% \iffalse meta-comment % %% File: xparse.dtx (C) Copyright 1999 Frank Mittelbach, Chris Rowley, %% David Carlisle %% (C) Copyright 2004-2008 Frank Mittelbach, %% The LaTeX3 Project %% (C) Copyright 2009-2011 The LaTeX3 Project %% %% It may be distributed and/or modified under the conditions of the %% LaTeX Project Public License (LPPL), either version 1.3c of this %% license or (at your option) any later version. The latest version %% of this license is in the file %% %% http://www.latex-project.org/lppl.txt %% %% This file is part of the "l3packages bundle" (The Work in LPPL) %% and all files in that bundle must be distributed together. %% %% The released version of this bundle is available from CTAN. %% %% ----------------------------------------------------------------------- %% %% The development version of the bundle can be found at %% %% http://www.latex-project.org/svnroot/experimental/trunk/ %% %% for those people who are interested. %% %%%%%%%%%%% %% NOTE: %% %%%%%%%%%%% %% %% Snapshots taken from the repository represent work in progress and may %% not work or may contain conflicting material! We therefore ask %% people _not_ to put them into distributions, archives, etc. without %% prior consultation with the LaTeX Project Team. %% %% ----------------------------------------------------------------------- %% % %<*driver|package> \RequirePackage{expl3} \GetIdInfo$Id: xparse.dtx 3036 2011-12-07 19:29:18Z joseph $ {L3 Experimental document command parser} % %<*driver> \documentclass[full]{l3doc} \usepackage{amstext} \begin{document} \DocInput{\jobname.dtx} \end{document} % % \fi % % \providecommand\acro[1]{\textsc{\MakeLowercase{#1}}} % \newenvironment{arg-description}{% % \begin{itemize}\def\makelabel##1{\hss\llap{\bfseries##1}}}{\end{itemize}} % % \title{^^A % The \textsf{xparse} package\\ Document command parser^^A % \thanks{This file describes v\ExplFileVersion, % last revised \ExplFileDate.}^^A % } % % \author{^^A % The \LaTeX3 Project\thanks % {^^A % E-mail: % \href{mailto:latex-team@latex-project.org} % {latex-team@latex-project.org}^^A % }^^A % } % % \date{Released \ExplFileDate} % % \maketitle % % \begin{documentation} % % The \pkg{xparse} package provides a high-level interface for % producing document-level commands. In that way, it is intended as % a replacement for the \LaTeXe{} \cs{newcommand} macro. However, % \pkg{xparse} works so that the interface to a function (optional % arguments, stars and mandatory arguments, for example) is separate % from the internal implementation. \pkg{xparse} provides a normalised % input for the internal form of a function, independent of the % document-level argument arrangement. % % At present, the functions in \pkg{xparse} which are regarded as % \enquote{stable} are: % \begin{itemize} % \item \cs{DeclareDocumentCommand} % \item \cs{NewDocumentCommand} % \item \cs{RenewDocumentCommand} % \item \cs{ProvideDocumentCommand} % \item \cs{DeclareDocumentEnvironment} % \item \cs{NewDocumentEnvironment} % \item \cs{RenewDocumentEnvironment} % \item \cs{ProvideDocumentEnvironment} % \item \cs{IfNoValue(TF)} (the need for \cs{IfValue(TF)} is currently % an item of active discussion) % \item \cs{IfBoolean(TF)} % \end{itemize} % with the other functions currently regarded as \enquote{experimental}. Please % try all of the commands provided here, but be aware that the % experimental ones may change or disappear. % % \subsection{Specifying arguments} % % Before introducing the functions used to create document commands, % the method for specifying arguments with \pkg{xparse} will be % illustrated. In order to allow each argument to be defined % independently, \pkg{xparse} does not simply need to know the % number of arguments for a function, but also the nature of each % one. This is done by constructing an \emph{argument specification}, % which defines the number of arguments, the type of each argument % and any additional information needed for \pkg{xparse} to read the % user input and properly pass it through to internal functions. % % The basic form of the argument specifier is a list of letters, where % each letter defines a type of argument. As will be described below, % some of the types need additional information, such as default values. % The argument types can be divided into two, those which define % arguments that are mandatory (potentially raising an error if not % found) and those which define optional arguments. The mandatory types % are: % \begin{itemize}[font=\ttfamily] % \item[m] A standard mandatory argument, which can either be a single % token alone or multiple tokens surrounded by curly braces. % Regardless of the input, the argument will be passed to the % internal code surrounded by a brace pair. This is the \pkg{xparse} % type specifier for a normal \TeX{} argument. % \item[l] An argument which reads everything up to the first % open group token: in standard \LaTeX{} this is a left brace. % \item[u] Reads an argument `until' \meta{tokens} are encountered, % where the desired \meta{tokens} are given as an argument to the % specifier: \texttt{u}\marg{tokens}. % \item[v] Reads an argument \enquote{verbatim}, between the following % character and its next occurrence, in a way similar to the argument % of the \LaTeXe{} command \cs{verb}. Thus a \texttt{v}-type argument % is read between two matching tokens, which cannot be any of |%|, |\|, % |#|, |{|, |}|, |^| or \verb*| |. % The verbatim argument can also be enclosed between braces, |{| and |}|. % A command with a verbatim % argument will not work when it appears within an argument of % another function. % \end{itemize} % The types which define optional arguments are: % \begin{itemize}[font=\ttfamily] % \item[o] A standard \LaTeX\ optional argument, surrounded with square % brackets, which will supply % the special \cs{NoValue} token if not given (as described later). % \item[d] An optional argument which is delimited by \meta{token1} % and \meta{token2}, which are given as arguments: % \texttt{d}\meta{token1}\meta{token2}. As with \texttt{o}, if no % value is given the special token \cs{NoValue} is returned. % \item[O] As for \texttt{o}, but returns \meta{default} if no % value is given. Should be given as \texttt{O}\marg{default}. % \item[D] As for \texttt{d}, but returns \meta{default} if no % value is given: \texttt{D}\meta{token1}\meta{token2}\marg{default}. % Internally, the \texttt{o}, \texttt{d} and \texttt{O} types are % short-cuts to an appropriated-constructed \texttt{D} type argument. % \item[s] An optional star, which will result in a value % \cs{BooleanTrue} if a star is present and \cs{BooleanFalse} % otherwise (as described later). % \item[t] An optional \meta{token}, which will result in a value % \cs{BooleanTrue} if \meta{token} is present and \cs{BooleanFalse} % otherwise. Given as \texttt{t}\meta{token}. % \item[g] An optional argument given inside a pair of \TeX\ group % tokens (in standard \LaTeX, |{| \ldots |}|), which returns % \cs{NoValue} if not present. % \item[G] As for \texttt{g} but returns \meta{default} if no value % is given: \texttt{G}\marg{default}. % \end{itemize} % % Using these specifiers, it is possible to create complex input syntax % very easily. For example, given the argument definition % `|s o o m O{default}|', the input `|*[Foo]{Bar}|' would be parsed as: % \begin{itemize}[nolistsep] % \item |#1| = |\BooleanTrue| % \item |#2| = |{Foo}| % \item |#3| = |\NoValue| % \item |#4| = |{Bar}| % \item |#5| = |{default}| % \end{itemize} % whereas `|[One][Two]{}[Three]|' would be parsed as: % \begin{itemize}[nolistsep] % \item |#1| = |\BooleanFalse| % \item |#2| = |{One}| % \item |#3| = |{Two}| % \item |#4| = |{}| % \item |#5| = |{Three}| % \end{itemize} % Note that after parsing the input there will be always exactly the % same number of \meta{balanced text} arguments as the number of letters % in the argument specifier. The \cs{BooleanTrue} and \cs{BooleanFalse} % tokens are passed without braces; all other arguments are passed as % brace groups. % % Two more tokens have a special meaning when creating an argument % specifier. First, \texttt{+} is used to make an argument long (to % accept paragraph tokens). In contrast to \LaTeXe's \cs{newcommand}, % this applies on an argument-by-argument basis. So modifying the % example to `|s o o +m O{default}|' means that the mandatory argument % is now \cs{long}, whereas the optional arguments are not. % % Secondly, the token \texttt{>} is used to declare so-called % \enquote{argument processors}, which can be used to modify the contents of an % argument before it is passed to the macro definition. The use of % argument processors is a somewhat advanced topic, (or at least a less % commonly used feature) and is covered in Section~\ref{sec:processors}. % % By default, an argument of type \texttt{v} must be at most one line. % Prefixing with \texttt{+} allows line breaks within the argument. % The argument is given as a string of characters with category code~$12$, % except spaces, which have category code~$10$ (see \cs{tl_to_str:n}). % % \subsection{Spacing and optional arguments} % % \TeX{} will find the first argument after a function name irrespective % of any intervening spaces. This is true for both mandatory and % optional arguments. So |\foo[arg]| and \verb*|\foo [arg]| are % equivalent. Spaces are also ignored when collecting arguments up % to the last mandatory argument to be collected (as it must exist). % So after % \begin{verbatim} % \DeclareDocumentCommand \foo { m o m } { ... } % \end{verbatim} % the user input |\foo{arg1}[arg2]{arg3}| and % \verb*|\foo{arg1} [arg2] {arg3}| will both be parsed in the same % way. However, spaces are \emph{not} ignored when parsing optional % arguments after the last mandatory argument. Thus with % \begin{verbatim} % \DeclareDocumentCommand \foo { m o } { ... } % \end{verbatim} % |\foo{arg1}[arg2]| will find an optional argument but % \verb*|\foo{arg1} [arg2]| will not. This is so that trailing optional % arguments are not picked up \enquote{by accident} in input. % % \subsection{Verbatim arguments} % % Arguments of type \enquote{\texttt{v}} are read in verbatim mode, which will % result in the grabbed argument consisting of tokens of category code % $12$~(\enquote{other}), except spaces, which are given category code % $10$~(\enquote{space}). The argument will be % delimited in a similar manner to the \LaTeXe{} \cs{verb} function. % % Functions containing verbatim arguments cannot appear in the arguments % of other functions. The \texttt{v}~argument specifier includes code to check % this, and will raise an error if the grabbed argument has already been % tokenized by \TeX{}. % % Users should note that support for verbatim arguments is somewhat % experimental. Feedback is therefore very welcome on the \texttt{LaTeX-L} % mailing list. % % \subsection{Declaring commands and environments} % % With the concept of an argument specifier defined, it is now % possible to describe the methods available for creating both % functions and environments using \pkg{xparse}. % % The interface-building commands are the preferred method for % creating document-level functions in \LaTeX3. All of the functions % generated in this way are naturally robust (using the \eTeX{} % \cs{protected} mechanism). % % \begin{function} % { % \DeclareDocumentCommand , % \NewDocumentCommand , % \RenewDocumentCommand , % \ProvideDocumentCommand % } % \begin{syntax} % \cs{DeclareDocumentCommand} \meta{Function} \Arg{arg spec} \Arg{code} % \end{syntax} % This family of commands are used to create a document-level % \meta{function}. The argument specification for the function is % given by \meta{arg spec}, and expanding % to be replaced by the \meta{code}. % % As an example: % \begin{verbatim} % \DeclareDocumentCommand \chapter { s o m } % { % \IfBooleanTF {#1} % { \typesetnormalchapter {#2} {#3} } % { \typesetstarchapter {#3} } % } % \end{verbatim} % would be a way to define a \cs{chapter} command which would % essentially behave like the current \LaTeXe{} command (except that it % would accept an optional argument even when a \texttt{*} was parsed). % The \cs{typesetnormalchapter} could test its first argument for being % \cs{NoValue} to see if an optional argument was present. % % The difference between the \cs{Declare\ldots}, \cs{New\ldots} % \cs{Renew\ldots} and \cs{Provide\ldots} versions is the behaviour % if \meta{function} is already defined. % \begin{itemize} % \item \cs{DeclareDocumentCommand} will always create the new % definition, irrespective of any existing \meta{function} with the % same name. % \item \cs{NewDocumentCommand} will issue an error if \meta{function} % has already been defined. % \item \cs{RenewDocumentCommand} will issue an error if \meta{function} % has not previously been defined. % \item \cs{ProvideDocumentCommand} creates a new definition for % \meta{function} only if one has not already been given. % \end{itemize} % % \begin{texnote} % Unlike \LaTeXe{}'s \cs{newcommand} and relatives, the % \cs{DeclareDocumentCommand} function do not prevent creation of % functions with names starting \cs{end\ldots}. % \end{texnote} % \end{function} % % \begin{function} % { % \DeclareDocumentEnvironment , % \NewDocumentEnvironment , % \RenewDocumentEnvironment , % \ProvideDocumentEnvironment % } % \begin{syntax} % \cs{DeclareDocumentEnvironment} \Arg{environment} \Arg{arg spec} % ~~\Arg{start code} \Arg{end code} % \end{syntax} % These commands work in the same way as \cs{DeclareDocumentCommand}, % etc., but create environments (\cs{begin}|{|\meta{function}|}| \ldots % \cs{end}|{|\meta{function}|}|). Both the \meta{start code} and % \meta{end code} % may access the arguments as defined by \meta{arg spec}. % \end{function} % % \subsection{Testing special values} % % Optional arguments created using \pkg{xparse} make use of dedicated % variables to return information about the nature of the argument % received. % % \begin{variable}{\NoValue} % \cs{NoValue} is a special marker returned by \pkg{xparse} if no % value is given for an optional argument. If typeset (which should % not happen), it will print the value \texttt{-NoValue-}. % \end{variable} % % \begin{function}[EXP,TF]{\IfNoValue} % \begin{syntax} % \cs{IfNoValueTF} \Arg{argument} \Arg{true code} \Arg{false code} % \end{syntax} % The \cs{IfNoValue} tests are used to check if (|#1|, % |#2|, \emph{etc.}) is the special \cs{NoValue} token. For example % \begin{verbatim} % \DeclareDocumentCommand \foo { o m } % { % \IfNoValueTF {#1} % { \DoSomethingJustWithMandatoryArgument {#2} } % { \DoSomethingWithBothArguments {#1} {#2} } % } % \end{verbatim} % will use a different internal function if the optional argument % is given than if it is not present. % % As the \cs{IfNoValue(TF)} tests are expandable, it is possible to % test these values later, for example at the point of typesetting or % in an expansion context. % \end{function} % % \begin{function}[EXP,TF]{\IfValue} % \begin{syntax} % \cs{IfValueTF} \Arg{argument} \Arg{true code} \Arg{false code} % \end{syntax} % The reverse form of the \cs{IfNoValue(TF)} tests are also available % as \cs{IfValue(TF)}. The context will determine which logical % form makes the most sense for a given code scenario. % \end{function} % % \begin{variable}{\BooleanFalse, \BooleanTrue} % The \texttt{true} and \texttt{false} flags set when searching for % an optional token (using \texttt{s} or \texttt{t\meta{token}}) have % names which are accessible outside of code blocks. % \end{variable} % % \begin{function}[EXP,TF]{\IfBoolean} % \begin{syntax} % \cs{IfBooleanTF} \meta{argument} \Arg{true code} \Arg{false code} % \end{syntax} % Used to test if \meta{argument} (|#1|, |#2|, \emph{etc.}) is % \cs{BooleanTrue} or \cs{BooleanFalse}. For example % \begin{verbatim} % \DeclareDocumentCommand \foo { s m } % { % \IfBooleanTF #1 % { \DoSomethingWithStar {#2} } % { \DoSomethingWithoutStar {#2} } % } % \end{verbatim} % checks for a star as the first argument, then chooses the action to % take based on this information. % \end{function} % % \subsection{Argument processors} % \label{sec:processors} % % \pkg{xparse} introduces the idea of an argument processor, which is % applied to an argument \emph{after} it has been grabbed by the % underlying system but before it is passed to \meta{code}. An argument % processor can therefore be used to regularise input at an early stage, % allowing the internal functions to be completely independent of input % form. Processors are applied to user input and to default values for % optional arguments, but \emph{not} to the special \cs{NoValue} marker. % % Each argument processor is specified by the syntax % \texttt{>}\marg{processor} in the argument specification. Processors % are applied from right to left, so that % \begin{verbatim} % >{\ProcessorB} >{\ProcessorA} m % \end{verbatim} % would apply \cs{ProcessorA} % followed by \cs{ProcessorB} to the tokens grabbed by the \texttt{m} % argument. % % \begin{variable}{\ProcessedArgument} % \pkg{xparse} defines a very small set of processor functions. In the % main, it is anticipated that code writers will want to create their % own processors. These need to accept one argument, which is the % tokens as grabbed (or as returned by a previous processor function). % Processor functions should return the processed argument as the % variable \cs{ProcessedArgument}. % \end{variable} % % \begin{function}{\ReverseBoolean} % \begin{syntax} % \cs{ReverseBoolean} % \end{syntax} % This processor reverses the logic of \cs{BooleanTrue} and % \cs{BooleanFalse}, so that the the example from earlier would become % \begin{verbatim} % \DeclareDocumentCommand \foo { > { \ReverseBoolean } s m } % { % \IfBooleanTF #1 % { \DoSomethingWithoutStar {#2} } % { \DoSomethingWithStar {#2} } % } % \end{verbatim} % \end{function} % % \begin{function}{\SplitArgument} % \begin{syntax} % \cs{SplitArgument} \Arg{number} \Arg{token} % \end{syntax} % This processor splits the argument given at each occurrence of the % \meta{token} up to a maximum of \meta{number} tokens (thus % dividing the input into $\text{\meta{number}} + 1$ parts). % An error is given if too many \meta{tokens} are present in the % input. The processed input is placed inside % $\text{\meta{number}} + 1$ sets of braces for further use. % If there are fewer than \Arg{number} of \Arg{tokens} in the argument % then empty brace groups are added at the end of the processed % argument. % \begin{verbatim} % \DeclareDocumentCommand \foo % { > { \SplitArgument { 2 } { ; } } m } % { \InternalFunctionOfThreeArguments #1 } % \end{verbatim} % Any category code $13$ (active) \meta{tokens} will be replaced % before the split takes place. % \end{function} % % \begin{function}{\SplitList} % \begin{syntax} % \cs{SplitList} \Arg{token(s)} % \end{syntax} % This processor splits the argument given at each occurrence of the % \meta{token(s)} where the number of items is not fixed. Each item is % then wrapped in braces within |#1|. The result is that the % processed argument can be further processed using a mapping function. % \begin{verbatim} % \DeclareDocumentCommand \foo % { > { \SplitList { ; } } m } % { \MappingFunction #1 } % \end{verbatim} % If only a single \meta{token} is used for the split, any % category code $13$ (active) \meta{token} will be replaced % before the split takes place. % \end{function} % % \begin{function}{\TrimSpaces} % \begin{syntax} % \cs{TrimSpaces} % \end{syntax} % Removes any leading and trailing spaces (tokens with character code~$32$ % and category code~$10$) for the ends of the argument. Thus for example % declaring a function % \begin{verbatim} % \DeclareDocumentCommand \foo % { > { \TrimSpaces } } % { \showtokens {#1} } % \end{verbatim} % and using it in a document as % \begin{verbatim} % \foo{ hello world } % \end{verbatim} % will show \texttt{hello world} at the terminal, with the space at each % end removed. \cs{TrimSpaces} will remove multiple spaces from the ends of % the input in cases where these have been included such that the standard % \TeX{} conversion of multiple spaces to a single space does not apply. % % \textbf{This function is experimental.} % \end{function} % % \subsection{Separating interface and implementation} % % One \emph{experimental} idea implemented in \pkg{xparse} is to % separate out document command interfaces (the argument specification) % from the implementation (code). This is carried out using a % pair of functions, \cs{DeclareDocumentCommandInterface} and % \cs{DeclareDocumentCommandImplementation} % % \begin{function}{\DeclareDocumentCommandInterface} % \begin{syntax} % \cs{DeclareDocumentCommandInterface} \meta{function} % ~~~~\Arg{implementation} \Arg{arg spec} % \end{syntax} % This declares a \meta{function}, which will take arguments as detailed % in the \meta{arg spec}. When executed, the \meta{function} will look for % code stored as an \meta{implementation}. % \end{function} % % \begin{function}{\DeclareDocumentCommandImplementation} % \begin{syntax} % \cs{DeclareDocumentCommandImplementation} % ~~~~\Arg{implementation} \meta{args} \Arg{code} % \end{syntax} % Declares the \meta{implementation} for a function to accept \meta{args} % arguments and expand to \meta{code}. An implementation must take the % same number of arguments as a linked interface, although this is not % enforced by the code. % \end{function} % % \subsection{Fully-expandable document commands} % % There are \emph{very rare} occasion when it may be useful to create % functions using a fully-expandable argument grabber. To support this, % \pkg{xparse} can create expandable functions as well as the usual % robust ones. This imposes a number of restrictions on the nature of % the arguments accepted by a function, and the code it implements. % This facility should only be used when \emph{absolutely necessary}; % if you do not understand when this might be, \emph{do not use these % functions}! % % \begin{function}{\DeclareExpandableDocumentCommand} % \begin{syntax} % \cs{DeclareExpandableDocumentCommand} % ~~~~\meta{function} \Arg{arg spec} \Arg{code} % \end{syntax} % This command is used to create a document-level \meta{function}, % which will grab its arguments in a fully-expandable manner. The % argument specification for the function is given by \meta{arg spec}, % and the function will execute \meta{code}. In general, \meta{code} will % also be fully expandable, although it is possible that this will % not be the case (for example, a function for use in a table might % expand so that \cs{omit} is the first non-expandable token). % % Parsing arguments expandably imposes a number of restrictions on % both the type of arguments that can be read and the error checking % available: % \begin{itemize} % \item The last argument (if any are present) must be one of the % mandatory types: \texttt{l}, \texttt{m} or \texttt{u}. % \item All arguments are either short or long: it is not possible % to mix short and long argument types. % \item The `optional group' argument types \texttt{g} and % \texttt{G} are not available. % \item The `verbatim' argument type \texttt{v} is not available. % \item It is not possible to differentiate between, for example % |\foo[| and |\foo{[}|: in both cases the \texttt{[} will be % interpreted as the start of an optional argument. As a result % result, checking for optional arguments is less robust than % in the standard version. % \end{itemize} % \pkg{xparse} will issue an error if an argument specifier is given % which does not conform to the first three requirements. The last % item is an issue when the function is used, and so is beyond the % scope of \pkg{xparse} itself. % \end{function} % % \subsection{Access to the argument specification} % % The argument specifications for document commands and environments are % available for examination and use. % % \begin{function}{\GetDocumentCommandArgSpec, \GetDocumentEnvironmentArgSpec} % \begin{syntax} % \cs{GetDocumentCommandArgSpec} \meta{function} % \cs{GetDocumentEnvironmentArgSpec} \meta{environment} % \end{syntax} % These functions transfer the current argument specification for the % requested \meta{function} or \meta{environment} into the token list % variable \cs{ArgumentSpecification}. If the \meta{function} or % \meta{environment} has no known argument specification then an error % is issued. The assignment to \cs{ArgumentSpecification} is local to % the current \TeX{} group. % \end{function} % % \begin{function} % {\ShowDocumentCommandArgSpec, \ShowDocumentEnvironmentArgSpec} % \begin{syntax} % \cs{ShowDocumentCommandArgSpec} \meta{function} % \cs{ShowDocumentEnvironmentArgSpec} \meta{environment} % \end{syntax} % These functions show the current argument specification for the % requested \meta{function} or \meta{environment} at the terminal. If % the \meta{function} or \meta{environment} has no known argument % specification then an error is issued. % \end{function} % % \section{Load-time options} % % \DescribeOption{log-declarations} % The package recognises the load-time option \texttt{log-declarations}, % which is a key--value option taking the value \texttt{true} and % \texttt{false}. By default, the option is set to \texttt{true}, meaning % that each command or environment declared is logged. By loading % \pkg{xparse} using % \begin{verbatim} % \usepackage[log-declarations=false]{xparse} % \end{verbatim} % this may be suppressed and no information messages are produced. % % \end{documentation} % % \begin{implementation} % % \section{\pkg{xparse} implementation} % % \begin{macrocode} %<*package> % \end{macrocode} % % \begin{macrocode} \ProvidesExplPackage {\ExplFileName}{\ExplFileDate}{\ExplFileVersion}{\ExplFileDescription} \RequirePackage{expl3} % \end{macrocode} % % A check to make sure that \pkg{expl3} is not too old % \begin{macrocode} \@ifpackagelater { expl3 } { 2011/12/07 } { } { \PackageError { xparse } { Support~package~l3kernel~too~old. } { Please~install~an~up~to~date~version~of~l3kernel~ using~your~TeX~package~manager~or~from~CTAN.