% \iffalse meta-comment % % Copyright (C) 2006-2008 by Robert Marik % ---------------------------------------------------------- % % This file may be distributed and/or modified under the % conditions of the LaTeX Project Public License, either version 1.2 % of this license or (at your option) any later version. % The latest version of this license is in: % % http://www.latex-project.org/lppl.txt % % and version 1.2 or later is part of all distributions of LaTeX % version 1999/12/01 or later. % % \fi % % \iffalse %<*driver> \ProvidesFile{mfpic4ode.dtx} % %\NeedsTeXFormat{LaTeX2e}[1999/12/01] %\ProvidesPackage{mfpic4ode} %<*sty> [2008/01/03 v0.2 mfpic4ode.dtx file] % % %<*driver> \documentclass{ltxdoc} \EnableCrossrefs \CodelineIndex \RecordChanges \begin{document} \DocInput{mfpic4ode.dtx} \PrintChanges \PrintIndex \end{document} % % \fi % % \CheckSum{175} % % \CharacterTable % {Upper-case \A\B\C\D\E\F\G\H\I\J\K\L\M\N\O\P\Q\R\S\T\U\V\W\X\Y\Z % Lower-case \a\b\c\d\e\f\g\h\i\j\k\l\m\n\o\p\q\r\s\t\u\v\w\x\y\z % Digits \0\1\2\3\4\5\6\7\8\9 % Exclamation \! Double quote \" Hash (number) \# % Dollar \$ Percent \% Ampersand \& % Acute accent \' Left paren \( Right paren \) % Asterisk \* Plus \+ Comma \, % Minus \- Point \. Solidus \/ % Colon \: Semicolon \; Less than \< % Equals \= Greater than \> Question mark \? % Commercial at \@ Left bracket \[ Backslash \\ % Right bracket \] Circumflex \^ Underscore \_ % Grave accent \` Left brace \{ Vertical bar \| % Right brace \} Tilde \~} % % % \changes{v0.2}{2008/01/03}{First public version} % % \GetFileInfo{mfpic4ode.dtx} % % \DoNotIndex{\newcommand,\newenvironment} % % \def\fileversion{0.2} % \def\filedate{2008/01/03} % % \title{The \textsf{mfpic4ode} package\thanks{This document % corresponds to \textsf{mfpic4ode}~\fileversion, dated \filedate.}} % \author{Robert Marik \\ \texttt{marik@mendelu.cz}} % % \maketitle % % \section{Introduction} % % The package |mfpic4ode| is a set of macros for drawing phase % portraits and integral curves of differential equations and % autonomous systems using |mfpic| macros. These macros have been used % by the author to prepare some pictures for classrooms and the % results seem to be accptable for this purpouse, but always remember % that due to the fixed points arithmetics in Metapost, the error in % computations could be significant. % % \section{Usage} % You can load the package in \LaTeX{} using standard % |\usepackage{mfpic4ode}| command, or you can use the macros in % plain\TeX{} and load by |\input mfpic4ode.tex| command. % % \subsection{First order differential equation} % % To draw phase portrait of first order ordinary differential equation % $$ % y'=f(x,y) % $$ % we define commands |\ODEarrow| for drawing element of direction % field and |\trajectory|, |\trajectoryRK| and |\trajectoryRKF| for % drawing integral curves using Euler, second order Runge-Kutta and % fourth order Runge-Kutta methods, respectively. Some important % parameters, such as the number of steps, the length of step or the % function from the right-hand side of the equations are stored in % MetaPost variables and to keep the package simple and short, these % variables are accessible using |\mfsrc| command. % % \DescribeMacro{\ifcolorODEarrow} \DescribeMacro{\colorODEarrowtrue} % \DescribeMacro{\colorODEarrowfalse} If the \TeX{} boolean variable % |\ifcolorODEarrow| is true, then the arrows from direction field are % blue if the solution is increasing and red if decreasing. If % |\ifcolorODEarrow| is false, the mfpic color from |\drawcolor| and % |\headcolor| macros is used. More precisely, % \begin{itemize} % \item if |\ifcolorODEarrow| is true and $f(x_0,y_0)>0$, then the % arrow at the point $(x_0,y_0)$ is blue % \item if |\ifcolorODEarrow| is true and $f(x_0,y_0)\leq 0$, then the % arrow at the point $(x_0,y_0)$ is red % \item if |\ifcolorODEarrow| is false, then color from |\drawcolor| % is used to draw the body of an arrow and color |\headcolor| is % used to draw the head. % \end{itemize} % Arrows are drawn using mfpic |\draw\arrow\lines{...}| command and % hence the parameters for customizing shape and size of the head from % mfpic are also available. The MetaPost variable |ODEarrowlength| is % used to customize the length of each arrow. If the arrow is % horizontal, then the length of the arrow in mfpic coordinates is % equal to |ODEarrowlength/xscale|. (This fixes the case when % different |xscale| and |yscale| are used. All arrows have the same % length.) You can set this variable using |\mfsrc| command, you can % write e.g. % \begin{verbatim} % \mfsrc{ODEarrowlength:=0.07;} % \end{verbatim} % in your document. % % To draw arrows in regular rectangular grid you should use the % |\ODEarrow| macro in a double cycle such as % \begin{verbatim} % \mfsrc{for j=0 step 0.07 until 1.2: for i:=0 step 0.5 until 10:} % \ODEarrow{i}{j} % \mfsrc{endfor;endfor;} % \end{verbatim} % or using the |multido| package % \begin{verbatim} % \multido{\r=0.0+0.1}{15}{\multido{\R=0.0+0.5}{19}{\ODEarrow{\R}{\r}}} % \end{verbatim} % % \DescribeMacro{\ODEdefineequation{f(x,y)}} The macro |\ODEdefineequation| is % used to save the right hand side of the ODE, i. e. the function % $f(x,y)$. You should write the expression in the MetaPost format, % the independent variable is supposed to be $x$, the dependent % variable is $y$. % % \DescribeMacro{\trajectory\{x0\}\{y0\}} % \DescribeMacro{\trajectoryRK\{x0\}\{y0\}} % \DescribeMacro{\trajectoryRKF\{x0\}\{y0\}} The macros |\trajectory|, % |\trajectoryRK| and |\trajectoryRKF| are used for drawing integral % curves with initial condition $y(x_0)=y_0$ using Euler, second order % Runge-Kutta and fourth order Runge-Kutta methods, respectivelly. % The length of each step is stored in MetaPost variable % |ODEstepcount|, the length of each step is in the MetaPost variable % |ODEstep|. You can set these variables using |\mfsrc| macro as % follows % \begin{verbatim} % \mfsrc{ODEstep:=0.02; ODEstepcount:=500;} % \end{verbatim} % The integral curve is drawn from short linear parts using |\ODEline| % command which expands to |\lines| command from |mfpic| package by % default. A simple test is used to keep the arithmetics in reasonable % bounds: if after the step the curve leaves the horizontal strip % between |yneg| and |ypos| variables, then the evaluation is stopped % (in fact, in this case we do not change the independent variable and % we do the