after = {\begin{tikzpicture} % \node [highlight, fit={(2-1)}] {} ; % \node [highlight, fit={(2-3-medium)}] {} ; % \end{tikzpicture} % }] % a+b+c & a+b & a\\ % a & \Cdots \\ % a & a+b & a+b+c % \end{pNiceMatrix}\] % % % \bigskip % The command |\@@_find_extremities_of_line:nnnn| takes four arguments: % % \begin{itemize} % \item the first argument is the row of the cell where the command was issued; % \item the second argument is the column of the cell where the command was issued; % \item the third argument is the $x$-value of the orientation vector of the line; % \item the fourth argument is the $y$-value the orientation vector of the line; % \end{itemize} % % This command computes: % % \begin{itemize} % \item |\l_@@_initial_i_int| and |\l_@@_initial_j_int| which are the coordinates of one extremity of the line; % \item |\l_@@_final_i_int| and |\l_@@_final_j_int| which are the coordinates of the other extremity of the line; % \item |\l_@@_initial_open_bool| and |\l_@@_final_open_bool| to indicate wether the extremities are open or not. % \end{itemize} % % \begin{macrocode} \cs_new_protected:Nn \@@_find_extremities_of_line:nnnn {\int_set:Nn \l_@@_initial_i_int {#1} \int_set:Nn \l_@@_initial_j_int {#2} \int_set:Nn \l_@@_final_i_int {#1} \int_set:Nn \l_@@_final_j_int {#2} \bool_set_false:N \l_@@_initial_open_bool \bool_set_false:N \l_@@_final_open_bool % \end{macrocode} % We will do two loops: one when determinating the initial cell and the other when determinating the final cell. % The boolean |\l_@@_stop_loop_bool| will be used to control these loops. % \begin{macrocode} \@@_bool_new:N \l_@@_stop_loop_bool \bool_do_until:Nn \l_@@_stop_loop_bool {\int_add:Nn \l_@@_final_i_int {#3} \int_add:Nn \l_@@_final_j_int {#4} % \end{macrocode} % We test if we are still in the matrix. % \begin{macrocode} \bool_if:nTF { \int_compare_p:nNn \l_@@_final_i_int < {\l_@@_nb_first_row_int - 1} || \int_compare_p:nNn \l_@@_final_i_int > \g_@@_row_int || \int_compare_p:nNn \l_@@_final_j_int < 1 || \int_compare_p:nNn \l_@@_final_j_int > \g_@@_column_total_int % \end{macrocode} % If you arrive in the column |C| of an environment with such columns (like |{pNiceArrayC}|), you must consider that % we are \emph{outside} the matrix except if we are drawing a vertical line (included in the column |C|). % \begin{macrocode} || \int_compare_p:nNn \l_@@_final_j_int > \g_@@_column_int && \int_compare_p:nNn {#4} > 0 } % \end{macrocode} % If we are outside the matrix, we have found the extremity of the dotted line and it's a \emph{open} extremity. % \begin{macrocode} {\bool_set_true:N \l_@@_final_open_bool % \end{macrocode} % We do a step backwards because we will draw the dotted line upon the last cell in the matrix (we will use the % ``medium node'' of this cell). % \begin{macrocode} \int_sub:Nn \l_@@_final_i_int {#3} \int_sub:Nn \l_@@_final_j_int {#4} \bool_set_true:N \l_@@_stop_loop_bool} % \end{macrocode} % If we are in the matrix, we test if the cell is empty. If it's not the case, we stop the loop because we have % found the correct values for |\l_@@_final_i_int| and |\l_@@_final_j_int|. % \begin{macrocode} {\@@_if_not_empty_cell:nnT \l_@@_final_i_int \l_@@_final_j_int {\bool_set_true:N \l_@@_stop_loop_bool}} } % \end{macrocode} % % \interitem % For |\l_@@_initial_i_int| and |\l_@@_initial_j_int| the programmation is similar to the previous one. % \begin{macrocode} \bool_set_false:N \l_@@_stop_loop_bool \bool_do_until:Nn \l_@@_stop_loop_bool {\int_sub:Nn \l_@@_initial_i_int {#3} \int_sub:Nn \l_@@_initial_j_int {#4} \bool_if:nTF { \int_compare_p:nNn \l_@@_initial_i_int < \l_@@_nb_first_row_int || \int_compare_p:nNn \l_@@_initial_i_int > \g_@@_row_int || \int_compare_p:nNn \l_@@_initial_j_int < 1 || \int_compare_p:nNn \l_@@_initial_j_int > \g_@@_column_total_int} {\bool_set_true:N \l_@@_initial_open_bool \int_add:Nn \l_@@_initial_i_int {#3} \int_add:Nn \l_@@_initial_j_int {#4} \bool_set_true:N \l_@@_stop_loop_bool} {\@@_if_not_empty_cell:nnT \l_@@_initial_i_int \l_@@_initial_j_int {\bool_set_true:N \l_@@_stop_loop_bool}} } % \end{macrocode} % If we have at least one open extremity, we create the ``medium nodes'' in the matrix (in the case of an open % extremity, the dotted line uses the ``medium node'' of the last empty cell). We remind that, when used once, the % command |\@@_create_extra_nodes:| becomes no-op in the current TeX group. % \begin{macrocode} \bool_if:nT {\l_@@_initial_open_bool || \l_@@_final_open_bool} \@@_create_extra_nodes: } % \end{macrocode} % % \interitem % If the dotted line to draw is in the list of the previously drawn lines (|\g_@@_yet_drawn_seq|), we don't draw % (so, we won't have overlapping lines in the \textsc{pdf}). The token list |\l_tmpa_tl| is the $4$-uplet % characteristic of the line. % \begin{macrocode} \prg_set_conditional:Npnn \@@_if_yet_drawn: {F} {\tl_set:Nx \l_tmpa_tl {\int_use:N \l_@@_initial_i_int- \int_use:N \l_@@_initial_j_int- \int_use:N \l_@@_final_i_int- \int_use:N \l_@@_final_j_int} \seq_if_in:NVTF \g_@@_yet_drawn_seq \l_tmpa_tl % \end{macrocode} % % If the dotted line to draw is not in the list, we add it to the list |\g_@@_yet_drawn_seq|. % \begin{macrocode} {\prg_return_true:} {\seq_gput_left:NV \g_@@_yet_drawn_seq \l_tmpa_tl \prg_return_false:}} % \end{macrocode} % % % \interitem % The command |\@@_retrieve_coords:nn| retrieves the Tikz coordinates of the two extremities of the dotted line we % will have to draw \footnote{In fact, with diagonal lines, or vertical lines in columns of type |L| or |R|, an % adjustment of one of the coordinates may be done.