\\ \\ Loading~xparse~will~abort! } \tex_endinput:D } % \end{macrocode} % % \subsection{Variables and constants} % % \begin{variable}{\c_xparse_shorthands_prop} % Shorthands are stored as a property list: this is set up here as it % is a constant. % \begin{macrocode} \prop_new:N \c_xparse_shorthands_prop \prop_put:Nnn \c_xparse_shorthands_prop { o } { d[] } \prop_put:Nnn \c_xparse_shorthands_prop { O } { D[] } \prop_put:Nnn \c_xparse_shorthands_prop { s } { t* } % \end{macrocode} % \end{variable} % % \begin{variable}{\c_xparse_special_chars_seq} % In \IniTeX{} mode, we store special characters in a sequence. % Maybe |$| or |&| will have to be added later. % \begin{macrocode} %<*initex> \seq_set_from_clist:Nn \c_xparse_special_chars_seq { \ , \\ , \{ , \} , \# , \^ , \_ , \% , \~ } % % \end{macrocode} % \end{variable} % % \begin{variable}{\l_xparse_arg_tl} % Token list variable for single grabbed argument when post-processing. % \begin{macrocode} \tl_new:N \l_xparse_arg_tl % \end{macrocode} % \end{variable} % % \begin{variable}{\l_xparse_args_tl} % Token list variable for grabbed arguments. % \begin{macrocode} \tl_new:N \l_xparse_args_tl % \end{macrocode} % \end{variable} % % \begin{variable}{\l_xparse_environment_bool} % Generating environments uses the same mechanism as generating % functions. However, full processing of arguments is always needed % for environments, and so the function-generating code needs to % know this. % \begin{macrocode} \bool_new:N \l_xparse_environment_bool % \end{macrocode} % \end{variable} % % \begin{variable}{\l_xparse_error_bool} % Used to signal an error when creating expandable functions. % \begin{macrocode} \bool_new:N \l_xparse_error_bool % \end{macrocode} % \end{variable} % % \begin{variable}{\l_xparse_function_tl} % When creating expandable functions, the current function name needs % to be passed along. % \begin{macrocode} \tl_new:N \l_xparse_function_tl % \end{macrocode} % \end{variable} % % \begin{variable}{\l_xparse_last_arg_tl} % Used when creating expandable arguments. % \begin{macrocode} \tl_new:N \l_xparse_last_arg_tl % \end{macrocode} % \end{variable} % % \begin{variable}{\l_xparse_long_bool} % A flag for \cs{long} arguments. % \begin{macrocode} \bool_new:N \l_xparse_long_bool % \end{macrocode} % \end{variable} % % \begin{variable}{\l_xparse_m_args_int} % The number of simple \texttt{m} arguments is tracked so they can be % dumped \emph{en masse}. % \begin{macrocode} \int_new:N \l_xparse_m_args_int % \end{macrocode} % \end{variable} % % \begin{variable}{\l_xparse_m_only_bool} % A flag to indicate that only \texttt{m} arguments have been found. % \begin{macrocode} \bool_new:N \l_xparse_m_only_bool % \end{macrocode} % \end{variable} % % \begin{variable}{\l_xparse_mandatory_args_int} % So that trailing optional arguments can be picked up, a count has to % be taken of all mandatory arguments. This is then decreased as % mandatory arguments are added to the signature, so will be zero % only if there are no more mandatory arguments to add. % \begin{macrocode} \int_new:N \l_xparse_mandatory_args_int % \end{macrocode} % \end{variable} % % \begin{variable}{\l_xparse_processor_bool} % When reading through the argument specifier, a flag is needed to % show that a processor has been found for the current argument. This % is used when checking how to handle \texttt{m} arguments. % \begin{macrocode} \bool_new:N \l_xparse_processor_bool % \end{macrocode} % \end{variable} % % \begin{variable}{\l_xparse_processor_int} % In the grabber routine, each processor is saved with a number % recording the order it was found in. The total is then used to work % back through the grabbers so they apply to the argument right to left. % \begin{macrocode} \int_new:N \l_xparse_processor_int % \end{macrocode} % \end{variable} % % \begin{variable}{\l_xparse_signature_tl} % Token list variable for constructing signatures. % \begin{macrocode} \tl_new:N \l_xparse_signature_tl % \end{macrocode} %\end{variable} % % \begin{variable}{\l_xparse_tmp_tl} % A general purpose token list variable. % \begin{macrocode} \tl_new:N \l_xparse_tmp_tl % \end{macrocode} % \end{variable} % % \begin{variable}{\l_xparse_total_args_int} % The total number of arguments is used to create the internal function % which has a fixed number of arguments. % \begin{macrocode} \int_new:N \l_xparse_total_args_int % \end{macrocode} % \end{variable} % % \subsection{Turning the argument specifier into grabbers} % % \begin{macro}{\xparse_add_grabber_mandatory:N} % \begin{macro}{\xparse_add_grabber_optional:N} % To keep the various checks needed in one place, adding the grabber to % the signature is done here. For mandatory arguments, the only question % is whether to add a long grabber. For optional arguments, there is % also a check to see if any mandatory arguments are still to be added. % This is used to determine whether to skip spaces or not where % searching for the argument. % \begin{macrocode} \cs_new_protected_nopar:Npn \xparse_add_grabber_mandatory:N #1 { \tl_put_right:Nx \l_xparse_signature_tl { \exp_not:c { xparse_grab_ #1 \bool_if:NT \l_xparse_long_bool { _long } :w } } \bool_set_false:N \l_xparse_long_bool \int_decr:N \l_xparse_mandatory_args_int } \cs_new_protected_nopar:Npn \xparse_add_grabber_optional:N #1 { \tl_put_right:Nx \l_xparse_signature_tl { \exp_not:c { xparse_grab_ #1 \bool_if:NT \l_xparse_long_bool { _long } \int_compare:nNnF \l_xparse_mandatory_args_int > \c_zero { _trailing } :w } } \bool_set_false:N \l_xparse_long_bool } % \end{macrocode} % \end{macro} % \end{macro} % % All of the argument-adding functions work in essentially the same % way, except the one for \texttt{m} arguments. Any collected \texttt{m} % arguments are added to the signature, then the appropriate grabber % is added to the signature. Some of the adding functions also pick up % one or more arguments, and are also added to the signature. All of the % functions then call the loop function \cs{xparse_prepare_signature:N}. % % \begin{macro}{\xparse_add_type_+:w} % Making the next argument \cs{long} means setting the flag and % knocking one back off the total argument count. The \texttt{m} % arguments are recorded here as this has to be done for every case % where there is then a \cs{long} argument. % \begin{macrocode} \cs_new_protected_nopar:cpn { xparse_add_type_+:w } { \xparse_flush_m_args: \bool_set_true:N \l_xparse_long_bool \bool_set_false:N \l_xparse_m_only_bool \int_decr:N \l_xparse_total_args_int \xparse_prepare_signature:N } % \end{macrocode} % \end{macro} % % \begin{macro}{\xparse_add_type_>:w} % When a processor is found, the function \cs{xparse_process_arg:n} % is added to the signature along with the processor code itself. When % the signature is used, the code will be added to an execution list by % \cs{xparse_process_arg:n}. Here, the loop calls % \cs{xparse_prepare_signature_aux:N} rather than % \cs{xparse_prepare_signature:N} so that the flag is not reset. % \begin{macrocode} \cs_new_protected:cpn { xparse_add_type_>:w } #1 { \bool_set_true:N \l_xparse_processor_bool \xparse_flush_m_args: \int_decr:N \l_xparse_total_args_int \tl_put_right:Nn \l_xparse_signature_tl { \xparse_process_arg:n {#1} } \xparse_prepare_signature_aux:N } % \end{macrocode} % \end{macro} % % \begin{macro}{\xparse_add_type_d:w} % To save on repeated code, \texttt{d} is actually turned into % the same grabber as is used by \texttt{D}, by putting the % \cs{NoValue} default in the correct place. So there is some % simple argument re-arrangement to do. Remember that |#1| and |#2| % should be single tokens. % \begin{macrocode} \cs_new_protected:Npn \xparse_add_type_d:w #1#2 { \xparse_add_type_D:w #1 #2 { \NoValue } } % \end{macrocode} %\end{macro} % % \begin{macro}{\xparse_add_type_D:w} % All of the optional delimited arguments are handled internally by % the \texttt{D} type. At this stage, the two delimiters are stored % along with the default value. % \begin{macrocode} \cs_new_protected:Npn \xparse_add_type_D:w #1#2#3 { \xparse_flush_m_args: \xparse_add_grabber_optional:N D \tl_put_right:Nn \l_xparse_signature_tl { #1 #2 {#3} } \xparse_prepare_signature:N } % \end{macrocode} % \end{macro} % % \begin{macro}{\xparse_add_type_g:w} % The \texttt{g} type is simply an alias for \texttt{G} with the % correct default built-in. % \begin{macrocode} \cs_new_protected_nopar:Npn \xparse_add_type_g:w { \xparse_add_type_G:w { \NoValue } } % \end{macrocode} % \end{macro} % % \begin{macro}{\xparse_add_type_G:w} % For the \texttt{G} type, the grabber and the default are added to % the signature. % \begin{macrocode} \cs_new_protected:Npn \xparse_add_type_G:w #1 { \xparse_flush_m_args: \xparse_add_grabber_optional:N G \tl_put_right:Nn \l_xparse_signature_tl { {#1} } \xparse_prepare_signature:N } % \end{macrocode} % \end{macro} % % \begin{macro}{\xparse_add_type_l:w} % Finding \texttt{l} arguments is very simple: there is nothing to do % other than add the grabber. % \begin{macrocode} \cs_new_protected_nopar:Npn \xparse_add_type_l:w { \xparse_flush_m_args: \xparse_add_grabber_mandatory:N l \xparse_prepare_signature:N } % \end{macrocode} % \end{macro} % % \begin{macro}{\xparse_add_type_m:w} % The \texttt{m} type is special as short arguments which are not % post-processed are simply counted at this stage. Thus there is a check % to see if either of these cases apply. If so, a one-argument grabber % is added to the signature. On the other hand, if a standard short % argument is required it is simply counted at this stage, to be % added later using \cs{xparse_flush_m_args:}. % \begin{macrocode} \cs_new_protected_nopar:Npn \xparse_add_type_m:w { \bool_if:nTF { \l_xparse_long_bool || \l_xparse_processor_bool } { \xparse_flush_m_args: \xparse_add_grabber_mandatory:N m } { \int_incr:N \l_xparse_m_args_int } \xparse_prepare_signature:N } % \end{macrocode} % \end{macro} % % \begin{macro}{\xparse_add_type_t:w} % Setting up a \texttt{t} argument means collecting one token for the % test, and adding it along with the grabber to the signature. % \begin{macrocode} \cs_new_protected:Npn \xparse_add_type_t:w #1 { \xparse_flush_m_args: \xparse_add_grabber_optional:N t \tl_put_right:Nn \l_xparse_signature_tl { #1 } \xparse_prepare_signature:N } % \end{macrocode} % \end{macro} % % \begin{macro}{\xparse_add_type_u:w} % At the set up stage, the \texttt{u} type argument is identical to the % \texttt{G} type except for the name of the grabber function. % \begin{macrocode} \cs_new_protected:Npn \xparse_add_type_u:w #1 { \xparse_flush_m_args: \xparse_add_grabber_mandatory:N u \tl_put_right:Nn \l_xparse_signature_tl { {#1} } \xparse_prepare_signature:N } % \end{macrocode} %\end{macro} % % \begin{macro}{\xparse_add_type_v:w} % At this stage, the \texttt{v} argument is identical to \texttt{l}. % \begin{macrocode} \cs_new_protected_nopar:Npn \xparse_add_type_v:w { \xparse_flush_m_args: \xparse_add_grabber_mandatory:N v \xparse_prepare_signature:N } % \end{macrocode} % \end{macro} % % \begin{macro}{\xparse_check_and_add:N} % This function checks if the argument type actually exists and gives % an error if it doesn't. % \begin{macrocode} \cs_new_protected_nopar:Npn \xparse_check_and_add:N #1 { \cs_if_free:cTF { xparse_add_type_ #1 :w } { \msg_error:nnx { xparse } { unknown-argument-type } { \tl_to_str:n {#1} } \xparse_add_type_m:w } { \use:c { xparse_add_type_ #1 :w } } } % \end{macrocode} % \end{macro} % % \begin{macro}{\xparse_count_mandatory:n} % \begin{macro}{\xparse_count_mandatory:N} % \begin{macro}[aux]{\xparse_count_mandatory_aux:N} % To count up mandatory arguments before the main parsing run, the % same approach is used. First, check if the current token is a % short-cut for another argument type. If it is, expand it and loop % again. If not, then look for a `counting' function to check the % argument type. No error is raised here if one is not found as one % will be raised by later code. % \begin{macrocode} \cs_new_protected:Npn \xparse_count_mandatory:n #1 { \int_zero:N \l_xparse_mandatory_args_int \xparse_count_mandatory:N #1 \q_nil } \cs_new_protected:Npn \xparse_count_mandatory:N #1 { \quark_if_nil:NF #1 { \prop_get:NnNTF \c_xparse_shorthands_prop {#1} \l_xparse_tmp_tl { \exp_last_unbraced:NV \xparse_count_mandatory:N \l_xparse_tmp_tl } { \xparse_count_mandatory_aux:N #1 } } } \cs_new_protected:Npn \xparse_count_mandatory_aux:N #1 { \cs_if_free:cTF { xparse_count_type_ #1 :w } { \xparse_count_type_m:w } { \use:c { xparse_count_type_ #1 :w } } } % \end{macrocode} % \end{macro} % \end{macro} % \end{macro} % % \begin{macro}{\xparse_count_type_>:w} % \begin{macro}{\xparse_count_type_+:w} % \begin{macro}{\xparse_count_type_d:w} % \begin{macro}{\xparse_count_type_D:w} % \begin{macro}{\xparse_count_type_g:w} % \begin{macro}{\xparse_count_type_G:w} % \begin{macro}{\xparse_count_type_l:w} % \begin{macro}{\xparse_count_type_m:w} % \begin{macro}{\xparse_count_type_t:w} % \begin{macro}{\xparse_count_type_u:w} % \begin{macro}{\xparse_count_type_v:w} % For counting the mandatory arguments, a function is provided for % each argument type that will mop any extra arguments and call the % loop function. Only the counting functions for mandatory arguments % actually do anything: the rest are simply there to ensure the loop % continues correctly. % \begin{macrocode} \cs_new_protected:cpn { xparse_count_type_>:w } #1 { \xparse_count_mandatory:N } \cs_new_protected_nopar:cpn { xparse_count_type_+:w } { \xparse_count_mandatory:N } \cs_new_protected:Npn \xparse_count_type_d:w #1#2 { \xparse_count_mandatory:N } \cs_new_protected:Npn \xparse_count_type_D:w #1#2#3 { \xparse_count_mandatory:N } \cs_new_protected_nopar:Npn \xparse_count_type_g:w { \xparse_count_mandatory:N } \cs_new_protected:Npn \xparse_count_type_G:w #1 { \xparse_count_mandatory:N } \cs_new_protected_nopar:Npn \xparse_count_type_l:w { \int_incr:N \l_xparse_mandatory_args_int \xparse_count_mandatory:N } \cs_new_protected_nopar:Npn \xparse_count_type_m:w { \int_incr:N \l_xparse_mandatory_args_int \xparse_count_mandatory:N } \cs_new_protected:Npn \xparse_count_type_t:w #1 { \xparse_count_mandatory:N } \cs_new_protected:Npn \xparse_count_type_u:w #1 { \int_incr:N \l_xparse_mandatory_args_int \xparse_count_mandatory:N } \cs_new_protected_nopar:Npn \xparse_count_type_v:w { \int_incr:N \l_xparse_mandatory_args_int \xparse_count_mandatory:N } % \end{macrocode} % \end{macro} % \end{macro} % \end{macro} % \end{macro} % \end{macro} % \end{macro} % \end{macro} % \end{macro} % \end{macro} % \end{macro} % \end{macro} % % \begin{macro}{\xparse_declare_cmd:Nnn} % \begin{macro}[aux]{\xparse_declare_cmd_aux:Nnn} % \begin{macro}[aux]{\xparse_declare_cmd_aux:cnn} % \begin{macro}[aux]{\xparse_declare_cmd_all_m:Nn} % \begin{macro}[aux]{\xparse_declare_cmd_mixed:Nn} % First, the signature is set up from the argument specification. There % is then a check: if only \texttt{m} arguments are needed (which % includes functions with no arguments at all) then the definition is % simple. On the other hand, if the signature is more complex then an % internal function actually contains the code with the user function % as a simple wrapper. % \begin{macrocode} \cs_new_protected:Npn \xparse_declare_cmd:Nnn #1#2 { \cs_if_exist:NTF #1 { \msg_warning:nnxx { xparse } { redefine-command } { \token_to_str:N #1 } { \tl_to_str:n {#2} } } { \msg_info:nnxx { xparse } { define-command } { \token_to_str:N #1 } { \tl_to_str:n {#2} } } \xparse_declare_cmd_aux:Nnn #1 {#2} } \cs_new_protected:Npn \xparse_declare_cmd_aux:Nnn #1#2#3 { \tl_clear_new:c { l_xparse_ \token_to_str:N #1 _arg_spec_tl } \tl_set:cn { l_xparse_ \token_to_str:N #1 _arg_spec_tl } {#2} \xparse_count_mandatory:n {#2} \xparse_prepare_signature:n {#2} \bool_if:NTF \l_xparse_m_only_bool { \xparse_declare_cmd_all_m:Nn #1 {#3} } { \xparse_declare_cmd_mixed:Nn #1 {#3} } } \cs_generate_variant:Nn \xparse_declare_cmd_aux:Nnn { cnn } \cs_new_protected:Npn \xparse_declare_cmd_all_m:Nn #1#2 { \cs_generate_from_arg_count:NNnn #1 \cs_set_protected_nopar:Npn \l_xparse_total_args_int {#2} } \cs_new_protected:Npn \xparse_declare_cmd_mixed:Nn #1#2 { \group_begin: \tex_escapechar:D 92 \scan_stop: \tl_set:Nx \l_xparse_function_tl { \token_to_str:N #1 } \exp_args:NNNo \group_end: \tl_set:Nn \l_xparse_function_tl { \l_xparse_function_tl } \cs_set_protected_nopar:Npx #1 { \exp_not:n { \int_zero:N \l_xparse_processor_int \tl_set:Nn \l_xparse_args_tl } { \exp_not:c { \l_xparse_function_tl } } \exp_not:o \l_xparse_signature_tl \exp_not:N \l_xparse_args_tl } \cs_generate_from_arg_count:cNnn { \token_to_str:N #1 } \cs_set:Npn \l_xparse_total_args_int {#2} } % \end{macrocode} % \end{macro} % \end{macro} %\end{macro} %\end{macro} %\end{macro} % % \begin{macro}{\xparse_declare_cmd_implementation:nNn} % Creating a stand-alone implementation using the \enquote{two-part} % mechanism is quite easy as this is just a wrapper for % \cs{cs_generate_from_arg_count:cNnn}. % \begin{macrocode} \cs_new_protected:Npn \xparse_declare_cmd_implementation:nNn #1#2#3 { \cs_generate_from_arg_count:cNnn { implementation_ #1 :w } \cs_set:Npn {#2} {#3} } % \end{macrocode} % \end{macro} % % \begin{macro}{\xparse_declare_cmd_interface:Nnn} % \begin{macro}[aux]{\xparse_declare_cmd_interface_all_m:Nn} % \begin{macro}[aux]{\xparse_declare_cmd_interface_mixed:Nn} % As with the basic function \cs{xparse_declare_cmd:Nnn}, there are % three things to do here. First, generate a signature from the % argument specification. Then use that to create a function which % will call the implementation part. Finally, a holder implementation % is created. As before, there is a short-cut for functions which only % have \texttt{m} type arguments. % \begin{macrocode} \cs_new_protected:Npn \xparse_declare_cmd_interface:Nnn #1#2#3 { \xparse_prepare_signature:n {#3} \bool_if:NTF \l_xparse_m_only_bool { \xparse_declare_cmd_interface_all_m:Nn #1 {#2} } { \xparse_declare_cmd_interface_mixed:Nn #1 {#2} } \cs_generate_from_arg_count:cNnn { implementation_ #2 :w } \cs_set:Npn \l_xparse_total_args_int { '#2' } } \cs_new_protected:Npn \xparse_declare_cmd_interface_all_m:Nn #1#2 { \cs_generate_from_arg_count:NNnn #1 \cs_set_protected_nopar:Npn \l_xparse_total_args_int { \use:c { implementation_ #2 :w } } } \cs_new_protected:Npn \xparse_declare_cmd_interface_mixed:Nn #1#2 { \cs_set_protected_nopar:Npx #1 { \exp_not:n { \int_zero:N \l_xparse_processor_int \tl_set:Nn \l_xparse_args_tl } { \exp_not:c { \token_to_str:N #1 } } \exp_not:o \l_xparse_signature_tl \exp_not:N \l_xparse_args_tl } \cs_generate_from_arg_count:cNnn { \token_to_str:N #1 } \cs_set:Npn \l_xparse_total_args_int { \use:c { implementation_ #2 :w } } } % \end{macrocode} % \end{macro} % \end{macro} % \end{macro} % % \begin{macro}{\xparse_declare_env:nnnn} % The idea here is to make sure that the end of the environment has the % same arguments available as the beginning. % \begin{macrocode} \cs_new_protected:Npn \xparse_declare_env:nnnn #1#2#3#4 { \bool_set_true:N \l_xparse_environment_bool \cs_if_exist:cTF {#1} { \msg_warning:nnxx { xparse } { redefine-environment } { \tl_to_str:n {#1} } { \tl_to_str:n {#2} } } { \msg_info:nnxx { xparse } { define-environment } { \tl_to_str:n {#1} } { \tl_to_str:n {#2} } } \xparse_declare_cmd_aux:cnn { environment_begin_ #1 :w } {#2} { \group_begin: \cs_set_protected_nopar:cpx { environment_end_ #1 :w } { \exp_not:c { environment_end_ #1 _aux:N } \exp_not:o \l_xparse_args_tl \exp_not:n { \if@endpe \exp_after:wN \group_end: \cs:w @endpetrue \exp_after:wN \cs_end: \else \exp_after:wN \group_end: \fi } } #3 } \cs_set_protected_nopar:cpx { environment_end_ #1 : } { \exp_not:c { environment_end_ #1 :w } } \bool_set_false:N \l_xparse_environment_bool \cs_set_nopar:cpx { environment_end_ #1 _aux:N } ##1 { \exp_not:c { environment_end_ #1 _aux :w } } \cs_generate_from_arg_count:cNnn { environment_end_ #1 _aux :w } \cs_set:Npn \l_xparse_total_args_int {#4} \cs_set_eq:cc {#1} { environment_begin_ #1 :w } \cs_set_eq:cc { end #1 } { environment_end_ #1 : } } % \end{macrocode} % \end{macro} % % \begin{macro}{\xparse_flush_m_args:} % As \texttt{m} arguments are simply counted, there is a need to add % them to the token register in a block. As this function can only % be called if something other than \texttt{m} turns up, the flag can % be switched here. The total number of mandatory arguments added to % the signature is also decreased by the appropriate amount. % \begin{macrocode} \cs_new_protected_nopar:Npn \xparse_flush_m_args: { \cs_if_exist:cT { xparse_grab_m_ \int_use:N \l_xparse_m_args_int :w } { \tl_put_right:Nx \l_xparse_signature_tl { \exp_not:c { xparse_grab_m_ \int_use:N \l_xparse_m_args_int :w } } \int_set:Nn \l_xparse_mandatory_args_int { \l_xparse_mandatory_args_int - \l_xparse_m_args_int } } \int_zero:N \l_xparse_m_args_int \bool_set_false:N \l_xparse_m_only_bool } % \end{macrocode} % \end{macro} % % \begin{macro}[TF]{\xparse_if_no_value:n} % Tests for \cs{NoValue}. % \begin{macrocode} \prg_new_conditional:Npnn \xparse_if_no_value:n #1 { T , F , TF } { \str_if_eq:nnTF {#1} { \NoValue } \prg_return_true: \prg_return_false: } % \end{macrocode} % \end{macro} % % \begin{macro}{\xparse_prepare_signature:n} % Creating the signature is a case of working through the input and % turning into the output in \cs{l_xparse_signature_tl}. A track is % also kept of the total number of arguments. This function sets % everything up then hands off to the parser. % \begin{macrocode} \cs_new_protected:Npn \xparse_prepare_signature:n #1 { \bool_set_false:N \l_xparse_long_bool \int_zero:N \l_xparse_m_args_int \bool_if:NTF \l_xparse_environment_bool { \bool_set_false:N \l_xparse_m_only_bool } { \bool_set_true:N \l_xparse_m_only_bool } \bool_set_false:N \l_xparse_processor_bool \tl_clear:N \l_xparse_signature_tl \int_zero:N \l_xparse_total_args_int \xparse_prepare_signature:N #1 \q_nil } % \end{macrocode} % \end{macro} % % \begin{macro}{\xparse_prepare_signature:N} % \begin{macro}[aux]{\xparse_prepare_signature_aux:N} % The main signature-preparation loop is in two parts, to keep the code % a little clearer. Most of the checks here is pretty clear, with a key % point to watch what is next on the stack so that the loop continues % correctly. % \begin{macrocode} \cs_new_protected:Npn \xparse_prepare_signature:N #1 { \bool_set_false:N \l_xparse_processor_bool \xparse_prepare_signature_aux:N #1 } \cs_new_protected:Npn \xparse_prepare_signature_aux:N #1 { \quark_if_nil:NTF #1 { \bool_if:NF \l_xparse_m_only_bool { \xparse_flush_m_args: } } { \prop_get:NnNTF \c_xparse_shorthands_prop {#1} \l_xparse_tmp_tl { \exp_after:wN \xparse_prepare_signature:N \l_xparse_tmp_tl } { \int_incr:N \l_xparse_total_args_int \xparse_check_and_add:N #1 } } } % \end{macrocode} % \end{macro} % \end{macro} % % \begin{macro}{\xparse_process_arg:n} % Processors are saved for use later during the grabbing process. % \begin{macrocode} \cs_new_protected:Npn \xparse_process_arg:n #1 { \int_incr:N \l_xparse_processor_int \cs_set:cpn { xparse_processor_ \int_use:N \l_xparse_processor_int :n } ##1 { #1 {##1} } } % \end{macrocode} % \end{macro} % % \subsection{Grabbing arguments} % % \begin{macro}{\xparse_add_arg:n, \xparse_add_arg:V} % \begin{macro}[aux]{\xparse_add_arg_aux:n, \xparse_add_arg_aux:V} % The argument-storing system provides a single point for interfacing % with processors. They are done in a loop, counting downward. In this % way, the processor which was found last is executed first. The result % is that processors apply from right to left, as intended. Notice that % a set of braces are added back around the result of processing so that % the internal function will correctly pick up one argument for each % input argument. % \begin{macrocode} \cs_new_protected:Npn \xparse_add_arg:n #1 { \int_compare:nNnTF \l_xparse_processor_int = \c_zero { \tl_put_right:Nn \l_xparse_args_tl { {#1} } } { \xparse_if_no_value:nTF {#1} { \int_zero:N \l_xparse_processor_int \tl_put_right:Nn \l_xparse_args_tl { {#1} } } { \xparse_add_arg_aux:n {#1} } } } \cs_generate_variant:Nn \xparse_add_arg:n { V } \cs_new_protected:Npn \xparse_add_arg_aux:n #1 { \tl_set_eq:NN \ProcessedArgument \l_xparse_arg_tl \use:c { xparse_processor_ \int_use:N \l_xparse_processor_int :n } {#1} \int_decr:N \l_xparse_processor_int \int_compare:nNnTF \l_xparse_processor_int = \c_zero { \tl_put_right:Nx \l_xparse_args_tl { { \exp_not:V \ProcessedArgument } } } { \xparse_add_arg_aux:V \ProcessedArgument } } \cs_generate_variant:Nn \xparse_add_arg_aux:n { V } % \end{macrocode} % \end{macro} % \end{macro} % % All of the grabbers follow the same basic pattern. The initial % function sets up the appropriate information to define % \cs{parse_grab_arg:w} to grab the argument. This means determining % whether to use \cs{cs_set:Npn} or \cs{cs_set_nopar:Npn}, and for % optional arguments whether to skip spaces. In all cases, % \cs{xparse_grab_arg:w} is then called to actually do the grabbing. % % \begin{macro}{\xparse_grab_arg:w} % \begin{macro}[aux]{\xparse_grab_arg_aux_i:w} % \begin{macro}[aux]{\xparse_grab_arg_aux_ii:w} % Each time an argument is actually grabbed, \pkg{xparse} defines a % function to do it. In that way, long arguments from previous functions % can be included in the definition of the grabber function, so that % it does not raise an error if not long. The generic function used % for this is reserved here. A couple of auxiliary functions are also % needed in various places. % \begin{macrocode} \cs_new_protected:Npn \xparse_grab_arg:w { } \cs_new_protected:Npn \xparse_grab_arg_aux_i:w { } \cs_new_protected:Npn \xparse_grab_arg_aux_ii:w { } % \end{macrocode} % \end{macro} % \end{macro} % \end{macro} % % \begin{macro}{\xparse_grab_D:w} % \begin{macro}{\xparse_grab_D_long:w} % \begin{macro}{\xparse_grab_D_trailing:w} % \begin{macro}{\xparse_grab_D_long_trailing:w} % The generic delimited argument grabber. The auxiliary function does % a peek test before calling \cs{xparse_grab_arg:w}, so that the % optional nature of the argument works as expected. % \begin{macrocode} \cs_new_protected:Npn \xparse_grab_D:w #1#2#3#4 \l_xparse_args_tl { \xparse_grab_D_aux:NNnnNn #1 #2 {#3} {#4} \cs_set_protected_nopar:Npn { _ignore_spaces } } \cs_new_protected:Npn \xparse_grab_D_long:w #1#2#3#4 \l_xparse_args_tl { \xparse_grab_D_aux:NNnnNn #1 #2 {#3} {#4} \cs_set_protected:Npn { _ignore_spaces } } \cs_new_protected:Npn \xparse_grab_D_trailing:w #1#2#3#4 \l_xparse_args_tl { \xparse_grab_D_aux:NNnnNn #1 #2 {#3} {#4} \cs_set_protected_nopar:Npn { } } \cs_new_protected:Npn \xparse_grab_D_long_trailing:w #1#2#3#4 \l_xparse_args_tl { \xparse_grab_D_aux:NNnnNn #1 #2 {#3} {#4} \cs_set_protected:Npn { } } % \end{macrocode} % \begin{macro}[aux]{\xparse_grab_D_aux:NNnnNn} % This is a bit complicated. The idea is that, in order to check for % nested optional argument tokens (\texttt{[[...]]} and so on) the % argument needs to be grabbed without removing any braces at all. If % this is not done, then cases like |[{[}]| fail. So after testing for % an optional argument, it is collected piece-wise. First, the opening % token is removed, then a check is made for a group. If it looks like % the entire argument is a group, then an extra set of braces are % added back in. The closing token is then used to collect everything % else. There is then a test to see if there is nesting, by looking % for a \enquote{spare} open-argument token. If that is found, things hand % off to a loop to deal with that. % \begin{macrocode} \cs_new_protected:Npn \xparse_grab_D_aux:NNnnNn #1#2#3#4#5#6 { #5 \xparse_grab_arg:w #1 { \peek_meaning:NTF \c_group_begin_token { \xparse_grab_arg_aux_i:w } { \xparse_grab_arg_aux_ii:w } } #5 \xparse_grab_arg_aux_i:w ##1 { \peek_charcode:NTF #2 { \xparse_grab_arg_aux_ii:w { {##1} } } { \xparse_grab_arg_aux_ii:w {##1} } } #5 \xparse_grab_arg_aux_ii:w ##1 #2 { \tl_if_in:nnTF {##1} {#1} { \xparse_grab_D_nested:NNnnN #1 #2 {##1} {#4} #5 } { \xparse_add_arg:n {##1} #4 \l_xparse_args_tl } } \use:c { peek_charcode #6 :NTF } #1 { \xparse_grab_arg:w } { \xparse_add_arg:n {#3} #4 \l_xparse_args_tl } } % \end{macrocode} % \end{macro} % \end{macro} % \end{macro} % \end{macro} % \end{macro} % \begin{macro}[aux]{\xparse_grab_D_nested:NNnnN} % \begin{macro}{\l_xparse_nesting_a_tl} % \begin{macro}{\l_xparse_nesting_b_tl} % \begin{macro}{\q_xparse} % Catching nested optional arguments means more work. The aim here is % to collect up each pair of optional tokens without \TeX{} helping out, % and without counting anything. The code above will already have % removed the leading opening token and a closing token, but the % wrong one. The aim is then to work through the the material grabbed % so far and divide it up on each opening token, grabbing a closing % token to match (thus working in pairs). Once there are no opening % tokens, then there is a second check to see if there are any % opening tokens in the second part of the argument (for things % like |[][]|). Once everything has been found, the entire collected % material is added to the output as a single argument. % \begin{macrocode} \tl_new:N \l_xparse_nesting_a_tl \tl_new:N \l_xparse_nesting_b_tl \quark_new:N \q_xparse \cs_new_protected:Npn \xparse_grab_D_nested:NNnnN #1#2#3#4#5 { \tl_clear:N \l_xparse_nesting_a_tl \tl_clear:N \l_xparse_nesting_b_tl #5 \xparse_grab_arg:w ##1 #1 ##2 \q_xparse ##3 #2 { \tl_put_right:Nn \l_xparse_nesting_a_tl { ##1 #1 } \tl_put_right:Nn \l_xparse_nesting_b_tl { #2 ##3 } \tl_if_in:nnTF {##2} {#1} { \xparse_grab_arg:w ##2 \q_xparse } { \tl_put_right:Nn \l_xparse_nesting_a_tl {##2} \tl_if_in:NnTF \l_xparse_nesting_b_tl {#1} { \tl_set_eq:NN \l_xparse_tmp_tl \l_xparse_nesting_b_tl \tl_clear:N \l_xparse_nesting_b_tl \exp_after:wN \xparse_grab_arg:w \l_xparse_tmp_tl \q_xparse } { \tl_put_right:No \l_xparse_nesting_a_tl \l_xparse_nesting_b_tl \xparse_add_arg:V \l_xparse_nesting_a_tl #4 \l_xparse_args_tl } } } \xparse_grab_arg:w #3 \q_xparse } % \end{macrocode} % \end{macro} % \end{macro} % \end{macro} % \end{macro} % % \begin{macro}{\xparse_grab_G:w} % \begin{macro}{\xparse_grab_G_long:w} % \begin{macro}{\xparse_grab_G_trailing:w} % \begin{macro}{\xparse_grab_G_long_trailing:w} % \begin{macro}[aux]{\xparse_grab_G_aux:nnNn} % Optional groups are checked by meaning, so that the same code will % work with, for example, Con\TeX{}t-like input. % \begin{macrocode} \cs_new_protected:Npn \xparse_grab_G:w #1#2 \l_xparse_args_tl { \xparse_grab_G_aux:nnNn {#1} {#2} \cs_set_protected_nopar:Npn { _ignore_spaces } } \cs_new_protected:Npn \xparse_grab_G_long:w #1#2 \l_xparse_args_tl { \xparse_grab_G_aux:nnNn {#1} {#2} \cs_set_protected:Npn { _ignore_spaces } } \cs_new_protected:Npn \xparse_grab_G_trailing:w #1#2 \l_xparse_args_tl { \xparse_grab_G_aux:nnNn {#1} {#2} \cs_set_protected_nopar:Npn { } } \cs_new_protected:Npn \xparse_grab_G_long_trailing:w #1#2 \l_xparse_args_tl { \xparse_grab_G_aux:nnNn {#1} {#2} \cs_set_protected:Npn { } } \cs_new_protected:Npn \xparse_grab_G_aux:nnNn #1#2#3#4 { #3 \xparse_grab_arg:w ##1 { \xparse_add_arg:n {##1} #2 \l_xparse_args_tl } \use:c { peek_meaning #4 :NTF } \c_group_begin_token { \xparse_grab_arg:w } { \xparse_add_arg:n {#1} #2 \l_xparse_args_tl } } % \end{macrocode} % \end{macro} % \end{macro} % \end{macro} % \end{macro} % \end{macro} % % \begin{macro}{\xparse_grab_l:w} % \begin{macro}{\xparse_grab_l_long:w} % \begin{macro}[aux]{\xparse_grab_l_aux:nN} % Argument grabbers for mandatory \TeX\ arguments are pretty simple. % \begin{macrocode} \cs_new_protected:Npn \xparse_grab_l:w #1 \l_xparse_args_tl { \xparse_grab_l_aux:nN {#1} \cs_set_protected_nopar:Npn } \cs_new_protected:Npn \xparse_grab_l_long:w #1 \l_xparse_args_tl { \xparse_grab_l_aux:nN {#1} \cs_set_protected:Npn } \cs_new_protected:Npn \xparse_grab_l_aux:nN #1#2 { #2 \xparse_grab_arg:w ##1## { \xparse_add_arg:n {##1} #1 \l_xparse_args_tl } \xparse_grab_arg:w } % \end{macrocode} % \end{macro} % \end{macro} % \end{macro} % % \begin{macro}{\xparse_grab_m:w} % \begin{macro}{\xparse_grab_m_long:w} % Collecting a single mandatory argument is quite easy. % \begin{macrocode} \cs_new_protected:Npn \xparse_grab_m:w #1 \l_xparse_args_tl { \cs_set_protected_nopar:Npn \xparse_grab_arg:w ##1 { \xparse_add_arg:n {##1} #1 \l_xparse_args_tl } \xparse_grab_arg:w } \cs_new_protected:Npn \xparse_grab_m_long:w #1 \l_xparse_args_tl { \cs_set_protected:Npn \xparse_grab_arg:w ##1 { \xparse_add_arg:n {##1} #1 \l_xparse_args_tl } \xparse_grab_arg:w } % \end{macrocode} % \end{macro} % \end{macro} % % \begin{macro}{\xparse_grab_m_1:w} % \begin{macro}{\xparse_grab_m_2:w} % \begin{macro}{\xparse_grab_m_3:w} % \begin{macro}{\xparse_grab_m_4:w} % \begin{macro}{\xparse_grab_m_5:w} % \begin{macro}{\xparse_grab_m_6:w} % \begin{macro}{\xparse_grab_m_7:w} % \begin{macro}{\xparse_grab_m_8:w} % Grabbing 1--8 mandatory arguments. We don't need to worry about % nine arguments as this is only possible if everything is % mandatory. Each function has an auxiliary so that \cs{par} tokens % from other arguments still work. % \begin{macrocode} \cs_new_protected:cpn { xparse_grab_m_1:w } #1 \l_xparse_args_tl { \cs_set_protected_nopar:Npn \xparse_grab_arg:w ##1 { \tl_put_right:Nn \l_xparse_args_tl { {##1} } #1 \l_xparse_args_tl } \xparse_grab_arg:w } \cs_new_protected:cpn { xparse_grab_m_2:w } #1 \l_xparse_args_tl { \cs_set_protected_nopar:Npn \xparse_grab_arg:w ##1##2 { \tl_put_right:Nn \l_xparse_args_tl { {##1} {##2} } #1 \l_xparse_args_tl } \xparse_grab_arg:w } \cs_new_protected:cpn { xparse_grab_m_3:w } #1 \l_xparse_args_tl { \cs_set_protected_nopar:Npn \xparse_grab_arg:w ##1##2##3 { \tl_put_right:Nn \l_xparse_args_tl { {##1} {##2} {##3} } #1 \l_xparse_args_tl } \xparse_grab_arg:w } \cs_new_protected:cpn { xparse_grab_m_4:w } #1 \l_xparse_args_tl { \cs_set_protected_nopar:Npn \xparse_grab_arg:w ##1##2##3##4 { \tl_put_right:Nn \l_xparse_args_tl { {##1} {##2} {##3} {##4} } #1 \l_xparse_args_tl } \xparse_grab_arg:w } \cs_new_protected:cpn { xparse_grab_m_5:w } #1 \l_xparse_args_tl { \cs_set_protected_nopar:Npn \xparse_grab_arg:w ##1##2##3##4##5 { \tl_put_right:Nn \l_xparse_args_tl { {##1} {##2} {##3} {##4} {##5} } #1 \l_xparse_args_tl } \xparse_grab_arg:w } \cs_new_protected:cpn { xparse_grab_m_6:w } #1 \l_xparse_args_tl { \cs_set_protected_nopar:Npn \xparse_grab_arg:w ##1##2##3##4##5##6 { \tl_put_right:Nn \l_xparse_args_tl { {##1} {##2} {##3} {##4} {##5} {##6} } #1 \l_xparse_args_tl } \xparse_grab_arg:w } \cs_new_protected:cpn { xparse_grab_m_7:w } #1 \l_xparse_args_tl { \cs_set_protected_nopar:Npn \xparse_grab_arg:w ##1##2##3##4##5##6##7 { \tl_put_right:Nn \l_xparse_args_tl { {##1} {##2} {##3} {##4} {##5} {##6} {##7} } #1 \l_xparse_args_tl } \xparse_grab_arg:w } \cs_new_protected:cpn { xparse_grab_m_8:w } #1 \l_xparse_args_tl { \cs_set_protected_nopar:Npn \xparse_grab_arg:w ##1##2##3##4##5##6##7##8 { \tl_put_right:Nn \l_xparse_args_tl { {##1} {##2} {##3} {##4} {##5} {##6} {##7} {##8} } #1 \l_xparse_args_tl } \xparse_grab_arg:w } % \end{macrocode} % \end{macro} % \end{macro} % \end{macro} %\end{macro} % \end{macro} % \end{macro} % \end{macro} % \end{macro} % % \begin{macro}{\xparse_grab_t:w} % \begin{macro}{\xparse_grab_t_long:w} % \begin{macro}{\xparse_grab_t_trailing:w} % \begin{macro}{\xparse_grab_t_long_trailing:w} % \begin{macro}[aux]{\xparse_grab_t_aux:NnNn} % Dealing with a token is quite easy. Check the match, remove the % token if needed and add a flag to the output. % \begin{macrocode} \cs_new_protected:Npn \xparse_grab_t:w #1#2 \l_xparse_args_tl { \xparse_grab_t_aux:NnNn #1 {#2} \cs_set_protected_nopar:Npn { _ignore_spaces } } \cs_new_protected:Npn \xparse_grab_t_long:w #1#2 \l_xparse_args_tl { \xparse_grab_t_aux:NnNn #1 {#2} \cs_set_protected:Npn { _ignore_spaces } } \cs_new_protected:Npn \xparse_grab_t_trailing:w #1#2 \l_xparse_args_tl { \xparse_grab_t_aux:NnNn #1 {#2} \cs_set_protected_nopar:Npn { } } \cs_new_protected:Npn \xparse_grab_t_long_trailing:w #1#2 \l_xparse_args_tl { \xparse_grab_t_aux:NnNn #1 {#2} \cs_set_protected:Npn { } } \cs_new_protected:Npn \xparse_grab_t_aux:NnNn #1#2#3#4 { #3 \xparse_grab_arg:w { \use:c { peek_charcode_remove #4 :NTF } #1 { \xparse_add_arg:n { \BooleanTrue } #2 \l_xparse_args_tl } { \xparse_add_arg:n { \BooleanFalse } #2 \l_xparse_args_tl } } \xparse_grab_arg:w } % \end{macrocode} % \end{macro} % \end{macro} % \end{macro} % \end{macro} % \end{macro} % % \begin{macro}{\xparse_grab_u:w} % \begin{macro}{\xparse_grab_u_long:w} % \begin{macro}[aux]{\xparse_grab_u_aux:nnN} % Grabbing up to a list of tokens is quite easy: define the grabber, % and then collect. % \begin{macrocode} \cs_new_protected:Npn \xparse_grab_u:w #1#2 \l_xparse_args_tl { \xparse_grab_u_aux:nnN {#1} {#2} \cs_set_protected_nopar:Npn } \cs_new_protected:Npn \xparse_grab_u_long:w #1#2 \l_xparse_args_tl { \xparse_grab_u_aux:nnN {#1} {#2} \cs_set_protected:Npn } \cs_new_protected:Npn \xparse_grab_u_aux:nnN #1#2#3 { #3 \xparse_grab_arg:w ##1 #1 { \xparse_add_arg:n {##1} #2 \l_xparse_args_tl } \xparse_grab_arg:w } % \end{macrocode} % \end{macro} % \end{macro} % \end{macro} % % \begin{macro}{\xparse_grab_v:w} % \begin{macro}{\xparse_grab_v_long:w} % \begin{macro}{\xparse_grab_v_aux:w} % \begin{macro}{\xparse_grab_v_group_end:} % \begin{variable}{\l_xparse_v_rest_of_signature_tl} % \begin{variable}{\l_xparse_v_arg_tl} % The opening delimiter is never read verbatim, for consistency: if the % preceeding argument was optional and absent, then \TeX{} has already read % that token when looking for the optional argument. The first thing % to check is that this delimiter is a character, and distinguish the % case of a left brace (in that case, \cs{group_align_safe_end:} % is needed to compensate for the begin-group character that was % just seen). % Then set verbatim catcodes with \cs{xparse_grab_v_aux_catcodes:}. % % The group keep catcode changes local, and % \cs{group_align_safe_begin/end:} allow to use a character % with category code $4$ (normally |&|) as the delimiter. % It is ended by \cs{xparse_grab_v_group_end:}, which smuggles % the collected argument out of the group. % \begin{macrocode} \tl_new:N \l_xparse_v_rest_of_signature_tl \tl_new:N \l_xparse_v_arg_tl \cs_new_protected_nopar:Npn \xparse_grab_v:w { \bool_set_false:N \l_xparse_long_bool \xparse_grab_v_aux:w } \cs_new_protected_nopar:Npn \xparse_grab_v_long:w { \bool_set_true:N \l_xparse_long_bool \xparse_grab_v_aux:w } \cs_new_protected:Npn \xparse_grab_v_aux:w #1 \l_xparse_args_tl { \tl_set:Nn \l_xparse_v_rest_of_signature_tl {#1} \group_begin: \group_align_safe_begin: \tex_escapechar:D = 92 \scan_stop: \tl_clear:N \l_xparse_v_arg_tl \peek_N_type:TF { \xparse_grab_v_aux_test:N } { \peek_meaning_remove:NTF \c_group_begin_token { \group_align_safe_end: \xparse_grab_v_bgroup: } { \xparse_grab_v_aux_abort: } } } \cs_new_protected_nopar:Npn \xparse_grab_v_group_end: { \tl_set:Nx \l_xparse_tmp_tl { \tl_set:Nn \exp_not:N \l_xparse_v_arg_tl { \exp_not:o \l_xparse_v_arg_tl } } \exp_after:wN \group_align_safe_end: \exp_after:wN \group_end: \l_xparse_tmp_tl } % \end{macrocode} % \end{variable} % \end{variable} % \end{macro} % \end{macro} % \end{macro} % \end{macro} % % \begin{macro}{\xparse_grab_v_aux_test:N} % \begin{macro} % { % \xparse_grab_v_aux_loop:N, % \xparse_grab_v_aux_loop_ii:NN, % \xparse_grab_v_aux_loop_end: % } % Check that the opening delimiter is a character, setup category codes, % then start reading tokens one by one, keeping the delimiter as an argument. % If the verbatim was not nested, we will be grabbing one character % at each step. Unfortunately, it can happen that what follows the % verbatim argument is already tokenized. Thus, we check at each step % that the next token is indeed a \enquote{nice} % character, \emph{i.e.}, is not a character with % category code $1$ (begin-group), $2$ (end-group) % or $6$ (macro parameter), nor the space character, % with category code~$10$ and character code~$32$, % nor a control sequence. % The partially built argument is stored in \cs{l_xparse_v_arg_tl}. % If we ever meet a token which we cannot grab (non-N-type), % or which is not a character according to % \cs{xparse_grab_v_token_if_char:NTF}, then we bail out with % \cs{xparse_grab_v_aux_abort:}. Otherwise, we stop at the first % character matching the delimiter. % \begin{macrocode} \cs_new_protected:Npn \xparse_grab_v_aux_test:N #1 { \tl_put_right:Nn \l_xparse_v_arg_tl {#1} \xparse_grab_v_token_if_char:NTF #1 { \xparse_grab_v_aux_catcodes: \xparse_grab_v_aux_loop:N #1 } { \xparse_grab_v_aux_abort: } } \cs_new_protected:Npn \xparse_grab_v_aux_loop:N #1 { \peek_N_type:TF { \xparse_grab_v_aux_loop_ii:NN #1 } { \xparse_grab_v_aux_abort: } } \cs_new_protected:Npn \xparse_grab_v_aux_loop_ii:NN #1 #2 { \xparse_grab_v_token_if_char:NTF #2 { \token_if_eq_charcode:NNTF #1 #2 { \xparse_grab_v_aux_loop_end: } { \tl_put_right:Nn \l_xparse_v_arg_tl { #2 } \xparse_grab_v_aux_loop:N #1 } } { \xparse_grab_v_aux_abort: #2 } } \cs_new_protected_nopar:Npn \xparse_grab_v_aux_loop_end: { \xparse_grab_v_group_end: \exp_args:Nx \xparse_add_arg:n { \exp_args:No \str_tail:n { \l_xparse_v_arg_tl } } \l_xparse_v_rest_of_signature_tl \l_xparse_args_tl } % \end{macrocode} % \end{macro} % \end{macro} % % \begin{macro}{\xparse_grab_v_bgroup:} % \begin{macro} % { % \xparse_grab_v_bgroup_loop:, % \xparse_grab_v_bgroup_loop_ii:N % } % \begin{variable}{\l_xparse_v_nesting_int} % If the opening delimiter is a left brace, we keep track of % how many left and right braces were encountered so far in % \cs{l_xparse_v_nesting_int} (the methods used for optional % arguments cannot apply here), and stop as soon as it reaches~$0$. % % Some care was needed when removing the opening delimiter, which % has already been assigned category code~$1$: using % \cs{peek_meaning_remove:NTF} in the \cs{xparse_grab_v_aux:w} % function would break within alignments. Instead, we first % convert that token to a string, and remove the result as a % normal undelimited argument. % \begin{macrocode} \int_new:N \l_xparse_v_nesting_int \cs_new_protected_nopar:Npn \xparse_grab_v_bgroup: { \xparse_grab_v_aux_catcodes: \int_set_eq:NN \l_xparse_v_nesting_int \c_one \tl_set:Nx \l_xparse_v_arg_tl { \iow_char:N \{ } \xparse_grab_v_bgroup_loop: } \cs_new_protected:Npn \xparse_grab_v_bgroup_loop: { \peek_N_type:TF { \xparse_grab_v_bgroup_loop_ii:N } { \xparse_grab_v_aux_abort: } } \cs_new_protected:Npn \xparse_grab_v_bgroup_loop_ii:N #1 { \xparse_grab_v_token_if_char:NTF #1 { \token_if_eq_charcode:NNTF \c_group_end_token #1 { \int_decr:N \l_xparse_v_nesting_int \int_compare:nNnTF \l_xparse_v_nesting_int > \c_zero { \tl_put_right:Nn \l_xparse_v_arg_tl { #1 } \xparse_grab_v_bgroup_loop: } { \xparse_grab_v_aux_loop_end: } } { \token_if_eq_charcode:NNT \c_group_begin_token #1 { \int_incr:N \l_xparse_v_nesting_int } \tl_put_right:Nn \l_xparse_v_arg_tl { #1 } \xparse_grab_v_bgroup_loop: } } { \xparse_grab_v_aux_abort: #1 } } % \end{macrocode} % \end{variable} % \end{macro} % \end{macro} % % \begin{macro}{\xparse_grab_v_aux_catcodes:} % \begin{macro}{\xparse_grab_v_aux_abort:, \xparse_grab_v_aux_abort_ii:w} % In a standalone format, the list of special characters is kept % as a sequence, \cs{c_xparse_special_chars_seq}, and we use % \tn{dospecials} in package mode. % The approach for short verbatim arguments is to make the end-line % character a macro parameter character: this is forbidden by the % rest of the code. Then the error branch can check what caused the % bail out and give the appropriate error message. % \begin{macrocode} \cs_new_protected_nopar:Npn \xparse_grab_v_aux_catcodes: { %<*initex> \seq_map_function:NN \c_xparse_special_chars_seq \char_set_catcode_other:N % %<*package> \cs_set_eq:NN \do \char_set_catcode_other:N \dospecials % \tex_endlinechar:D = `\^^M \scan_stop: \bool_if:NTF \l_xparse_long_bool { \char_set_catcode_other:n { \tex_endlinechar:D } } { \char_set_catcode_parameter:n { \tex_endlinechar:D } } } \cs_new_protected_nopar:Npn \xparse_grab_v_aux_abort: { \xparse_grab_v_group_end: \xparse_add_arg:n { \NoValue } \exp_after:wN \xparse_grab_v_aux_abort_ii:w \l_xparse_args_tl \q_stop } \cs_new_protected:Npn \xparse_grab_v_aux_abort_ii:w #1 #2 \q_stop { \group_begin: \char_set_lccode:nn { `\# } { \tex_endlinechar:D } \tl_to_lowercase:n { \group_end: \peek_meaning_remove:NTF ## } { \msg_error:nnxx { xparse } { verbatim-newline } { \cs_to_str:N #1 } { \tl_to_str:N \l_xparse_v_arg_tl } \l_xparse_v_rest_of_signature_tl \l_xparse_args_tl } { \msg_error:nnxx { xparse } { verbatim-already-tokenized } { \cs_to_str:N #1 } { \tl_to_str:N \l_xparse_v_arg_tl } \l_xparse_v_rest_of_signature_tl \l_xparse_args_tl } } % \end{macrocode} % \end{macro} % \end{macro} % % \begin{macro}{\xparse_grab_v_token_if_char:NTF} % This function assumes that the escape character is printable. % Then the string representation of control sequences is at least % two characters, and \cs{str_tail:n} only removes the escape % character. Macro parameter characters are doubled by % \cs{tl_to_str:n}, and will also yield a non-empty result, % hence are not considered as characters. % \begin{macrocode} \cs_new_protected:Npn \xparse_grab_v_token_if_char:NTF #1 { \str_if_eq:xxTF { } { \str_tail:n {#1} } } % \end{macrocode} % \end{macro} % % \subsection{Argument processors} % % \begin{macro}{\xparse_process_to_str:n} % A basic argument processor: as much an example as anything else. % \begin{macrocode} \cs_new_protected:Npn \xparse_process_to_str:n #1 { \tl_set:Nx \ProcessedArgument { \tl_to_str:n {#1} } } % \end{macrocode} %\end{macro} % % \begin{macro}{\xparse_bool_reverse:N} % A simple reversal. % \begin{macrocode} \cs_new_protected:Npn \xparse_bool_reverse:N #1 { \bool_if:NTF #1 { \tl_set:Nn \ProcessedArgument { \c_false_bool } } { \tl_set:Nn \ProcessedArgument { \c_true_bool } } } % \end{macrocode} % \end{macro} % % \begin{macro}{\l_xparse_split_argument_tl} % \begin{macro}{\xparse_split_argument:nnn} % \begin{macro}[aux]{\xparse_split_argument_aux_i:w} % \begin{macro}[aux]{\xparse_split_argument_aux_ii:w} % \begin{macro}[aux]{\xparse_split_argument_aux_iii:w} % The idea of this function is to split the input $n + 1$ times using % a given token. % \begin{macrocode} \tl_new:N \l_xparse_split_argument_tl \group_begin: \char_set_catcode_active:N \@ \cs_new_protected:Npn \xparse_split_argument:nnn #1#2#3 { \tl_set:Nn \l_xparse_split_argument_tl {#3} \group_begin: \char_set_lccode:nn { `\@ } { `#2} \tl_to_lowercase:n { \group_end: \tl_replace_all:Nnn \l_xparse_split_argument_tl { @ } {#2} } \cs_set_protected:Npn \xparse_split_argument_aux_i:w ##1 \q_mark ##2 #2 ##3 \q_stop { \tl_put_right:Nn \ProcessedArgument { {##2} } ##1 \q_mark ##3 \q_stop } \cs_set_protected:Npn \xparse_split_argument_aux_iii:w ##1 #2 ##2 \q_stop { \IfNoValueF {##1} { \msg_error:nnxxx { xparse } { split-excess-tokens } { \tl_to_str:n {#2} } { \tl_to_str:n {#1} } { \tl_to_str:n {#3} } } } \tl_set:Nx \l_xparse_tmp_tl { \prg_replicate:nn { #1 + 1 } { \xparse_split_argument_aux_i:w } \xparse_split_argument_aux_ii:w \exp_not:N \q_mark \exp_not:o \l_xparse_split_argument_tl \prg_replicate:nn {#1} { \exp_not:n {#2} \NoValue } \exp_not:n { #2 \q_stop } } \l_xparse_tmp_tl } \group_end: \cs_new_protected:Npn \xparse_split_argument_aux_i:w { } \cs_new_protected:Npn \xparse_split_argument_aux_ii:w #1 \q_mark #2 \q_stop { \tl_if_empty:nF {#2} { \xparse_split_argument_aux_iii:w #2 \q_stop } } \cs_new_protected:Npn \xparse_split_argument_aux_iii:w { } % \end{macrocode} % \end{macro} % \end{macro} % \end{macro} % \end{macro} % \end{macro} % % \begin{variable}{\l_xparse_split_list_seq, \l_xparse_split_list_tl} % \begin{macro}{\xparse_split_list:nn} % \begin{macro}[aux]{\xparse_split_list_multi:nn, xparse_split_list_multi:nV} % \begin{macro}[aux]{xparse_split_list_single:Nn} % Splitting can take place either at a single token or at a longer % identifier. To deal with single active tokens, a two-part procedur is % needed. % \begin{macrocode} \seq_new:N \l_xparse_split_list_seq \tl_new:N \l_xparse_split_list_tl \cs_new_protected:Npn \xparse_split_list:nn #1#2 { \bool_if:nTF { \tl_if_single_p:n {#1} && ! (\token_if_cs_p:N #1 ) } { \xparse_split_list_single:Nn #1 {#2} } { \xparse_split_list_multi:nn {#1} {#2} } } \cs_set_protected:Npn \xparse_split_list_multi:nn #1#2 { \seq_set_split:Nnn \l_xparse_split_list_seq {#1} {#2} \tl_clear:N \ProcessedArgument \seq_map_inline:Nn \l_xparse_split_list_seq { \tl_put_right:Nn \ProcessedArgument { {##1} } } } \cs_generate_variant:Nn \xparse_split_list_multi:nn { nV } \group_begin: \char_set_catcode_active:N \@ \cs_new_protected:Npn \xparse_split_list_single:Nn #1#2 { \tl_set:Nn \l_xparse_split_list_tl {#2} \group_begin: \char_set_lccode:nn { `\@ } { `#1 } \tl_to_lowercase:n { \group_end: \tl_replace_all:Nnn \l_xparse_split_list_tl { @ } {#1} } \xparse_split_list_multi:nV {#1} \l_xparse_split_list_tl } \group_end: % \end{macrocode} % \end{macro} % \end{macro} % \end{macro} % \end{variable} % % \begin{macro}{\xparse_trim_spaces:n} % This one is almost trivial. % \begin{macrocode} \cs_new_protected:Npn \xparse_trim_spaces:n #1 { \tl_set:Nx \ProcessedArgument { \tl_trim_spaces:n {#1} } } % \end{macrocode} % \end{macro} % % \subsection{Creating expandable functions} % % The trick here is to pass each grabbed argument along a chain of % auxiliary functions. Each one ultimately calls the next in the chain, % so that all of the arguments are passed along delimited using % \cs{q_xparse}. At the end of the chain, the marker is removed % so that the user-supplied code can be passed the correct number % of arguments. All of this is done by expansion! % % \begin{macro}{\xparse_exp_add_type_d:w} % As in the standard case, the trick here is to slot in the default % and treat as type \texttt{D}. % \begin{macrocode} \cs_new_protected:Npn \xparse_exp_add_type_d:w #1#2 { \xparse_exp_add_type_D:w #1 #2 { \NoValue } } % \end{macrocode} % \end{macro} % % \begin{macro}{\xparse_exp_add_type_D:w} % The most complex argument to grab in an expandable manner is the % general delimited one. First, a short-cut is set up in % \cs{l_xparse_tmp_tl} for the name of the current grabber function. % This is then created to grab one argument and test if it is equal % to the opening delimiter. If the test fails, the code adds the default % value and closing delimiter before `recycling' the argument. In either % case, the second auxiliary function is called. It finds the closing % delimiter and so the optional argument (if any). The function then % calls the next one in the chain, passing along the argument(s) % grabbed thus-far using \cs{q_xparse} as a marker. % \begin{macrocode} \cs_new_protected:Npn \xparse_exp_add_type_D:w #1#2#3 { \tl_set:Nx \l_xparse_tmp_tl { \exp_after:wN \token_to_str:N \l_xparse_function_tl \int_use:N \l_xparse_total_args_int } \xparse_exp_set:cpx { \l_xparse_tmp_tl } ##1 \q_xparse ##2 { \exp_not:N \tl_if_head_eq_charcode:nNTF {##2} #1 { \exp_not:c { \l_xparse_tmp_tl aux } ##1 \exp_not:N \q_xparse } { \exp_not:c { \l_xparse_tmp_tl aux } ##1 \exp_not:N \q_xparse #3 #2 {##2} } } \xparse_exp_set:cpx { \l_xparse_tmp_tl aux} ##1 \q_xparse ##2 #2 { \exp_not:c { \exp_after:wN \token_to_str:N \l_xparse_function_tl \int_eval:n { \l_xparse_total_args_int + 1 } } ##1 {##2} \exp_not:N \q_xparse } \xparse_exp_prepare_function:N } % \end{macrocode} % \end{macro} % % \begin{macro}{\xparse_exp_add_type_l:w} % \begin{macro}{\xparse_exp_add_type_m:w} % Gathering \texttt{l} and \texttt{m} arguments is almost the same. % The grabber for the current argument is created to simply get the % necessary argument and pass it along with any others through to the % next function in the chain. % \begin{macrocode} \cs_new_protected_nopar:Npn \xparse_exp_add_type_l:w { \xparse_exp_set:cpx { \exp_after:wN \token_to_str:N \l_xparse_function_tl \int_use:N \l_xparse_total_args_int } ##1 \q_xparse ##2## { \exp_not:c { \exp_after:wN \token_to_str:N \l_xparse_function_tl \int_eval:n { \l_xparse_total_args_int + 1 } } ##1 {##2} \exp_not:N \q_xparse } \xparse_exp_prepare_function:N } \cs_new_protected_nopar:Npn \xparse_exp_add_type_m:w { \int_incr:N \l_xparse_m_args_int \xparse_exp_set:cpx { \exp_after:wN \token_to_str:N \l_xparse_function_tl \int_use:N \l_xparse_total_args_int } ##1 \q_xparse ##2 { \exp_not:c { \exp_after:wN \token_to_str:N \l_xparse_function_tl \int_eval:n { \l_xparse_total_args_int + 1 } } ##1 {##2} \exp_not:N \q_xparse } \xparse_exp_prepare_function:N } % \end{macrocode} % \end{macro} % \end{macro} % % \begin{macro}{\xparse_exp_add_type_t:w} % Looking for a single token is a simpler version of the \texttt{D} % code. The same idea of picking up one argument is used, but there is % no need for a second function as there is no closing token to find. So % either \cs{BooleanTrue} or \cs{BooleanFalse} are added to the list of % arguments. In the later case, the grabber argument must be `recycled'. % \begin{macrocode} \cs_new_protected:Npn \xparse_exp_add_type_t:w #1 { \tl_set:Nx \l_xparse_tmp_tl { \exp_after:wN \token_to_str:N \l_xparse_function_tl \int_eval:n { \l_xparse_total_args_int + 1 } } \xparse_exp_set:cpx { \exp_after:wN \token_to_str:N \l_xparse_function_tl \int_use:N \l_xparse_total_args_int } ##1 \q_xparse ##2 { \exp_not:N \tl_if_head_eq_charcode:nNTF {##2} #1 { \exp_not:c { \l_xparse_tmp_tl } ##1 \exp_not:n { { \BooleanTrue } \q_xparse } } { \exp_not:c { \l_xparse_tmp_tl } ##1 \exp_not:n { { \BooleanFalse } \q_xparse {##2} } } } \xparse_exp_prepare_function:N } % \end{macrocode} % \end{macro} % % \begin{macro}{\xparse_exp_add_type_u:w} % Setting up for a \texttt{u} argument is a case of defining the % grabber for the current argument in a delimited fashion. The rest of % the process is as the other grabbers: add to the chain and call the % next function. % \begin{macrocode} \cs_new_protected:Npn \xparse_exp_add_type_u:w #1 { \xparse_exp_set:cpx { \exp_after:wN \token_to_str:N \l_xparse_function_tl \int_use:N \l_xparse_total_args_int } ##1 \q_xparse ##2 #1 { \exp_not:c { \exp_after:wN \token_to_str:N \l_xparse_function_tl \int_eval:n { \l_xparse_total_args_int + 1 } } ##1 {##2} \exp_not:N \q_xparse } \xparse_exp_prepare_function:N } % \end{macrocode} % \end{macro} % % \begin{macro}{\xparse_exp_check_and_add:N} % Virtually identical to the normal version, except calling the % expandable \texttt{add} functions rather than the standard versions. % \begin{macrocode} \cs_new_protected_nopar:Npn \xparse_exp_check_and_add:N #1 { \cs_if_free:cTF { xparse_exp_add_type_ #1 :w } { \msg_error:nnx { xparse } { unknown-argument-type } { \tl_to_str:n {#1} } \tl_set:Nn \l_xparse_last_arg_tl { m } \xparse_exp_add_type_m:w } { \tl_set:Nn \l_xparse_last_arg_tl {#1} \use:c { xparse_exp_add_type_ #1 :w } } } % \end{macrocode} % \end{macro} % % \begin{macro}{\xparse_exp_declare_cmd:Nnn} % \begin{macro}[aux]{\xparse_exp_declare_cmd_all_m:Nn} % \begin{macro}[aux]{\xparse_exp_declare_cmd_mixed:Nn} % \begin{macro}[aux]{\xparse_exp_declare_cmd_mixed_aux:Nn} % The overall scheme here is very different from the standard method. % For each argument, an internal function is created to grab an argument % and pass along previous ones. Each `daisy chains' to call the next % one in the sequence. Thus at the end of the chain, an extra `argument' % function is included to unwind the chain and pass data to the the % internal function containing the actual code. If all of the arguments % are type \texttt{m}, then the same tick is used as in the standard % version. The \texttt{x} in the lead-off and mop-up functions makes % sure that the braces around the first argument are not lost. % \begin{macrocode} \cs_new_protected:Npn \xparse_exp_declare_cmd:Nnn #1#2#3 { \cs_if_exist:NTF #1 { \msg_warning:nnxx { xparse } { redefine-command } { \token_to_str:N #1 } { \tl_to_str:n {#2} } } { \msg_info:nnxx { xparse } { define-command } { \token_to_str:N #1 } { \tl_to_str:n {#2} } } \group_begin: \tex_escapechar:D 92 \scan_stop: \tl_set:Nx \l_xparse_function_tl { \token_to_str:N #1} \exp_args:NNNo \group_end: \tl_set:Nn \l_xparse_function_tl { \l_xparse_function_tl } \xparse_exp_prepare_function:n {#2} \int_compare:nNnTF \l_xparse_total_args_int = \l_xparse_m_args_int { \xparse_exp_declare_cmd_all_m:Nn #1 {#3} } { \xparse_exp_declare_cmd_mixed:Nn #1 {#3} } } \cs_new_protected:Npn \xparse_exp_declare_cmd_all_m:Nn #1#2 { \bool_if:NTF \l_xparse_long_bool { \cs_generate_from_arg_count:NNnn #1 \cs_set:Npn \l_xparse_total_args_int {#2} } { \cs_generate_from_arg_count:NNnn #1 \cs_set_nopar:Npn \l_xparse_total_args_int {#2} } } \cs_new_protected:Npn \xparse_exp_declare_cmd_mixed:Nn #1#2 { \tl_if_in:noTF { l m u } \l_xparse_last_arg_tl { \xparse_exp_declare_cmd_mixed_aux:Nn #1 {#2} } { \msg_error:nn { xparse } { expandable-ending-optional } } } \cs_new_protected:Npn \xparse_exp_declare_cmd_mixed_aux:Nn #1#2 { \cs_set_nopar:Npx #1 { \exp_not:c { \token_to_str:N #1 1 } x \exp_not:N \q_xparse } \cs_set_nopar:cpx { \token_to_str:N #1 \int_eval:n { \l_xparse_total_args_int + 1 } } x ##1 \q_xparse { \exp_not:c { \token_to_str:N #1 } ##1 } \cs_generate_from_arg_count:cNnn { \token_to_str:N #1 } \cs_set:Npn \l_xparse_total_args_int {#2} } % \end{macrocode} % \end{macro} % \end{macro} % \end{macro} % \end{macro} % % \begin{macro}{\xparse_exp_prepare_function:n} % \begin{macro}[aux]{\xparse_exp_prepare_function_aux:n} % A couple of early validation tests. Processors are forbidden, as are % \texttt{g}, \texttt{l}, \texttt{u} and \texttt{v} arguments. % \begin{macrocode} \cs_new_protected:Npn \xparse_exp_prepare_function:n #1 { \bool_set_false:N \l_xparse_error_bool \tl_if_in:nnT {#1} { > } { \msg_error:nnxx { xparse } { processor-in-expandable } { \tl_to_str:n {#1} } \bool_set_true:N \l_xparse_error_bool } \tl_if_in:nnT {#1} { g } { \msg_error:nnxx { xparse } { grouped-in-expandable } { g } { \tl_to_str:n {#1} } \bool_set_true:N \l_xparse_error_bool } \tl_if_in:nnT {#1} { G } { \msg_error:nnxx { xparse } { grouped-in-expandable } { G } { \tl_to_str:n {#1} } \bool_set_true:N \l_xparse_error_bool } \tl_if_in:nnT {#1} { v } { \msg_error:nnxx { xparse } { verbatim-in-expandable } { v } { \tl_to_str:n {#1} } \bool_set_true:N \l_xparse_error_bool } \bool_if:NF \l_xparse_error_bool { \xparse_exp_prepare_function_aux:n {#1} } } \cs_new_protected:Npn \xparse_exp_prepare_function_aux:n #1 { \cs_set_eq:NN \xparse_prepare_next:w \xparse_exp_prepare_function:N \cs_set_eq:NN \xparse_exp_set:cpx \cs_set_nopar:cpx \bool_set_false:N \l_xparse_long_bool \int_zero:N \l_xparse_m_args_int \int_zero:N \l_xparse_total_args_int \tl_if_in:nnT {#1} { + } { \bool_set_true:N \l_xparse_long_bool \cs_set_eq:NN \xparse_exp_set:cpx \cs_set:cpx } \xparse_exp_prepare_function:N #1 \q_nil } % \end{macrocode} % \end{macro} % \end{macro} % % \begin{macro}{\xparse_exp_prepare_function:N} % \begin{macro}[aux]{\xparse_exp_prepare_function_long:N} % \begin{macro}[aux]{\xparse_exp_prepare_function_short:N} % Preparing functions is a case of reading the signature, as in the % normal case. However, everything has to be either short or long, and % so there is an extra step to make sure that once one \texttt{+} has % been seen everything has one. That detour then takes us back to % a standard looping concept. % \begin{macrocode} \cs_new_protected:Npn \xparse_exp_prepare_function:N #1 { \bool_if:NTF \l_xparse_long_bool { \xparse_exp_prepare_function_long:N #1 } { \xparse_exp_prepare_function_short:N #1 } } \cs_new_protected:Npn \xparse_exp_prepare_function_long:N #1 { \quark_if_nil:NF #1 { \str_if_eq:nnTF {#1} { + } { \xparse_exp_prepare_function_short:N } { \msg_error:nn { xparse } { inconsistent-long } \xparse_exp_prepare_function_short:N #1 } } } \cs_new_protected:Npn \xparse_exp_prepare_function_short:N #1 { \quark_if_nil:NF #1 { \prop_get:NnNTF \c_xparse_shorthands_prop {#1} \l_xparse_tmp_tl { \bool_if:NT \l_xparse_long_bool { \tl_put_left:Nn \l_xparse_tmp_tl { + } } \exp_after:wN \xparse_exp_prepare_function:N \l_xparse_tmp_tl } { \int_incr:N \l_xparse_total_args_int \xparse_exp_check_and_add:N #1 } } } % \end{macrocode} % \end{macro} % \end{macro} % \end{macro} % % \begin{macro}{\xparse_exp_set:cpx} % A short-cut to save constantly re-testing \cs{l_xparse_long_bool}. % \begin{macrocode} \cs_new_eq:NN \xparse_exp_set:cpx \cs_set_nopar:cpx % \end{macrocode} % \end{macro} % % \subsection{Access to the argument specification} % % \begin{macro}{\xparse_get_arg_spec:N} % \begin{macro}{\xparse_get_arg_spec:n} % \begin{macro}{\ArgumentSpecification} % Recovering the argument specification is also trivial, using the % \cs{tl_set_eq:cN} function. % \begin{macrocode} \cs_new_protected:Npn \xparse_get_arg_spec:N #1 { \cs_if_exist:cTF { l_xparse_ \token_to_str:N #1 _arg_spec_tl } { \tl_set_eq:Nc \ArgumentSpecification { l_xparse_ \token_to_str:N #1 _arg_spec_tl } } { \msg_error:nnx { xparse } { unknown-document-command } { \token_to_str:N #1 } } } \cs_new_protected:Npn \xparse_get_arg_spec:n #1 { \cs_if_exist:cTF { l_xparse_ #1 _arg_spec_tl } { \tl_set_eq:Nc \ArgumentSpecification { l_xparse_ #1 _arg_spec_tl } } { \msg_error:nnx { xparse } { unknown-document-environment } { \tl_to_str:n {#1} } } } \tl_new:N \ArgumentSpecification % \end{macrocode} % \end{macro} % \end{macro} % \end{macro} % % \begin{macro}{\xparse_show_arg_spec:N} % \begin{macro}{\xparse_show_arg_spec:n} % Showing the argument specification simply means finding it and then % calling the \cs{tl_show:c} function. % \begin{macrocode} \cs_new_protected:Npn \xparse_show_arg_spec:N #1 { \cs_if_exist:cTF { l_xparse_ \token_to_str:N #1 _arg_spec_tl } { \tl_set_eq:Nc \ArgumentSpecification { l_xparse_ \token_to_str:N #1 _arg_spec_tl } \tl_show:N \ArgumentSpecification } { \msg_error:nnx { xparse } { unknown-document-command } { \token_to_str:N #1 } } } \cs_new_protected:Npn \xparse_show_arg_spec:n #1 { \cs_if_exist:cTF { l_xparse_ #1 _arg_spec_tl } { \tl_set_eq:Nc \ArgumentSpecification { l_xparse_ #1 _arg_spec_tl } \tl_show:N \ArgumentSpecification } { \msg_error:nnx { xparse } { unknown-document-environment } { \tl_to_str:n {#1} } } } % \end{macrocode} % \end{macro} % \end{macro} % %\subsection{Messages} % % Some messages intended as errors. % \begin{macrocode} \msg_new:nnnn { xparse } { command-already-defined } { Command~'#1'~already~defined! } { You~have~used~\NewDocumentCommand with~a~command~that~already~has~a~definition. \\ The~existing~definition~of~'#1'~will~be~overwritten. } \msg_new:nnnn { xparse } { command-not-yet-defined } { Command ~'#1'~not~yet~defined! } { You~have~used~\RenewDocumentCommand with~a~command~that~was~never~defined.\\ A~new~command~'#1'~will~be~created. } \msg_new:nnnn { xparse } { environment-already-defined } { Environment~'#1'~already~defined! } { You~have~used~\NewDocumentEnvironment with~an~environment~that~already~has~a~definition.\\ The~existing~definition~of~'#1'~will~be~overwritten. } \msg_new:nnnn { xparse } { environment-mismatch } { Mismatch~between~start~and~end~of~environment. } { The~current~environment~is~called~'#1',~but~you~have~tried~to~ end~one~called~'#2'.~Environments~have~to~be~properly~nested. } \msg_new:nnnn { xparse } { environment-not-yet-defined } { Environment~'#1'~not~yet~defined! } { You~have~used~\RenewDocumentEnvironment with~an~environment~that~was~never~defined.\\ A~new~environment~'#1'~will~be~created. } \msg_new:nnnn { xparse } { environment-unknown } { Environment~'#1'~undefined. } { You~have~tried~to~start~an~environment~called~'#1',~ but~this~has~never~been~defined.\\ The~command~will~be~ignored. } \msg_new:nnnn { xparse } { expandable-ending-optional } { Signature~for~expandable~command~ends~with~optional~argument. } { \c_msg_coding_error_text_tl Expandable~commands~must~have~a~final~mandatory~argument~ (or~no~arguments~at~all).~You~cannot~have~a~terminal~optional~ argument~with~expandable~commands. } \msg_new:nnnn { xparse } { grouped-in-expandable } { Argument~specifier~'#1'~forbidden~in~expandable~commands. } { \c_msg_coding_error_text_tl Argument~specification~'#2'~contains~the~optional~grouped~ argument~'#1':~ this~is only~supported~for~standard~robust~functions. } \msg_new:nnnn { xparse } { inconsistent-long } { Inconsistent~long~arguments~for~expandable~command. } { \c_msg_coding_error_text_tl The~arguments~for~an~expandable~command~must~either~all~be~ short~or~all~be~long.~You~have~tried~to~mix~the~two~types. } \msg_new:nnnn { xparse } { processor-in-expandable } { Argument~processors~cannot~be~used~with~expandable~functions. } { \c_msg_coding_error_text_tl Argument~specification~'#1'~contains~a~processor~function:~ this~is~only~supported~for~standard~robust~functions. } \msg_new:nnnn { xparse } { split-excess-tokens } { Too~many~'#1'~tokens~when~trying~to~split~argument. } { LaTeX~was~asked~to~split~the~input~'#3'~ at~each~occurrence~of~the~token~'#1',~up~to~a~maximum~of~#2~parts.~ There~were~too~many~'#1'~tokens. } \msg_new:nnnn { xparse } { unknown-argument-type } { Unknown~argument~type~'#1'~replaced~by~'m'. } { \c_msg_coding_error_text_tl The~letter~'#1'~does~not~specify~a~known~argument~type.~ LaTeX~will~assume~you~want~a~standard~mandatory~argument~(type~'m'). } \msg_new:nnnn { xparse } { unknown-document-command } { Unknown~document~command~'#1'. } { You~have~asked~for~the~argument~specification~for~a~command~'#1',~ but~this~is~not~a~document~command. } \msg_new:nnnn { xparse } { unknown-document-environment } { Unknown~document~environment~'#1'. } { You~have~asked~for~the~argument~specification~for~a~command~'#1',~ but~this~is~not~a~document~environment. } \msg_new:nnnn { xparse } { verbatim-newline } { Verbatim~argument~of~#1~ended~by~end~of~line. } { Short~verbatim~arguments~cannot~contain~newlines.~ I~suspect~you've~forgotten~the~closing~delimiter~of~#1. I~will~ignore~'#2'. } \msg_new:nnnn { xparse } { verbatim-already-tokenized } { Verbatim~command~#1~illegal~in~command~argument. } { The~command~#1~takes~a~verbatim~argument.~It~may~not~appear~within~ the~argument~of~another~function.~I~will~ignore~'#2'. } \msg_new:nnnn { xparse } { verbatim-in-expandable } { Argument~specifier~'#1'~forbidden~in~expandable~commands. } { \c_msg_coding_error_text_tl Argument~specification~'#2'~contains~the~verbatim~argument~'#1':~ this~is only~supported~for~standard~robust~functions. } % \end{macrocode} % % Intended more for information. % \begin{macrocode} \msg_new:nnn { xparse } { define-command } { Defining~document~command~#1~ with~arg.~spec.~'#2'~\msg_line_context:. } \msg_new:nnn { xparse } { define-environment } { Defining~document~environment~'#1'~ with~arg.~spec.~'#2'~\msg_line_context:. } \msg_new:nnn { xparse } { redefine-command } { Redefining~document~command~#1~ with~arg.~spec.~'#2'~\msg_line_context:. } \msg_new:nnn { xparse } { redefine-environment } { Redefining~document~environment~'#1'~ with~arg.~spec.~'#2'~\msg_line_context:. } % \end{macrocode} % % \subsection{User functions} % % The user functions are more or less just the internal functions % renamed. % % \begin{macro}{\BooleanFalse} % \begin{macro}{\BooleanTrue} % Design-space names for the Boolean values. % \begin{macrocode} \cs_new_eq:NN \BooleanFalse \c_false_bool \cs_new_eq:NN \BooleanTrue \c_true_bool % \end{macrocode} % \end{macro} % \end{macro} % % \begin{macro}{\DeclareDocumentCommand} % \begin{macro}{\NewDocumentCommand} % \begin{macro}{\RenewDocumentCommand} % \begin{macro}{\ProvideDocumentCommand} % The user macros are pretty simple wrappers around the internal ones. % \begin{macrocode} \cs_new_protected:Npn \DeclareDocumentCommand #1#2#3 { \xparse_declare_cmd:Nnn #1 {#2} {#3} } \cs_new_protected:Npn \NewDocumentCommand #1#2#3 { \cs_if_exist:NTF #1 { \msg_error:nnx { xparse } { command-already-defined } { \token_to_str:N #1 } } { \xparse_declare_cmd:Nnn #1 {#2} {#3} } } \cs_new_protected:Npn \RenewDocumentCommand #1#2#3 { \cs_if_exist:NTF #1 { \xparse_declare_cmd_aux:Nnn #1 {#2} {#3} } { \msg_error:nnx { xparse } { command-not-yet-defined } { \token_to_str:N #1 } } } \cs_new_protected:Npn \ProvideDocumentCommand #1#2#3 { \cs_if_exist:NF #1 { \xparse_declare_cmd:Nnn #1 {#2} {#3} } } % \end{macrocode} % \end{macro} % \end{macro} % \end{macro} % \end{macro} % % \begin{macro}{\DeclareDocumentCommandImplementation} % \begin{macro}{\DeclareDocumentCommandInterface} % The separate implementation/interface system is again pretty simple % to create at the outer layer. % \begin{macrocode} \cs_new_protected:Npn \DeclareDocumentCommandImplementation #1#2#3 { \xparse_declare_cmd_implementation:nNn {#1} #2 {#3} } \cs_new_protected:Npn \DeclareDocumentCommandInterface #1#2#3 { \xparse_declare_cmd_interface:Nnn #1 {#2} {#3} } % \end{macrocode} % \end{macro} % \end{macro} % % \begin{macro}{\DeclareDocumentEnvironment} % \begin{macro}{\NewDocumentEnvironment} % \begin{macro}{\RenewDocumentEnvironment} % \begin{macro}{\ProvideDocumentEnvironment} % Very similar for environments. % \begin{macrocode} \cs_new_protected:Npn \DeclareDocumentEnvironment #1#2#3#4 { \xparse_declare_env:nnnn {#1} {#2} {#3} {#4} } \cs_new_protected:Npn \NewDocumentEnvironment #1#2#3#4 { \cs_if_exist:cTF {#1} { \msg_error:nnx { xparse } { environment-already-defined } {#1} } { \xparse_declare_env:nnnn {#1} {#2} {#3} {#4} } } \cs_new_protected:Npn \RenewDocumentEnvironment #1#2#3#4 { \cs_if_exist:cTF {#1} { \xparse_declare_env:nnnn {#1} {#2} {#3} {#4} } { \msg_error:nnx { xparse } { environment-not-yet-defined } {#1} } } \cs_new_protected:Npn \ProvideDocumentEnvironment #1#2#3#4 { \cs_if_exist:cF { #1 } { \xparse_declare_env:nnnn {#1} {#2} {#3} {#4} } } % \end{macrocode} % \end{macro} % \end{macro} % \end{macro} % \end{macro} % % \begin{macro}{\DeclareExpandableDocumentCommand} % The expandable version of the basic function is essentially the same. % \begin{macrocode} \cs_new_protected:Npn \DeclareExpandableDocumentCommand #1#2#3 { \xparse_exp_declare_cmd:Nnn #1 {#2} {#3} } % \end{macrocode} % \end{macro} % % \begin{macro}[TF]{\IfBoolean} % The logical \meta{true} and \meta{false} statements are just the % normal \cs{c_true_bool} and \cs{c_false_bool}, so testing for them is % done with the \cs{bool_if:NTF} functions from \textsf{l3prg}. % \begin{macrocode} \cs_new_eq:NN \IfBooleanTF \bool_if:NTF \cs_new_eq:NN \IfBooleanT \bool_if:NT \cs_new_eq:NN \IfBooleanF \bool_if:NF % \end{macrocode} % \end{macro} % % \begin{macro}[TF]{\IfNoValue} % Simple re-naming. % \begin{macrocode} \cs_new_eq:NN \IfNoValueF \xparse_if_no_value:nF \cs_new_eq:NN \IfNoValueT \xparse_if_no_value:nT \cs_new_eq:NN \IfNoValueTF \xparse_if_no_value:nTF % \end{macrocode} % \end{macro} % \begin{macro}[TF]{\IfValue} % Inverted logic. % \begin{macrocode} \cs_set:Npn \IfValueF { \xparse_if_no_value:nT } \cs_set:Npn \IfValueT { \xparse_if_no_value:nF } \cs_set:Npn \IfValueTF #1#2#3 { \xparse_if_no_value:nTF {#1} {#3} {#2} } % \end{macrocode} % \end{macro} % % \begin{variable}{\NoValue} % The marker for no value being give: this can be typeset safely. % This is coded by hand as making it \cs{protected} ensures that it % will not turn into anything else by accident. % \begin{macrocode} \cs_new_protected:Npn \NoValue { -NoValue- } % \end{macrocode} %\end{variable} % % \begin{macro}{\ProcessedArgument} % Processed arguments are returned using this name, which is reserved % here although the definition will change. % \begin{macrocode} \tl_new:N \ProcessedArgument % \end{macrocode} % \end{macro} % % \begin{macro}{\ReverseBoolean} % A processor to reverse the logic for token detection. % \begin{macrocode} \cs_new_eq:NN \ReverseBoolean \xparse_bool_reverse:N % \end{macrocode} % \end{macro} % % \begin{macro}{\SplitArgument, \SplitList, \TrimSpaces} % Simple copies % \begin{macrocode} \cs_new_eq:NN \SplitArgument \xparse_split_argument:nnn \cs_new_eq:NN \SplitList \xparse_split_list:nn \cs_new_eq:NN \TrimSpaces \xparse_trim_spaces:n % \end{macrocode} % \end{macro} % % \begin{macro}{\GetDocumentCommandArgSpec} % \begin{macro}{\GetDocumentEnvironmentArgSpec} % \begin{macro}{\ShowDocumentCommandArgSpec} % \begin{macro}{\ShowDocumentEnvironmentArgSpec} % More simple mappings. % \begin{macrocode} \cs_new_eq:NN \GetDocumentCommandArgSpec \xparse_get_arg_spec:N \cs_new_eq:NN \GetDocumentEnvironmmentArgSpec \xparse_get_arg_spec:n \cs_new_eq:NN \ShowDocumentCommandArgSpec \xparse_show_arg_spec:N \cs_new_eq:NN \ShowDocumentEnvironmentArgSpec \xparse_show_arg_spec:n % \end{macrocode} % \end{macro} % \end{macro} % \end{macro} % \end{macro} % % \subsection{Package options} % % A faked key--value option to keep the log clean. Not yet perfect, but % better than nothing. % \begin{macrocode} \DeclareOption { log-declarations = true } { } \DeclareOption { log-declarations = false } { \msg_redirect_module:nnn { xparse } { info } { none } \msg_redirect_module:nnn { xparse } { warning } { none } } \DeclareOption { log-declarations } { } \ProcessOptions \scan_stop: % \end{macrocode} % % \begin{macrocode} % % \end{macrocode} % % \end{implementation} % % \PrintIndex