% \iffalse meta-comment % %% File: xparse.dtx (C) Copyright 1999 Frank Mittelbach, Chris Rowley, %% David Carlisle %% (C) Copyright 2004-2008 Frank Mittelbach, %% The LaTeX3 Project %% (C) Copyright 2009-2016 The LaTeX3 Project %% %% It may be distributed and/or modified under the conditions of the %% LaTeX Project Public License (LPPL), either version 1.3c of this %% license or (at your option) any later version. The latest version %% of this license is in the file %% %% http://www.latex-project.org/lppl.txt %% %% This file is part of the "l3packages bundle" (The Work in LPPL) %% and all files in that bundle must be distributed together. %% %% The released version of this bundle is available from CTAN. %% %% ----------------------------------------------------------------------- %% %% The development version of the bundle can be found at %% %% http://www.latex-project.org/svnroot/experimental/trunk/ %% %% for those people who are interested. %% %%%%%%%%%%% %% NOTE: %% %%%%%%%%%%% %% %% Snapshots taken from the repository represent work in progress and may %% not work or may contain conflicting material! We therefore ask %% people _not_ to put them into distributions, archives, etc. without %% prior consultation with the LaTeX Project Team. %% %% ----------------------------------------------------------------------- %% % %<*driver|package> % The version of expl3 required is tested as early as possible, as % some really old versions do not define \ProvidesExplPackage. \RequirePackage{expl3}[2016/04/20] %\@ifpackagelater{expl3}{2016/04/20} % {} % {% % \PackageError{xparse}{Support package l3kernel too old} % {% % Please install an up to date version of l3kernel\MessageBreak % using your TeX package manager or from CTAN.\MessageBreak % \MessageBreak % Loading xparse will abort!% % }% % \endinput % } \def\ExplFileName{xparse} \def\ExplFileDescription{L3 Experimental document command parser} \def\ExplFileDate{2016/04/20} \def\ExplFileVersion{6476} % %<*driver> \documentclass[full]{l3doc} \usepackage{amstext} \begin{document} \DocInput{\jobname.dtx} \end{document} % % \fi % % \providecommand\acro[1]{\textsc{\MakeLowercase{#1}}} % \newenvironment{arg-description}{% % \begin{itemize}\def\makelabel##1{\hss\llap{\bfseries##1}}}{\end{itemize}} % % \title{^^A % The \textsf{xparse} package\\ Document command parser^^A % \thanks{This file describes v\ExplFileVersion, % last revised \ExplFileDate.}^^A % } % % \author{^^A % The \LaTeX3 Project\thanks % {^^A % E-mail: % \href{mailto:latex-team@latex-project.org} % {latex-team@latex-project.org}^^A % }^^A % } % % \date{Released \ExplFileDate} % % \maketitle % % \begin{documentation} % % The \pkg{xparse} package provides a high-level interface for % producing document-level commands. In that way, it is intended as % a replacement for the \LaTeXe{} \cs{newcommand} macro. However, % \pkg{xparse} works so that the interface to a function (optional % arguments, stars and mandatory arguments, for example) is separate % from the internal implementation. \pkg{xparse} provides a normalised % input for the internal form of a function, independent of the % document-level argument arrangement. % % At present, the functions in \pkg{xparse} which are regarded as % \enquote{stable} are: % \begin{itemize} % \item \cs{DeclareDocumentCommand} % \item \cs{NewDocumentCommand} % \item \cs{RenewDocumentCommand} % \item \cs{ProvideDocumentCommand} % \item \cs{DeclareDocumentEnvironment} % \item \cs{NewDocumentEnvironment} % \item \cs{RenewDocumentEnvironment} % \item \cs{ProvideDocumentEnvironment} % \item \cs{DeclareExpandableDocumentCommand} % \item \cs{IfNoValue(TF)} % \item \cs{IfBoolean(TF)} % \end{itemize} % with the other functions currently regarded as \enquote{experimental}. Please % try all of the commands provided here, but be aware that the % experimental ones may change or disappear. % % \subsection{Specifying arguments} % % Before introducing the functions used to create document commands, % the method for specifying arguments with \pkg{xparse} will be % illustrated. In order to allow each argument to be defined % independently, \pkg{xparse} does not simply need to know the % number of arguments for a function, but also the nature of each % one. This is done by constructing an \emph{argument specification}, % which defines the number of arguments, the type of each argument % and any additional information needed for \pkg{xparse} to read the % user input and properly pass it through to internal functions. % % The basic form of the argument specifier is a list of letters, where % each letter defines a type of argument. As will be described below, % some of the types need additional information, such as default values. % The argument types can be divided into two, those which define % arguments that are mandatory (potentially raising an error if not % found) and those which define optional arguments. The mandatory types % are: % \begin{itemize}[font=\ttfamily] % \item[m] A standard mandatory argument, which can either be a single % token alone or multiple tokens surrounded by curly braces. % Regardless of the input, the argument will be passed to the % internal code surrounded by a brace pair. This is the \pkg{xparse} % type specifier for a normal \TeX{} argument. % \item[l] An argument which reads everything up to the first % open group token: in standard \LaTeX{} this is a left brace. % \item[r] Reads a \enquote{required} delimited argument, where the % delimiters are given as \meta{token1} and \meta{token2}: % \texttt{r}\meta{token1}\meta{token2}. If the opening \meta{token} % is missing, the default marker |-NoValue-| will be inserted after % a suitable error. % \item[R] As for \texttt{r}, this is a \enquote{required} delimited % argument but has a user-definable recovery \meta{default}, given % as \texttt{R}\meta{token1}\meta{token2}\marg{default}. % \item[u] Reads an argument \enquote{until} \meta{tokens} are encountered, % where the desired \meta{tokens} are given as an argument to the % specifier: \texttt{u}\marg{tokens}. % \item[v] Reads an argument \enquote{verbatim}, between the following % character and its next occurrence, in a way similar to the argument % of the \LaTeXe{} command \cs{verb}. Thus a \texttt{v}-type argument % is read between two matching tokens, which cannot be any of |%|, |\|, % |#|, |{|, |}| or \verb*| |. % The verbatim argument can also be enclosed between braces, |{| and |}|. % A command with a verbatim % argument will not work when it appears within an argument of % another function. % \end{itemize} % The types which define optional arguments are: % \begin{itemize}[font=\ttfamily] % \item[o] A standard \LaTeX{} optional argument, surrounded with square % brackets, which will supply % the special |-NoValue-| marker if not given (as described later). % \item[d] An optional argument which is delimited by \meta{token1} % and \meta{token2}, which are given as arguments: % \texttt{d}\meta{token1}\meta{token2}. As with \texttt{o}, if no % value is given the special marker |-NoValue-| is returned. % \item[O] As for \texttt{o}, but returns \meta{default} if no % value is given. Should be given as \texttt{O}\marg{default}. % \item[D] As for \texttt{d}, but returns \meta{default} if no % value is given: \texttt{D}\meta{token1}\meta{token2}\marg{default}. % Internally, the \texttt{o}, \texttt{d} and \texttt{O} types are % short-cuts to an appropriated-constructed \texttt{D} type argument. % \item[s] An optional star, which will result in a value % \cs{BooleanTrue} if a star is present and \cs{BooleanFalse} % otherwise (as described later). % \item[t] An optional \meta{token}, which will result in a value % \cs{BooleanTrue} if \meta{token} is present and \cs{BooleanFalse} % otherwise. Given as \texttt{t}\meta{token}. % \item[g] An optional argument given inside a pair of \TeX{} group % tokens (in standard \LaTeX, |{| \ldots |}|), which returns % |-NoValue-| if not present. % \item[G] As for \texttt{g} but returns \meta{default} if no value % is given: \texttt{G}\marg{default}. % \item[k] An optional \emph{key} argument which requires a \emph{value}: % the key should be a single \meta{token}. If the key is not present, % returns |-NoValue-|. \emph{This is an experimental type}. % \item[K] As for \texttt{K} but returns \meta{default} if no value % is given: \texttt{K}\meta{token}\marg{default}. % \emph{This is an experimental type}. % \end{itemize} % % Using these specifiers, it is possible to create complex input syntax % very easily. For example, given the argument definition % `|s o o m O{default}|', the input `|*[Foo]{Bar}|' would be parsed as: % \begin{itemize}[nolistsep] % \item |#1| = |\BooleanTrue| % \item |#2| = |Foo| % \item |#3| = |-NoValue-| % \item |#4| = |Bar| % \item |#5| = |default| % \end{itemize} % whereas `|[One][Two]{}[Three]|' would be parsed as: % \begin{itemize}[nolistsep] % \item |#1| = |\BooleanFalse| % \item |#2| = |One| % \item |#3| = |Two| % \item |#4| = || % \item |#5| = |Three| % \end{itemize} % % Delimited argument types (\texttt{d}, \texttt{o} and \texttt{r}) are % defined such that they require matched pairs of delimiters when collecting % an argument. For example % \begin{verbatim} % \DeclareDocumentCommand{\foo}{o}{#1} % \foo[[content]] % #1 = "[content]" % \foo[[] % Error: missing closing "]" % \end{verbatim} % Also note that |{| and |}| cannot be used as delimiters as they are used % by \TeX{} as grouping tokens. Arguments to be grabbed inside these tokens % must be created as either \texttt{m}- or \texttt{g}-type arguments. % % Within delimited arguments, non-balanced or otherwise awkward tokens may % be included by protecting the entire argument with a brace pair % \begin{verbatim} % \DeclareDocumentCommand{\foo}{o}{#1} % \foo[{[}] % Allowed as the "[" is 'hidden' % \end{verbatim} % These braces will be stripped if they surround the \emph{entire} content % of the optional argument % \begin{verbatim} % \DeclareDocumentCommand{\foo}{o}{#1} % \foo[{abc}] % => "abc" % \foo[ {abc}] % => " {abc}" % \end{verbatim} % % Two more tokens have a special meaning when creating an argument % specifier. First, \texttt{+} is used to make an argument long (to % accept paragraph tokens). In contrast to \LaTeXe's \cs{newcommand}, % this applies on an argument-by-argument basis. So modifying the % example to `|s o o +m O{default}|' means that the mandatory argument % is now \cs{long}, whereas the optional arguments are not. % % Secondly, the token \texttt{>} is used to declare so-called % \enquote{argument processors}, which can be used to modify the contents of an % argument before it is passed to the macro definition. The use of % argument processors is a somewhat advanced topic, (or at least a less % commonly used feature) and is covered in Section~\ref{sec:processors}. % % By default, an argument of type~\texttt{v} must be at most one line. % Prefixing with \texttt{+} allows line breaks within the argument. The % argument is given as a string of characters with category codes~$12$ % or~$13$, except spaces, which have category code~$10$. % % \subsection{Spacing and optional arguments} % % \TeX{} will find the first argument after a function name irrespective % of any intervening spaces. This is true for both mandatory and % optional arguments. So |\foo[arg]| and \verb*|\foo [arg]| are % equivalent. Spaces are also ignored when collecting arguments up % to the last mandatory argument to be collected (as it must exist). % So after % \begin{verbatim} % \DeclareDocumentCommand \foo { m o m } { ... } % \end{verbatim} % the user input |\foo{arg1}[arg2]{arg3}| and % \verb*|\foo{arg1} [arg2] {arg3}| will both be parsed in the same % way. However, spaces are \emph{not} ignored when parsing optional % arguments after the last mandatory argument. Thus with % \begin{verbatim} % \DeclareDocumentCommand \foo { m o } { ... } % \end{verbatim} % |\foo{arg1}[arg2]| will find an optional argument but % \verb*|\foo{arg1} [arg2]| will not. This is so that trailing optional % arguments are not picked up \enquote{by accident} in input. % % There is one major exception to the rules listed above: when % \pkg{xparse} is used to define what \TeX\ defines as \enquote{control % symbols} in which the function name is made up of a single character, % such as \enquote{\cmd{\\}}, spaces are \emph{not} ignored directly % after them even for mandatory arguments. % % \subsection{Required delimited arguments} % % The contrast between a delimited (\texttt{D}-type) and \enquote{required % delimited} (\texttt{R}-type) argument is that an error will be raised if % the latter is missing. Thus for example % \begin{verbatim} % \DeclareDocumentCommand\foo{r()m} % \foo{oops} % \end{verbatim} % will lead to an error message being issued. The marker |-NoValue-| % (\texttt{r}-type) or user-specified default (for \texttt{R}-type) will be % inserted to allow error recovery. % % Users should note that support for required delimited arguments is somewhat % experimental. Feedback is therefore very welcome on the \texttt{LaTeX-L} % mailing list. % % \subsection{Verbatim arguments} % % Arguments of type~\texttt{v} are read in verbatim mode, which will % result in the grabbed argument consisting of tokens of category codes % $12$~(\enquote{other}) and $13$~(\enquote{active}), except spaces, % which are given category code $10$~(\enquote{space}). The argument is % delimited in a similar manner to the \LaTeXe{} \cs{verb} function. % % Functions containing verbatim arguments cannot appear in the arguments % of other functions. The \texttt{v}~argument specifier includes code to check % this, and will raise an error if the grabbed argument has already been % tokenized by \TeX{} in an irreversible way. % % Users should note that support for verbatim arguments is somewhat % experimental. Feedback is therefore very welcome on the \texttt{LaTeX-L} % mailing list. % % \subsection{Declaring commands and environments} % % With the concept of an argument specifier defined, it is now % possible to describe the methods available for creating both % functions and environments using \pkg{xparse}. % % The interface-building commands are the preferred method for % creating document-level functions in \LaTeX3. All of the functions % generated in this way are naturally robust (using the \eTeX{} % \cs{protected} mechanism). % % \begin{function} % { % \DeclareDocumentCommand , % \NewDocumentCommand , % \RenewDocumentCommand , % \ProvideDocumentCommand % } % \begin{syntax} % \cs{DeclareDocumentCommand} \meta{Function} \Arg{arg spec} \Arg{code} % \end{syntax} % This family of commands are used to create a document-level % \meta{function}. The argument specification for the function is % given by \meta{arg spec}, and expanding % to be replaced by the \meta{code}. % \end{function} % % As an example: % \begin{verbatim} % \DeclareDocumentCommand \chapter { s o m } % { % \IfBooleanTF {#1} % { \typesetstarchapter {#3} } % { \typesetnormalchapter {#2} {#3} } % } % \end{verbatim} % would be a way to define a \cs{chapter} command which would % essentially behave like the current \LaTeXe{} command (except that it % would accept an optional argument even when a \texttt{*} was parsed). % The \cs{typesetnormalchapter} could test its first argument for being % |-NoValue-| to see if an optional argument was present. % % The difference between the \cs{Declare\ldots}, \cs{New\ldots} % \cs{Renew\ldots} and \cs{Provide\ldots} versions is the behaviour % if \meta{function} is already defined. % \begin{itemize} % \item \cs{DeclareDocumentCommand} will always create the new % definition, irrespective of any existing \meta{function} with the % same name. % \item \cs{NewDocumentCommand} will issue an error if \meta{function} % has already been defined. % \item \cs{RenewDocumentCommand} will issue an error if \meta{function} % has not previously been defined. % \item \cs{ProvideDocumentCommand} creates a new definition for % \meta{function} only if one has not already been given. % \end{itemize} % % \begin{texnote} % Unlike \LaTeXe{}'s \cs{newcommand} and relatives, the % \cs{DeclareDocumentCommand} family of functions do not prevent creation of % functions with names starting \cs{end\ldots}. % \end{texnote} % % \begin{function} % { % \DeclareDocumentEnvironment , % \NewDocumentEnvironment , % \RenewDocumentEnvironment , % \ProvideDocumentEnvironment % } % \begin{syntax} % \cs{DeclareDocumentEnvironment} \Arg{environment} \Arg{arg spec} % ~~\Arg{start code} \Arg{end code} % \end{syntax} % These commands work in the same way as \cs{DeclareDocumentCommand}, % etc., but create environments (\cs{begin}|{|\meta{function}|}| \ldots % \cs{end}|{|\meta{function}|}|). Both the \meta{start code} and % \meta{end code} % may access the arguments as defined by \meta{arg spec}. % \end{function} % % \subsection{Testing special values} % % Optional arguments created using \pkg{xparse} make use of dedicated % variables to return information about the nature of the argument % received. % % \begin{function}[EXP,TF]{\IfNoValue} % \begin{syntax} % \cs{IfNoValueTF} \Arg{argument} \Arg{true code} \Arg{false code} % \cs{IfNoValueT} \Arg{argument} \Arg{true code} % \cs{IfNoValueF} \Arg{argument} \Arg{false code} % \end{syntax} % The \cs{IfNoValue(TF)} tests are used to check if \meta{argument} (|#1|, % |#2|, \emph{etc.