remaining steps with the same last point). Recall that % |yneg| and |ypos| variables are set when you call |mfpicture| % environment. If you call the environment as follows % \begin{verbatim} % \begin{mfpic}[5][3]{-0.1}{1.5}{-0.1}{0.5} % ........... % \end{mfpic} % \end{verbatim} % then no more than one short linear part of the integral curve is % outside the horizontal strip between $y=-0.1$ and $y=0.5$. % % \DescribeMacro{\trajectories}\DescribeMacro{\ODEarrows} To draw more % trajectories you can use |\trajectories| command. The command % |\trajectories{x1,y1;x2,y2;x3,y3;....;xn,yn}| expands to $n$ % |\trajectoryRKF| commands with initial conditions $y(x_i)=y_i$ for % $i=1..n$. In a similar way, % |\ODEarrows{x1,y1;x2,y2;x3,y3;....;xn,yn}| expands into $n$ % |\ODEarrow| commands. % % \subsection{Two-dimensional autonomous systems} % Trajectories for two-dimensional autonomous system % \begin{eqnarray*} % x'&=&f(x,y)\\y'&=&g(x,y) % \end{eqnarray*} % are drawn using a very simple method based on the direction field. % This could be improved in the next release of the package, but till % now the results obtained in this way are qualitatively correct and % sufficiently accurate (remember that you cannot expect accurate % approximation due to the limitation of arithmetics in MetaPost). % Anyway, some users may prefer the fourth order Runge--Kutta method. % % The macros |\ASdefineequation| |\ASarrow|, |\AStrajectory|, % |\AStrajectoryRKF|, |\ASarrows| and |\AStrajectories| are % counterparts to their |\ODE....| versions. The last point of each % trajectory is stored in the |x1| and |x2| MetaPost variables. Hence, % you can say |\AStrajectory{2}{2}| to draw trajectory with initial % conditions $x(0)=2$, $y(0)=2$ and then you can continue this % trajectory using |\AStrajectory{x1}{y1}| command. The macro % |\AStrajectory| uses |ODEstep| and |ODEstepcount| variables, the % macro |\AStrajectoryRKF| uses |TIMEstep| and |TIMEend| variables do % perform the steps in the numerical solution. The number of steps is % in the latter case evaluated as absolute value of the quotient % |TIMEend/TIMEstep|. You can use negative value for |TIMEstep| to % continue the trajectory backwards. % % \section{Troubleshooting} % \subsection{The catcode of @ is messed} We set the category of @ to % 11 (letter) when we load the package and at the end of definitions % for mfpic4ode we set the category to 12. This could be a source of % rare problems, if you use different value in your document. % % \subsection{Metapost: Not implemented: (unknown numeric) \dots } % You have to set |ODEstep|, |ODEstepcount|, |TIMEstep| and |TIMEend| % other variables using |\mfsrc| command (depending on the type of the % problem). % % \StopEventually{} % % \section{Implementation} % \begin{macrocode} %<*tex> \catcode`\@=11 \newif\ifcolorODEarrow %%%\colorODEarrowfalse \colorODEarrowtrue %%% The line from one point to another \def\ODEline#1#2{\lines{#1,#2}} %%% The variable ODErhs is used to store the function from the right %%% hand side of ODE in the form y'=f(x,y). We use command %%% ODEdefineequation to set up this variable. \def\ODEdefineequation#1{\fdef{ODErhs}{x,y}{#1}} %%% Integral curve using Euler method. The step of this method is %%% ODEstep and the number of steps is ODEstepcount. The points are %%% stored in metapost variables x1,y1. \def\trajectory#1#2{ \mfsrc{x1:=#1;y1:=#2; for i=1 upto ODEstepcount: x2:=x1+ODEstep; y2:=y1+ODEstep*ODErhs(x1,y1);} \ODEline{z1}{z2} \mfsrc{ if ((y2>yneg) and (y2yneg) and (y2yneg) and (y2y1:ODEcolorarrow:=blue else: ODEcolorarrow:=red fi; } \ifcolorODEarrow \drawcolor{ODEcolorarrow} \headcolor{ODEcolorarrow} \fi \draw\arrow\lines{z1,z3} } \def\ODEarrows#1{\ODE@cycle@points#1;,;} \def\trajectories#1{\ODE@cycle@IC#1;,;} \def\ODE@last@point{} \def\ODE@cycle@points#1,#2;{\def\temp{#1}\ifx\temp\ODE@last@point\let\next\relax \else\ODEarrow{#1}{#2}\relax\let\next\ODE@cycle@points\fi\next} \def\ODE@cycle@IC#1,#2;{\def\temp{#1}\ifx\temp\ODE@last@point\let\next\relax \else \trajectoryRKF{#1}{#2}\relax\let\next\ODE@cycle@IC\fi\next} \mfsrc{path p,q;color ODEcolorarrow;} %%% Onedimensional autonomous systems y'=f(y) where '=d/dx \def\ODEharrow#1{ \mfsrc{x1:=#1; if ODErhs(0,x1)>0: x3:=x1+ODEarrowlength else: x3:=x1-ODEarrowlength fi; if ODErhs(0,x1)*ODErhs(0,x3)<0: x1:=-100;x3:=-100 fi; if x3>x1:ODEcolorarrow:=blue else: ODEcolorarrow:=red fi; } \ifcolorODEarrow \drawcolor{ODEcolorarrow} \headcolor{ODEcolorarrow} \fi \pen{1.5pt} \draw\arrow\lines{(x1,0),(x3,0)} } \def\ODEvarrow#1{ \mfsrc{x1:=#1; if ODErhs(0,#1)>0: x3:=x1+(ODEarrowlength/yscale) else: x3:=x1-(ODEarrowlength/yscale) fi; if ODErhs(0,x1)*ODErhs(0,x3)<0: x1:=-100;x3:=-100 fi; if x3>x1:ODEcolorarrow:=blue else: ODEcolorarrow:=red fi; } \ifcolorODEarrow \drawcolor{ODEcolorarrow} \headcolor{ODEcolorarrow} \fi \pen{1.5pt} \draw\arrow\lines{(0,x1),(0,x3)} } %%% Twodimensional autonomous systems x'=f(x,y), y'=g(x,y) where '=d/dt \def\ASdefineequations#1#2{\fdef{ASf}{x,y}{#1}\fdef{ASg}{x,y}{#2}} \def\AStrajectory#1#2{ \mfsrc{x1:=#1;y1:=#2; for i=1 upto ODEstepcount: x2:=x1+ODEstep*ASf(x1,y1); y2:=y1+ODEstep*ASg(x1,y1);} \ODEline{z1}{z2} \mfsrc{ if ((y2>yneg) and (y2y1:ODEcolorarrow:=blue else: ODEcolorarrow:=red fi; } \ifcolorODEarrow \drawcolor{ODEcolorarrow} \headcolor{ODEcolorarrow} \fi \draw\arrow\lines{z1,z3} } \def\ASarrows#1{\AS@cycle@points#1;,;} \def\AS@cycle@points#1,#2;{\def\temp{#1}\ifx\temp\ODE@last@point\let\next\relax \else\ASarrow{#1}{#2}\relax\let\next\AS@cycle@points\fi\next} \def\AStrajectories#1{\AS@cycle@IC#1;,;} \def\AS@cycle@IC#1,#2;{\def\temp{#1}\ifx\temp\ODE@last@point\let\next\relax \else \AStrajectoryRKF{#1}{#2}\relax\let\next\AS@cycle@IC\fi\next} \def\AStrajectoryRKF#1#2{ \mfsrc{x1:=#1;y1:=#2; TIMEsteps:=abs(TIMEend/TIMEstep); TIME:=0; for i=1 upto TIMEsteps: k1:=ASf(x1,y1); l1:=ASg(x1,y1); k2:=ASf(x1+(TIMEstep*k1/2),y1+(TIMEstep*l1/2)); l2:=ASg(x1+(TIMEstep*k1/2),y1+(TIMEstep*l1/2)); k3:=ASf(x1+(TIMEstep*k2/2),y1+(TIMEstep*l2/2)); l3:=ASg(x1+(TIMEstep*k2/2),y1+(TIMEstep*l2/2)); k4:=ASf(x1+(TIMEstep*k3),y1+(TIMEstep*l3)); l4:=ASg(x1+(TIMEstep*k3),y1+(TIMEstep*l3)); k5:=((k1)/6)+((k2)/3)+((k3)/3)+((k4)/6); l5:=(l1/6)+(l2/3)+(l3/3)+(l4/6); x2:=x1+(TIMEstep*k5); y2:=y1+(TIMEstep*l5);} \ODEline{z1}{z2} \mfsrc{ if ((y2>yneg) and (y2xneg)): x1:=x2; y1:=y2 fi; endfor }} \catcode`\@12\relax % %\input mfpic4ode.tex\relax % \end{macrocode} % % \Finale \endinput