}. This command has four implicit arguments which are % |\l_@@_initial_i_int|, |\l_@@_initial_j_int|, |\l_@@_final_i_int| and |\l_@@_final_j_int|. % % The two arguments of the command |\@@_retrieve_coords:nn| are the prefix and the anchor that must be used for the % two nodes. % % The coordinates are stored in |\g_@@_x_initial_dim|, |\g_@@_y_initial_dim|, |\g_@@_x_final_dim|, % |\g_@@_y_final_dim|. These variables are global for technical reasons: we have to do an affectation in an % environment |{tikzpicture}|. % \begin{macrocode} \cs_new_protected:Nn \@@_retrieve_coords:nn {\dim_gzero_new:N \g_@@_x_initial_dim \dim_gzero_new:N \g_@@_y_initial_dim \dim_gzero_new:N \g_@@_x_final_dim \dim_gzero_new:N \g_@@_y_final_dim \begin{tikzpicture}[remember~picture] \tikz@parse@node\pgfutil@firstofone (nm-\int_use:N \g_@@_env_int- \int_use:N \l_@@_initial_i_int- \int_use:N \l_@@_initial_j_int #1) \dim_gset:Nn \g_@@_x_initial_dim \pgf@x \dim_gset:Nn \g_@@_y_initial_dim \pgf@y \tikz@parse@node\pgfutil@firstofone (nm-\int_use:N \g_@@_env_int- \int_use:N \l_@@_final_i_int- \int_use:N \l_@@_final_j_int #2) \dim_gset:Nn \g_@@_x_final_dim \pgf@x \dim_gset:Nn \g_@@_y_final_dim \pgf@y \end{tikzpicture} } \cs_generate_variant:Nn \@@_retrieve_coords:nn {xx} % \end{macrocode} % % \interitem % \begin{macrocode} \cs_new_protected:Nn \@@_draw_Ldots:nn {\@@_find_extremities_of_line:nnnn {#1} {#2} 0 1 \@@_if_yet_drawn:F \@@_actually_draw_Ldots:} % \end{macrocode} % % \medskip % The command |\@@_actually_draw_Ldots:| actually draws the |Ldots| line using |\l_@@_initial_i_int|, % |\l_@@_initial_j_int|, |\l_@@_initial_open_bool|, |\l_@@_final_i_int|, |\l_@@_final_j_int| and % |\l_@@_final_open_bool|. We have a dedicated command because if is used also by |\Hdotsfor|. % \begin{macrocode} \cs_new_protected:Nn \@@_actually_draw_Ldots: {\@@_retrieve_coords:xx {\bool_if:NTF \l_@@_initial_open_bool {-medium.base~west} {.base~east}} {\bool_if:NTF \l_@@_final_open_bool {-medium.base~east} {.base~west}} \bool_if:NT \l_@@_initial_open_bool {\dim_gset_eq:NN \g_@@_y_initial_dim \g_@@_y_final_dim } \bool_if:NT \l_@@_final_open_bool {\dim_gset_eq:NN \g_@@_y_final_dim \g_@@_y_initial_dim } % \end{macrocode} % We raise the line of a quantity equal to the radius of the dots because we want the dots really ``on'' the line % of texte. % \begin{macrocode} \dim_gadd:Nn \g_@@_y_initial_dim {0.53pt} \dim_gadd:Nn \g_@@_y_final_dim {0.53pt} \@@_draw_tikz_line:} % \end{macrocode} % % \bigskip % \begin{macrocode} \cs_new_protected:Nn \@@_draw_Cdots:nn {\@@_find_extremities_of_line:nnnn {#1} {#2} 0 1 \@@_if_yet_drawn:F {\@@_retrieve_coords:xx {\bool_if:NTF \l_@@_initial_open_bool {-medium.mid~west} {.mid~east}} {\bool_if:NTF \l_@@_final_open_bool {-medium.mid~east} {.mid~west}} \bool_if:NT \l_@@_initial_open_bool {\dim_gset_eq:NN \g_@@_y_initial_dim \g_@@_y_final_dim } \bool_if:NT \l_@@_final_open_bool {\dim_gset_eq:NN \g_@@_y_final_dim \g_@@_y_initial_dim } \@@_draw_tikz_line:}} % \end{macrocode} % % \bigskip % For the vertical dots, we have to distinguish different instances because we want really vertical lines. Be % careful: it's not possible to insert the command |\@@_retrieve_coords:nn| in the arguments |T| and |F| of the % \pkg{expl3} commands (why?). % \begin{macrocode} \cs_new_protected:Nn \@@_draw_Vdots:nn {\@@_find_extremities_of_line:nnnn {#1} {#2} 1 0 \@@_if_yet_drawn:F {\@@_retrieve_coords:xx {\bool_if:NTF \l_@@_initial_open_bool {-medium.north~west} {.south~west}} {\bool_if:NTF \l_@@_final_open_bool {-medium.south~west} {.north~west}} % \end{macrocode} % The boolean |\l_tmpa_bool| indicates wether the column is of type |l| (|L| of |{NiceArray}|) or may be considered % as if. % \begin{macrocode} \bool_set:Nn \l_tmpa_bool {\dim_compare_p:nNn \g_@@_x_initial_dim = \g_@@_x_final_dim} \@@_retrieve_coords:xx {\bool_if:NTF \l_@@_initial_open_bool {-medium.north} {.south}} {\bool_if:NTF \l_@@_final_open_bool {-medium.south} {.north}} % \end{macrocode} % The boolean |\l_tmpb_bool| indicates wether the column is of type |c| (|C| of |{NiceArray}|) or may be considered % as if. % \begin{macrocode} \bool_set:Nn \l_tmpb_bool {\dim_compare_p:nNn \g_@@_x_initial_dim = \g_@@_x_final_dim} \bool_if:NF \l_tmpb_bool {\dim_gset:Nn \g_@@_x_initial_dim {\bool_if:NTF \l_tmpa_bool \dim_min:nn \dim_max:nn \g_@@_x_initial_dim \g_@@_x_final_dim} \dim_gset_eq:NN \g_@@_x_final_dim \g_@@_x_initial_dim} \@@_draw_tikz_line:}} % \end{macrocode} % % \interitem % For the diagonal lines, the situation is a bit more complicated because, by default, we parallelize the diagonals % lines. The first diagonal line is drawn and then, all the other diagonal lines are drawn parallel to the first % one. % \begin{macrocode} \cs_new_protected:Nn \@@_draw_Ddots:nn {\@@_find_extremities_of_line:nnnn {#1} {#2} 1 1 \@@_if_yet_drawn:F {\@@_retrieve_coords:xx {\bool_if:NTF \l_@@_initial_open_bool {-medium.north~west} {.south~east}} {\bool_if:NTF \l_@@_final_open_bool {-medium.south~east} {.north~west}} % \end{macrocode} % We have retrieved the coordinates in the usual way (they are stored in |\g_@@_x_initial_dim|, etc.). % If the parallelization of the diagonals is set, we will have (maybe) to adjust the fourth coordinate. % \begin{macrocode} \bool_if:NT \l_@@_parallelize_diags_bool {\int_incr:N \l_@@_ddots_int % \end{macrocode} % We test if the diagonal line is the first one (the counter |\l_@@_ddots_int| is created for this usage). % \begin{macrocode} \int_compare:nNnTF \l_@@_ddots_int = 1 % \end{macrocode} % If the diagonal line is the first one, we have no adjustment of the line to do but we store the $\Delta_x$ and the % $\Delta_y$ of the line because these values will be used to draw the others diagonal lines parallels to the first one. % \begin{macrocode} {\dim_set:Nn \l_@@_delta_x_one_dim {\g_@@_x_final_dim - \g_@@_x_initial_dim } \dim_set:Nn \l_@@_delta_y_one_dim {\g_@@_y_final_dim - \g_@@_y_initial_dim }} % \end{macrocode} % If the diagonal line is not the first one, we have to adjust the second extremity of the line by modifying % the coordinate |\g_@@_y_initial_dim|. % \begin{macrocode} {\dim_gset:Nn \g_@@_y_final_dim {\g_@@_y_initial_dim + (\g_@@_x_final_dim - \g_@@_x_initial_dim) * \dim_ratio:nn \l_@@_delta_y_one_dim \l_@@_delta_x_one_dim }}} % \end{macrocode} % Now, we can draw the dotted line (after a possible change of |\g_@@_y_initial_dim|). % \begin{macrocode} \@@_draw_tikz_line:}} % \end{macrocode} % % \bigskip % We draw the |\Iddots| diagonals in the same way. % \begin{macrocode} \cs_new_protected:Nn \@@_draw_Iddots:nn {\@@_find_extremities_of_line:nnnn {#1} {#2} 1 {-1} \@@_if_yet_drawn:F {\@@_retrieve_coords:xx {\bool_if:NTF \l_@@_initial_open_bool {-medium.north~east} {.south~west}} {\bool_if:NTF \l_@@_final_open_bool {-medium.south~west} {.north~east}} \bool_if:NT \l_@@_parallelize_diags_bool {\int_incr:N \l_@@_iddots_int \int_compare:nNnTF \l_@@_iddots_int = 1 {\dim_set:Nn \l_@@_delta_x_two_dim {\g_@@_x_final_dim - \g_@@_x_initial_dim} \dim_set:Nn \l_@@_delta_y_two_dim {\g_@@_y_final_dim - \g_@@_y_initial_dim}} {\dim_gset:Nn \g_@@_y_final_dim {\g_@@_y_initial_dim + (\g_@@_x_final_dim - \g_@@_x_initial_dim) * \dim_ratio:nn \l_@@_delta_y_two_dim \l_@@_delta_x_two_dim }}} \@@_draw_tikz_line:}} % \end{macrocode} % % \bigskip % \subsection{The actual instructions for drawing the dotted line with Tikz} % % The command |\@@_draw_tikz_line:| draws the line using four implicit arguments: % % \quad |\g_@@_x_initial_dim|, |\g_@@_y_initial_dim|, |\g_@@_x_final_dim| and |\g_@@_y_final_dim|. % These variables are global for technical reasons: their first affectation was in an instruction |\tikz|. % % \begin{macrocode} \cs_new_protected:Nn \@@_draw_tikz_line: { % \end{macrocode} % The dimension |\l_@@_l_dim| is the length $\ell$ of the line to draw. We use the floating point reals of % \pkg{expl3} to compute this length. % \begin{macrocode} \dim_zero_new:N \l_@@_l_dim \dim_set:Nn \l_@@_l_dim { \fp_to_dim:n { sqrt( ( \dim_use:N \g_@@_x_final_dim -\dim_use:N \g_@@_x_initial_dim) ^2 +( \dim_use:N \g_@@_y_final_dim -\dim_use:N \g_@@_y_initial_dim) ^2 )} } % \end{macrocode} % We draw only if the length is not equel to zero (in fact, in the first compilation, the length may be equal to % zero). % \begin{macrocode} \dim_compare:nNnF \l_@@_l_dim = \c_zero_dim % \end{macrocode} % The integer |\l_tmpa_int| is the number of dots of the dotted line. % \begin{macrocode} {\bool_if:NTF \l_@@_initial_open_bool {\bool_if:NTF \l_@@_final_open_bool {\int_set:Nn \l_tmpa_int {\dim_ratio:nn {\l_@@_l_dim} {0.45em}}} {\int_set:Nn \l_tmpa_int {\dim_ratio:nn {\l_@@_l_dim - 0.3em} {0.45em}}}} {\bool_if:NTF \l_@@_final_open_bool {\int_set:Nn \l_tmpa_int {\dim_ratio:nn {\l_@@_l_dim - 0.3em} {0.45em}}} {\int_set:Nn \l_tmpa_int {\dim_ratio:nn {\l_@@_l_dim - 0.6em} {0.45em}}}} % \end{macrocode} % The dimensions |\l_tmpa_dim| and |\l_tmpb_dim| are the coordinates of the vector between two dots in the % dotted line. % \begin{macrocode} \dim_set:Nn \l_tmpa_dim {(\g_@@_x_final_dim - \g_@@_x_initial_dim) * \dim_ratio:nn {0.45em} \l_@@_l_dim} \dim_set:Nn \l_tmpb_dim {(\g_@@_y_final_dim - \g_@@_y_initial_dim) * \dim_ratio:nn {0.45em} \l_@@_l_dim} % \end{macrocode} % % The length $\ell$ is the length of the dotted line. We note $\Delta$ the length between two dots and $n$ the % number of intervals between dots. We note $\delta = \frac12(\ell - n \Delta)$. % The distance between the initial extremity of the line and the first dot will be equal to $k\cdot\delta$ where % $k=0$, $1$ or $2$. We first compute this number $k$ in |\l_tmpb_int|. % \begin{macrocode} \int_set:Nn \l_tmpb_int {\bool_if:NTF \l_@@_initial_open_bool {\bool_if:NTF \l_@@_final_open_bool 1 0} {\bool_if:NTF \l_@@_final_open_bool 2 1}} % \end{macrocode} % In the loop over the dots (|\int_step_inline:nnnn|), the dimensions |\g_@@_x_initial_dim| and % |\g_@@_y_initial_dim| will be used for the coordinates of the dots. But, before the loop, we must move until the % first dot. % % \begin{macrocode} \dim_gadd:Nn \g_@@_x_initial_dim { (\g_@@_x_final_dim - \g_@@_x_initial_dim) * \dim_ratio:nn {\l_@@_l_dim - 0.45 em * \l_tmpa_int} {\l_@@_l_dim * 2} * \l_tmpb_int} % \end{macrocode} % (In a multiplication of a dimension and an integer, the integer must always be put in second position.) % \begin{macrocode} \dim_gadd:Nn \g_@@_y_initial_dim { (\g_@@_y_final_dim - \g_@@_y_initial_dim) * \dim_ratio:nn {\l_@@_l_dim - 0.45 em * \l_tmpa_int} {\l_@@_l_dim * 2} * \l_tmpb_int} \begin{tikzpicture}[overlay] \int_step_inline:nnnn 0 1 \l_tmpa_int { \pgfpathcircle{\pgfpoint{\g_@@_x_initial_dim} {\g_@@_y_initial_dim}} {0.53pt} \pgfusepath{fill} \dim_gadd:Nn \g_@@_x_initial_dim \l_tmpa_dim \dim_gadd:Nn \g_@@_y_initial_dim \l_tmpb_dim } \end{tikzpicture}} } % \end{macrocode} % % \subsection{User commands available in the new environments} % % We give new names for the commands |\ldots|, |\cdots|, |\vdots| and |\ddots| because these commands will be % redefined (if the option |renew-dots| is used). % \begin{macrocode} \cs_set_eq:NN \@@_ldots \ldots \cs_set_eq:NN \@@_cdots \cdots \cs_set_eq:NN \@@_vdots \vdots \cs_set_eq:NN \@@_ddots \ddots \cs_set_eq:NN \@@_iddots \iddots % \end{macrocode} % % \interitem % The command |\@@_add_to_empty_cells:| adds the current cell to |\g_@@_empty_cells_seq| which is the list of the % empty cells (the cells explicitly declared ``empty'': there may be, of course, other empty cells in the matrix). % \begin{macrocode} \cs_new_protected:Nn \@@_add_to_empty_cells: {\seq_gput_right:Nx \g_@@_empty_cells_seq {\int_use:N \g_@@_row_int- \int_use:N \g_@@_column_int}} % \end{macrocode} % % \interitem % The commands |\@@_Ldots|, |\@@_Cdots|, |\@@_Vdots|, |\@@_Ddots| and |\@@_Iddots| will be linked to |\Ldots|, % |\Cdots|, |\Vdots|, |\Ddots| and |\Iddots| in the environments |{NiceArray}| (the other environments of % \pkg{nicematrix} rely upon |{NiceArray}|). % \begin{macrocode} \NewDocumentCommand \@@_Ldots {s} {\bool_if:nF {#1} {\@@_instruction_of_type:n {Ldots}} \bool_if:NF \l_@@_nullify_dots_bool {\phantom \@@_ldots} \@@_add_to_empty_cells:} % \end{macrocode} % % \bigskip % \begin{macrocode} \NewDocumentCommand \@@_Cdots {s} {\bool_if:nF {#1} {\@@_instruction_of_type:n {Cdots}} \bool_if:NF \l_@@_nullify_dots_bool {\phantom \@@_cdots} \@@_add_to_empty_cells:} % \end{macrocode} % % \bigskip % \begin{macrocode} \NewDocumentCommand \@@_Vdots {s} {\bool_if:nF {#1} {\@@_instruction_of_type:n {Vdots}} \bool_if:NF \l_@@_nullify_dots_bool {\phantom \@@_vdots} \@@_add_to_empty_cells:} % \end{macrocode} % % \bigskip % \begin{macrocode} \NewDocumentCommand \@@_Ddots {s} {\bool_if:nF {#1} {\@@_instruction_of_type:n {Ddots}} \bool_if:NF \l_@@_nullify_dots_bool {\phantom \@@_ddots} \@@_add_to_empty_cells:} % \end{macrocode} % % \bigskip % \begin{macrocode} \NewDocumentCommand \@@_Iddots {s} {\bool_if:nF {#1} {\@@_instruction_of_type:n {Iddots}} \bool_if:NF \l_@@_nullify_dots_bool {\phantom \@@_iddots} \@@_add_to_empty_cells:} % \end{macrocode} % % % \bigskip % The command |\@@_Hspace:| will be linked to |\hspace| in |{NiceArray}|. % \begin{macrocode} \cs_new_protected:Nn \@@_Hspace: {\@@_add_to_empty_cells: \hspace} % \end{macrocode} % % % \bigskip % In the environment |{NiceArray}|, the command |\multicolumn| will be linked to the following command % |\@@_multicolumn:nnn|. % \begin{macrocode} \cs_set_eq:NN \@@_old_multicolumn \multicolumn \cs_new:Nn \@@_multicolumn:nnn {\@@_old_multicolumn{#1}{#2}{#3} \int_compare:nNnT #1 > 1 {\seq_gput_left:Nx \g_@@_multicolumn_cells_seq {\int_eval:n \g_@@_row_int - \int_use:N \g_@@_column_int} \seq_gput_left:Nn \g_@@_multicolumn_sizes_seq {#1}} \int_gadd:Nn \g_@@_column_int {#1-1}} % \end{macrocode} % % % \bigskip % The command |\@@_Hdotsfor| will be linked to |\Hdotsfor| in |{NiceArray}|. This command uses an optional % argument like |\hdotsfor| but this argument is discarded (in |\hdotsfor|, this argument is used for fine tuning % of the space beetween two consecutive dots). % Tikz nodes are created for all the cells of the array, even the implicit cells of the |\Hdotsfor|. % \begin{macrocode} \NewDocumentCommand {\@@_Hdotsfor} {O{} m} {\tl_gput_right:Nx \g_@@_lines_to_draw_tl {\exp_not:N \@@_draw_Hdotsfor:nnn {\int_use:N \g_@@_row_int} {\int_use:N \g_@@_column_int} {#2}} \prg_replicate:nn {#2-1} {&}} % \end{macrocode} % % \medskip % \begin{macrocode} \cs_new_protected:Nn \@@_draw_Hdotsfor:nnn {\bool_set_false:N \l_@@_initial_open_bool \bool_set_false:N \l_@@_final_open_bool % \end{macrocode} % For the row, it's easy. % \begin{macrocode} \int_set:Nn \l_@@_initial_i_int {#1} \int_set:Nn \l_@@_final_i_int {#1} % \end{macrocode} % For the column, it's a bit more complicated. % \begin{macrocode} \int_compare:nNnTF #2 = 1 {\int_set:Nn \l_@@_initial_j_int 1 \bool_set_true:N \l_@@_initial_open_bool} {\int_set:Nn \l_tmpa_int {#2-1} \@@_if_not_empty_cell:nnTF \l_@@_initial_i_int \l_tmpa_int {\int_set:Nn \l_@@_initial_j_int {#2-1}} {\int_set:Nn \l_@@_initial_j_int {#2} \bool_set_true:N \l_@@_initial_open_bool}} \int_compare:nNnTF {#2+#3-1} = \g_@@_column_int {\int_set:Nn \l_@@_final_j_int {#2+#3-1} \bool_set_true:N \l_@@_final_open_bool} {\int_set:Nn \l_tmpa_int {#2+#3} \@@_if_not_empty_cell:nnTF \l_@@_final_i_int \l_tmpa_int {\int_set:Nn \l_@@_final_j_int {#2+#3}} {\int_set:Nn \l_@@_final_j_int {#2+#3-1} \bool_set_true:N \l_@@_final_open_bool}} \bool_if:nT {\l_@@_initial_open_bool || \l_@@_final_open_bool} \@@_create_extra_nodes: \@@_actually_draw_Ldots:} % \end{macrocode} % % % % \subsection{The command \textbackslash line accessible in code-after} % % In the |code-after|, the command |\@@_line:nn| will be linked to |\line|. This command takes two arguments which % are the specification of two cells in the array (in the format $i$-$j$) and draws a dotted line between these cells. % \begin{macrocode} \cs_new_protected:Nn \@@_line:nn {\dim_zero_new:N \g_@@_x_initial_dim \dim_zero_new:N \g_@@_y_initial_dim \dim_zero_new:N \g_@@_x_final_dim \dim_zero_new:N \g_@@_y_final_dim \@@_bool_new:N \l_@@_initial_open_bool \@@_bool_new:N \l_@@_final_open_bool \begin{tikzpicture} \path~(#1)~--~(#2)~node[at~start]~(i)~{}~node[at~end]~(f)~{} ; \tikz@parse@node\pgfutil@firstofone (i) \dim_gset:Nn \g_@@_x_initial_dim \pgf@x \dim_gset:Nn \g_@@_y_initial_dim \pgf@y \tikz@parse@node\pgfutil@firstofone (f) \dim_gset:Nn \g_@@_x_final_dim \pgf@x \dim_gset:Nn \g_@@_y_final_dim \pgf@y \end{tikzpicture} \@@_draw_tikz_line:} % \end{macrocode} % % The commands |\Ldots|, |\Cdots|, |\Vdots|, |\Ddots|, |\Iddots| don't use this command because they have to do % other settings (for example, the diagonal lines must be parallelized). % % % % \subsection{The environment \{NiceMatrixBlock\}} % % The following flag will be raised when all the columns of the environments of the block must have the same width % in ``auto'' mode. % \begin{macrocode} \bool_new:N \l_@@_block_auto_columns_width_bool % \end{macrocode} % % \bigskip % As of now, there is only one option available for the environment |{NiceMatrixBlock}|. % \begin{macrocode} \keys_define:nn {NiceMatrix/NiceMatrixBlock} {auto-columns-width .code:n = {\bool_set_true:N \l_@@_block_auto_columns_width_bool \dim_gzero_new:N \g_@@_max_cell_width_dim \bool_set_true:N \l_@@_auto_columns_width_bool}} % \end{macrocode} % % \bigskip % \begin{macrocode} \NewDocumentEnvironment {NiceMatrixBlock} {!O{}} {\keys_set:nn {NiceMatrix/NiceMatrixBlock} {#1} \int_zero_new:N \l_@@_first_env_block_int \int_set:Nn \l_@@_first_env_block_int {\g_@@_env_int + 1}} % \end{macrocode} % % \medskip % At the end of the environment |{NiceMatrixBlock}|, we write in the main |.aux| file instructions for the column % width of all the environments of the block (that's why we have stored the number of the first environment of the % block in the counter |\l_@@_first_env_block_int|). % \begin{macrocode} {\bool_if:NT \l_@@_block_auto_columns_width_bool {\iow_now:Nn \@mainaux \ExplSyntaxOn \int_step_inline:nnnn \l_@@_first_env_block_int 1 \g_@@_env_int {\iow_now:Nx \@mainaux {\cs_gset:cpn {@@_max_cell_width_##1} {\dim_use:N \g_@@_max_cell_width_dim}}} \iow_now:Nn \@mainaux \ExplSyntaxOff}} % \end{macrocode} % % \subsection{The environment \{pNiceArrayC\} and its variants} % % The code in this section can be removed without affecting the previous code. % % \medskip % First, we define a set of options for the environment |{pNiceArrayC}| and its variants. This set of keys is named % |NiceMatrix/NiceArrayC| even though there is no environment called |{NiceArrayC}|. % % \begin{macrocode} \keys_define:nn {NiceMatrix/NiceArrayC} {parallelize-diags .bool_set:N = \l_@@_parallelize_diags_bool, parallelize-diags .default:n = true, renew-dots .bool_set:N = \l_@@_renew_dots_bool, renew-dots .default:n = true, nullify-dots .bool_set:N = \l_@@_nullify_dots_bool , nullify-dots .default:n = true, code-for-last-col .tl_set:N = \l_@@_code_for_last_col_tl, code-for-last-col .value_required:n = true, columns-width .code:n = \str_if_eq:nnTF {#1} {auto} {\bool_set_true:N \l_@@_auto_columns_width_bool} {\dim_set:Nn \l_@@_columns_width_dim {#1}}, columns-width .value_required:n = true, name .code:n = {\seq_if_in:NnTF \g_@@_names_seq {#1} {\@@_error:nn {Duplicate~name} {#1}} {\seq_gput_left:Nn \g_@@_names_seq {#1}} \tl_set:Nn \l_@@_name_tl {#1}}, name .value_required:n = true, code-after .tl_set:N = \l_@@_code_after_tl, code-after .initial:n = \c_empty_tl, code-after .value_required:n = true, create-extra-nodes .bool_set:N = \l_@@_extra_nodes_bool, create-extra-nodes .default:n = true, left-margin .dim_set:N = \l_@@_left_margin_dim, left-margin .default:n = \arraycolsep, right-margin .dim_set:N = \l_@@_right_margin_dim, right-margin .default:n = \arraycolsep, extra-left-margin .dim_set:N = \l_@@_extra_left_margin_dim, extra-right-margin .dim_set:N = \l_@@_extra_right_margin_dim, unknown .code:n = \@@_error:n {Unknown~option~for~NiceArrayC}} % \end{macrocode} % % \begin{macrocode} \msg_new:nnnn {nicematrix} {Unknown~option~for~NiceArrayC} {The~option~"\tl_use:N\l_keys_key_tl"~is~unknown~for~the~environment~ \{\@currenvir\}.\\ If~you~go~on,~it~will~be~ignored.\\ For~a~list~of~the~available~options,~type~H~.} {The~available~options~are~(in~alphabetic~order):~ code-after,~ code-for-last-col,~ columns-width,~ create-extra-nodes,~ extra-left-margin,~ extra-right-margin,~ left-margin,~ name,~ nullify-dots,~ parallelize-diags~ renew-dots~ and~right-margin.} % \end{macrocode} % % \bigskip % In the environment |{pNiceArrayC}| (and its variants), the last column is composed with instructions % |\hbox_overlap_right:n| (this instruction may be seen as the \pkg{expl3} equivalent of the classical command % |\rlap|). After the composition of the array, an horizontal skip is inserted to compensate for these % overlapping boxes. % % \medskip % The command |\@@_NiceArrayC:n| will be used in |{NiceArrayCwithDelims}| but also in the environment % |{NiceArrayRCwithDelims}|. % \begin{macrocode} \cs_new_protected:Nn \@@_NiceArrayC:n {\bool_set_true:N \l_@@_exterior_column_bool \begin{NiceArray} % \end{macrocode} % The beginning of the preamble is the argument of the environment |{pNiceArrayC}|. % \begin{macrocode} {#1 % \end{macrocode} % % However, we add a last column with its own specification. For a cell in this last column, the first operation is % to store the content of the cell in the box |\l_tmpa_box|. This is allowed in \pkg{expl3} with the construction % |\hbox_set:Nw \l_tmpa_box| ... |\hbox_set_end:|. % \begin{macrocode} >{\int_gincr:N \g_@@_column_int \int_gset:Nn \g_@@_column_total_int {\int_max:nn \g_@@_column_total_int \g_@@_column_int} \hbox_set:Nw \l_tmpa_box $ % $ \l_@@_code_for_last_col_tl } l % \end{macrocode} % % We actualize the value of |\g_@@_with_last_col_dim| which, at the end of the array, will contain the maximal width % of the cells of the last column (thus, it will be equal to the width of the last column). % \begin{macrocode} <{ $ % $ \hbox_set_end: \dim_gset:Nn \g_@@_width_last_col_dim {\dim_max:nn \g_@@_width_last_col_dim {\box_wd:N \l_tmpa_box}} \skip_horizontal:n {-2\arraycolsep} % \end{macrocode} % The content of the cell is inserted in an overlapping position. % \begin{macrocode} \hbox_overlap_right:n {\skip_horizontal:n { 2\arraycolsep + \l_@@_right_margin_dim + \l_@@_extra_right_margin_dim} \tikz[remember~picture, inner~sep=0pt, minimum~width=0pt, baseline] \node [anchor=base, name = nm-\int_use:N \g_@@_env_int- \int_use:N \g_@@_row_int- \int_use:N \g_@@_column_int, alias = \tl_if_empty:NF \l_@@_name_tl {\l_@@_name_tl- \int_use:N \g_@@_row_int- \int_use:N \g_@@_column_int}] {\box_use:N \l_tmpa_box} ; } }}} % \end{macrocode} % This ends the preamble of the array that will be constructed (a rather long preamble, indeed). % % \bigskip % The environments of the type of |{pNiceArrayC}| will be constructed over |{NiceArrayCwithDelims}|. The first % two arguments of this environment are the left and the right delimiter. % \begin{macrocode} \NewDocumentEnvironment{NiceArrayCwithDelims} {mm O{} m !O{}} {\dim_gzero_new:N \g_@@_width_last_col_dim \keys_set:nn {NiceMatrix/NiceArrayC} {#3,#5} \bool_set_false:N \l_@@_exterior_arraycolsep_bool \tl_set:Nn \l_@@_pos_env_tl c \left#1 \@@_NiceArrayC:n {#4}} {\end{NiceArray} \right#2 \skip_horizontal:n \g_@@_width_last_col_dim } % \end{macrocode} % % % \bigskip % In the following environments, we don't use the form with |\begin{...}| and |\end{...}| because we use % |\@currenvir| in the error message for an unknown option. % \begin{macrocode} \NewDocumentEnvironment {pNiceArrayC} {} {\NiceArrayCwithDelims{(}{)}} {\endNiceArrayCwithDelims} % \end{macrocode} % % \begin{macrocode} \NewDocumentEnvironment {vNiceArrayC} {} {\NiceArrayCwithDelims{|}{|}} {\endNiceArrayCwithDelims} % \end{macrocode} % % \begin{macrocode} \NewDocumentEnvironment {VNiceArrayC} {} {\NiceArrayCwithDelims{\|}{\|}} {\endNiceArrayCwithDelims} % \end{macrocode} % % \begin{macrocode} \NewDocumentEnvironment {bNiceArrayC} {} {\NiceArrayCwithDelims{[}{]}} {\endNiceArrayCwithDelims} % \end{macrocode} % % \begin{macrocode} \NewDocumentEnvironment {BNiceArrayC} {} {\NiceArrayCwithDelims{\{}{\}}} {\endNiceArrayCwithDelims} % \end{macrocode} % % % \subsection{The environment \{pNiceArrayRC\}} % % The code in this section can be removed without affecting the previous code. % % % \bigskip % \begin{macrocode} \keys_define:nn {NiceMatrix/NiceArrayRC} {parallelize-diags .bool_set:N = \l_@@_parallelize_diags_bool, parallelize-diags .default:n = true, renew-dots .bool_set:N = \l_@@_renew_dots_bool, renew-dots .default:n = true, nullify-dots .bool_set:N = \l_@@_nullify_dots_bool , nullify-dots .default:n = true, code-for-first-row .tl_set:N = \l_@@_code_for_first_row_tl, code-for-first-row .value_required:n = true, code-for-last-col .tl_set:N = \l_@@_code_for_last_col_tl, code-for-last-col .value_required:n = true, columns-width .code:n = \str_if_eq:nnTF {#1} {auto} {\bool_set_true:N \l_@@_auto_columns_width_bool} {\dim_set:Nn \l_@@_columns_width_dim {#1}}, columns-width .value_required:n = true, name .code:n = {\seq_if_in:NnTF \g_@@_names_seq {#1} {\@@_error:nn {Duplicate~name} {#1}} {\seq_gput_left:Nn \g_@@_names_seq {#1}} \tl_set:Nn \l_@@_name_tl {#1}}, code-after .tl_set:N = \l_@@_code_after_tl, create-extra-nodes .bool_set:N = \l_@@_extra_nodes_bool, create-extra-nodes .default:n = true, left-margin .dim_set:N = \l_@@_left_margin_dim, left-margin .default:n = \arraycolsep, right-margin .dim_set:N = \l_@@_right_margin_dim, right-margin .default:n = \arraycolsep, extra-left-margin .dim_set:N = \l_@@_extra_left_margin_dim, extra-right-margin .dim_set:N = \l_@@_extra_right_margin_dim, unknown .code:n = \@@_error:n {Unknown~option~for~NiceArrayRC}} % \end{macrocode} % % \begin{macrocode} \msg_new:nnnn {nicematrix} {Unknown~option~for~NiceArrayRC} {The~option~"\tl_use:N\l_keys_key_tl"~is~unknown~for~the~environment~ \{\@currenvir\}.\\ If~you~go~on,~it~will~be~ignored.\\ For~a~list~of~the~available~options,~type~H~.} {The~available~options~are~(in~alphabetic~order):~ code-after,~ code-for-last-col,~ code-for-first-row,~ columns-width,~ create-extra-nodes,~ extra-left-margin,~ extra-right-margin,~ left-margin,~ name,~ nullify-dots,~ parallelize-diags,~ renew-dots~ and~right-margin.} % \end{macrocode} % % % The first and the second argument of the environment |{NiceArrayRCwithDelims}| are the delimiters which will be % used in the array. Usually, the final user will not use directly this environment |{NiceArrayRCwithDelims}| % because he will use one of the variants |{pNiceArrayRC}|, |{vNiceArrayRC}|, etc. % % \begin{macrocode} \NewDocumentEnvironment {NiceArrayRCwithDelims} {mm O{} m !O{}} {\int_zero:N \l_@@_nb_first_row_int \dim_gzero_new:N \g_@@_width_last_col_dim \keys_set:nn {NiceMatrix/NiceArrayRC} {#3,#5} \bool_set_false:N \l_@@_exterior_arraycolsep_bool \tl_set:Nn \l_@@_pos_env_tl c \box_clear_new:N \l_@@_the_array_box \hbox_set:Nw \l_@@_the_array_box $ % $ \@@_NiceArrayC:n {#4}} { \end{NiceArray} $ % $ \hbox_set_end: \dim_set:Nn \l_tmpa_dim { ( \dim_max:nn {12pt} {\g_@@_max_ht_row_one_dim + \g_@@_max_dp_row_zero_dim}) + \g_@@_max_ht_row_zero_dim - \g_@@_max_ht_row_one_dim } \hbox_set:Nn \l_tmpa_box {$ % $ \left#1 \vcenter {\skip_vertical:n {- \l_tmpa_dim} \box_use_drop:N \l_@@_the_array_box} \right#2 $ % $ \skip_horizontal:n \g_@@_width_last_col_dim} \box_set_ht:Nn \l_tmpa_box {\box_ht:N \l_tmpa_box + \l_tmpa_dim} \box_use_drop:N \l_tmpa_box } % \end{macrocode} % % \bigskip % In the following environments, we don't use the form with |\begin{...}| and |\end{...}| because we use % |\@currenvir| in the error message for an unknown option. % \begin{macrocode} \NewDocumentEnvironment {pNiceArrayRC} {} {\NiceArrayRCwithDelims{(}{)}} {\endNiceArrayRCwithDelims} % \end{macrocode} % % \begin{macrocode} \NewDocumentEnvironment {bNiceArrayRC} {} {\NiceArrayRCwithDelims{[}{]}} {\endNiceArrayRCwithDelims} % \end{macrocode} % % \begin{macrocode} \NewDocumentEnvironment {vNiceArrayRC} {} {\NiceArrayRCwithDelims{|}{|}} {\endNiceArrayRCwithDelims} % \end{macrocode} % % \begin{macrocode} \NewDocumentEnvironment {VNiceArrayRC} {} {\NiceArrayRCwithDelims{\|}{\|}} {\endNiceArrayRCwithDelims} % \end{macrocode} % % \begin{macrocode} \NewDocumentEnvironment {BNiceArrayRC} {} {\NiceArrayRCwithDelims{\{}{\}}} {\endNiceArrayRCwithDelims} % \end{macrocode} % % % \subsection{The extra nodes} % % First, two variants of the functions |\dim_min:nn| and |\dim_max:nn|. % \begin{macrocode} \cs_generate_variant:Nn \dim_min:nn {vn} \cs_generate_variant:Nn \dim_max:nn {vn} % \end{macrocode} % % % % \bigskip % For each row $i$, we compute two dimensions \texttt{l_@@_row_\textsl{i}_min_dim} and % \texttt{l_@@_row_\textsl{i}_max_dim}. The dimension \texttt{l_@@_row_\textsl{i}_min_dim} is the minimal % $y$-value of all the cells of the row~$i$. The dimension \texttt{l_@@_row_\textsl{i}_max_dim} is the maximal % $y$-value of all the cells of the row~$i$. % % Similarly, for each column $j$, we compute two dimensions \texttt{l_@@_column_\textsl{j}_min_dim} and % \texttt{l_@@_column_\textsl{j}_max_dim}. The dimension \texttt{l_@@_column_\textsl{j}_min_dim} is the minimal % $x$-value of all the cells of the column~$j$. The dimension \texttt{l_@@_column_\textsl{j}_max_dim} is the maximal % $x$-value of all the cells of the column~$j$. % % Since these dimensions will be computed as maximum or minimum, we initialize them to |\c_max_dim| or |-\c_max_dim|. % \begin{macrocode} \cs_new_protected:Nn \@@_create_extra_nodes: {\begin{tikzpicture}[remember~picture,overlay] \int_step_variable:nnnNn \l_@@_nb_first_row_int 1 \g_@@_row_int \@@_i {\dim_zero_new:c {l_@@_row_\@@_i _min_dim} \dim_set_eq:cN {l_@@_row_\@@_i _min_dim} \c_max_dim \dim_zero_new:c {l_@@_row_\@@_i _max_dim} \dim_set:cn {l_@@_row_\@@_i _max_dim} {-\c_max_dim}} \int_step_variable:nnnNn 1 1 \g_@@_column_total_int \@@_j {\dim_zero_new:c {l_@@_column_\@@_j _min_dim} \dim_set_eq:cN {l_@@_column_\@@_j _min_dim} \c_max_dim \dim_zero_new:c {l_@@_column_\@@_j _max_dim} \dim_set:cn {l_@@_column_\@@_j _max_dim} {-\c_max_dim}} % \end{macrocode} % We begin the two nested loops over the rows and the columns of the array. % \begin{macrocode} \int_step_variable:nnnNn \l_@@_nb_first_row_int 1 \g_@@_row_int \@@_i {\int_step_variable:nnnNn 1 1 \g_@@_column_total_int \@@_j % \end{macrocode} % Maybe the cell ($i$-$j$) is an implicit cell (that is to say a cell after implicit ampersands |&|). In