}) is the special |-NoValue-| marker For example % \begin{verbatim} % \DeclareDocumentCommand \foo { o m } % { % \IfNoValueTF {#1} % { \DoSomethingJustWithMandatoryArgument {#2} } % { \DoSomethingWithBothArguments {#1} {#2} } % } % \end{verbatim} % will use a different internal function if the optional argument % is given than if it is not present. % % Note that three tests are available, depending on which outcome % branches are required: \cs{IfNoValueTF}, \cs{IfNoValueT} and % \cs{IfNoValueF}. % % As the \cs{IfNoValue(TF)} tests are expandable, it is possible to % test these values later, for example at the point of typesetting or % in an expansion context. % % It is important to note that |-NoValue-| is constructed such that it % will \emph{not} match the simple text input |-NoValue-|, \emph{i.e.} % that % \begin{verbatim} % \IfNoValueTF{-NoValue-} % \end{verbatim} % will be logically \texttt{false}. % \end{function} % % \begin{function}[EXP,TF]{\IfValue} % \begin{syntax} % \cs{IfValueTF} \Arg{argument} \Arg{true code} \Arg{false code} % \end{syntax} % The reverse form of the \cs{IfNoValue(TF)} tests are also available % as \cs{IfValue(TF)}. The context will determine which logical % form makes the most sense for a given code scenario. % \end{function} % % \begin{variable}{\BooleanFalse, \BooleanTrue} % The \texttt{true} and \texttt{false} flags set when searching for % an optional token (using \texttt{s} or \texttt{t\meta{token}}) have % names which are accessible outside of code blocks. % \end{variable} % % \begin{function}[EXP,TF]{\IfBoolean} % \begin{syntax} % \cs{IfBooleanTF} \meta{argument} \Arg{true code} \Arg{false code} % \end{syntax} % Used to test if \meta{argument} (|#1|, |#2|, \emph{etc.}) is % \cs{BooleanTrue} or \cs{BooleanFalse}. For example % \begin{verbatim} % \DeclareDocumentCommand \foo { s m } % { % \IfBooleanTF #1 % { \DoSomethingWithStar {#2} } % { \DoSomethingWithoutStar {#2} } % } % \end{verbatim} % checks for a star as the first argument, then chooses the action to % take based on this information. % \end{function} % % \subsection{Argument processors} % \label{sec:processors} % % \pkg{xparse} introduces the idea of an argument processor, which is % applied to an argument \emph{after} it has been grabbed by the % underlying system but before it is passed to \meta{code}. An argument % processor can therefore be used to regularise input at an early stage, % allowing the internal functions to be completely independent of input % form. Processors are applied to user input and to default values for % optional arguments, but \emph{not} to the special \cs{NoValue} marker. % % Each argument processor is specified by the syntax % \texttt{>}\marg{processor} in the argument specification. Processors % are applied from right to left, so that % \begin{verbatim} % >{\ProcessorB} >{\ProcessorA} m % \end{verbatim} % would apply \cs{ProcessorA} % followed by \cs{ProcessorB} to the tokens grabbed by the \texttt{m} % argument. % % \begin{variable}{\ProcessedArgument} % \pkg{xparse} defines a very small set of processor functions. In the % main, it is anticipated that code writers will want to create their % own processors. These need to accept one argument, which is the % tokens as grabbed (or as returned by a previous processor function). % Processor functions should return the processed argument as the % variable \cs{ProcessedArgument}. % \end{variable} % % \begin{function}{\ReverseBoolean} % \begin{syntax} % \cs{ReverseBoolean} % \end{syntax} % This processor reverses the logic of \cs{BooleanTrue} and % \cs{BooleanFalse}, so that the example from earlier would become % \begin{verbatim} % \DeclareDocumentCommand \foo { > { \ReverseBoolean } s m } % { % \IfBooleanTF #1 % { \DoSomethingWithoutStar {#2} } % { \DoSomethingWithStar {#2} } % } % \end{verbatim} % \end{function} % % \begin{function}[updated = 2012-02-12]{\SplitArgument} % \begin{syntax} % \cs{SplitArgument} \Arg{number} \Arg{token} % \end{syntax} % This processor splits the argument given at each occurrence of the % \meta{token} up to a maximum of \meta{number} tokens (thus % dividing the input into $\text{\meta{number}} + 1$ parts). % An error is given if too many \meta{tokens} are present in the % input. The processed input is placed inside % $\text{\meta{number}} + 1$ sets of braces for further use. % If there are fewer than \Arg{number} of \Arg{tokens} in the argument % then \cs{NoValue} markers are added at the end of the processed % argument. % \begin{verbatim} % \DeclareDocumentCommand \foo % { > { \SplitArgument { 2 } { ; } } m } % { \InternalFunctionOfThreeArguments #1 } % \end{verbatim} % Any category code $13$ (active) \meta{tokens} will be replaced % before the split takes place. Spaces are trimmed at each end of each % item parsed. % \end{function} % % \begin{function}{\SplitList} % \begin{syntax} % \cs{SplitList} \Arg{token(s)} % \end{syntax} % This processor splits the argument given at each occurrence of the % \meta{token(s)} where the number of items is not fixed. Each item is % then wrapped in braces within |#1|. The result is that the % processed argument can be further processed using a mapping function. % \begin{verbatim} % \DeclareDocumentCommand \foo % { > { \SplitList { ; } } m } % { \MappingFunction #1 } % \end{verbatim} % If only a single \meta{token} is used for the split, any % category code $13$ (active) \meta{token} will be replaced % before the split takes place. % \end{function} % % \begin{function}[EXP]{\ProcessList} % \begin{syntax} % \cs{ProcessList} \Arg{list} \Arg{function} % \end{syntax} % To support \cs{SplitList}, the function \cs{ProcessList} is available % to apply a \meta{function} to every entry in a \meta{list}. The % \meta{function} should absorb one argument: the list entry. For example % \begin{verbatim} % \DeclareDocumentCommand \foo % { > { \SplitList { ; } } m } % { \ProcessList {#1} { \SomeDocumentFunction } } % \end{verbatim} % % \textbf{This function is experimental.} % \end{function} % % \begin{function}{\TrimSpaces} % \begin{syntax} % \cs{TrimSpaces} % \end{syntax} % Removes any leading and trailing spaces (tokens with character code~$32$ % and category code~$10$) for the ends of the argument. Thus for example % declaring a function % \begin{verbatim} % \DeclareDocumentCommand \foo % { > { \TrimSpaces } m } % { \showtokens {#1} } % \end{verbatim} % and using it in a document as % \begin{verbatim} % \foo{ hello world } % \end{verbatim} % will show \texttt{hello world} at the terminal, with the space at each % end removed. \cs{TrimSpaces} will remove multiple spaces from the ends of % the input in cases where these have been included such that the standard % \TeX{} conversion of multiple spaces to a single space does not apply. % % \textbf{This function is experimental.} % \end{function} % % \subsection{Fully-expandable document commands} % % There are \emph{very rare} occasion when it may be useful to create % functions using a fully-expandable argument grabber. To support this, % \pkg{xparse} can create expandable functions as well as the usual % robust ones. This imposes a number of restrictions on the nature of % the arguments accepted by a function, and the code it implements. % This facility should only be used when \emph{absolutely necessary}; % if you do not understand when this might be, \emph{do not use these % functions}! % % \begin{function}{\DeclareExpandableDocumentCommand} % \begin{syntax} % \cs{DeclareExpandableDocumentCommand} % ~~~~\meta{function} \Arg{arg spec} \Arg{code} % \end{syntax} % This command is used to create a document-level \meta{function}, % which will grab its arguments in a fully-expandable manner. The % argument specification for the function is given by \meta{arg spec}, % and the function will execute \meta{code}. In general, \meta{code} will % also be fully expandable, although it is possible that this will % not be the case (for example, a function for use in a table might % expand so that \cs{omit} is the first non-expandable token). % % Parsing arguments expandably imposes a number of restrictions on % both the type of arguments that can be read and the error checking % available: % \begin{itemize} % \item The last argument (if any are present) must be one of the % mandatory types \texttt{m} or \texttt{r}. % \item All arguments are either short or long: it is not possible % to mix short and long argument types. % \item The mandatory argument types \texttt{l} and \texttt{u} are % not available. % \item The \enquote{optional group} argument types \texttt{g} and % \texttt{G} are not available. % \item The \enquote{verbatim} argument type \texttt{v} is not available. % \item Argument processors (using \texttt{>}) are not available. % \item It is not possible to differentiate between, for example % |\foo[| and |\foo{[}|: in both cases the \texttt{[} will be % interpreted as the start of an optional argument. As a % result, checking for optional arguments is less robust than % in the standard version. % \end{itemize} % \pkg{xparse} will issue an error if an argument specifier is given % which does not conform to the first six requirements. The last % item is an issue when the function is used, and so is beyond the % scope of \pkg{xparse} itself. % \end{function} % % \subsection{Access to the argument specification} % % The argument specifications for document commands and environments are % available for examination and use. % % \begin{function}{\GetDocumentCommandArgSpec, \GetDocumentEnvironmentArgSpec} % \begin{syntax} % \cs{GetDocumentCommandArgSpec} \meta{function} % \cs{GetDocumentEnvironmentArgSpec} \meta{environment} % \end{syntax} % These functions transfer the current argument specification for the % requested \meta{function} or \meta{environment} into the token list % variable \cs{ArgumentSpecification}. If the \meta{function} or % \meta{environment} has no known argument specification then an error % is issued. The assignment to \cs{ArgumentSpecification} is local to % the current \TeX{} group. % \end{function} % % \begin{function} % {\ShowDocumentCommandArgSpec, \ShowDocumentEnvironmentArgSpec} % \begin{syntax} % \cs{ShowDocumentCommandArgSpec} \meta{function} % \cs{ShowDocumentEnvironmentArgSpec} \meta{environment} % \end{syntax} % These functions show the current argument specification for the % requested \meta{function} or \meta{environment} at the terminal. If % the \meta{function} or \meta{environment} has no known argument % specification then an error is issued. % \end{function} % % \section{Load-time options} % % \DescribeOption{log-declarations} % The package recognises the load-time option \texttt{log-declarations}, % which is a key--value option taking the value \texttt{true} and % \texttt{false}. By default, the option is set to \texttt{true}, meaning % that each command or environment declared is logged. By loading % \pkg{xparse} using % \begin{verbatim} % \usepackage[log-declarations=false]{xparse} % \end{verbatim} % this may be suppressed and no information messages are produced. % % \end{documentation} % % \begin{implementation} % % \section{\pkg{xparse} implementation} % % \begin{macrocode} %<*package> % \end{macrocode} % % \begin{macrocode} %<@@=xparse> % \end{macrocode} % % \begin{macrocode} \ProvidesExplPackage {\ExplFileName}{\ExplFileDate}{\ExplFileVersion}{\ExplFileDescription} % \end{macrocode} % % \subsection{Variables and constants} % % \begin{variable}{\c_@@_no_value_tl} % A special \enquote{awkward} token list: it contains two |-|~tokens with % different category codes. This is used as the marker for nothing being % returned when no optional argument is given. % \begin{macrocode} \tl_const:Nx \c_@@_no_value_tl { \char_generate:nn { `\- } { 11 } NoValue- } % \end{macrocode} % \end{variable} % % \begin{variable}{\c_@@_shorthands_prop} % Shorthands are stored as a property list: this is set up here as it % is a constant. % \begin{macrocode} \prop_new:N \c_@@_shorthands_prop \prop_put:Nnn \c_@@_shorthands_prop { o } { d[] } \prop_put:Nnn \c_@@_shorthands_prop { O } { D[] } \prop_put:Nnn \c_@@_shorthands_prop { s } { t* } % \end{macrocode} % \end{variable} % % \begin{variable}{\c_@@_special_chars_seq} % In \IniTeX{} mode, we store special characters in a sequence. % Maybe |$| or |&| will have to be added later. % \begin{macrocode} %<*initex> \seq_new:N \c_@@_special_chars_seq \seq_set_split:Nnn \c_@@_special_chars_seq { } { \ \\ \{ \} \# \^ \_ \% \~ } % % \end{macrocode} % \end{variable} % % \begin{variable}{\l_@@_all_long_bool} % For expandable commands, all arguments have the same long status, but this % needs to be checked. A flag is therefore needed to track whether arguments % are long at all. % \begin{macrocode} \bool_new:N \l_@@_all_long_bool % \end{macrocode} % \end{variable} % % \begin{variable}{\l_@@_args_tl} % Token list variable for grabbed arguments. % \begin{macrocode} \tl_new:N \l_@@_args_tl % \end{macrocode} % \end{variable} % % \begin{variable}{\l_@@_command_arg_specs_prop} % Used to record all document commands created, and the argument % specifications that go with these. % \begin{macrocode} \prop_new:N \l_@@_command_arg_specs_prop % \end{macrocode} % \end{variable} % % \begin{variable}{\l_@@_current_arg_int} % The number of the current argument being set up: this is used for creating % the expandable auxiliary functions, and also to indicate if all arguments % are \texttt{m}-type. % \begin{macrocode} \int_new:N \l_@@_current_arg_int % \end{macrocode} % \end{variable} % % \begin{variable}{\l_@@_environment_bool} % Generating environments uses the same mechanism as generating functions. % However, full processing of arguments is always needed for environments, % and so the function-generating code needs to know this. % \begin{macrocode} \bool_new:N \l_@@_environment_bool % \end{macrocode} % \end{variable} % % \begin{variable}{\l_@@_environment_arg_specs_prop} % Used to record all document environment created, and the argument % specifications that go with these. % \begin{macrocode} \prop_new:N \l_@@_environment_arg_specs_prop % \end{macrocode} % \end{variable} % % \begin{variable}{\l_@@_expandable_bool} % Used to indicate if an expandable command is begin generated, as this % affects both the acceptable argument types and how they are implemented. % \begin{macrocode} \bool_new:N \l_@@_expandable_bool % \end{macrocode} % \end{variable} % % \begin{variable}{\l_@@_expandable_aux_name_tl} % Used to create pretty-printing names for the auxiliaries: although the % immediate definition does not vary, the full expansion does and so it % does not count as a constant. % \begin{macrocode} \tl_new:N \l_@@_expandable_aux_name_tl \tl_set:Nn \l_@@_expandable_aux_name_tl { \l_@@_function_tl \c_space_tl ( arg~ \int_use:N \l_@@_current_arg_int ) } % \end{macrocode} % \end{variable} % % \begin{variable}{\l_@@_fn_tl} % For passing the pre-formed name of the auxiliary to be used as the % parsing function. % \begin{macrocode} \tl_new:N \l_@@_fn_tl % \end{macrocode} % \end{variable} % % \begin{variable}{\l_@@_function_tl} % Holds the control sequence name of the function currently being % defined: used to avoid passing this as an argument and to avoid repeated % use of \cs{cs_to_str:N}. % \begin{macrocode} \tl_new:N \l_@@_function_tl % \end{macrocode} % \end{variable} % % \begin{variable}{\l_@@_long_bool} % Used to indicate that an argument is long: this is used on a per-argument % basis for non-expandable functions, or for the entire set of arguments % when working expandably. % \begin{macrocode} \bool_new:N \l_@@_long_bool % \end{macrocode} % \end{variable} % % \begin{variable}{\l_@@_m_args_int} % The number of \texttt{m} arguments: if this is the same as the total % number of arguments, then a short-cut can be taken in the creation of % the grabber code. % \begin{macrocode} \int_new:N \l_@@_m_args_int % \end{macrocode} % \end{variable} % % \begin{variable}{\l_@@_mandatory_args_int} % Holds the total number of mandatory arguments for a function, which is % needed to tell whether further mandatory arguments follow an optional % one. % \begin{macrocode} \int_new:N \l_@@_mandatory_args_int % \end{macrocode} % \end{variable} % % \begin{variable}{\l_@@_processor_bool} % Indicates that the current argument will be followed by one or more % processors. % \begin{macrocode} \bool_new:N \l_@@_processor_bool % \end{macrocode} % \end{variable} % % \begin{variable}{\l_@@_processor_int} % In the grabber routine, each processor is saved with a number % recording the order it was found in. The total is then used to work % back through the grabbers so they apply to the argument right to left. % \begin{macrocode} \int_new:N \l_@@_processor_int % \end{macrocode} % \end{variable} % % \begin{variable}{\l_@@_signature_tl} % Used when constructing the signature (code for argument grabbing) to % hold what will become the implementation of the main function. % \begin{macrocode} \tl_new:N \l_@@_signature_tl % \end{macrocode} % \end{variable} % % \begin{variable}{\l_@@_tmp_tl} % Scratch space. % \begin{macrocode} \tl_new:N \l_@@_tmp_tl % \end{macrocode} % \end{variable} % % \subsection{Declaring commands and environments} % % \begin{macro}{\@@_declare_cmd:Nnn, \@@_declare_expandable_cmd:Nnn} % \begin{macro}[aux]{\@@_declare_cmd_aux:Nnn} % \begin{macro}[int] % {\@@_declare_cmd_internal:Nnn, \@@_declare_cmd_internal:cnx} % The main functions for creating commands set the appropriate flag then % use the same internal code to do the definition. % \begin{macrocode} \cs_new_protected_nopar:Npn \@@_declare_cmd:Nnn { \bool_set_false:N \l_@@_expandable_bool \@@_declare_cmd_aux:Nnn } \cs_new_protected_nopar:Npn \@@_declare_expandable_cmd:Nnn { \bool_set_true:N \l_@@_expandable_bool \@@_declare_cmd_aux:Nnn } % \end{macrocode} % The first stage is to log information, both for the user in the log and % for programmatic use in a property list of all declared commands. % \begin{macrocode} \cs_new_protected:Npn \@@_declare_cmd_aux:Nnn #1#2 { \cs_if_exist:NTF #1 { \__msg_kernel_info:nnxx { xparse } { redefine-command } { \token_to_str:N #1 } { \tl_to_str:n {#2} } } { \__msg_kernel_info:nnxx { xparse } { define-command } { \token_to_str:N #1 } { \tl_to_str:n {#2} } } \prop_put:Nnn \l_@@_command_arg_specs_prop {#1} {#2} \bool_set_false:N \l_@@_environment_bool \@@_declare_cmd_internal:Nnn #1 {#2} } % \end{macrocode} % The real business of defining a document command starts with setting up % the appropriate name, then counting up the number of mandatory arguments. % \begin{macrocode} \cs_new_protected:Npn \@@_declare_cmd_internal:Nnn #1#2#3 { \tl_set:Nx \l_@@_function_tl { \cs_to_str:N #1 } \@@_count_mandatory:n {#2} \@@_prepare_signature:n {#2} \int_compare:nNnTF \l_@@_current_arg_int = \l_@@_m_args_int { \bool_if:NTF \l_@@_environment_bool { \@@_declare_cmd_mixed:Nn #1 {#3} } { \@@_declare_cmd_all_m:Nn #1 {#3} } } { \@@_declare_cmd_mixed:Nn #1 {#3} } \@@_break_point:n {#2} } \cs_generate_variant:Nn \@@_declare_cmd_internal:Nnn { cnx } % \end{macrocode} % \end{macro} % \end{macro} % \end{macro} % % \begin{macro}{\@@_break_point:n} % A marker used to escape from creating a definition if necessary. % \begin{macrocode} \cs_new_eq:NN \@@_break_point:n \use_none:n % \end{macrocode} % \end{macro} % % \begin{macro}{\@@_declare_cmd_all_m:Nn, \@@_declare_cmd_mixed:Nn} % \begin{macro}[aux] % {\@@_declare_cmd_mixed_aux:Nn, \@@_declare_cmd_mixed_expandable:Nn} % When all of the arguments to grab are simple \texttt{m}-type, a short % cut can be taken to provide only a single function. In the case of % expandable commands, this can also happen for \texttt{+m} (as all arguments % in this case must be long). % \begin{macrocode} \cs_new_protected:Npn \@@_declare_cmd_all_m:Nn #1#2 { \cs_generate_from_arg_count:Ncnn #1 { cs_set \bool_if:NF \l_@@_expandable_bool { _protected } \bool_if:NF \l_@@_all_long_bool { _nopar } :Npn } \l_@@_current_arg_int {#2} } % \end{macrocode} % In the case of mixed arguments, any remaining \texttt{m}-type ones are % first added to the signature, then the appropriate auxiliary is called. % \begin{macrocode} \cs_new_protected:Npn \@@_declare_cmd_mixed:Nn { \bool_if:NTF \l_@@_expandable_bool { \@@_declare_cmd_mixed_expandable:Nn } { \@@_declare_cmd_mixed_aux:Nn } } % \end{macrocode} % Creating standard functions with mixed arg.~specs sets up the main function % to zero the number of processors, set the name of the function (for the % grabber) and clears the list of grabbed arguments. % \begin{macrocode} \cs_new_protected:Npn \@@_declare_cmd_mixed_aux:Nn #1#2 { \@@_flush_m_args: \cs_generate_from_arg_count:cNnn { \l_@@_function_tl \c_space_tl code } \cs_set_protected:Npn \l_@@_current_arg_int {#2} \cs_set_protected_nopar:Npx #1 { \int_zero:N \l_@@_processor_int \tl_set:Nn \exp_not:N \l_@@_args_tl { \exp_not:c { \l_@@_function_tl \c_space_tl code } } \tl_set:Nn \exp_not:N \l_@@_fn_tl { \exp_not:c { \l_@@_function_tl \c_space_tl } } \exp_not:o \l_@@_signature_tl \exp_not:N \l_@@_args_tl } } \cs_new_protected:Npn \@@_declare_cmd_mixed_expandable:Nn #1#2 { \cs_generate_from_arg_count:cNnn { \l_@@_function_tl \c_space_tl code } \cs_set:Npn \l_@@_current_arg_int {#2} \cs_set_nopar:Npx #1 { \exp_not:o \l_@@_signature_tl \exp_not:N \@@_grab_expandable_end:wN \exp_not:c { \l_@@_function_tl \c_space_tl code } \exp_not:N \q_@@ \exp_not:c { \l_@@_function_tl \c_space_tl } } \bool_if:NTF \l_@@_all_long_bool { \cs_set:cpx } { \cs_set_nopar:cpx } { \l_@@_function_tl \c_space_tl } ##1##2 { ##1 {##2} } } % \end{macrocode} % \end{macro} % \end{macro} % % \begin{macro}{\@@_declare_env:nnnn} % \begin{macro}[int]{\@@_declare_env_internal:nnnn} % The lead-off to creating an environment is much the same as that for % creating a command: issue the appropriate message, store the argument % specification then hand off to an internal function. % \begin{macrocode} \cs_new_protected:Npn \@@_declare_env:nnnn #1#2 { %<*initex> \cs_if_exist:cTF { environment~ #1 } % %<*package> \cs_if_exist:cTF {#1} % { \__msg_kernel_info:nnxx { xparse } { redefine-environment } {#1} { \tl_to_str:n {#2} } } { \__msg_kernel_info:nnxx { xparse } { define-environment } {#1} { \tl_to_str:n {#2} } } \prop_put:Nnn \l_@@_environment_arg_specs_prop {#1} {#2} \bool_set_false:N \l_@@_expandable_bool \bool_set_true:N \l_@@_environment_bool \@@_declare_env_internal:nnnn {#1} {#2} } % \end{macrocode} % Creating a document environment requires a few more steps than creating % a single command. In order to pass the arguments of the command to the % end of the function, it is necessary to store the grabbed arguments. % To do that, the function used at the end of the environment has to be % redefined to contain the appropriate information. To minimize the amount % of expansion at point of use, the code here is expanded now as well as % when used. % \begin{macrocode} \cs_new_protected:Npn \@@_declare_env_internal:nnnn #1#2#3#4 { \@@_declare_cmd_internal:cnx { environment~ #1 } {#2} { \cs_set_nopar:Npx \exp_not:c { environment~ #1 ~end~aux } { \exp_not:N \exp_not:N \exp_not:c { environment~ #1~end~aux~ } \exp_not:n { \tl_tail:N \l_@@_args_tl } } \exp_not:n {#3} } \cs_set_nopar:cpx { environment~ #1 ~end } { \exp_not:c { environment~ #1 ~end~aux } } \cs_generate_from_arg_count:cNnn { environment~ #1 ~end~aux~ } \cs_set:Npn \l_@@_current_arg_int {#4} %<*package> \cs_set_eq:cc {#1} { environment~ #1 } \cs_set_eq:cc { end #1 } { environment~ #1 ~end } % } % \end{macrocode} % \end{macro} % \end{macro} % % \subsection{Counting mandatory arguments} % % \begin{macro}{\@@_count_mandatory:n} % \begin{macro}{\@@_count_mandatory:N} % \begin{macro}[aux]{\@@_count_mandatory:N} % Loop through the signature to count up mandatory arguments before the % main parsing run. First, check if the current token is a short-cut for % another argument type. If it is, expand it and loop again. If not, then % look for a \enquote{counting} function to check the argument type. No error % is raised here if one is not found as one will be raised by later code. % \begin{macrocode} \cs_new_protected:Npn \@@_count_mandatory:n #1 { \int_zero:N \l_@@_mandatory_args_int \@@_count_mandatory:N #1 \q_recursion_tail \q_recursion_tail \q_recursion_tail \q_recursion_stop } \cs_new_protected:Npn \@@_count_mandatory:N #1 { \quark_if_recursion_tail_stop:N #1 \prop_get:NnNTF \c_@@_shorthands_prop {#1} \l_@@_tmp_tl { \exp_after:wN \@@_count_mandatory:N \l_@@_tmp_tl } { \@@_count_mandatory_aux:N #1 } } \cs_new_protected:Npn \@@_count_mandatory_aux:N #1 { \cs_if_exist_use:cF { @@_count_type_ \token_to_str:N #1 :w } { \@@_count_type_m:w } } % \end{macrocode} % \end{macro} % \end{macro} % \end{macro} % % \begin{macro} % { % \@@_count_type_>:w, % \@@_count_type_+:w, % \@@_count_type_d:w, % \@@_count_type_D:w, % \@@_count_type_g:w, % \@@_count_type_G:w, % \@@_count_type_k:w, % \@@_count_type_K:w, % \@@_count_type_m:w, % \@@_count_type_r:w, % \@@_count_type_R:w, % \@@_count_type_t:w, % \@@_count_type_u:w % } % For counting the mandatory arguments, a function is provided for each % argument type that will mop any extra arguments and call the loop function. % Only the counting functions for mandatory arguments actually do anything: % the rest are simply there to ensure the loop continues correctly. There are % no count functions for \texttt{l} or \texttt{v} argument types as they are % exactly the same as \texttt{m}, and so a little code can be saved. % % The second thing that can be done here is to check that the signature is % actually valid, such that all of the various argument types have the % correct number of data items associated with them. If this fails to be % the case, the entire set up is abandoned to avoid any strange internal % errors. The opportunity is also taken to make sure that where a single % token is required, one has actually been supplied. % % The third is that processors and the marker~|+| for long arguments % must be followed by arguments. For this, just check that the next % token is not \cs{q_recursion_tail}, and remember to leave it after % the looping macro. % \begin{macrocode} \cs_new_protected:cpn { @@_count_type_>:w } #1#2 { \quark_if_recursion_tail_stop_do:nn {#2} { \@@_bad_arg_spec:wn } \@@_count_mandatory:N #2 } \cs_new_protected:cpn { @@_count_type_+:w } #1 { \quark_if_recursion_tail_stop_do:nn {#1} { \@@_bad_arg_spec:wn } \@@_count_mandatory:N #1 } \cs_new_protected:Npn \@@_count_type_d:w #1#2 { \@@_single_token_check:n {#1} \@@_single_token_check:n {#2} \quark_if_recursion_tail_stop_do:Nn #2 { \@@_bad_arg_spec:wn } \@@_count_mandatory:N } \cs_new_protected:Npn \@@_count_type_D:w #1#2#3 { \@@_single_token_check:n {#1} \@@_single_token_check:n {#2} \quark_if_recursion_tail_stop_do:nn {#3} { \@@_bad_arg_spec:wn } \@@_count_mandatory:N } \cs_new_protected_nopar:Npn \@@_count_type_g:w { \@@_count_mandatory:N } \cs_new_protected:Npn \@@_count_type_G:w #1 { \quark_if_recursion_tail_stop_do:nn {#1} { \@@_bad_arg_spec:wn } \@@_count_mandatory:N } \cs_new_protected:Npn \@@_count_type_k:w #1 { \@@_single_token_check:n {#1} \quark_if_recursion_tail_stop_do:Nn #1 { \@@_bad_arg_spec:wn } \@@_count_mandatory:N } \cs_new_protected:Npn \@@_count_type_K:w #1#2 { \@@_single_token_check:n {#1} \quark_if_recursion_tail_stop_do:nn {#2} { \@@_bad_arg_spec:wn } \@@_count_mandatory:N } \cs_new_protected_nopar:Npn \@@_count_type_m:w { \int_incr:N \l_@@_mandatory_args_int \@@_count_mandatory:N } \cs_new_protected:Npn \@@_count_type_r:w #1#2 { \@@_single_token_check:n {#1} \@@_single_token_check:n {#2} \quark_if_recursion_tail_stop_do:Nn #2 { \@@_bad_arg_spec:wn } \int_incr:N \l_@@_mandatory_args_int \@@_count_mandatory:N } \cs_new_protected:Npn \@@_count_type_R:w #1#2#3 { \@@_single_token_check:n {#1} \@@_single_token_check:n {#2} \quark_if_recursion_tail_stop_do:nn {#3} { \@@_bad_arg_spec:wn } \int_incr:N \l_@@_mandatory_args_int \@@_count_mandatory:N } \cs_new_protected:Npn \@@_count_type_t:w #1 { \@@_single_token_check:n {#1} \quark_if_recursion_tail_stop_do:Nn #1 { \@@_bad_arg_spec:wn } \@@_count_mandatory:N } \cs_new_protected:Npn \@@_count_type_u:w #1 { \quark_if_recursion_tail_stop_do:nn {#1} { \@@_bad_arg_spec:wn } \int_incr:N \l_@@_mandatory_args_int \@@_count_mandatory:N } % \end{macrocode} % \end{macro} % % \begin{macro}{\@@_single_token_check:n} % \begin{macro}[aux]{\@@_single_token_check_aux:nwn} % A spin-out function to check that what should be single tokens really % are single tokens. % \begin{macrocode} \cs_new_protected:Npn \@@_single_token_check:n #1 { \exp_args:Nx \tl_if_single_token:nF { \tl_trim_spaces:n {#1} } { \@@_single_token_check_aux:nwn {#1} } } \cs_new_protected:Npn \@@_single_token_check_aux:nwn #1#2 \@@_break_point:n #3 { \__msg_kernel_error:nnx { xparse } { not-single-token } { \tl_to_str:n {#1} } { \tl_to_str:n {#3} } } % \end{macrocode} % \end{macro} % \end{macro} % % \begin{macro}{\@@_bad_arg_spec:wn} % If the signature is wrong, this provides an escape from the entire % definition process. % \begin{macrocode} \cs_new_protected:Npn \@@_bad_arg_spec:wn #1 \@@_break_point:n #2 { \__msg_kernel_error:nnx { xparse } { bad-arg-spec } { \tl_to_str:n {#2} } } % \end{macrocode} % \end{macro} % % \subsection{Preparing the signature: general mechanism} % % \begin{macro}{\@@_prepare_signature:n} % \begin{macro}{\@@_prepare_signature:N} % \begin{macro}{\@@_prepare_signature_bypass:N} % \begin{macro}[aux]{\@@_prepare_signature_add:N} % Actually creating the signature uses the same loop approach as counting % up mandatory arguments. There are first a number of variables which need % to be set to track what is going on. % \begin{macrocode} \cs_new_protected:Npn \@@_prepare_signature:n #1 { \bool_set_false:N \l_@@_all_long_bool \int_zero:N \l_@@_current_arg_int \bool_set_false:N \l_@@_long_bool \int_zero:N \l_@@_m_args_int \bool_set_false:N \l_@@_processor_bool \tl_clear:N \l_@@_signature_tl \@@_prepare_signature:N #1 \q_recursion_tail \q_recursion_stop } % \end{macrocode} % The main looping function does not take an argument, but carries out the % reset on the processor boolean. This is split off from the rest of the % process so that when actually setting up processors the flag-reset can % be bypassed. % \begin{macrocode} \cs_new_protected_nopar:Npn \@@_prepare_signature:N { \bool_set_false:N \l_@@_processor_bool \@@_prepare_signature_bypass:N } \cs_new_protected:Npn \@@_prepare_signature_bypass:N #1 { \quark_if_recursion_tail_stop:N #1 \prop_get:NnNTF \c_@@_shorthands_prop {#1} \l_@@_tmp_tl { \exp_after:wN \@@_prepare_signature:N \l_@@_tmp_tl } { \int_incr:N \l_@@_current_arg_int \@@_prepare_signature_add:N #1 } } % \end{macrocode} % For each known argument type there is an appropriate function to actually % do the addition to the signature. These are separate for expandable and % standard functions, as the approaches are different. Of course, if the type % is not known at all then a fall-back is needed. % \begin{macrocode} \cs_new_protected:Npn \@@_prepare_signature_add:N #1 { \cs_if_exist_use:cF { @@_add \bool_if:NT \l_@@_expandable_bool { _expandable } _type_ \token_to_str:N #1 :w } { \__msg_kernel_error:nnx { xparse } { unknown-argument-type } { \token_to_str:N #1 } \bool_if:NTF \l_@@_expandable_bool { \@@_add_expandable_type_m:w } { \@@_add_type_m:w } } } % \end{macrocode} % \end{macro} % \end{macro} % \end{macro} % \end{macro} % % \subsection{Setting up a standard signature} % % Each argument-adding function appends to the signature a grabber (and % for some types, the delimiters or default value), except the one for % \texttt{m} arguments. These are collected and added to the signature % all at once by \cs{@@_flush_m_args:}, called for every other argument % type. All of the functions then call the loop function % \cs{@@_prepare_signature:N}. % % \begin{macro}{\@@_add_type_+:w} % Making the next argument long means setting the flag and knocking one back % off the total argument count. The \texttt{m} arguments are recorded here as % this has to be done for every case where there is then a long argument. % \begin{macrocode} \cs_new_protected_nopar:cpn { @@_add_type_+:w } { \@@_flush_m_args: \bool_set_true:N \l_@@_long_bool \int_decr:N \l_@@_current_arg_int \@@_prepare_signature:N } % \end{macrocode} % \end{macro} % % \begin{macro}{\@@_add_type_>:w} % When a processor is found, the function \cs{@@_process_arg:n} is added % to the signature along with the processor code itself. When the signature % is used, the code will be added to an execution list by % \cs{@@_process_arg:n}. Here, the loop calls % \cs{@@_prepare_signature_bypass:N} rather than % \cs{@@_prepare_signature:N} so that the flag is not reset. % \begin{macrocode} \cs_new_protected:cpn { @@_add_type_>:w } #1 { \@@_flush_m_args: \bool_set_true:N \l_@@_processor_bool \int_decr:N \l_@@_current_arg_int \tl_put_right:Nn \l_@@_signature_tl { \@@_process_arg:n {#1} } \@@_prepare_signature_bypass:N } % \end{macrocode} % \end{macro} % % \begin{macro}{\@@_add_type_d:w, \@@_add_type_D:w} % To save on repeated code, \texttt{d} is actually turned into the same % grabber as is used by \texttt{D}, by putting the |-NoValue-| default in % the correct place. % \begin{macrocode} \cs_new_protected:Npn \@@_add_type_d:w #1#2 { \exp_args:NNNo \@@_add_type_D:w #1 #2 \c_@@_no_value_tl } \cs_new_protected:Npn \@@_add_type_D:w #1#2#3 { \@@_flush_m_args: \@@_add_grabber_optional:N D \tl_put_right:Nn \l_@@_signature_tl { #1 #2 {#3} } \@@_prepare_signature:N } % \end{macrocode} % \end{macro} % % \begin{macro}{\@@_add_type_g:w} % The \texttt{g} type is simply an alias for \texttt{G} with the correct % default built-in. % \begin{macrocode} \cs_new_protected_nopar:Npn \@@_add_type_g:w { \exp_args:No \@@_add_type_G:w \c_@@_no_value_tl } % \end{macrocode} % \end{macro} % % \begin{macro}{\@@_add_type_G:w} % For the \texttt{G} type, the grabber and the default are added to the % signature. % \begin{macrocode} \cs_new_protected:Npn \@@_add_type_G:w #1 { \@@_flush_m_args: \@@_add_grabber_optional:N G \tl_put_right:Nn \l_@@_signature_tl { {#1} } \@@_prepare_signature:N } % \end{macrocode} % \end{macro} % % \begin{macro}{\@@_add_type_k:w, \@@_add_type_K:w} % Similar to |d|/|D| type but just one token to store. % \begin{macrocode} \cs_new_protected:Npn \@@_add_type_k:w #1 { \exp_args:NNo \@@_add_type_K:w #1 \c_@@_no_value_tl } \cs_new_protected:Npn \@@_add_type_K:w #1#2 { \@@_flush_m_args: \@@_add_grabber_optional:N K \tl_put_right:Nn \l_@@_signature_tl { #1 {#2} } \@@_prepare_signature:N } % \end{macrocode} % \end{macro} % \end{macro} % % \begin{macro}{\@@_add_type_l:w} % Finding \texttt{l} arguments is very simple: there is nothing to do % other than add the grabber. % \begin{macrocode} \cs_new_protected_nopar:Npn \@@_add_type_l:w { \@@_flush_m_args: \@@_add_grabber_mandatory:N l \@@_prepare_signature:N } % \end{macrocode} % \end{macro} % % \begin{macro}{\@@_add_type_m:w} % The \texttt{m} type is special as short arguments which are not % post-processed are simply counted at this stage. Thus there is a check % to see if either of these cases apply. If so, a one-argument grabber % is added to the signature. On the other hand, if a standard short % argument is required it is simply counted at this stage, to be % added later using \cs{@@_flush_m_args:}. % \begin{macrocode} \cs_new_protected_nopar:Npn \@@_add_type_m:w { \bool_if:nTF { \l_@@_long_bool || \l_@@_processor_bool } { \@@_flush_m_args: \@@_add_grabber_mandatory:N m } { \int_incr:N \l_@@_m_args_int } \@@_prepare_signature:N } % \end{macrocode} % \end{macro} % % \begin{macro}{\@@_add_type_r:w, \@@_add_type_R:w} % The \texttt{r}- and \texttt{R}-type arguments are very similar to the % \texttt{d}- and \texttt{D}-types. % \begin{macrocode} \cs_new_protected:Npn \@@_add_type_r:w #1#2 { \exp_args:NNNo \@@_add_type_R:w #1 #2 \c_@@_no_value_tl } \cs_new_protected:Npn \@@_add_type_R:w #1#2#3 { \@@_flush_m_args: \@@_add_grabber_mandatory:N R \tl_put_right:Nn \l_@@_signature_tl { #1 #2 {#3} } \@@_prepare_signature:N } % \end{macrocode} % \end{macro} % % \begin{macro}{\@@_add_type_t:w} % Setting up a \texttt{t} argument means collecting one token for the test, % and adding it along with the grabber to the signature. % \begin{macrocode} \cs_new_protected:Npn \@@_add_type_t:w #1 { \@@_flush_m_args: \@@_add_grabber_optional:N t \tl_put_right:Nn \l_@@_signature_tl {#1} \@@_prepare_signature:N } % \end{macrocode} % \end{macro} % % \begin{macro}{\@@_add_type_u:w} % At the set up stage, the \texttt{u} type argument is identical to the % \texttt{G} type except for the name of the grabber function. % \begin{macrocode} \cs_new_protected:Npn \@@_add_type_u:w #1 { \@@_flush_m_args: \@@_add_grabber_mandatory:N u \tl_put_right:Nn \l_@@_signature_tl { {#1} } \@@_prepare_signature:N } % \end{macrocode} % \end{macro} % % \begin{macro}{\@@_add_type_v:w} % At this stage, the \texttt{v} argument is identical to \texttt{l}. % \begin{macrocode} \cs_new_protected_nopar:Npn \@@_add_type_v:w { \@@_flush_m_args: \@@_add_grabber_mandatory:N v \@@_prepare_signature:N } % \end{macrocode} % \end{macro} % % \begin{macro}{\@@_flush_m_args:} % As \texttt{m} arguments are simply counted, there is a need to add % them to the token register in a block. As this function can only % be called if something other than \texttt{m} turns up, the flag can % be switched here. The total number of mandatory arguments which % remain to be added to % the signature is also decreased by the appropriate amount. % \begin{macrocode} \cs_new_protected_nopar:Npn \@@_flush_m_args: { \int_compare:nNnT \l_@@_m_args_int > \c_zero { \tl_put_right:Nx \l_@@_signature_tl { \exp_not:c { @@_grab_m_ \int_use:N \l_@@_m_args_int :w } } \int_sub:Nn \l_@@_mandatory_args_int { \l_@@_m_args_int } } \int_zero:N \l_@@_m_args_int } % \end{macrocode} % \end{macro} % % \begin{macro}{\@@_add_grabber_mandatory:N} % \begin{macro}{\@@_add_grabber_optional:N} % To keep the various checks needed in one place, adding the grabber to % the signature is done here. For mandatory arguments, the only question % is whether to add a long grabber. For optional arguments, there is % also a check to see if any mandatory arguments are still to be added. % This is used to determine whether to skip spaces or not where % searching for the argument. % \begin{macrocode} \cs_new_protected_nopar:Npn \@@_add_grabber_mandatory:N #1 { \tl_put_right:Nx \l_@@_signature_tl { \exp_not:c { @@_grab_ #1 \bool_if:NT \l_@@_long_bool { _long } :w } } \bool_set_false:N \l_@@_long_bool \int_decr:N \l_@@_mandatory_args_int } \cs_new_protected_nopar:Npn \@@_add_grabber_optional:N #1 { \tl_put_right:Nx \l_@@_signature_tl { \exp_not:c { @@_grab_ #1 \bool_if:NT \l_@@_long_bool { _long } \int_compare:nNnF \l_@@_mandatory_args_int > \c_zero { _trailing } :w } } \bool_set_false:N \l_@@_long_bool } % \end{macrocode} % \end{macro} % \end{macro} % % \subsection{Setting up expandable types} % % The approach here is not dissimilar to that for standard types, although % types which are not supported in expandable functions give an error. There is % also a need to define the per-function auxiliaries: this is done here, while % the general grabbers are dealt with later. % % \begin{macro}{\@@_add_expandable_type_+:w} % Check that a plus is given only if it occurs for every argument. % \begin{macrocode} \cs_new_protected_nopar:cpn { @@_add_expandable_type_+:w } { \bool_set_true:N \l_@@_long_bool \int_compare:nNnTF \l_@@_current_arg_int = \c_one { \bool_set_true:N \l_@@_all_long_bool } { \bool_if:NF \l_@@_all_long_bool { \__msg_kernel_error:nn { xparse } { inconsistent-long } } } \int_decr:N \l_@@_current_arg_int \@@_prepare_signature:N } % \end{macrocode} % \end{macro} % % \begin{macro}{\@@_add_expandable_type_>:w} % No processors in expandable arguments, so this issues an error. % \begin{macrocode} \cs_new_protected:cpn { @@_add_expandable_type_>:w } #1 { \__msg_kernel_error:nnx { xparse } { processor-in-expandable } { \token_to_str:c { \l_@@_function_tl } } \int_decr:N \l_@@_current_arg_int \@@_prepare_signature:N } % \end{macrocode} % \end{macro} % % \begin{macro}{\@@_add_expandable_type_d:w} % \begin{macro}{\@@_add_expandable_type_D:w} % \begin{macro}{\@@_add_expandable_type_D_aux:NNn} % \begin{macro}{\@@_add_expandable_type_D_aux:Nn} % The set up for \texttt{d}- and \texttt{D}-type arguments is the same, % and involves constructing a rather complex auxiliary which is used % repeatedly when grabbing. There is an auxiliary here so that the % \texttt{R}-type can share code readily. % \begin{macrocode} \cs_new_protected:Npn \@@_add_expandable_type_d:w #1#2 { \exp_args:NNNo \@@_add_expandable_type_D:w #1 #2 \c_@@_no_value_tl } \cs_new_protected:Npn \@@_add_expandable_type_D:w #1#2 { \tl_if_eq:nnTF {#1} {#2} { \@@_add_expandable_grabber_optional:n { D_alt } \@@_add_expandable_type_D_aux:Nn #1 } { \@@_add_expandable_grabber_optional:n { D } \@@_add_expandable_type_D_aux:NNn #1#2 } } \cs_new_protected:Npn \@@_add_expandable_type_D_aux:NNn #1#2#3 { \bool_if:NTF \l_@@_all_long_bool { \cs_set:cpx } { \cs_set_nopar:cpx } { \l_@@_expandable_aux_name_tl } ##1 ##2 #1 ##3 \q_@@ ##4 #2 { ##1 {##2} {##3} {##4} } \tl_put_right:Nx \l_@@_signature_tl { \exp_not:c { \l_@@_expandable_aux_name_tl } \exp_not:n { #1 #2 {#3} } } \bool_set_false:N \l_@@_long_bool \@@_prepare_signature:N } % \end{macrocode} % This route is needed if the two delimiting tokens are identical: in % contrast to the non-expandable route, the grabber here has to act % differently for this case. % \begin{macrocode} \cs_new_protected:Npn \@@_add_expandable_type_D_aux:Nn #1#2 { \bool_if:NTF \l_@@_all_long_bool { \cs_set:cpx } { \cs_set_nopar:cpx } { \l_@@_expandable_aux_name_tl } ##1 #1 ##2 #1 { ##1 {##2} } \tl_put_right:Nx \l_@@_signature_tl { \exp_not:c { \l_@@_expandable_aux_name_tl } \exp_not:n { #1 {#2} } } \bool_set_false:N \l_@@_long_bool \@@_prepare_signature:N } % \end{macrocode} % \end{macro} % \end{macro} % \end{macro} % \end{macro} % % \begin{macro}{\@@_add_expandable_type_g:w} % \begin{macro}{\@@_add_expandable_type_G:w} % These are not allowed at all, so there is a complaint and a fall-back. % \begin{macrocode} \cs_new_protected_nopar:Npn \@@_add_expandable_type_g:w { \__msg_kernel_error:nnx { xparse } { invalid-expandable-argument-type } { g } \@@_add_expandable_type_m:w } \cs_new_protected_nopar:Npn \@@_add_expandable_type_G:w #1 { \__msg_kernel_error:nnx { xparse } { invalid-expandable-argument-type } { G } \@@_add_expandable_type_m:w } % \end{macrocode} % \end{macro} % \end{macro} % % \begin{macro}{\@@_add_expandable_type_k:w} % \begin{macro}{\@@_add_expandable_type_K:w} % \begin{macrocode} \cs_new_protected_nopar:Npn \@@_add_expandable_type_k:w #1 { \exp_args:NNo \@@_add_expandable_type_K:w #1 \c_@@_no_value_tl } \cs_new_protected_nopar:Npn \@@_add_expandable_type_K:w #1#2 { \@@_add_expandable_grabber_optional:n { K } \bool_if:NTF \l_@@_all_long_bool { \cs_set:cpx } { \cs_set_nopar:cpx } { \l_@@_expandable_aux_name_tl } ##1 #1 ##2 { ##1 {##2} } \tl_put_right:Nx \l_@@_signature_tl { \exp_not:c { \l_@@_expandable_aux_name_tl } \exp_not:n { #1 {#2} } } \bool_set_false:N \l_@@_long_bool \@@_prepare_signature:N } % \end{macrocode} % \end{macro} % \end{macro} % % \begin{macro}{\@@_add_expandable_type_l:w} % Invalid in expandable contexts (as the next left brace may have been % inserted by \pkg{xparse} due to a failed search for an optional argument). % \begin{macrocode} \cs_new_protected_nopar:Npn \@@_add_expandable_type_l:w { \__msg_kernel_error:nnx { xparse } { invalid-expandable-argument-type } { l } \@@_add_expandable_type_m:w } % \end{macrocode} % \end{macro} % % \begin{macro}{\@@_add_expandable_type_m:w} % Unlike the standard case, when working expandably each argument is always % grabbed separately unless the function takes only \texttt{m}-type % arguments. To deal with the latter case, the value of % \cs{l_@@_m_args_int} needs to be increased appropriately. % \begin{macrocode} \cs_new_protected_nopar:Npn \@@_add_expandable_type_m:w { \int_incr:N \l_@@_m_args_int \@@_add_expandable_grabber_mandatory:n { m } \bool_set_false:N \l_@@_long_bool \@@_prepare_signature:N } % \end{macrocode} % \end{macro} % % \begin{macro}{\@@_add_expandable_type_r:w} % \begin{macro}{\@@_add_expandable_type_R:w} % The \texttt{r}- and \texttt{R}-types are very similar to \texttt{D}-type % arguments, and so the same internals are used. % \begin{macrocode} \cs_new_protected:Npn \@@_add_expandable_type_r:w #1#2 { \exp_args:NNNo \@@_add_expandable_type_R:w #1 #2 \c_@@_no_value_tl } \cs_new_protected:Npn \@@_add_expandable_type_R:w #1#2 { \tl_if_eq:nnTF {#1} {#2} { \@@_add_expandable_grabber_mandatory:n { R_alt } \@@_add_expandable_type_D_aux:Nn #1 } { \@@_add_expandable_grabber_mandatory:n { R } \@@_add_expandable_type_D_aux:NNn #1#2 } } % \end{macrocode} % \end{macro} % \end{macro} % % \begin{macro}{\@@_add_expandable_type_t:w} % \begin{macrocode} \cs_new_protected_nopar:Npn \@@_add_expandable_type_t:w #1 { \@@_add_expandable_grabber_optional:n { t } \bool_if:NTF \l_@@_all_long_bool { \cs_set:cpn } { \cs_set_nopar:cpn } { \l_@@_expandable_aux_name_tl } ##1 #1 {##1} \tl_put_right:Nx \l_@@_signature_tl { \exp_not:c { \l_@@_expandable_aux_name_tl } \exp_not:N #1 } \bool_set_false:N \l_@@_long_bool \@@_prepare_signature:N } % \end{macrocode} % \end{macro} % % \begin{macro}{\@@_add_expandable_type_u:w} % Invalid in an expandable context as any preceding optional argument may % wrap part of the delimiter up in braces. % \begin{macrocode} \cs_new_protected_nopar:Npn \@@_add_expandable_type_u:w #1 { \__msg_kernel_error:nnx { xparse } { invalid-expandable-argument-type } { u } \@@_add_expandable_type_m:w } % \end{macrocode} % \end{macro} % % \begin{macro}{\@@_add_expandable_type_v:w} % Another forbidden type. % \begin{macrocode} \cs_new_protected_nopar:Npn \@@_add_expandable_type_v:w { \__msg_kernel_error:nnx { xparse } { invalid-expandable-argument-type } { v } \@@_add_expandable_type_m:w } % \end{macrocode} % \end{macro} % % \begin{macro} % { % \@@_add_expandable_grabber_mandatory:n, % \@@_add_expandable_grabber_optional:n % } % \begin{macro}[aux]{\@@_add_expandable_long_check:} % Adding a grabber to the signature is very simple here, with only a test to % ensure that optional arguments still have mandatory ones to follow. This % is also a good place to check on the consistency of the long status of % arguments. % \begin{macrocode} \cs_new_protected_nopar:Npn \@@_add_expandable_grabber_mandatory:n #1 { \@@_add_expandable_long_check: \tl_put_right:Nx \l_@@_signature_tl { \exp_not:c { @@_expandable_grab_ #1 :w } } \bool_set_false:N \l_@@_long_bool \int_decr:N \l_@@_mandatory_args_int } \cs_new_protected_nopar:Npn \@@_add_expandable_grabber_optional:n #1 { \@@_add_expandable_long_check: \int_compare:nNnF \l_@@_mandatory_args_int > \c_zero { \__msg_kernel_error:nn { xparse } { expandable-ending-optional } } \tl_put_right:Nx \l_@@_signature_tl { \exp_not:c { @@_expandable_grab_ #1 :w } } \bool_set_false:N \l_@@_long_bool } \cs_new_protected_nopar:Npn \@@_add_expandable_long_check: { \bool_if:nT { \l_@@_all_long_bool && ! \l_@@_long_bool } { \__msg_kernel_error:nn { xparse } { inconsistent-long } } } % \end{macrocode} % \end{macro} % \end{macro} % % \subsection{Grabbing arguments} % % All of the grabbers follow the same basic pattern. The initial % function sets up the appropriate information to define % \cs{@@_grab_arg:w} to grab the argument. This means determining % whether to use \cs{cs_set:Npn} or \cs{cs_set_nopar:Npn}, and for % optional arguments whether to skip spaces. In all cases, % \cs{@@_grab_arg:w} is then called to actually do the grabbing. % % \begin{macro}{\@@_grab_arg:w} % \begin{macro}[aux]{\@@_grab_arg_auxi:w} % \begin{macro}[aux]{\@@_grab_arg_auxii:w} % Each time an argument is actually grabbed, \pkg{xparse} defines a % function to do it. In that way, long arguments from previous functions % can be included in the definition of the grabber function, so that % it does not raise an error if not long. The generic function used % for this is reserved here. A couple of auxiliary functions are also % needed in various places. % \begin{macrocode} \cs_new_protected:Npn \@@_grab_arg:w { } \cs_new_protected:Npn \@@_grab_arg_auxi:w { } \cs_new_protected:Npn \@@_grab_arg_auxii:w { } % \end{macrocode} % \end{macro} % \end{macro} % \end{macro} % % \begin{macro}{\@@_grab_D:w} % \begin{macro}{\@@_grab_D_long:w} % \begin{macro}{\@@_grab_D_trailing:w} % \begin{macro}{\@@_grab_D_long_trailing:w} % The generic delimited argument grabber. The auxiliary function does % a peek test before calling \cs{@@_grab_arg:w}, so that the % optional nature of the argument works as expected. % \begin{macrocode} \cs_new_protected:Npn \@@_grab_D:w #1#2#3#4 \l_@@_args_tl { \@@_grab_D_aux:NNnnNn #1 #2 {#3} {#4} \cs_set_protected_nopar:Npn { _ignore_spaces } } \cs_new_protected:Npn \@@_grab_D_long:w #1#2#3#4 \l_@@_args_tl { \@@_grab_D_aux:NNnnNn #1 #2 {#3} {#4} \cs_set_protected:Npn { _ignore_spaces } } \cs_new_protected:Npn \@@_grab_D_trailing:w #1#2#3#4 \l_@@_args_tl { \@@_grab_D_aux:NNnnNn #1 #2 {#3} {#4} \cs_set_protected_nopar:Npn { } } \cs_new_protected:Npn \@@_grab_D_long_trailing:w #1#2#3#4 \l_@@_args_tl { \@@_grab_D_aux:NNnnNn #1 #2 {#3} {#4} \cs_set_protected:Npn { } } % \end{macrocode} % \begin{macro}[aux]{\@@_grab_D_aux:NNnnNn} % \begin{macro}[aux]{\@@_grab_D_aux:NNnN} % This is a bit complicated. The idea is that, in order to check for % nested optional argument tokens (\texttt{[[...]]} and so on) the % argument needs to be grabbed without removing any braces at all. If % this is not done, then cases like |[{[}]| fail. So after testing for % an optional argument, it is collected piece-wise. Inserting a quark % prevents loss of braces, and there is then a test to see if there are % nested delimiters to handle. % \begin{macrocode} \cs_new_protected:Npn \@@_grab_D_aux:NNnnNn #1#2#3#4#5#6 { \@@_grab_D_aux:NNnN #1#2 {#4} #5 \use:c { peek_meaning_remove #6 :NTF } #1 { \@@_grab_arg:w } { \@@_add_arg:n {#3} #4 \l_@@_args_tl } } % \end{macrocode} % Inside the \enquote{standard} grabber, there is a test to see if the % grabbed argument is entirely enclosed by braces. There are a couple of % extra factors to allow for: the argument might be entirely empty, and % spaces at the start and end of the input must be retained around a brace % group. Also notice that a \emph{blank} argument might still contain % spaces. % \begin{macrocode} \cs_new_protected:Npn \@@_grab_D_aux:NNnN #1#2#3#4 { \cs_set_protected_nopar:Npn \@@_grab_arg:w { \exp_after:wN #4 \l_@@_fn_tl ####1 #2 { \tl_if_in:nnTF {####1} {#1} { \@@_grab_D_nested:NNnnN #1 #2 {####1} {#3} #4 } { \tl_if_blank:oTF { \use_none:n ####1 } { \@@_add_arg:o { \use_none:n ####1 } } { \str_if_eq_x:nnTF { \exp_not:o { \use_none:n ####1 } } { { \exp_not:o { \use_ii:nnn ####1 \q_nil } } } { \@@_add_arg:o { \use_ii:nn ####1 } } { \@@_add_arg:o { \use_none:n ####1 } } } #3 \l_@@_args_tl } } % \end{macrocode} % This section needs a little explanation. In order to avoid losing any % braces, a token needs to be inserted before the argument to be grabbed. % If the argument runs away because the closing token is missing then this % inserted token shows up in the terminal. Ideally, |#1| would therefore be % used directly, but that is no good as it will mess up the rest of the % grabber. Instead, a copy of |#1| with an altered category code is used, % as this will look right in the terminal but will not mess up the grabber. % The only issue then is that the category code of |#1| is unknown. So there % is a quick test to ensure that the inserted token can never be matched by % the grabber. (This assumes that |#1| and |#2| are not the same character % with different category codes, but that really should not happen in any % sensible document-level syntax.) % \begin{macrocode} \token_if_eq_catcode:NNTF + #1 { \exp_after:wN \exp_after:wN \exp_after:wN \l_@@_fn_tl \char_generate:nn { `#1 } { 11 } } { \exp_after:wN \l_@@_fn_tl \token_to_str:N #1 } } } % \end{macrocode} % \end{macro} % \end{macro} % \end{macro} % \end{macro} % \end{macro} % \end{macro} % \begin{macro}[aux]{\@@_grab_D_nested:NNnnN} % \begin{macro}[aux]{\@@_grab_D_nested:w} % \begin{macro}{\l_@@_nesting_a_tl} % \begin{macro}{\l_@@_nesting_b_tl} % \begin{macro}{\q_@@} % Catching nested optional arguments means more work. The aim here is % to collect up each pair of optional tokens without \TeX{} helping out, % and without counting anything. The code above will already have % removed the leading opening token and a closing token, but the % wrong one. The aim is then to work through the material grabbed % so far and divide it up on each opening token, grabbing a closing % token to match (thus working in pairs). Once there are no opening % tokens, then there is a second check to see if there are any % opening tokens in the second part of the argument (for things % like |[][]|). Once everything has been found, the entire collected % material is added to the output as a single argument. The only tricky part % here is ensuring that any grabbing function that might run away is named % after the function currently being parsed and not after \pkg{xparse}. That % leads to some rather complex nesting! There is also a need to prevent the % loss of any braces, hence the insertion and removal of quarks along the % way. % \begin{macrocode} \tl_new:N \l_@@_nesting_a_tl \tl_new:N \l_@@_nesting_b_tl \quark_new:N \q_@@ \cs_new_protected:Npn \@@_grab_D_nested:NNnnN #1#2#3#4#5 { \tl_clear:N \l_@@_nesting_a_tl \tl_clear:N \l_@@_nesting_b_tl \exp_after:wN #5 \l_@@_fn_tl ##1 #1 ##2 \q_@@ ##3 #2 { \tl_put_right:No \l_@@_nesting_a_tl { \use_none:n ##1 #1 } \tl_put_right:No \l_@@_nesting_b_tl { \use_i:nn #2 ##3 } \tl_if_in:nnTF {##2} {#1} { \l_@@_fn_tl \q_nil ##2 \q_@@ \ERROR } { \tl_put_right:Nx \l_@@_nesting_a_tl { \@@_grab_D_nested:w \q_nil ##2 \q_stop } \tl_if_in:NnTF \l_@@_nesting_b_tl {#1} { \tl_set_eq:NN \l_@@_tmp_tl \l_@@_nesting_b_tl \tl_clear:N \l_@@_nesting_b_tl \exp_after:wN \l_@@_fn_tl \exp_after:wN \q_nil \l_@@_tmp_tl \q_nil \q_@@ \ERROR } { \tl_put_right:No \l_@@_nesting_a_tl \l_@@_nesting_b_tl \@@_add_arg:V \l_@@_nesting_a_tl #4 \l_@@_args_tl } } } \l_@@_fn_tl #3 \q_nil \q_@@ \ERROR } \cs_new:Npn \@@_grab_D_nested:w #1 \q_nil \q_stop { \exp_not:o { \use_none:n #1 } } % \end{macrocode} % \end{macro} % \end{macro} % \end{macro} % \end{macro} % \end{macro} % % \begin{macro}{\@@_grab_G:w} % \begin{macro}{\@@_grab_G_long:w} % \begin{macro}{\@@_grab_G_trailing:w} % \begin{macro}{\@@_grab_G_long_trailing:w} % \begin{macro}[aux]{\@@_grab_G_aux:nnNn} % Optional groups are checked by meaning, so that the same code will % work with, for example, Con\TeX{}t-like input. % \begin{macrocode} \cs_new_protected:Npn \@@_grab_G:w #1#2 \l_@@_args_tl { \@@_grab_G_aux:nnNn {#1} {#2} \cs_set_protected_nopar:Npn { _ignore_spaces } } \cs_new_protected:Npn \@@_grab_G_long:w #1#2 \l_@@_args_tl { \@@_grab_G_aux:nnNn {#1} {#2} \cs_set_protected:Npn { _ignore_spaces } } \cs_new_protected:Npn \@@_grab_G_trailing:w #1#2 \l_@@_args_tl { \@@_grab_G_aux:nnNn {#1} {#2} \cs_set_protected_nopar:Npn { } } \cs_new_protected:Npn \@@_grab_G_long_trailing:w #1#2 \l_@@_args_tl { \@@_grab_G_aux:nnNn {#1} {#2} \cs_set_protected:Npn { } } \cs_new_protected:Npn \@@_grab_G_aux:nnNn #1#2#3#4 { \exp_after:wN #3 \l_@@_fn_tl ##1 { \@@_add_arg:n {##1} #2 \l_@@_args_tl } \use:c { peek_meaning #4 :NTF } \c_group_begin_token { \l_@@_fn_tl } { \@@_add_arg:n {#1} #2 \l_@@_args_tl } } % \end{macrocode} % \end{macro} % \end{macro} % \end{macro} % \end{macro} % \end{macro} % % \begin{macro}{\@@_grab_K:w, \@@_grab_K_long:w} % \begin{macro}[aux]{\@@_grab_K_aux:nnnNn} % Look ahead at one token and if it matches grab an argument. % \begin{macrocode} \cs_new_protected:Npn \@@_grab_K:w #1#2#3 \l_@@_args_tl { \@@_grab_K_aux:nnnNn {#1} {#2} {#3} \cs_set_protected_nopar:Npn { _ignore_spaces } } \cs_new_protected:Npn \@@_grab_K_long:w #1#2#3 \l_@@_args_tl { \@@_grab_K_aux:nnnNn {#1} {#2} {#3} \cs_set_protected:Npn { _ignore_spaces } } \cs_new_protected:Npn \@@_grab_K_trailing:w #1#2#3 \l_@@_args_tl { \@@_grab_K_aux:nnnNn {#1} {#2} {#3} \cs_set_protected_nopar:Npn { } } \cs_new_protected:Npn \@@_grab_K_long_trailing:w #1#2#3 \l_@@_args_tl { \@@_grab_K_aux:nnnNn {#1} {#2} {#3} \cs_set_protected:Npn { } } \cs_new_protected:Npn \@@_grab_K_aux:nnnNn #1#2#3#4#5 { \exp_after:wN #4 \l_@@_fn_tl ##1 { \@@_add_arg:n {##1} #3 \l_@@_args_tl } \use:c { peek_meaning_remove #5 :NTF } #1 { \l_@@_fn_tl } { \@@_add_arg:n {#2} #3 \l_@@_args_tl } } % \end{macrocode} % \end{macro} % \end{macro} % % \begin{macro}{\@@_grab_l:w} % \begin{macro}{\@@_grab_l_long:w} % \begin{macro}[aux]{\@@_grab_l_aux:nN} % Argument grabbers for mandatory \TeX{} arguments are pretty simple. % \begin{macrocode} \cs_new_protected:Npn \@@_grab_l:w #1 \l_@@_args_tl { \@@_grab_l_aux:nN {#1} \cs_set_protected_nopar:Npn } \cs_new_protected:Npn \@@_grab_l_long:w #1 \l_@@_args_tl { \@@_grab_l_aux:nN {#1} \cs_set_protected:Npn } \cs_new_protected:Npn \@@_grab_l_aux:nN #1#2 { \exp_after:wN #2 \l_@@_fn_tl ##1## { \@@_add_arg:n {##1} #1 \l_@@_args_tl } \l_@@_fn_tl } % \end{macrocode} % \end{macro} % \end{macro} % \end{macro} % % \begin{macro}{\@@_grab_m:w} % \begin{macro}{\@@_grab_m_long:w} % Collecting a single mandatory argument is quite easy. % \begin{macrocode} \cs_new_protected:Npn \@@_grab_m:w #1 \l_@@_args_tl { \exp_after:wN \cs_set_protected_nopar:Npn \l_@@_fn_tl ##1 { \@@_add_arg:n {##1} #1 \l_@@_args_tl } \l_@@_fn_tl } \cs_new_protected:Npn \@@_grab_m_long:w #1 \l_@@_args_tl { \exp_after:wN \cs_set_protected:Npn \l_@@_fn_tl ##1 { \@@_add_arg:n {##1} #1 \l_@@_args_tl } \l_@@_fn_tl } % \end{macrocode} % \end{macro} % \end{macro} % % \begin{macro}{\@@_grab_m_1:w} % \begin{macro}{\@@_grab_m_2:w} % \begin{macro}{\@@_grab_m_3:w} % \begin{macro}{\@@_grab_m_4:w} % \begin{macro}{\@@_grab_m_5:w} % \begin{macro}{\@@_grab_m_6:w} % \begin{macro}{\@@_grab_m_7:w} % \begin{macro}{\@@_grab_m_8:w} % Grabbing 1--8 mandatory arguments. We don't need to worry about % nine arguments as this is only possible if everything is % mandatory. Each function has an auxiliary so that \cs{par} tokens % from other arguments still work. % \begin{macrocode} \cs_new_protected:cpn { @@_grab_m_1:w } #1 \l_@@_args_tl { \exp_after:wN \cs_set_protected_nopar:Npn \l_@@_fn_tl ##1 { \tl_put_right:Nn \l_@@_args_tl { {##1} } #1 \l_@@_args_tl } \l_@@_fn_tl } \cs_new_protected:cpn { @@_grab_m_2:w } #1 \l_@@_args_tl { \exp_after:wN \cs_set_protected_nopar:Npn \l_@@_fn_tl ##1##2 { \tl_put_right:Nn \l_@@_args_tl { {##1} {##2} } #1 \l_@@_args_tl } \l_@@_fn_tl } \cs_new_protected:cpn { @@_grab_m_3:w } #1 \l_@@_args_tl { \exp_after:wN \cs_set_protected_nopar:Npn \l_@@_fn_tl ##1##2##3 { \tl_put_right:Nn \l_@@_args_tl { {##1} {##2} {##3} } #1 \l_@@_args_tl } \l_@@_fn_tl } \cs_new_protected:cpn { @@_grab_m_4:w } #1 \l_@@_args_tl { \exp_after:wN \cs_set_protected_nopar:Npn \l_@@_fn_tl ##1##2##3##4 { \tl_put_right:Nn \l_@@_args_tl { {##1} {##2} {##3} {##4} } #1 \l_@@_args_tl } \l_@@_fn_tl } \cs_new_protected:cpn { @@_grab_m_5:w } #1 \l_@@_args_tl { \exp_after:wN \cs_set_protected_nopar:Npn \l_@@_fn_tl ##1##2##3##4##5 { \tl_put_right:Nn \l_@@_args_tl { {##1} {##2} {##3} {##4} {##5} } #1 \l_@@_args_tl } \l_@@_fn_tl } \cs_new_protected:cpn { @@_grab_m_6:w } #1 \l_@@_args_tl { \exp_after:wN \cs_set_protected_nopar:Npn \l_@@_fn_tl ##1##2##3##4##5##6 { \tl_put_right:Nn \l_@@_args_tl { {##1} {##2} {##3} {##4} {##5} {##6} } #1 \l_@@_args_tl } \l_@@_fn_tl } \cs_new_protected:cpn { @@_grab_m_7:w } #1 \l_@@_args_tl { \exp_after:wN \cs_set_protected_nopar:Npn \l_@@_fn_tl ##1##2##3##4##5##6##7 { \tl_put_right:Nn \l_@@_args_tl { {##1} {##2} {##3} {##4} {##5} {##6} {##7} } #1 \l_@@_args_tl } \l_@@_fn_tl } \cs_new_protected:cpn { @@_grab_m_8:w } #1 \l_@@_args_tl { \exp_after:wN \cs_set_protected_nopar:Npn \l_@@_fn_tl ##1##2##3##4##5##6##7##8 { \tl_put_right:Nn \l_@@_args_tl { {##1} {##2} {##3} {##4} {##5} {##6} {##7} {##8} } #1 \l_@@_args_tl } \l_@@_fn_tl } % \end{macrocode} % \end{macro} % \end{macro} % \end{macro} % \end{macro} % \end{macro} % \end{macro} % \end{macro} % \end{macro} % % \begin{macro}{\@@_grab_R:w, \@@_grab_R_long:w} % \begin{macro}[aux]{\@@_grab_R_aux:NNnnN} % The grabber for \texttt{R}-type arguments is basically the same as % that for \texttt{D}-type ones, but always skips spaces (as it is mandatory) % and has a hard-coded error message. % \begin{macrocode} \cs_new_protected:Npn \@@_grab_R:w #1#2#3#4 \l_@@_args_tl { \@@_grab_R_aux:NNnnN #1 #2 {#3} {#4} \cs_set_protected_nopar:Npn } \cs_new_protected:Npn \@@_grab_R_long:w #1#2#3#4 \l_@@_args_tl { \@@_grab_R_aux:NNnnN #1 #2 {#3} {#4} \cs_set_protected:Npn } \cs_new_protected:Npn \@@_grab_R_aux:NNnnN #1#2#3#4#5 { \@@_grab_D_aux:NNnN #1 #2 {#4} #5 \peek_meaning_remove_ignore_spaces:NTF #1 { \@@_grab_arg:w } { \__msg_kernel_error:nnxx { xparse } { missing-required } { \token_to_str:N #1 } { \tl_to_str:n {#3} } \@@_add_arg:n {#3} #4 \l_@@_args_tl } } % \end{macrocode} % \end{macro} % \end{macro} % % \begin{macro}{\@@_grab_t:w} % \begin{macro}{\@@_grab_t_long:w} % \begin{macro}{\@@_grab_t_trailing:w} % \begin{macro}{\@@_grab_t_long_trailing:w} % \begin{macro}[aux]{\@@_grab_t_aux:NnNn} % Dealing with a token is quite easy. Check the match, remove the % token if needed and add a flag to the output. % \begin{macrocode} \cs_new_protected:Npn \@@_grab_t:w #1#2 \l_@@_args_tl { \@@_grab_t_aux:NnNn #1 {#2} \cs_set_protected_nopar:Npn { _ignore_spaces } } \cs_new_protected:Npn \@@_grab_t_long:w #1#2 \l_@@_args_tl { \@@_grab_t_aux:NnNn #1 {#2} \cs_set_protected:Npn { _ignore_spaces } } \cs_new_protected:Npn \@@_grab_t_trailing:w #1#2 \l_@@_args_tl { \@@_grab_t_aux:NnNn #1 {#2} \cs_set_protected_nopar:Npn { } } \cs_new_protected:Npn \@@_grab_t_long_trailing:w #1#2 \l_@@_args_tl { \@@_grab_t_aux:NnNn #1 {#2} \cs_set_protected:Npn { } } \cs_new_protected:Npn \@@_grab_t_aux:NnNn #1#2#3#4 { \exp_after:wN #3 \l_@@_fn_tl { \use:c { peek_meaning_remove #4 :NTF } #1 { \@@_add_arg:n { \BooleanTrue } #2 \l_@@_args_tl } { \@@_add_arg:n { \BooleanFalse } #2 \l_@@_args_tl } } \l_@@_fn_tl } % \end{macrocode} % \end{macro} % \end{macro} % \end{macro} % \end{macro} % \end{macro} % % \begin{macro}{\@@_grab_u:w} % \begin{macro}{\@@_grab_u_long:w} % \begin{macro}[aux]{\@@_grab_u_aux:nnN} % Grabbing up to a list of tokens is quite easy: define the grabber, % and then collect. % \begin{macrocode} \cs_new_protected:Npn \@@_grab_u:w #1#2 \l_@@_args_tl { \@@_grab_u_aux:nnN {#1} {#2} \cs_set_protected_nopar:Npn } \cs_new_protected:Npn \@@_grab_u_long:w #1#2 \l_@@_args_tl { \@@_grab_u_aux:nnN {#1} {#2} \cs_set_protected:Npn } \cs_new_protected:Npn \@@_grab_u_aux:nnN #1#2#3 { \exp_after:wN #3 \l_@@_fn_tl ##1 #1 { \@@_add_arg:n {##1} #2 \l_@@_args_tl } \l_@@_fn_tl } % \end{macrocode} % \end{macro} % \end{macro} % \end{macro} % % \begin{macro}{\@@_grab_v:w} % \begin{macro}{\@@_grab_v_long:w} % \begin{macro}{\@@_grab_v_aux:w} % \begin{macro}{\@@_grab_v_group_end:} % \begin{variable}{\l_@@_v_rest_of_signature_tl} % \begin{variable}{\l_@@_v_arg_tl} % The opening delimiter is the first non-space token, and is never % read verbatim. This is required by consistency with the case where % the preceding argument was optional and absent: then \TeX{} has % already read and tokenized that token when looking for the optional % argument. The first thing is thus to check is that this delimiter % is a character, and to distinguish the case of a left brace (in that % case, \cs{group_align_safe_end:} is needed to compensate for the % begin-group character that was just seen). Then set verbatim % catcodes with \cs{@@_grab_v_aux_catcodes:}. % % The group keep catcode changes local, and % \cs{group_align_safe_begin/end:} allow to use a character % with category code~$4$ (normally |&|) as the delimiter. % It is ended by \cs{@@_grab_v_group_end:}, which smuggles % the collected argument out of the group. % \begin{macrocode} \tl_new:N \l_@@_v_rest_of_signature_tl \tl_new:N \l_@@_v_arg_tl \cs_new_protected_nopar:Npn \@@_grab_v:w { \bool_set_false:N \l_@@_long_bool \@@_grab_v_aux:w } \cs_new_protected_nopar:Npn \@@_grab_v_long:w { \bool_set_true:N \l_@@_long_bool \@@_grab_v_aux:w } \cs_new_protected:Npn \@@_grab_v_aux:w #1 \l_@@_args_tl { \tl_set:Nn \l_@@_v_rest_of_signature_tl {#1} \group_begin: \group_align_safe_begin: \tex_escapechar:D = 92 \scan_stop: \tl_clear:N \l_@@_v_arg_tl \peek_meaning_remove_ignore_spaces:NTF \c_group_begin_token { \group_align_safe_end: \@@_grab_v_bgroup: } { \peek_N_type:TF { \@@_grab_v_aux_test:N } { \@@_grab_v_aux_abort:n { } } } } \cs_new_protected_nopar:Npn \@@_grab_v_group_end: { \group_align_safe_end: \exp_args:NNNo \group_end: \tl_set:Nn \l_@@_v_arg_tl { \l_@@_v_arg_tl } } % \end{macrocode} % \end{variable} % \end{variable} % \end{macro} % \end{macro} % \end{macro} % \end{macro} % % \begin{macro}{\@@_grab_v_aux_test:N} % \begin{macro} % { % \@@_grab_v_aux_loop:N, % \@@_grab_v_aux_loop:NN, % \@@_grab_v_aux_loop_end: % } % Check that the opening delimiter is a character, setup category codes, % then start reading tokens one by one, keeping the delimiter as an argument. % If the verbatim was not nested, we will be grabbing one character % at each step. Unfortunately, it can happen that what follows the % verbatim argument is already tokenized. Thus, we check at each step % that the next token is indeed a \enquote{nice} % character, \emph{i.e.}, is not a character with % category code $1$ (begin-group), $2$ (end-group) % or $6$ (macro parameter), nor the space character, % with category code~$10$ and character code~$32$, % nor a control sequence. % The partially built argument is stored in \cs{l_@@_v_arg_tl}. % If we ever meet a token which we cannot grab (non-N-type), % or which is not a character according to % \cs{@@_grab_v_token_if_char:NTF}, then we bail out with % \cs{@@_grab_v_aux_abort:n}. Otherwise, we stop at the first % character matching the delimiter. % \begin{macrocode} \cs_new_protected:Npn \@@_grab_v_aux_test:N #1 { \@@_grab_v_token_if_char:NTF #1 { \@@_grab_v_aux_put:N #1 \@@_grab_v_aux_catcodes: \@@_grab_v_aux_loop:N #1 } { \@@_grab_v_aux_abort:n {#1} #1 } } \cs_new_protected:Npn \@@_grab_v_aux_loop:N #1 { \peek_N_type:TF { \@@_grab_v_aux_loop:NN #1 } { \@@_grab_v_aux_abort:n { } } } \cs_new_protected:Npn \@@_grab_v_aux_loop:NN #1#2 { \@@_grab_v_token_if_char:NTF #2 { \token_if_eq_charcode:NNTF #1 #2 { \@@_grab_v_aux_loop_end: } { \@@_grab_v_aux_put:N #2 \@@_grab_v_aux_loop:N #1 } } { \@@_grab_v_aux_abort:n {#2} #2 } } \cs_new_protected_nopar:Npn \@@_grab_v_aux_loop_end: { \@@_grab_v_group_end: \exp_args:Nx \@@_add_arg:n { \tl_tail:N \l_@@_v_arg_tl } \l_@@_v_rest_of_signature_tl \l_@@_args_tl } % \end{macrocode} % \end{macro} % \end{macro} % % \begin{macro}{\@@_grab_v_bgroup:} % \begin{macro}{\@@_grab_v_bgroup_loop:} % \begin{macro}{\@@_grab_v_bgroup_loop:N} % \begin{variable}{\l_@@_v_nesting_int} % If the opening delimiter is a left brace, we keep track of % how many left and right braces were encountered so far in % \cs{l_@@_v_nesting_int} (the methods used for optional % arguments cannot apply here), and stop as soon as it reaches~$0$. % % Some care was needed when removing the opening delimiter, which % has already been assigned category code~$1$: using % \cs{peek_meaning_remove:NTF} in the \cs{@@_grab_v_aux:w} % function would break within alignments. Instead, we first % convert that token to a string, and remove the result as a % normal undelimited argument. % \begin{macrocode} \int_new:N \l_@@_v_nesting_int \cs_new_protected_nopar:Npx \@@_grab_v_bgroup: { \exp_not:N \@@_grab_v_aux_catcodes: \exp_not:n { \int_set_eq:NN \l_@@_v_nesting_int \c_one } \exp_not:N \@@_grab_v_aux_put:N \iow_char:N \{ \exp_not:N \@@_grab_v_bgroup_loop: } \cs_new_protected:Npn \@@_grab_v_bgroup_loop: { \peek_N_type:TF { \@@_grab_v_bgroup_loop:N } { \@@_grab_v_aux_abort:n { } } } \cs_new_protected:Npn \@@_grab_v_bgroup_loop:N #1 { \@@_grab_v_token_if_char:NTF #1 { \token_if_eq_charcode:NNTF \c_group_end_token #1 { \int_decr:N \l_@@_v_nesting_int \int_compare:nNnTF \l_@@_v_nesting_int > \c_zero { \@@_grab_v_aux_put:N #1 \@@_grab_v_bgroup_loop: } { \@@_grab_v_aux_loop_end: } } { \token_if_eq_charcode:NNT \c_group_begin_token #1 { \int_incr:N \l_@@_v_nesting_int } \@@_grab_v_aux_put:N #1 \@@_grab_v_bgroup_loop: } } { \@@_grab_v_aux_abort:n {#1} #1 } } % \end{macrocode} % \end{variable} % \end{macro} % \end{macro} % \end{macro} % % \begin{macro}{\@@_grab_v_aux_catcodes:} % \begin{macro}{\@@_grab_v_aux_abort:n} % In a standalone format, the list of special characters is kept % as a sequence, \cs{c_@@_special_chars_seq}, and we use % \tn{dospecials} in package mode. % The approach for short verbatim arguments is to make the end-line % character a macro parameter character: this is forbidden by the % rest of the code. Then the error branch can check what caused the % bail out and give the appropriate error message. % \begin{macrocode} \cs_new_protected_nopar:Npn \@@_grab_v_aux_catcodes: { %<*initex> \seq_map_function:NN \c_@@_special_chars_seq \char_set_catcode_other:N % %<*package> \cs_set_eq:NN \do \char_set_catcode_other:N \dospecials % \tex_endlinechar:D = `\^^M \scan_stop: \bool_if:NTF \l_@@_long_bool { \char_set_catcode_other:n { \tex_endlinechar:D } } { \char_set_catcode_parameter:n { \tex_endlinechar:D } } } \cs_new_protected:Npn \@@_grab_v_aux_abort:n #1 { \@@_grab_v_group_end: \@@_add_arg:o \c_@@_no_value_tl \exp_after:wN \exp_after:wN \exp_after:wN \peek_meaning_remove:NTF \char_generate:nn { \tex_endlinechar:D } { 6 } { \__msg_kernel_error:nnxxx { xparse } { verbatim-newline } { \exp_after:wN \token_to_str:N \l_@@_fn_tl } { \tl_to_str:N \l_@@_v_arg_tl } { \tl_to_str:n {#1} } \l_@@_v_rest_of_signature_tl \l_@@_args_tl } { \__msg_kernel_error:nnxxx { xparse } { verbatim-tokenized } { \exp_after:wN \token_to_str:N \l_@@_fn_tl } { \tl_to_str:N \l_@@_v_arg_tl } { \tl_to_str:n {#1} } \l_@@_v_rest_of_signature_tl \l_@@_args_tl } } % \end{macrocode} % \end{macro} % \end{macro} % % \begin{macro}{\@@_grab_v_aux_put:N} % Storing one token in the collected argument. Most tokens are % converted to category code $12$, with the exception of active % characters, and spaces (not sure what should be done for those). % \begin{macrocode} \cs_new_protected:Npn \@@_grab_v_aux_put:N #1 { \tl_put_right:Nx \l_@@_v_arg_tl { \token_if_active:NTF #1 { \exp_not:N #1 } { \token_to_str:N #1 } } } % \end{macrocode} % \end{macro} % % \begin{macro}{\@@_grab_v_token_if_char:NTF} % This function assumes that the escape character is printable. % Then the string representation of control sequences is at least % two characters, and \cs{str_tail:n} only removes the escape % character. Macro parameter characters are doubled by % \cs{tl_to_str:n}, and will also yield a non-empty result, % hence are not considered as characters. % \begin{macrocode} \cs_new_protected:Npn \@@_grab_v_token_if_char:NTF #1 { \str_if_eq_x:nnTF { } { \str_tail:n {#1} } } % \end{macrocode} % \end{macro} % % \begin{macro}{\@@_add_arg:n, \@@_add_arg:V, \@@_add_arg:o} % \begin{macro}[aux]{\@@_add_arg_aux:n, \@@_add_arg_aux:V} % The argument-storing system provides a single point for interfacing % with processors. They are done in a loop, counting downward. In this % way, the processor which was found last is executed first. The result % is that processors apply from right to left, as intended. Notice that % a set of braces are added back around the result of processing so that % the internal function will correctly pick up one argument for each % input argument. % \begin{macrocode} \cs_new_protected:Npn \@@_add_arg:n #1 { \int_compare:nNnTF \l_@@_processor_int = \c_zero { \tl_put_right:Nn \l_@@_args_tl { {#1} } } { \tl_clear:N \ProcessedArgument \@@_if_no_value:nTF {#1} { \int_zero:N \l_@@_processor_int \tl_put_right:Nn \l_@@_args_tl { {#1} } } { \@@_add_arg_aux:n {#1} } } } \cs_generate_variant:Nn \@@_add_arg:n { V , o } \cs_new_protected:Npn \@@_add_arg_aux:n #1 { \use:c { @@_processor_ \int_use:N \l_@@_processor_int :n } {#1} \int_decr:N \l_@@_processor_int \int_compare:nNnTF \l_@@_processor_int = \c_zero { \tl_put_right:Nx \l_@@_args_tl { { \exp_not:V \ProcessedArgument } } } { \@@_add_arg_aux:V \ProcessedArgument } } \cs_generate_variant:Nn \@@_add_arg_aux:n { V } % \end{macrocode} % \end{macro} % \end{macro} % % \subsection{Grabbing arguments expandably} % % \begin{macro}[EXP]{\@@_expandable_grab_D:w} % \begin{macro}[EXP, aux]{\@@_expandable_grab_D:NNNnwN} % \begin{macro}[EXP, aux]{\@@_expandable_grab_D:NNNwNnnn} % \begin{macro}[EXP, aux]{\@@_expandable_grab_D:Nw} % \begin{macro}[EXP, aux]{\@@_expandable_grab_D:nnNNNwN} % The first step is to grab the first token or group. The generic grabber % \cs{\meta{function}}\verb*| | is just after \cs{q_@@}, we go and find % it. % \begin{macrocode} \cs_new:Npn \@@_expandable_grab_D:w #1 \q_@@ #2 { #2 { \@@_expandable_grab_D:NNNnwNn #1 \q_@@ #2 } } % \end{macrocode} % We then wish to test whether |#7|, which we just grabbed, is exactly |#2|. % Expand the only grabber function we have, |#1|, once: the two strings below % are equal if and only if |#7| matches |#2| exactly.\footnote{It is obvious % that if \texttt{\#7} matches \texttt{\#2} then the strings are equal. We % must check the converse. The right-hand-side of \cs{str_if_eq:onTF} does % not end with \texttt{\#3}, implying that the grabber function took % everything as its arguments. The first brace group can only be empty if % \texttt{\#7} starts with \texttt{\#2}, otherwise the brace group preceding % \texttt{\#7} would not vanish. The third brace group is empty, thus the % \cs{q_@@} that was used by our grabber \texttt{\#1} must be the one % that we inserted (not some token in \texttt{\#7}), hence the second brace % group contains the end of \texttt{\#7} followed by \texttt{\#2}. Since this % is \texttt{\#2} on the right-hand-side, and no brace can be lost there, % \texttt{\#7} must contain nothing else than its leading \texttt{\#2}.} If % |#7| does not match |#2|, then the optional argument is missing, we use the % default |#4|, and put back the argument |#7| in the input stream. % %^^A There is probably a bug similar to the non-expandable O{\par} bug. % % If it does match, then interesting things need to be done. We will grab the % argument piece by piece, with the following pattern: % \begin{quote} % \meta{grabber} \Arg{tokens} \\ % ~~\cs{q_nil} \Arg{piece 1} \meta{piece 2} \cs{ERROR} \cs{q_@@}\\ % ~~\cs{q_nil} \meta{input stream} % \end{quote} % The \meta{grabber} will find an opening delimiter in \meta{piece 2}, take % the \cs{q_@@} as a second delimiter, and find more material delimited % by the closing delimiter in the \meta{input stream}. We then move the part % before the opening delimiter from \meta{piece 2} to \meta{piece 1}, and the % material taken from the \meta{input stream} to the \meta{piece 2}. Thus, % the argument moves gradually from the \meta{input stream} to the % \meta{piece 2}, then to the \meta{piece 1} when we have made sure to find % all opening and closing delimiters. This two-step process ensures that % nesting works: the number of opening delimiters minus closing delimiters in % \meta{piece 1} is always equal to the number of closing delimiters in % \meta{piece 2}. We stop grabbing arguments once the \meta{piece 2} contains % no opening delimiter any more, hence the balance is reached, and the final % argument is \meta{piece 1} \meta{piece 2}. % \begin{macrocode} \cs_new:Npn \@@_expandable_grab_D:NNNnwNn #1#2#3#4#5 \q_@@ #6#7 { \str_if_eq:onTF { #1 { } { } #7 #2 \q_@@ #3 } { { } {#2} { } } { #1 { \@@_expandable_grab_D:NNNwNnnn #1#2#3#5 \q_@@ #6 } \q_nil { } #2 \ERROR \q_@@ \ERROR } { #5 {#4} \q_@@ #6 {#7} } } % \end{macrocode} % At this stage, |#6| is \cs{q_nil} \Arg{piece 1} \meta{more for piece 1}, % and we want to concatenate all that, removing \cs{q_nil}, and keeping the % opening delimiter |#2|. Simply use \cs{use_ii:nn}. Also, |#7| is % \meta{remainder of piece 2} \cs{ERROR}, and |#8| is \cs{ERROR} \meta{more % for piece 2}. We concatenate those, replacing the two \cs{ERROR} by the % closing delimiter |#3|. % \begin{macrocode} \cs_new:Npn \@@_expandable_grab_D:NNNwNnnn #1#2#3#4 \q_@@ #5#6#7#8 { \exp_args:Nof \@@_expandable_grab_D:nnNNNwN { \use_ii:nn #6 #2 } { \@@_expandable_grab_D:Nw #3 \exp_stop_f: #7 #8 } #1#2#3 #4 \q_@@ #5 } \cs_new:Npn \@@_expandable_grab_D:Nw #1#2 \ERROR \ERROR { #2 #1 } % \end{macrocode} % Armed with our two new \meta{pieces}, we are ready to loop. However, we % must first see if \meta{piece 2} (here |#2|) contains any opening % delimiter |#4|. Again, we expand |#3|, this time removing its whole output % with \cs{use_none:nnn}. The test is similar to \cs{tl_if_in:nnTF}. The % token list is empty if and only if |#2| does not contain the opening % delimiter. In that case, we are done, and put the argument (from which we % remove a spurious pair of delimiters coming from how we started the loop). % Otherwise, we go back to looping with % \cs{@@_expandable_grab_D:NNNwNnnn}. The code to deal with brace stripping % is much the same as for the non-expandable case. % \begin{macrocode} \cs_new:Npn \@@_expandable_grab_D:nnNNNwN #1#2#3#4#5#6 \q_@@ #7 { \exp_args:No \tl_if_empty:oTF { #3 { \use_none:nnn } #2 \q_@@ #5 #4 \q_@@ #5 } { \tl_if_blank:oTF { \use_none:nn #1#2 } { \@@_put_arg_expandable:ow { \use_none:nn #1#2 } } { \str_if_eq_x:nnTF { \exp_not:o { \use_none:nn #1#2 } } { { \exp_not:o { \use_iii:nnnn #1#2 \q_nil } } } { \@@_put_arg_expandable:ow { \use_iii:nnn #1#2 } } { \@@_put_arg_expandable:ow { \use_none:nn #1#2 } } } #6 \q_@@ #7 } { #3 { \@@_expandable_grab_D:NNNwNnnn #3#4#5#6 \q_@@ #7 } \q_nil {#1} #2 \ERROR \q_@@ \ERROR } } % \end{macrocode} % \end{macro} % \end{macro} % \end{macro} % \end{macro} % \end{macro} % % \begin{macro}[EXP]{\@@_expandable_grab_D_alt:w} % \begin{macro}[EXP]{\@@_expandable_grab_D_alt:NNnwNn} % \begin{macro}[EXP]{\@@_expandable_grab_D_alt:Nw} % When the delimiters are identical, nesting is not possible and a simplified % approach is used. The test concept here is the same as for the case where % the delimiters are different. % \begin{macrocode} \cs_new:Npn \@@_expandable_grab_D_alt:w #1 \q_@@ #2 { #2 { \@@_expandable_grab_D_alt:NNnwNn #1 \q_@@ #2 } } \cs_new:Npn \@@_expandable_grab_D_alt:NNnwNn #1#2#3#4 \q_@@ #5#6 { \str_if_eq:onTF { #1 { } #6 #2 #2 } { { } #2 } { #1 { \@@_expandable_grab_D_alt:Nwn #5 #4 \q_@@ } #6 \ERROR } { #4 {#3} \q_@@ #5 {#6} } } \cs_new:Npn \@@_expandable_grab_D_alt:Nwn #1#2 \q_@@ #3 { \tl_if_blank:oTF { \use_none:n #3 } { \@@_put_arg_expandable:ow { \use_none:n #3 } } { \str_if_eq_x:nnTF { \exp_not:o { \use_none:n #3 } } { { \exp_not:o { \use_ii:nnn #3 \q_nil } } } { \@@_put_arg_expandable:ow { \use_ii:nn #3 } } { \@@_put_arg_expandable:ow { \use_none:n #3 } } } #2 \q_@@ #1 } % \end{macrocode} % \end{macro} % \end{macro} % \end{macro} % % \begin{macro}[EXP]{\@@_expandable_grab_K:w} % \begin{macro}[EXP, aux]{\@@_expandable_grab_K_aux:NNwn} % As for the |D|-type grabber, use the auxiliary to do the look ahead % test then reuse it for the grabbing. % \begin{macrocode} \cs_new:Npn \@@_expandable_grab_K:w #1 \q_@@ #2 { #2 { \@@_expandable_grab_K_aux:NNwn #1 \q_@@ #2 } } \cs_new:Npn \@@_expandable_grab_K_aux:NNwn #1#2#3#4 \q_@@ #5#6 { \str_if_eq:onTF { #1 { } #6 { } #2 { } } { { } #2 { } } { #1 { \@@_expandable_grab_K_aux:Nwn #5 #4 \q_@@ } #6 } { #4 {#3} \q_@@ #5 {#6} } } \cs_new:Npn \@@_expandable_grab_K_aux:Nwn #1#2 \q_@@ #3 { #2 {#3} \q_@@ #1 } % \end{macrocode} % \end{macro} % \end{macro} % % \begin{macro}[EXP]{\@@_expandable_grab_m:w} % \begin{macro}[EXP, aux]{\@@_expandable_grab_m_aux:wNn} % The mandatory case is easy: find the auxiliary after the \cs{q_@@}, and % use it directly to grab the argument. % \begin{macrocode} \cs_new:Npn \@@_expandable_grab_m:w #1 \q_@@ #2 { #2 { \@@_expandable_grab_m_aux:wNn #1 \q_@@ #2 } } \cs_new:Npn \@@_expandable_grab_m_aux:wNn #1 \q_@@ #2#3 { #1 {#3} \q_@@ #2 } % \end{macrocode} % \end{macro} % \end{macro} % % \begin{macro}[EXP]{\@@_expandable_grab_R:w} % \begin{macro}[EXP, aux]{\@@_expandable_grab_R_aux:NNwn} % Much the same as for the \texttt{D}-type argument, with only the lead-off % function varying. % \begin{macrocode} \cs_new:Npn \@@_expandable_grab_R:w #1 \q_@@ #2 { #2 { \@@_expandable_grab_R_aux:NNNnwNn #1 \q_@@ #2 } } \cs_new:Npn \@@_expandable_grab_R_aux:NNNnwNn #1#2#3#4#5 \q_@@ #6#7 { \str_if_eq:onTF { #1 { } { } #7 #2 \q_@@ #3 } { { } {#2} { } } { #1 { \@@_expandable_grab_D:NNNwNnnn #1#2#3#5 \q_@@ #6 } \q_nil { } #2 \ERROR \q_@@ \ERROR } { \__msg_kernel_expandable_error:nnn { xparse } { missing-required } {#2} #5 {#4} \q_@@ #6 {#7} } } % \end{macrocode} % \end{macro} % \end{macro} % % \begin{macro}[EXP]{\@@_expandable_grab_R_alt:w} % \begin{macro}[EXP]{\@@_expandable_grab_R_alt_aux:NNnwNn} % When the delimiters are identical, nesting is not possible and a simplified % approach is used. The test concept here is the same as for the case where % the delimiters are different. % \begin{macrocode} \cs_new:Npn \@@_expandable_grab_R_alt:w #1 \q_@@ #2 { #2 { \@@_expandable_grab_R_alt_aux:NNnwNn #1 \q_@@ #2 } } \cs_new:Npn \@@_expandable_grab_R_alt_aux:NNnwNn #1#2#3#4 \q_@@ #5#6 { \str_if_eq:onTF { #1 { } #6 #2 #2 } { { } #2 } { #1 { \@@_expandable_grab_D_alt:Nwn #5 #4 \q_@@ } #6 \ERROR } { \__msg_kernel_expandable_error:nnn { xparse } { missing-required } {#2} #4 {#3} \q_@@ #5 {#6} } } % \end{macrocode} % \end{macro} % \end{macro} % % \begin{macro}[EXP]{\@@_expandable_grab_t:w} % \begin{macro}[EXP, aux]{\@@_expandable_grab_t_aux:NNwn} % As for a \texttt{D}-type argument, here we compare the grabbed tokens using % the only parser we have in order to work out if |#2| is exactly equal to % the output of the grabber. % \begin{macrocode} \cs_new:Npn \@@_expandable_grab_t:w #1 \q_@@ #2 { #2 { \@@_expandable_grab_t_aux:NNwn #1 \q_@@ #2 } } \cs_new:Npn \@@_expandable_grab_t_aux:NNwn #1#2#3 \q_@@ #4#5 { \str_if_eq:onTF { #1 { } #5 #2 } {#2} { #3 { \BooleanTrue } \q_@@ #4 } { #3 { \BooleanFalse } \q_@@ #4 {#5} } } % \end{macrocode} % \end{macro} % \end{macro} % % \begin{macro}[EXP] % {\@@_put_arg_expandable:nw, \@@_put_arg_expandable:ow} % A useful helper, to store arguments when they are ready. % \begin{macrocode} \cs_new:Npn \@@_put_arg_expandable:nw #1#2 \q_@@ { #2 {#1} \q_@@ } \cs_generate_variant:Nn \@@_put_arg_expandable:nw { o } % \end{macrocode} % \end{macro} % % \begin{macro}[EXP]{\@@_grab_expandable_end:wN} % For the end of the grabbing sequence: get rid of the generic grabber and % insert the code function followed by its arguments. % \begin{macrocode} \cs_new:Npn \@@_grab_expandable_end:wN #1 \q_@@ #2 {#1} % \end{macrocode} % \end{macro} % % \subsection{Argument processors} % % \begin{macro}{\@@_process_arg:n} % Processors are saved for use later during the grabbing process. % \begin{macrocode} \cs_new_protected:Npn \@@_process_arg:n #1 { \int_incr:N \l_@@_processor_int \cs_set_protected:cpx { @@_processor_ \int_use:N \l_@@_processor_int :n } ##1 { \exp_not:n {#1} {##1} } } % \end{macrocode} % \end{macro} % % \begin{macro}{\@@_bool_reverse:N} % A simple reversal. % \begin{macrocode} \cs_new_protected:Npn \@@_bool_reverse:N #1 { \bool_if:NTF #1 { \tl_set:Nn \ProcessedArgument { \c_false_bool } } { \tl_set:Nn \ProcessedArgument { \c_true_bool } } } % \end{macrocode} % \end{macro} % % \begin{variable}{\l_@@_split_list_seq, \l_@@_split_list_tl} % \begin{macro}{\@@_split_list:nn} % \begin{macro}[aux]{\@@_split_list_multi:nn, \@@_split_list_multi:nV} % \begin{macro}[aux]{\@@_split_list_single:Nn} % Splitting can take place either at a single token or at a longer % identifier. To deal with single active tokens, a two-part procedure is % needed. % \begin{macrocode} \seq_new:N \l_@@_split_list_seq \tl_new:N \l_@@_split_list_tl \cs_new_protected:Npn \@@_split_list:nn #1#2 { \tl_if_single:nTF {#1} { \token_if_cs:NTF #1 { \@@_split_list_multi:nn {#1} {#2} } { \@@_split_list_single:Nn #1 {#2} } } { \@@_split_list_multi:nn {#1} {#2} } } \cs_new_protected:Npn \@@_split_list_multi:nn #1#2 { \seq_set_split:Nnn \l_@@_split_list_seq {#1} {#2} \tl_clear:N \ProcessedArgument \seq_map_inline:Nn \l_@@_split_list_seq { \tl_put_right:Nn \ProcessedArgument { {##1} } } } \cs_generate_variant:Nn \@@_split_list_multi:nn { nV } \group_begin: \char_set_catcode_active:N \^^@ \cs_new_protected:Npn \@@_split_list_single:Nn #1#2 { \tl_set:Nn \l_@@_split_list_tl {#2} \group_begin: \char_set_lccode:nn { `\^^@ } { `#1 } \tex_lowercase:D { \group_end: \tl_replace_all:Nnn \l_@@_split_list_tl { ^^@ } } {#1} \@@_split_list_multi:nV {#1} \l_@@_split_list_tl } \group_end: % \end{macrocode} % \end{macro} % \end{macro} % \end{macro} % \end{variable} % % \begin{macro}{\@@_split_argument:nnn} % \begin{macro}[aux]{\@@_split_argument_aux:nnnn} % \begin{macro}[aux, EXP]{\@@_split_argument_aux:n} % \begin{macro}[aux, rEXP]{\@@_split_argument_aux:wn} % Splitting to a known number of items is a special version of splitting % a list, in which the limit is hard-coded and where there will always be % exactly the correct number of output items. An auxiliary function is % used to save on working out the token list length several times. % \begin{macrocode} \cs_new_protected:Npn \@@_split_argument:nnn #1#2#3 { \@@_split_list:nn {#2} {#3} \exp_args:Nf \@@_split_argument_aux:nnnn { \tl_count:N \ProcessedArgument } {#1} {#2} {#3} } \cs_new_protected:Npn \@@_split_argument_aux:nnnn #1#2#3#4 { \int_compare:nNnF {#1} = { #2 + \c_one } { \int_compare:nNnTF {#1} > { #2 + \c_one } { \tl_set:Nx \ProcessedArgument { \exp_last_unbraced:NnNo \@@_split_argument_aux:n { #2 + \c_one } \use_none_delimit_by_q_stop:w \ProcessedArgument \q_stop } \__msg_kernel_error:nnxxx { xparse } { split-excess-tokens } { \tl_to_str:n {#3} } { \int_eval:n { #2 + \c_one } } { \tl_to_str:n {#4} } } { \tl_put_right:Nx \ProcessedArgument { \prg_replicate:nn { #2 + \c_one - (#1) } { { \exp_not:V \c_@@_no_value_tl } } } } } } % \end{macrocode} % Auxiliaries to leave exactly the correct number of arguments in % \cs{ProcessedArgument}. % \begin{macrocode} \cs_new:Npn \@@_split_argument_aux:n #1 { \prg_replicate:nn {#1} { \@@_split_argument_aux:wn } } \cs_new:Npn \@@_split_argument_aux:wn #1 \use_none_delimit_by_q_stop:w #2 { \exp_not:n { {#2} } #1 \use_none_delimit_by_q_stop:w } % \end{macrocode} % \end{macro} % \end{macro} % \end{macro} % \end{macro} % % \begin{macro}{\@@_trim_spaces:n} % This one is almost trivial. % \begin{macrocode} \cs_new_protected:Npn \@@_trim_spaces:n #1 { \tl_set:Nx \ProcessedArgument { \tl_trim_spaces:n {#1} } } % \end{macrocode} % \end{macro} % % \subsection{Access to the argument specification} % % \begin{macro}{\@@_get_arg_spec_error:N, \@@_get_arg_spec_error:n} % Provide an informative error when trying to get the argument % specification of a non-\pkg{xparse} command or environment. % \begin{macrocode} \cs_new_protected:Npn \@@_get_arg_spec_error:N #1 { \cs_if_exist:NTF #1 { \__msg_kernel_error:nnx { xparse } { non-xparse-command } { \token_to_str:N #1 } } { \__msg_kernel_error:nnx { xparse } { unknown-command } { \token_to_str:N #1 } } } \cs_new_protected:Npn \@@_get_arg_spec_error:n #1 { \cs_if_exist:cTF {#1} { \__msg_kernel_error:nnx { xparse } { non-xparse-environment } { \tl_to_str:n {#1} } } { \__msg_kernel_error:nnx { xparse } { unknown-environment } { \tl_to_str:n {#1} } } } % \end{macrocode} % \end{macro} % % \begin{macro}{\@@_get_arg_spec:N} % \begin{macro}{\@@_get_arg_spec:n} % \begin{variable}{\ArgumentSpecification} % Recovering the argument specification is trivial, using the % branching \cs{prop_get:NnN} function. % \begin{macrocode} \cs_new_protected:Npn \@@_get_arg_spec:N #1 { \prop_get:NnNF \l_@@_command_arg_specs_prop {#1} \ArgumentSpecification { \@@_get_arg_spec_error:N #1 } } \cs_new_protected:Npn \@@_get_arg_spec:n #1 { \prop_get:NnNF \l_@@_environment_arg_specs_prop {#1} \ArgumentSpecification { \@@_get_arg_spec_error:n {#1} } } \tl_new:N \ArgumentSpecification % \end{macrocode} % \end{variable} % \end{macro} % \end{macro} % % \begin{macro}{\@@_show_arg_spec:N} % \begin{macro}{\@@_show_arg_spec:n} % Showing the argument specification simply means finding it and then % calling the \cs{tl_show:N} function. % \begin{macrocode} \cs_new_protected:Npn \@@_show_arg_spec:N #1 { \prop_get:NnNTF \l_@@_command_arg_specs_prop {#1} \ArgumentSpecification { \tl_show:N \ArgumentSpecification } { \@@_get_arg_spec_error:N #1 } } \cs_new_protected:Npn \@@_show_arg_spec:n #1 { \prop_get:NnNTF \l_@@_environment_arg_specs_prop {#1} \ArgumentSpecification { \tl_show:N \ArgumentSpecification } { \@@_get_arg_spec_error:n {#1} } } % \end{macrocode} % \end{macro} % \end{macro} % % \subsection{Utilities} % % \begin{macro}[TF]{\@@_if_no_value:n} % Tests for |-NoValue-|: this is similar to \cs{tl_if_in:nn} but set % up to be expandable and to check the value exactly. The question % mark prevents the auxiliary from losing braces. % \begin{macrocode} \use:x { \prg_new_conditional:Npnn \exp_not:N \@@_if_no_value:n ##1 { T , F , TF } { \exp_not:N \str_if_eq:onTF { \exp_not:N \@@_if_value_aux:w ? ##1 { } \c_@@_no_value_tl } { ? { } \c_@@_no_value_tl } { \exp_not:N \prg_return_true: } { \exp_not:N \prg_return_false: } } \cs_new:Npn \exp_not:N \@@_if_value_aux:w ##1 \c_@@_no_value_tl {##1} } % \end{macrocode} % \end{macro} % % \begin{macro}{\@@_check_definable:nNT, \@@_check_definable_aux:nN} % Check that a token list is appropriate as a first argument of % \cs{DeclareDocumentCommand} and similar functions and otherwise % produce an error. First trim whitespace to allow for spaces around % the actual command to be defined. If the result has multiple % tokens, it is not a valid argument. The single token is a control % sequence exactly if its string representation has more than one % character (using \cs{token_to_str:N} rather than \cs{tl_to_str:n} % to avoid problems with macro parameter characters, and setting % \cs{tex_escapechar:D} to prevent it from being non-printable). % Finally, check for an active character: this is done by lowercasing % the token to fix its character code (arbitrarily to that of~|?