this case, % of course, we don't update the dimensions we want to compute. % \begin{macrocode} {\cs_if_exist:cT {pgf@sh@ns@nm-\int_use:N \g_@@_env_int-\@@_i-\@@_j} % \end{macrocode} % We retrieve the coordinates of the anchor |south west| of the (normal) node of the cell ($i$-$j$). They will be % stored in |\pgf@x| and |\pgf@y|. % \begin{macrocode} {\tikz@parse@node \pgfutil@firstofone (nm-\int_use:N \g_@@_env_int-\@@_i-\@@_j.south~west) \dim_set:cn {l_@@_row_\@@_i _min_dim} {\dim_min:vn {l_@@_row_\@@_i _min_dim} \pgf@y} \seq_if_in:NxF \g_@@_multicolumn_cells_seq {\@@_i-\@@_j} {\dim_set:cn {l_@@_column_\@@_j _min_dim} {\dim_min:vn {l_@@_column_\@@_j _min_dim} \pgf@x}} % \end{macrocode} % We retrieve the coordinates of the anchor |north east| of the (normal) node of the cell ($i$-$j$). They will be % stored in |\pgf@x| and |\pgf@y|. % \begin{macrocode} \tikz@parse@node \pgfutil@firstofone (nm-\int_use:N \g_@@_env_int-\@@_i-\@@_j.north~east) \dim_set:cn {l_@@_row_\@@_i _max_dim} {\dim_max:vn {l_@@_row_\@@_i _max_dim} \pgf@y} \seq_if_in:NxF \g_@@_multicolumn_cells_seq {\@@_i-\@@_j} {\dim_set:cn {l_@@_column_\@@_j _max_dim} {\dim_max:vn {l_@@_column_\@@_j _max_dim} \pgf@x}}} }} % \end{macrocode} % Now, we can create the ``medium nodes''. We use a command |\@@_create_nodes:| because this command will also be used % for the creation of the ``large nodes'' (after changing the value of |name-suffix|). % \begin{macrocode} \tikzset{name~suffix = -medium} \@@_create_nodes: % \end{macrocode} % % \bigskip % For ``large nodes'', the eventual ``first row'' and ``last column'' (in environments like |{pNiceArrayRC}|) don't % interfer. That's why the loop over the rows will start at 1 and the loop over the columns will stop at % $|\g_@@_column_int|$ (and not |\g_@@_column_total_int|).\footnote{We recall that |\g_@@_column_total_int| is % equal to |\g_@@_column_int| except if there is an exterior column. In this case, |\g_@@_column_total_int| is equal % to |\g_@@_column_int|${}+1$.} % \begin{macrocode} \int_set:Nn \l_@@_nb_first_row_int 1 % \end{macrocode} % We have to change the values of all the dimensions \texttt{l_@@_row_\textsl{i}_min_dim}, % \texttt{l_@@_row_\textsl{i}_max_dim}, \texttt{l_@@_column_\textsl{j}_min_dim} and % \texttt{l_@@_column_\textsl{j}_max_dim}. % \begin{macrocode} \int_step_variable:nnnNn 1 1 {\g_@@_row_int-1} \@@_i {\dim_set:cn {l_@@_row_\@@_i _min_dim} {( \dim_use:c {l_@@_row_\@@_i _min_dim} + \dim_use:c {l_@@_row_\int_eval:n{\@@_i+1}_max_dim}) / 2} \dim_set_eq:cc {l_@@_row_\int_eval:n{\@@_i+1}_max_dim} {l_@@_row_\@@_i _min_dim} } \int_step_variable:nnnNn 1 1 {\g_@@_column_int-1} \@@_j {\dim_set:cn {l_@@_column_\@@_j _max_dim} {( \dim_use:c {l_@@_column_\@@_j _max_dim} + \dim_use:c {l_@@_column_\int_eval:n{\@@_j+1}_min_dim}) / 2} \dim_set_eq:cc {l_@@_column_\int_eval:n{\@@_j+1}_min_dim} {l_@@_column_\@@_j _max_dim} } \dim_sub:cn {l_@@_column_1_min_dim} \g_@@_left_margin_dim \dim_add:cn {l_@@_column_\int_use:N \g_@@_column_int _max_dim} \g_@@_right_margin_dim % \end{macrocode} % Now, we can actually create the ``large nodes''. % \begin{macrocode} \tikzset{name~suffix = -large} \@@_create_nodes: \end{tikzpicture} % \end{macrocode} % % \medskip % When used once, the command |\@@_create_extra_nodes:| must become no-op (in the current TeX group). That's why we % put a nullification of the command. % \begin{macrocode} \cs_set:Nn \@@_create_extra_nodes: {}} % \end{macrocode} % % % \bigskip % The control sequence |\@@_create_nodes:| is used twice: for the construction of the ``medium nodes'' and for the % construction of the ``large nodes''. The nodes are constructed with the value of all the dimensions % \texttt{l_@@_row_\textsl{i}_min_dim}, \texttt{l_@@_row_\textsl{i}_max_dim}, % \texttt{l_@@_column_\textsl{j}_min_dim} and \texttt{l_@@_column_\textsl{j}_max_dim}. Between the % construction of the ``medium nodes'' and the ``large nodes'', the values of these dimensions are changed. % \begin{macrocode} \cs_new_protected:Nn \@@_create_nodes: {\int_step_variable:nnnNn \l_@@_nb_first_row_int 1 \g_@@_row_int \@@_i {\int_step_variable:nnnNn 1 1 \g_@@_column_total_int \@@_j % \end{macrocode} % We create two ponctual nodes for the extremities of a diagonal of the rectangular node we want to create. These % nodes |(@@~south~west)| and |(@@~north~east)| are not available for the user of \pkg{nicematrix}. That's why % their names are independent of the row and the column. In the two nested loops, they will be overwritten until the % last cell. % \begin{macrocode} {\coordinate (@@~south~west) at (\dim_use:c {l_@@_column_\@@_j _min_dim}, \dim_use:c {l_@@_row_\@@_i _min_dim}) ; \coordinate (@@~north~east) at (\dim_use:c {l_@@_column_\@@_j _max_dim}, \dim_use:c {l_@@_row_\@@_i _max_dim}) ; % \end{macrocode} % We can eventually draw the rectangular node for the cell (|\@@_i|-|\@@_j|). This node is created with the Tikz library % \pkg{fit}. Don't forget that the Tikz option |name suffix| has been set to |-medium| or |-large|. % \begin{macrocode} \draw node [fit = {(@@~south~west) (@@~north~east)}, inner~sep=0pt, name = nm-\int_use:N \g_@@_env_int-\@@_i-\@@_j, alias = \tl_if_empty:NF \g_@@_name_tl {\tl_use:N \g_@@_name_tl-\@@_i-\@@_j}] {} ; } } % \end{macrocode} % Now, we create the nodes for the cells of the |\multicolumn|. We recall that we have stored in % |\g_@@_multicolumn_cells_seq| the list of the cells where a |\multicolumn{|$n$|}{...}{...}| with $n$>1 was issued % and in |\g_@@_multicolumn_sizes_seq| the correspondant values of $n$. % \begin{macrocode} \@@_seq_mapthread_function:NNN \g_@@_multicolumn_cells_seq \g_@@_multicolumn_sizes_seq \@@_node_for_multicolumn:nn } % \end{macrocode} % % % % \begin{macrocode} \cs_set:Npn \@@_extract_coords: #1-#2\q_stop{\cs_set:Npn \@@_i {#1} \cs_set:Npn \@@_j {#2}} % \end{macrocode} % % The command |\@@_node_for_multicolumn:nn| takes two arguments. The first is the position of the cell where the % command |\multicolumn{|$n$|}{...}{...