|) % and comparing the result to an active~|?|. Both control sequences % and active characters are valid arguments, and non-active character % tokens are not. In all cases, the group opened to keep assignments % local must be closed. % \begin{macrocode} \cs_new_protected:Npn \@@_check_definable:nNT #1 { \exp_args:Nx \@@_check_definable_aux:nN { \tl_trim_spaces:n {#1} } } \group_begin: \char_set_catcode_active:n { `? } \cs_new_protected:Npn \@@_check_definable_aux:nN #1#2 { \group_begin: \tl_if_single_token:nTF {#1} { \int_set:Nn \tex_escapechar:D { 92 } \exp_args:Nx \tl_if_empty:nTF { \exp_args:No \str_tail:n { \token_to_str:N #1 } } { \exp_args:Nx \char_set_lccode:nn { ` \str_head:n {#1} } { `? } \tex_lowercase:D { \tl_if_eq:nnTF {#1} } { ? } { \group_end: \use_iii:nnn } { \group_end: \use_i:nnn } } { \group_end: \use_iii:nnn } } { \group_end: \use_ii:nnn } { \__msg_kernel_error:nnxx { xparse } { not-definable } { \tl_to_str:n {#1} } { \token_to_str:N #2 } } { \__msg_kernel_error:nnxx { xparse } { not-one-token } { \tl_to_str:n {#1} } { \token_to_str:N #2 } } } \group_end: % \end{macrocode} % \end{macro} % % \subsection{Messages} % % Some messages intended as errors. % \begin{macrocode} \__msg_kernel_new:nnnn { xparse } { bad-arg-spec } { Bad~argument~specification~'#1'. } { \c__msg_coding_error_text_tl The~argument~specification~provided~was~not~valid:~ one~or~more~mandatory~pieces~of~information~were~missing. \\ \\ LaTeX~will~ignore~this~entire~definition. } \__msg_kernel_new:nnnn { xparse } { command-already-defined } { Command~'#1'~already~defined! } { You~have~used~\NewDocumentCommand with~a~command~that~already~has~a~definition. \\ The~existing~definition~of~'#1'~will~not~be~altered. } \__msg_kernel_new:nnnn { xparse } { command-not-yet-defined } { Command ~'#1'~not~yet~defined! } { You~have~used~\RenewDocumentCommand with~a~command~that~was~never~defined. \\ A~new~command~'#1'~will~be~created. } \__msg_kernel_new:nnnn { xparse } { environment-already-defined } { Environment~'#1'~already~defined! } { You~have~used~\NewDocumentEnvironment with~an~environment~that~already~has~a~definition. \\ The~existing~definition~of~'#1'~will~be~overwritten. } \__msg_kernel_new:nnnn { xparse } { environment-not-yet-defined } { Environment~'#1'~not~yet~defined! } { You~have~used~\RenewDocumentEnvironment with~an~environment~that~was~never~defined. \\ A~new~environment~'#1'~will~be~created. } \__msg_kernel_new:nnnn { xparse } { expandable-ending-optional } { Argument~specification~for~expandable~command~ends~with~optional~argument. } { \c__msg_coding_error_text_tl Expandable~commands~must~have~a~final~mandatory~argument~ (or~no~arguments~at~all).~You~cannot~have~a~terminal~optional~ argument~with~expandable~commands. } \__msg_kernel_new:nnnn { xparse } { inconsistent-long } { Inconsistent~long~arguments~for~expandable~command. } { \c__msg_coding_error_text_tl The~arguments~for~an~expandable~command~must~either~all~be~ short~or~all~be~long.~You~have~tried~to~mix~the~two~types. } \__msg_kernel_new:nnnn { xparse } { invalid-expandable-argument-type } { Argument~type~'#1'~not~available~for~an~expandable~function. } { \c__msg_coding_error_text_tl The~letter~'#1'~does~not~specify~an~argument~type~which~can~be~used~ in~an~expandable~function. \\ \\ LaTeX~will~assume~you~want~a~standard~mandatory~argument~(type~'m'). } \__msg_kernel_new:nnnn { xparse } { missing-required } { Failed~to~find~required~argument~starting~with~'#1'. } { There~is~supposed~to~be~an~argument~to~the~current~function~starting~with~ '#1'.~LaTeX~did~not~find~it,~and~will~insert~'#2'~as~the~value~to~be~ processed. } \__msg_kernel_new:nnnn { xparse } { non-xparse-command } { Command~'#1'~not~defined~using~xparse. } { You~have~asked~for~the~argument~specification~for~a~command~'#1',~ but~this~is~not~a~command~defined~using~xparse. } \__msg_kernel_new:nnnn { xparse } { non-xparse-environment } { Environment~'#1'~not~defined~using~xparse. } { You~have~asked~for~the~argument~specification~for~an~environment~'#1',~ but~this~is~not~an~environment~defined~using~xparse. } \__msg_kernel_new:nnnn { xparse } { not-definable } { First~argument~of~'#2'~must~be~a~command. } { \c__msg_coding_error_text_tl The~first~argument~of~'#2'~should~be~the~document~command~that~will~ be~defined.~The~provided~argument~'#1'~is~a~character.~Perhaps~a~ backslash~is~missing? \\ \\ LaTeX~will~ignore~this~entire~definition. } \__msg_kernel_new:nnnn { xparse } { not-one-token } { First~argument~of~'#2'~must~be~a~command. } { \c__msg_coding_error_text_tl The~first~argument~of~'#2'~should~be~the~document~command~that~will~ be~defined.~The~provided~argument~'#1'~contains~more~than~one~ token. \\ \\ LaTeX~will~ignore~this~entire~definition. } \__msg_kernel_new:nnnn { xparse } { not-single-token } { Argument~delimiter~should~be~a~single~token:~'#1'. } { \c__msg_coding_error_text_tl The~argument~specification~provided~was~not~valid:~ in~a~place~where~a~single~token~is~required,~LaTeX~found~'#1'. \\ \\ LaTeX~will~ignore~this~entire~definition. } \__msg_kernel_new:nnnn { xparse } { processor-in-expandable } { Argument~processors~cannot~be~used~with~expandable~functions. } { \c__msg_coding_error_text_tl The~argument~specification~for~#1~contains~a~processor~function:~ this~is~only~supported~for~standard~robust~functions. } \__msg_kernel_new:nnnn { xparse } { split-excess-tokens } { Too~many~'#1'~tokens~when~trying~to~split~argument. } { LaTeX~was~asked~to~split~the~input~'#3'~ at~each~occurrence~of~the~token~'#1',~up~to~a~maximum~of~#2~parts.~ There~were~too~many~'#1'~tokens. } \__msg_kernel_new:nnnn { xparse } { unknown-argument-type } { Unknown~argument~type~'#1'~replaced~by~'m'. } { \c__msg_coding_error_text_tl The~letter~'#1'~does~not~specify~a~known~argument~type.~ LaTeX~will~assume~you~want~a~standard~mandatory~argument~(type~'m'). } \__msg_kernel_new:nnnn { xparse } { unknown-command } { Unknown~document~command~'#1'. } { You~have~asked~for~the~argument~specification~for~a~command~'#1',~ but~it~is~not~defined. } \__msg_kernel_new:nnnn { xparse } { unknown-environment } { Unknown~document~environment~'#1'. } { You~have~asked~for~the~argument~specification~for~an~environment~'#1',~ but~it~is~not~defined. } \__msg_kernel_new:nnnn { xparse } { verbatim-newline } { Verbatim~argument~of~'#1'~ended~by~end~of~line. } { The~verbatim~argument~of~'#1'~cannot~contain~more~than~one~line,~ but~the~end~ of~the~current~line~has~been~reached.~You~have~probably~forgotten~the~ closing~delimiter. \\ \\ LaTeX~will~ignore~'#2'. } \__msg_kernel_new:nnnn { xparse } { verbatim-tokenized } { The~verbatim~command~'#1'~cannot~be~used~inside~an~argument.~ } { The~command~'#1'~takes~a~verbatim~argument.~ It~may~not~appear~within~the~argument~of~another~function.~ It~received~an~illegal~token \tl_if_empty:nF {#3} { ~'#3' } . \\ \\ LaTeX~will~ignore~'#2'. } % \end{macrocode} % % Intended more for information. % \begin{macrocode} \__msg_kernel_new:nnn { xparse } { define-command } { Defining~command~#1~ with~sig.~'#2'~\msg_line_context:. } \__msg_kernel_new:nnn { xparse } { define-environment } { Defining~environment~'#1'~ with~sig.~'#2'~\msg_line_context:. } \__msg_kernel_new:nnn { xparse } { redefine-command } { Redefining~command~#1~ with~sig.~'#2'~\msg_line_context:. } \__msg_kernel_new:nnn { xparse } { redefine-environment } { Redefining~environment~'#1'~ with~sig.~'#2'~\msg_line_context:. } % \end{macrocode} % % \subsection{User functions} % % The user functions are more or less just the internal functions % renamed. % % \begin{macro}{\BooleanFalse} % \begin{macro}{\BooleanTrue} % Design-space names for the Boolean values. % \begin{macrocode} \cs_new_eq:NN \BooleanFalse \c_false_bool \cs_new_eq:NN \BooleanTrue \c_true_bool % \end{macrocode} % \end{macro} % \end{macro} % % \begin{macro}{\DeclareDocumentCommand} % \begin{macro}{\NewDocumentCommand} % \begin{macro}{\RenewDocumentCommand} % \begin{macro}{\ProvideDocumentCommand} % The user macros are pretty simple wrappers around the internal ones. % There is however a check that the first argument is a single token % and is definable. % \begin{macrocode} \cs_new_protected:Npn \DeclareDocumentCommand #1#2#3 { \@@_check_definable:nNT {#1} \DeclareDocumentCommand { \@@_declare_cmd:Nnn #1 {#2} {#3} } } \cs_new_protected:Npn \NewDocumentCommand #1#2#3 { \@@_check_definable:nNT {#1} \NewDocumentCommand { \cs_if_exist:NTF #1 { \__msg_kernel_error:nnx { xparse } { command-already-defined } { \token_to_str:N #1 } } { \@@_declare_cmd:Nnn #1 {#2} {#3} } } } \cs_new_protected:Npn \RenewDocumentCommand #1#2#3 { \@@_check_definable:nNT {#1} \RenewDocumentCommand { \cs_if_exist:NTF #1 { \@@_declare_cmd:Nnn #1 {#2} {#3} } { \__msg_kernel_error:nnx { xparse } { command-not-yet-defined } { \token_to_str:N #1 } } } } \cs_new_protected:Npn \ProvideDocumentCommand #1#2#3 { \@@_check_definable:nNT {#1} \ProvideDocumentCommand { \cs_if_exist:NF #1 { \@@_declare_cmd:Nnn #1 {#2} {#3} } } } % \end{macrocode} % \end{macro} % \end{macro} % \end{macro} % \end{macro} % % \begin{macro}{\DeclareDocumentEnvironment} % \begin{macro}{\NewDocumentEnvironment} % \begin{macro}{\RenewDocumentEnvironment} % \begin{macro}{\ProvideDocumentEnvironment} % Very similar for environments. % \begin{macrocode} \cs_new_protected:Npn \DeclareDocumentEnvironment #1#2#3#4 { \@@_declare_env:nnnn {#1} {#2} {#3} {#4} } \cs_new_protected:Npn \NewDocumentEnvironment #1#2#3#4 { \cs_if_exist:cTF {#1} { \__msg_kernel_error:nnx { xparse } { environment-already-defined } {#1} } { \@@_declare_env:nnnn {#1} {#2} {#3} {#4} } } \cs_new_protected:Npn \RenewDocumentEnvironment #1#2#3#4 { \cs_if_exist:cTF {#1} { \@@_declare_env:nnnn {#1} {#2} {#3} {#4} } { \__msg_kernel_error:nnx { xparse } { environment-not-yet-defined } {#1} } } \cs_new_protected:Npn \ProvideDocumentEnvironment #1#2#3#4 { \cs_if_exist:cF {#1} { \@@_declare_env:nnnn {#1} {#2} {#3} {#4} } } % \end{macrocode} % \end{macro} % \end{macro} % \end{macro} % \end{macro} % % \begin{macro}{\DeclareExpandableDocumentCommand} % The expandable version of the basic function is essentially the same. % \begin{macrocode} \cs_new_protected:Npn \DeclareExpandableDocumentCommand #1#2#3 { \@@_check_definable:nNT {#1} \DeclareExpandableDocumentCommand { \@@_declare_expandable_cmd:Nnn #1 {#2} {#3} } } % \end{macrocode} % \end{macro} % % \begin{macro}[TF]{\IfBoolean} % The logical \meta{true} and \meta{false} statements are just the % normal \cs{c_true_bool} and \cs{c_false_bool}, so testing for them is % done with the \cs{bool_if:NTF} functions from \textsf{l3prg}. % \begin{macrocode} \cs_new_eq:NN \IfBooleanTF \bool_if:NTF \cs_new_eq:NN \IfBooleanT \bool_if:NT \cs_new_eq:NN \IfBooleanF \bool_if:NF % \end{macrocode} % \end{macro} % % \begin{macro}[TF]{\IfNoValue} % Simple re-naming. % \begin{macrocode} \cs_new_eq:NN \IfNoValueF \@@_if_no_value:nF \cs_new_eq:NN \IfNoValueT \@@_if_no_value:nT \cs_new_eq:NN \IfNoValueTF \@@_if_no_value:nTF % \end{macrocode} % \end{macro} % \begin{macro}[TF]{\IfValue} % Inverted logic. % \begin{macrocode} \cs_new_nopar:Npn \IfValueF { \@@_if_no_value:nT } \cs_new_nopar:Npn \IfValueT { \@@_if_no_value:nF } \cs_new:Npn \IfValueTF #1#2#3 { \@@_if_no_value:nTF {#1} {#3} {#2} } % \end{macrocode} % \end{macro} % % \begin{macro}{\ProcessedArgument} % Processed arguments are returned using this name, which is reserved % here although the definition will change. % \begin{macrocode} \tl_new:N \ProcessedArgument % \end{macrocode} % \end{macro} % % \begin{macro}{\ReverseBoolean, \SplitArgument, \SplitList, \TrimSpaces} % Simple copies. % \begin{macrocode} \cs_new_eq:NN \ReverseBoolean \@@_bool_reverse:N \cs_new_eq:NN \SplitArgument \@@_split_argument:nnn \cs_new_eq:NN \SplitList \@@_split_list:nn \cs_new_eq:NN \TrimSpaces \@@_trim_spaces:n % \end{macrocode} % \end{macro} % % \begin{macro}{\ProcessList} % To support \cs{SplitList}. % \begin{macrocode} \cs_new_eq:NN \ProcessList \tl_map_function:nN % \end{macrocode} % \end{macro} % % \begin{macro}{\GetDocumentCommandArgSpec} % \begin{macro}{\GetDocumentEnvironmentArgSpec} % \begin{macro}{\ShowDocumentCommandArgSpec} % \begin{macro}{\ShowDocumentEnvironmentArgSpec} % More simple mappings, with a check that the argument is a single % control sequence or active character. % \begin{macrocode} \cs_new_protected:Npn \GetDocumentCommandArgSpec #1 { \@@_check_definable:nNT {#1} \GetDocumentCommandArgSpec { \@@_get_arg_spec:N #1 } } \cs_new_eq:NN \GetDocumentEnvironmentArgSpec \@@_get_arg_spec:n \cs_new_protected:Npn \ShowDocumentCommandArgSpec #1 { \@@_check_definable:nNT {#1} \ShowDocumentCommandArgSpec { \@@_show_arg_spec:N #1 } } \cs_new_eq:NN \ShowDocumentEnvironmentArgSpec \@@_show_arg_spec:n % \end{macrocode} % \end{macro} % \end{macro} % \end{macro} % \end{macro} % % \subsection{Package options} % % \begin{variable}{\l_@@_options_clist} % \begin{variable}{\l_@@_log_bool} % Key--value option to log information: done by hand to keep dependencies % down. % \begin{macrocode} \clist_new:N \l_@@_options_clist \DeclareOption* { \clist_put_right:NV \l_@@_options_clist \CurrentOption } \ProcessOptions \relax \keys_define:nn { xparse } { log-declarations .bool_set:N = \l_@@_log_bool , log-declarations .initial:n = true } \keys_set:nV { xparse } \l_@@_options_clist \bool_if:NF \l_@@_log_bool { \msg_redirect_module:nnn { LaTeX / xparse } { info } { none } \msg_redirect_module:nnn { LaTeX / xparse } { warning } { none } } % \end{macrocode} % \end{variable} % \end{variable} % % \begin{macrocode} % % \end{macrocode} % % \end{implementation} % % \PrintIndex