}| was issued in the format $i$|-|$j$ and the second is the value of~$n$ (the % length of the ``multi-cell''). % \begin{macrocode} \cs_new_protected:Nn \@@_node_for_multicolumn:nn {\@@_extract_coords: #1\q_stop \coordinate (@@~south~west) at (\dim_use:c {l_@@_column_\@@_j _min_dim}, \dim_use:c {l_@@_row_\@@_i _min_dim}) ; \coordinate (@@~north~east) at (\dim_use:c {l_@@_column_\int_eval:n{\@@_j+#2-1}_max_dim}, \dim_use:c {l_@@_row_\@@_i _max_dim}) ; \draw node [fit = {(@@~south~west) (@@~north~east)}, inner~sep=0pt, name = nm-\int_use:N \g_@@_env_int-\@@_i-\@@_j, alias = \tl_if_empty:NF \g_@@_name_tl {\tl_use:N \g_@@_name_tl-\@@_i-\@@_j}] {} ; } % \end{macrocode} % % % \subsection{We process the options} % % We process the options when the package is loaded (with |\usepackage|) but we recommend to use % |\NiceMatrixOptions| instead. % % We must process these options after the definition of the environment |{NiceMatrix}| because the option % |renew-matrix| execute the code |\cs_set_eq:NN \env@matrix \NiceMatrix|. % % Of course, the command |\NiceMatrix| must be defined before such an instruction is executed. % \begin{macrocode} \ProcessKeysOptions {NiceMatrix} % \end{macrocode} % % \subsection{Code for \texttt{seq_mapthread_function:NNN}} % % In |\@@_create_nodes:| (used twice in |\@@_create_extra_nodes:| to create the ``medium nodes'' and ``large % nodes''), we want to use |\seq_mapthread_function:NNN| which is in \pkg{l3candidates}). For security, we define a % function |\@@_seq_mapthread_function:NNN|. We will delete the following code when |\seq_mapthread_function:NNN| % will be in \pkg{l3seq}. % \begin{macrocode} \cs_new:Npn \@@_seq_mapthread_function:NNN #1#2#3 {\group_begin: % \end{macrocode} % In the group, we can use |\seq_pop:NN| safely. % \begin{macrocode} \int_step_inline:nnnn 1 1 {\seq_count:N #1} {\seq_pop:NN #1 \l_tmpa_tl \seq_pop:NN #2 \l_tmpb_tl \exp_args:NVV #3 \l_tmpa_tl \l_tmpb_tl} \group_end: } % \end{macrocode} % % \begin{macrocode} \cs_set:Nn \@@_renew_matrix: {\RenewDocumentEnvironment {pmatrix} {} {\begin{pNiceMatrix}} {\end{pNiceMatrix}} \RenewDocumentEnvironment {vmatrix} {} {\begin{vNiceMatrix}} {\end{vNiceMatrix}} \RenewDocumentEnvironment {Vmatrix} {} {\begin{VNiceMatrix}} {\end{VNiceMatrix}} \RenewDocumentEnvironment {bmatrix} {} {\begin{bNiceMatrix}} {\end{bNiceMatrix}} \RenewDocumentEnvironment {Bmatrix} {} {\begin{BNiceMatrix}} {\end{BNiceMatrix}}} % \end{macrocode} % % % \section{History} % % \subsection{Changes between versions 1.0 and 1.1} % % The dotted lines are no longer drawn with Tikz nodes but with Tikz circles (for efficiency). % % Modification of the code which is now twice faster. % % \subsection{Changes between versions 1.1 and 1.2} % % New environment |{NiceArray}| with column types |L|, |C| and |R|. % % \subsection{Changes between version 1.2 and 1.3} % % New environment |{pNiceArrayC}| and its variants. % % Correction of a bug in the definition of |{BNiceMatrix}|, |{vNiceMatrix}| and |{VNiceMatrix}| (in fact, it was a % typo). % % Options are now available locally in |{pNiceMatrix}| and its variants. % % The names of the options are changed. The old names were names in ``camel style''. New names are in lowercase and % hyphens (but backward compatibility is kept). % % % \subsection{Changes between version 1.3 and 1.4} % % The column types |w| and |W| can now be used in the environments |{NiceArray}|, |{pNiceArrayC}| and its variants % with the same meaning as in the package \pkg{array}. % % New option |columns-width| to fix the same width for all the columns of the array. % % % \subsection{Changes between version 1.4 and 2.0} % % The versions 1.0 to 1.4 of \pkg{nicematrix} were focused on the continuous dotted lines whereas the version 2.0 of % \pkg{nicematrix} provides different features to improve the typesetting of mathematical matrices. % % \subsection{Changes between version 2.0 and 2.1} % % New implementation of the environment |{pNiceArrayRC}|. With this new implementation, there is no restriction on % the width of the columns. % % The package \pkg{nicematrix} no longer loads \pkg{mathtools} but only \pkg{amsmath}. % % Creation of ``medium nodes'' and ``large nodes''. % % \subsection{Changes between version 2.1 and 2.1.1} % % Small corrections: for example, the option |code-for-first-row| is now available in the command |\NiceMatrixOptions|. % % Following a discussion on % TeX StackExchange\footnote{cf. |tex.stackexchange.com/questions/450841/tikz-externalize-and-nicematrix-package|}, % Tikz externalization is now deactivated in the environments of the % extension \pkg{nicematrix}.\footnote{Before this version, there was an error when using \pkg{nicematrix} with % Tikz externalization. In any case, it's not possible to externalize the Tikz elements constructed by % \pkg{nicematrix} because they use the options |overlay| and |remember picture|.} % % \subsection{Changes between version 2.1 and 2.1.2} % Option |draft|: with this option, the dotted lines are not drawn (quicker). % % \subsection{Changes between version 2.1.2 and 2.1.3} % % When searching the end of a dotted line from a command like |\Cdots| issued in the ``main matrix'' (not in the % column |C|), the cells in the column |C| are considered as outside the matrix. That means that it's possible to % do the following matrix with only a |\Cdots| command (and a single |\Vdots|). % \[\begin{pNiceArrayRC}{wc{5mm}Cwc{5mm}} % & C_j & \\ % \mbox{\Large $0$} & \Vdots & \mbox{\Large $0$} \\ % & \strut a & \Cdots & L_i \\ % \mbox{\Large $0$} & & \mbox{\Large $0$} \\ % \end{pNiceArrayRC}\] % % \subsection{Changes between version 2.1.3 and 2.1.4} % % Replacement of some options |O{}| in commands and environments defined with \pkg{xparse} by |!O{}| (because a % recent version of \pkg{xparse} introduced the specifier |!| and modified the default behaviour of the last % optional arguments). % % See |https://www.texdev.net/2018/04/21/xparse-optional-arguments-at-the-end| % % \endinput % Local Variables: % TeX-fold-mode: nil % End: