% \iffalse meta-comment % %% File: l3token.dtx Copyright (C) 2005-2014 The LaTeX3 Project %% %% It may be distributed and/or modified under the conditions of the %% LaTeX Project Public License (LPPL), either version 1.3c of this %% license or (at your option) any later version. The latest version %% of this license is in the file %% %% http://www.latex-project.org/lppl.txt %% %% This file is part of the "l3kernel bundle" (The Work in LPPL) %% and all files in that bundle must be distributed together. %% %% The released version of this bundle is available from CTAN. %% %% ----------------------------------------------------------------------- %% %% The development version of the bundle can be found at %% %% http://www.latex-project.org/svnroot/experimental/trunk/ %% %% for those people who are interested. %% %%%%%%%%%%% %% NOTE: %% %%%%%%%%%%% %% %% Snapshots taken from the repository represent work in progress and may %% not work or may contain conflicting material! We therefore ask %% people _not_ to put them into distributions, archives, etc. without %% prior consultation with the LaTeX3 Project. %% %% ----------------------------------------------------------------------- % %<*driver> \documentclass[full]{l3doc} % %<*driver|package> \GetIdInfo$Id: l3token.dtx 4728 2014-05-04 13:25:37Z joseph $ {L3 Experimental token manipulation} % %<*driver> \begin{document} \DocInput{\jobname.dtx} \end{document} % % \fi % % \title{^^A % The \pkg{l3token} package\\ Token manipulation^^A % \thanks{This file describes v\ExplFileVersion, % last revised \ExplFileDate.}^^A % } % % \author{^^A % The \LaTeX3 Project\thanks % {^^A % E-mail: % \href{mailto:latex-team@latex-project.org} % {latex-team@latex-project.org}^^A % }^^A % } % % \date{Released \ExplFileDate} % % \maketitle % % \begin{documentation} % % This module deals with tokens. Now this is perhaps not the most % precise description so let's try with a better description: When % programming in \TeX{}, it is often desirable to know just what a % certain token is: is it a control sequence or something % else. Similarly one often needs to know if a control sequence is % expandable or not, a macro or a primitive, how many arguments it % takes etc. Another thing of great importance (especially when it % comes to document commands) is looking ahead in the token stream to % see if a certain character is present and maybe even remove it or % disregard other tokens while scanning. This module provides % functions for both and as such will have two primary function % categories: |\token_| for anything that deals with tokens and % |\peek_| for looking ahead in the token stream. % % Most of the time we will be using the term \enquote{token} but most of the % time the function we're describing can equally well by used on a % control sequence as such one is one token as well. % % We shall refer to list of tokens as |tlist|s and such lists % represented by a single control sequence is a \enquote{token list variable} % |tl var|. Functions for these two types are found in the \textsf{l3tl} % module. % % \section{All possible tokens} % % Let us start by reviewing every case that a given token can fall into. % It is very important to distinguish two aspects of a token: its meaning, % and what it looks like. % % For instance, \cs{if:w}, \cs{if_charcode:w}, and \cs{tex_if:D} are % three for the same internal operation of \TeX{}, namely the primitive % testing the next two characters for equality of their character code. % They behave identically in many situations. However, \TeX{} % distinguishes them when searching for a delimited argument. Namely, the % example function \cs{show_until_if:w} defined below will take everything % until \cs{if:w} as an argument, despite the presence of other copies of % \cs{if:w} under different names. % \begin{verbatim} % \cs_new:Npn \show_until_if:w #1 \if:w { \tl_show:n {#1} } % \show_until_if:w \tex_if:D \if_charcode:w \if:w % \end{verbatim} % % \section{Character tokens} % % \begin{function} % { % \char_set_catcode_escape:N , % \char_set_catcode_group_begin:N , % \char_set_catcode_group_end:N , % \char_set_catcode_math_toggle:N , % \char_set_catcode_alignment:N , % \char_set_catcode_end_line:N , % \char_set_catcode_parameter:N , % \char_set_catcode_math_superscript:N , % \char_set_catcode_math_subscript:N , % \char_set_catcode_ignore:N , % \char_set_catcode_space:N , % \char_set_catcode_letter:N , % \char_set_catcode_other:N , % \char_set_catcode_active:N , % \char_set_catcode_comment:N , % \char_set_catcode_invalid:N % } % \begin{syntax} % \cs{char_set_catcode_letter:N} \meta{character} % \end{syntax} % Sets the category code of the \meta{character} to that indicated in % the function name. Depending on the current category code of the % \meta{token} the escape token may also be needed: % \begin{verbatim} % \char_set_catcode_other:N \% % \end{verbatim} % The assignment is local. % \end{function} % % \begin{function} % { % \char_set_catcode_escape:n , % \char_set_catcode_group_begin:n , % \char_set_catcode_group_end:n , % \char_set_catcode_math_toggle:n , % \char_set_catcode_alignment:n , % \char_set_catcode_end_line:n , % \char_set_catcode_parameter:n , % \char_set_catcode_math_superscript:n , % \char_set_catcode_math_subscript:n , % \char_set_catcode_ignore:n , % \char_set_catcode_space:n , % \char_set_catcode_letter:n , % \char_set_catcode_other:n , % \char_set_catcode_active:n , % \char_set_catcode_comment:n , % \char_set_catcode_invalid:n % } % \begin{syntax} % \cs{char_set_catcode_letter:n} \Arg{integer expression} % \end{syntax} % Sets the category code of the \meta{character} which has character % code as given by the \meta{integer expression}. This version can be % used to set up characters which cannot otherwise be given % (\emph{cf.}~the \texttt{N}-type variants). The assignment is local. % \end{function} % % \begin{function}{\char_set_catcode:nn} % \begin{syntax} % \cs{char_set_catcode:nn} \Arg{intexpr_1} \Arg{intexpr_2} % \end{syntax} % These functions set the category code of the \meta{character} which % has character code as given by the \meta{integer expression}. % The first \meta{integer expression} % is the character code and the second is the category code to apply. % The setting applies within the current \TeX{} group. In general, the % symbolic functions \cs{char_set_catcode_\meta{type}} should be preferred, % but there are cases where these lower-level functions may be useful. % \end{function} % % \begin{function}[EXP]{\char_value_catcode:n} % \begin{syntax} % \cs{char_value_catcode:n} \Arg{integer expression} % \end{syntax} % Expands to the current category code of the \meta{character} with % character code given by the % \meta{integer expression}. % \end{function} % % \begin{function}{\char_show_value_catcode:n} % \begin{syntax} % \cs{char_show_value_catcode:n} \Arg{integer expression} % \end{syntax} % Displays the current category code of the \meta{character} with % character code given by the \meta{integer expression} on the % terminal. % \end{function} % % \begin{function}{\char_set_lccode:nn} % \begin{syntax} % \cs{char_set_lcode:nn} \Arg{intexpr_1} \Arg{intexpr_2} % \end{syntax} % This function set up the behaviour of \meta{character} when % found inside \cs{tl_to_lowercase:n}, such that \meta{character_1} % will be converted into \meta{character_2}. The two \meta{characters} % may be specified using an \meta{integer expression} for the character code % concerned. This may include the \TeX{} |`|\meta{character} % method for converting a single character into its character % code: % \begin{verbatim} % \char_set_lccode:nn { `\A } { `\a } % Standard behaviour % \char_set_lccode:nn { `\A } { `\A + 32 } % \char_set_lccode:nn { 50 } { 60 } % \end{verbatim} % The setting applies within the current \TeX{} group. % \end{function} % % \begin{function}[EXP]{\char_value_lccode:n} % \begin{syntax} % \cs{char_value_lccode:n} \Arg{integer expression} % \end{syntax} % Expands to the current lower case code of the \meta{character} with % character code given by the % \meta{integer expression}. % \end{function} % % \begin{function}{\char_show_value_lccode:n} % \begin{syntax} % \cs{char_show_value_lccode:n} \Arg{integer expression} % \end{syntax} % Displays the current lower case code of the \meta{character} with % character code given by the \meta{integer expression} on the % terminal. % \end{function} % % \begin{function}{\char_set_uccode:nn} % \begin{syntax} % \cs{char_set_uccode:nn} \Arg{intexpr_1} \Arg{intexpr_2} % \end{syntax} % This function set up the behaviour of \meta{character} when % found inside \cs{tl_to_uppercase:n}, such that \meta{character_1} % will be converted into \meta{character_2}. The two \meta{characters} % may be specified using an \meta{integer expression} for the character code % concerned. This may include the \TeX{} |`|\meta{character} % method for converting a single character into its character % code: % \begin{verbatim} % \char_set_uccode:nn { `\a } { `\A } % Standard behaviour % \char_set_uccode:nn { `\A } { `\A - 32 } % \char_set_uccode:nn { 60 } { 50 } % \end{verbatim} % The setting applies within the current \TeX{} group. % \end{function} % % \begin{function}[EXP]{\char_value_uccode:n} % \begin{syntax} % \cs{char_value_uccode:n} \Arg{integer expression} % \end{syntax} % Expands to the current upper case code of the \meta{character} with % character code given by the % \meta{integer expression}. % \end{function} % % \begin{function}{\char_show_value_uccode:n} % \begin{syntax} % \cs{char_show_value_uccode:n} \Arg{integer expression} % \end{syntax} % Displays the current upper case code of the \meta{character} with % character code given by the \meta{integer expression} on the % terminal. % \end{function} % % \begin{function}{\char_set_mathcode:nn} % \begin{syntax} % \cs{char_set_mathcode:nn} \Arg{intexpr_1} \Arg{intexpr_2} % \end{syntax} % This function sets up the math code of \meta{character}. % The \meta{character} is specified as % an \meta{integer expression} which will be used as the character % code of the relevant character. The setting applies within the % current \TeX{} group. % \end{function} % % \begin{function}[EXP]{\char_value_mathcode:n} % \begin{syntax} % \cs{char_value_mathcode:n} \Arg{integer expression} % \end{syntax} % Expands to the current math code of the \meta{character} with % character code given by the % \meta{integer expression}. % \end{function} % % \begin{function}{\char_show_value_mathcode:n} % \begin{syntax} % \cs{char_show_value_mathcode:n} \Arg{integer expression} % \end{syntax} % Displays the current math code of the \meta{character} with % character code given by the \meta{integer expression} on the % terminal. % \end{function} % % \begin{function}{\char_set_sfcode:nn} % \begin{syntax} % \cs{char_set_sfcode:nn} \Arg{intexpr_1} \Arg{intexpr_2} % \end{syntax} % This function sets up the space factor for the \meta{character}. % The \meta{character} is specified as % an \meta{integer expression} which will be used as the character % code of the relevant character. The setting applies within the % current \TeX{} group. % \end{function} % % \begin{function}[EXP]{\char_value_sfcode:n} % \begin{syntax} % \cs{char_value_sfcode:n} \Arg{integer expression} % \end{syntax} % Expands to the current space factor for the \meta{character} with % character code given by the % \meta{integer expression}. % \end{function} % % \begin{function}{\char_show_value_sfcode:n} % \begin{syntax} % \cs{char_show_value_sfcode:n} \Arg{integer expression} % \end{syntax} % Displays the current space factor for the \meta{character} with % character code given by the \meta{integer expression} on the % terminal. % \end{function} % % \begin{variable}[added = 2012-01-23]{\l_char_active_seq} % Used to track which tokens will require special handling at the document % level as they are of category \meta{active} (catcode~$13$). Each entry in % the sequence consists of a single active character. Active tokens should be % added to the sequence when they are defined for general document use. % \end{variable} % % \begin{variable}[added = 2012-01-23]{\l_char_special_seq} % Used to track which tokens will require special handling when working with % verbatim-like material at the document level as they are not of categories % \meta{letter} (catcode~$11$) or \meta{other} (catcode~$12$). Each entry in % the sequence consists of a single escaped token, for example |\\| for the % backslash or |\{| for an opening brace.^^A \} % Escaped tokens should be added to the sequence when they are defined for % general document use. % \end{variable} % % \section{Generic tokens} % % \begin{function}{\token_new:Nn} % \begin{syntax} % \cs{token_new:Nn} \meta{token_1} \Arg{token_2} % \end{syntax} % Defines \meta{token_1} to globally be a snapshot of \meta{token_2}. % This will be an implicit representation of \meta{token_2}. % \end{function} % % ^^A Because it's late I can't figure out a better way to handle this: % \ExplSyntaxOn % \cs_set_eq:NN \c_alignment_token @ % \cs_set_eq:NN \c_parameter_token @ % \ExplSyntaxOff % \begin{variable} % { % \c_group_begin_token, % \c_group_end_token, % \c_math_toggle_token, % \c_alignment_token, % \c_parameter_token, % \c_math_superscript_token, % \c_math_subscript_token, % \c_space_token % } % These are implicit tokens which have the category code described % by their name. They are used internally for test purposes but % are also available to the programmer for other uses. % \end{variable} % \ExplSyntaxOn % \cs_set_eq:NN \c_alignment_token & % \cs_set_eq:NN \c_parameter_token # % \ExplSyntaxOff % % \begin{variable} % { % \c_catcode_letter_token, % \c_catcode_other_token % } % These are implicit tokens which have the category code described % by their name. They are used internally for test purposes and should % not be used other than for category code tests. % \end{variable} % % \begin{variable}{\c_catcode_active_tl} % A token list containing an active token. This is used internally % for test purposes and should not be used other than in % appropriately-constructed category code tests. % \end{variable} % % \section{Converting tokens} % % \begin{function}[EXP]{\token_to_meaning:N, \token_to_meaning:c} % \begin{syntax} % \cs{token_to_meaning:N} \meta{token} % \end{syntax} % Inserts the current meaning of the \meta{token} into the input % stream as a series of characters of category code $12$ (other). % This will be the primitive \TeX{} description of the \meta{token}, % thus for example both functions defined by \cs{cs_set_nopar:Npn} % and token list variables defined using \cs{tl_new:N} will be described % as |macro|s. % \begin{texnote} % This is the \TeX{} primitive \tn{meaning}. % \end{texnote} % \end{function} % % \begin{function}[EXP]{\token_to_str:N, \token_to_str:c} % \begin{syntax} % \cs{token_to_str:N} \meta{token} % \end{syntax} % Converts the given \meta{token} into a series of characters with % category code $12$ (other). The current escape character will be % the first character in the sequence, although this will also have % category code $12$ (the escape character is part of the % \meta{token}). This function requires only a single expansion. % \begin{texnote} % \cs{token_to_str:N} is the \TeX{} primitive \tn{string} renamed. % \end{texnote} % \end{function} % % \section{Token conditionals} % % \begin{function}[EXP,pTF]{\token_if_group_begin:N} % \begin{syntax} % \cs{token_if_group_begin_p:N} \meta{token} \\ % \cs{token_if_group_begin:NTF} \meta{token} \Arg{true code} \Arg{false code} % \end{syntax} % Tests if \meta{token} has the category code of a begin group token % (|{| when normal \TeX{} category codes are in ^^A } % force). % Note that an explicit begin group token cannot be tested in this way, % as it is not a valid \texttt{N}-type argument. % \end{function} % % \begin{function}[EXP,pTF]{\token_if_group_end:N} % \begin{syntax} % \cs{token_if_group_end_p:N} \meta{token} \\ % \cs{token_if_group_end:NTF} \meta{token} \Arg{true code} \Arg{false code} % \end{syntax} % Tests if \meta{token} has the category code of an end group token % (^^A { % |}| when normal \TeX{} category codes are in force). % Note that an explicit end group token cannot be tested in this way, % as it is not a valid \texttt{N}-type argument. % \end{function} % % \begin{function}[EXP,pTF]{\token_if_math_toggle:N} % \begin{syntax} % \cs{token_if_math_toggle_p:N} \meta{token} \\ % \cs{token_if_math_toggle:NTF} \meta{token} \Arg{true code} \Arg{false code} % \end{syntax} % Tests if \meta{token} has the category code of a math shift token % (|$| when normal \TeX{} category codes are in force). % \end{function} % % \begin{function}[EXP,pTF]{\token_if_alignment:N} % \begin{syntax} % \cs{token_if_alignment_p:N} \meta{token} \\ % \cs{token_if_alignment:NTF} \meta{token} \Arg{true code} \Arg{false code} % \end{syntax} % Tests if \meta{token} has the category code of an alignment token % (|&| when normal \TeX{} category codes are in force). % \end{function} % % \begin{function}[EXP,pTF]{\token_if_parameter:N} % \begin{syntax} % \cs{token_if_parameter_p:N} \meta{token} \\ % \cs{token_if_alignment:NTF} \meta{token} \Arg{true code} \Arg{false code} % \end{syntax} % Tests if \meta{token} has the category code of a macro parameter token % (|#| when normal \TeX{} category codes are in force). % \end{function} % % \begin{function}[EXP,pTF]{\token_if_math_superscript:N} % \begin{syntax} % \cs{token_if_math_superscript_p:N} \meta{token} \\ % \cs{token_if_math_superscript:NTF} \meta{token} \Arg{true code} \Arg{false code} % \end{syntax} % Tests if \meta{token} has the category code of a superscript token % (|^| when normal \TeX{} category codes are in force). % \end{function} % % \begin{function}[EXP,pTF]{\token_if_math_subscript:N} % \begin{syntax} % \cs{token_if_math_subscript_p:N} \meta{token} \\ % \cs{token_if_math_subscript:NTF} \meta{token} \Arg{true code} \Arg{false code} % \end{syntax} % Tests if \meta{token} has the category code of a subscript token % (|_| when normal \TeX{} category codes are in force). % \end{function} % % \begin{function}[EXP,pTF]{\token_if_space:N} % \begin{syntax} % \cs{token_if_space_p:N} \meta{token} \\ % \cs{token_if_space:NTF} \meta{token} \Arg{true code} \Arg{false code} % \end{syntax} % Tests if \meta{token} has the category code of a space token. % Note that an explicit space token with character code $32$ cannot % be tested in this way, as it is not a valid \texttt{N}-type argument. % \end{function} % % \begin{function}[EXP,pTF]{\token_if_letter:N} % \begin{syntax} % \cs{token_if_letter_p:N} \meta{token} \\ % \cs{token_if_letter:NTF} \meta{token} \Arg{true code} \Arg{false code} % \end{syntax} % Tests if \meta{token} has the category code of a letter token. % \end{function} % % \begin{function}[EXP,pTF]{\token_if_other:N} % \begin{syntax} % \cs{token_if_other_p:N} \meta{token} \\ % \cs{token_if_other:NTF} \meta{token} \Arg{true code} \Arg{false code} % \end{syntax} % Tests if \meta{token} has the category code of an \enquote{other} % token. % \end{function} % % \begin{function}[EXP,pTF]{\token_if_active:N} % \begin{syntax} % \cs{token_if_active_p:N} \meta{token} \\ % \cs{token_if_active:NTF} \meta{token} \Arg{true code} \Arg{false code} % \end{syntax} % Tests if \meta{token} has the category code of an active character. % \end{function} % % \begin{function}[EXP,pTF]{\token_if_eq_catcode:NN} % \begin{syntax} % \cs{token_if_eq_catcode_p:NN} \meta{token_1} \meta{token_2} \\ % \cs{token_if_eq_catcode:NNTF} \meta{token_1} \meta{token_2} \Arg{true code} \Arg{false code} % \end{syntax} % Tests if the two \meta{tokens} have the same category code. % \end{function} % % \begin{function}[EXP,pTF]{\token_if_eq_charcode:NN} % \begin{syntax} % \cs{token_if_eq_charcode_p:NN} \meta{token_1} \meta{token_2} \\ % \cs{token_if_eq_charcode:NNTF} \meta{token_1} \meta{token_2} \Arg{true code} \Arg{false code} % \end{syntax} % Tests if the two \meta{tokens} have the same character code. % \end{function} % % \begin{function}[EXP,pTF]{\token_if_eq_meaning:NN} % \begin{syntax} % \cs{token_if_eq_meaning_p:NN} \meta{token_1} \meta{token_2} \\ % \cs{token_if_eq_meaning:NNTF} \meta{token_1} \meta{token_2} \Arg{true code} \Arg{false code} % \end{syntax} % Tests if the two \meta{tokens} have the same meaning when expanded. % \end{function} % % \begin{function}[updated = 2011-05-23, EXP,pTF]{\token_if_macro:N} % \begin{syntax} % \cs{token_if_macro_p:N} \meta{token} \\ % \cs{token_if_macro:NTF} \meta{token} \Arg{true code} \Arg{false code} % \end{syntax} % Tests if the \meta{token} is a \TeX{} macro. % \end{function} % % \begin{function}[EXP,pTF]{\token_if_cs:N} % \begin{syntax} % \cs{token_if_cs_p:N} \meta{token} \\ % \cs{token_if_cs:NTF} \meta{token} \Arg{true code} \Arg{false code} % \end{syntax} % Tests if the \meta{token} is a control sequence. % \end{function} % % \begin{function}[EXP,pTF]{\token_if_expandable:N} % \begin{syntax} % \cs{token_if_expandable_p:N} \meta{token} \\ % \cs{token_if_expandable:NTF} \meta{token} \Arg{true code} \Arg{false code} % \end{syntax} % Tests if the \meta{token} is expandable. This test returns \meta{false} % for an undefined token. % \end{function} % % \begin{function}[EXP,pTF, updated=2012-01-20]{\token_if_long_macro:N} % \begin{syntax} % \cs{token_if_long_macro_p:N} \meta{token} \\ % \cs{token_if_long_macro:NTF} \meta{token} \Arg{true code} \Arg{false code} % \end{syntax} % Tests if the \meta{token} is a long macro. % \end{function} % % \begin{function}[EXP,pTF, updated=2012-01-20]{\token_if_protected_macro:N} % \begin{syntax} % \cs{token_if_protected_macro_p:N} \meta{token} \\ % \cs{token_if_protected_macro:NTF} \meta{token} \Arg{true code} \Arg{false code} % \end{syntax} % Tests if the \meta{token} is a protected macro: a macro which % is both protected and long will return logical \texttt{false}. % \end{function} % % \begin{function}[EXP,pTF, updated=2012-01-20]{\token_if_protected_long_macro:N} % \begin{syntax} % \cs{token_if_protected_long_macro_p:N} \meta{token} \\ % \cs{token_if_protected_long_macro:NTF} \meta{token} \Arg{true code} \Arg{false code} % \end{syntax} % Tests if the \meta{token} is a protected long macro. % \end{function} % % \begin{function}[EXP,pTF, updated=2012-01-20]{\token_if_chardef:N} % \begin{syntax} % \cs{token_if_chardef_p:N} \meta{token} \\ % \cs{token_if_chardef:NTF} \meta{token} \Arg{true code} \Arg{false code} % \end{syntax} % Tests if the \meta{token} is defined to be a chardef. % \begin{texnote} % Booleans, boxes and small integer constants are implemented as % chardefs. % \end{texnote} % \end{function} % % \begin{function}[EXP,pTF, updated=2012-01-20]{\token_if_mathchardef:N} % \begin{syntax} % \cs{token_if_mathchardef_p:N} \meta{token} \\ % \cs{token_if_mathchardef:NTF} \meta{token} \Arg{true code} \Arg{false code} % \end{syntax} % Tests if the \meta{token} is defined to be a mathchardef. % \end{function} % % \begin{function}[EXP,pTF, updated=2012-01-20]{\token_if_dim_register:N} % \begin{syntax} % \cs{token_if_dim_register_p:N} \meta{token} \\ % \cs{token_if_dim_register:NTF} \meta{token} \Arg{true code} \Arg{false code} % \end{syntax} % Tests if the \meta{token} is defined to be a dimension register. % \end{function} % % \begin{function}[EXP,pTF, updated=2012-01-20]{\token_if_int_register:N} % \begin{syntax} % \cs{token_if_int_register_p:N} \meta{token} \\ % \cs{token_if_int_register:NTF} \meta{token} \Arg{true code} \Arg{false code} % \end{syntax} % Tests if the \meta{token} is defined to be a integer register. % \begin{texnote} % Constant integers may be implemented as integer registers, % chardefs, or mathchardefs depending on their value. % \end{texnote} % \end{function} % % \begin{function}[EXP,pTF, added=2012-02-15]{\token_if_muskip_register:N} % \begin{syntax} % \cs{token_if_muskip_register_p:N} \meta{token} \\ % \cs{token_if_muskip_register:NTF} \meta{token} \Arg{true code} \Arg{false code} % \end{syntax} % Tests if the \meta{token} is defined to be a muskip register. % \end{function} % % \begin{function}[EXP,pTF, updated=2012-01-20]{\token_if_skip_register:N} % \begin{syntax} % \cs{token_if_skip_register_p:N} \meta{token} \\ % \cs{token_if_skip_register:NTF} \meta{token} \Arg{true code} \Arg{false code} % \end{syntax} % Tests if the \meta{token} is defined to be a skip register. % \end{function} % % \begin{function}[EXP,pTF, updated=2012-01-20]{\token_if_toks_register:N} % \begin{syntax} % \cs{token_if_toks_register_p:N} \meta{token} \\ % \cs{token_if_toks_register:NTF} \meta{token} \Arg{true code} \Arg{false code} % \end{syntax} % Tests if the \meta{token} is defined to be a toks register % (not used by\LaTeX3). % \end{function} % % \begin{function}[updated = 2011-05-23, EXP,pTF]{\token_if_primitive:N} % \begin{syntax} % \cs{token_if_primitive_p:N} \meta{token} \\ % \cs{token_if_primitive:NTF} \meta{token} \Arg{true code} \Arg{false code} % \end{syntax} % Tests if the \meta{token} is an engine primitive. % \end{function} % % \section{Peeking ahead at the next token} % % There is often a need to look ahead at the next token in the input % stream while leaving it in place. This is handled using the % \enquote{peek} functions. The generic \cs{peek_after:Nw} is % provided along with a family of predefined tests for common cases. % As peeking ahead does \emph{not} skip spaces the predefined tests % include both a space-respecting and space-skipping version. % % \begin{function}{\peek_after:Nw} % \begin{syntax} % \cs{peek_after:Nw} \meta{function} \meta{token} % \end{syntax} % Locally sets the test variable \cs{l_peek_token} equal to \meta{token} % (as an implicit token, \emph{not} as a token list), and then % expands the \meta{function}. The \meta{token} will remain in % the input stream as the next item after the \meta{function}. % The \meta{token} here may be \verb*| |, |{| or |}| (assuming % normal \TeX{} category codes), \emph{i.e.}~it is not necessarily the % next argument which would be grabbed by a normal function. % \end{function} % % \begin{function}{\peek_gafter:Nw} % \begin{syntax} % \cs{peek_gafter:Nw} \meta{function} \meta{token} % \end{syntax} % Globally sets the test variable \cs{g_peek_token} equal to \meta{token} % (as an implicit token, \emph{not} as a token list), and then % expands the \meta{function}. The \meta{token} will remain in % the input stream as the next item after the \meta{function}. % The \meta{token} here may be \verb*| |, |{| or |}| (assuming % normal \TeX{} category codes), \emph{i.e.}~it is not necessarily the % next argument which would be grabbed by a normal function. % \end{function} % % \begin{variable}{\l_peek_token} % Token set by \cs{peek_after:Nw} and available for testing % as described above. % \end{variable} % % \begin{variable}{\g_peek_token} % Token set by \cs{peek_gafter:Nw} and available for testing % as described above. % \end{variable} % % \begin{function}[updated = 2012-12-20, TF]{\peek_catcode:N} % \begin{syntax} % \cs{peek_catcode:NTF} \meta{test token} \Arg{true code} \Arg{false code} % \end{syntax} % Tests if the next \meta{token} in the input stream has the same % category code as the \meta{test token} (as defined by the test % \cs{token_if_eq_catcode:NNTF}). Spaces are respected by the test % and the \meta{token} will be left in the input stream after % the \meta{true code} or \meta{false code} (as appropriate to the % result of the test). % \end{function} % % \begin{function}[updated = 2012-12-20, TF]{\peek_catcode_ignore_spaces:N} % \begin{syntax} % \cs{peek_catcode_ignore_spaces:NTF} \meta{test token} \Arg{true code} \Arg{false code} % \end{syntax} % Tests if the next non-space \meta{token} in the input stream has the % same category code as the \meta{test token} (as defined by the test % \cs{token_if_eq_catcode:NNTF}). Explicit and implicit space tokens % (with character code 32 and category code 10) are ignored and % removed by the test and the \meta{token} will be left in the input % stream after the \meta{true code} or \meta{false code} (as % appropriate to the result of the test). % \end{function} % % \begin{function}[updated = 2012-12-20, TF]{\peek_catcode_remove:N} % \begin{syntax} % \cs{peek_catcode_remove:NTF} \meta{test token} \Arg{true code} \Arg{false code} % \end{syntax} % Tests if the next \meta{token} in the input stream has the same % category code as the \meta{test token} (as defined by the test % \cs{token_if_eq_catcode:NNTF}). Spaces are respected by the test % and the \meta{token} will be removed from the input stream if the % test is true. The function will then place either the % \meta{true code} or \meta{false code} in the input stream (as % appropriate to the result of the test). % \end{function} % % \begin{function}[updated = 2012-12-20, TF] % {\peek_catcode_remove_ignore_spaces:N} % \begin{syntax} % \cs{peek_catcode_remove_ignore_spaces:NTF} \meta{test token} \Arg{true code} \Arg{false code} % \end{syntax} % Tests if the next non-space \meta{token} in the input stream has the % same category code as the \meta{test token} (as defined by the test % \cs{token_if_eq_catcode:NNTF}). Explicit and implicit space tokens % (with character code 32 and category code 10) are ignored and % removed by the test and the \meta{token} will be removed from the % input stream if the test is true. The function will then place % either the \meta{true code} or \meta{false code} in the input stream % (as appropriate to the result of the test). % \end{function} % % \begin{function}[updated = 2012-12-20, TF]{\peek_charcode:N} % \begin{syntax} % \cs{peek_charcode:NTF} \meta{test token} \Arg{true code} \Arg{false code} % \end{syntax} % Tests if the next \meta{token} in the input stream has the same % character code as the \meta{test token} (as defined by the test % \cs{token_if_eq_charcode:NNTF}). Spaces are respected by the test % and the \meta{token} will be left in the input stream after % the \meta{true code} or \meta{false code} (as appropriate to the % result of the test). % \end{function} % % \begin{function}[updated = 2012-12-20, TF]{\peek_charcode_ignore_spaces:N} % \begin{syntax} % \cs{peek_charcode_ignore_spaces:NTF} \meta{test token} \Arg{true code} \Arg{false code} % \end{syntax} % Tests if the next non-space \meta{token} in the input stream has the % same character code as the \meta{test token} (as defined by the test % \cs{token_if_eq_charcode:NNTF}). Explicit and implicit space tokens % (with character code 32 and category code 10) are ignored and removed by % the test and the \meta{token} will be left in the input stream after % the \meta{true code} or \meta{false code} (as appropriate to the % result of the test). % \end{function} % % \begin{function}[updated = 2012-12-20, TF]{\peek_charcode_remove:N} % \begin{syntax} % \cs{peek_charcode_remove:NTF} \meta{test token} \Arg{true code} \Arg{false code} % \end{syntax} % Tests if the next \meta{token} in the input stream has the same % character code as the \meta{test token} (as defined by the test % \cs{token_if_eq_charcode:NNTF}). Spaces are respected by the test % and the \meta{token} will be removed from the input stream if the % test is true. The function will then place either the % \meta{true code} or \meta{false code} in the input stream (as % appropriate to the result of the test). % \end{function} % % \begin{function}[updated = 2012-12-20, TF] % {\peek_charcode_remove_ignore_spaces:N} % \begin{syntax} % \cs{peek_charcode_remove_ignore_spaces:NTF} \meta{test token} % ~~\Arg{true code} \Arg{false code} % \end{syntax} % Tests if the next non-space \meta{token} in the input stream has the % same character code as the \meta{test token} (as defined by the test % \cs{token_if_eq_charcode:NNTF}). Explicit and implicit space tokens % (with character code 32 and category code 10) are ignored and % removed by the test and the \meta{token} will be removed from the % input stream if the test is true. The function will then place % either the \meta{true code} or \meta{false code} in the input stream % (as appropriate to the result of the test). % \end{function} % % \begin{function}[updated = 2011-07-02, TF]{\peek_meaning:N} % \begin{syntax} % \cs{peek_meaning:NTF} \meta{test token} \Arg{true code} \Arg{false code} % \end{syntax} % Tests if the next \meta{token} in the input stream has the same % meaning as the \meta{test token} (as defined by the test % \cs{token_if_eq_meaning:NNTF}). Spaces are respected by the test % and the \meta{token} will be left in the input stream after % the \meta{true code} or \meta{false code} (as appropriate to the % result of the test). % \end{function} % % \begin{function}[updated = 2012-12-05, TF]{\peek_meaning_ignore_spaces:N} % \begin{syntax} % \cs{peek_meaning_ignore_spaces:NTF} \meta{test token} \Arg{true code} \Arg{false code} % \end{syntax} % Tests if the next non-space \meta{token} in the input stream has the % same meaning as the \meta{test token} (as defined by the test % \cs{token_if_eq_meaning:NNTF}). Explicit and implicit space tokens % (with character code 32 and category code 10) are ignored and % removed by the test and the \meta{token} will be left in the input % stream after the \meta{true code} or \meta{false code} (as % appropriate to the result of the test). % \end{function} % % \begin{function}[updated = 2011-07-02, TF]{\peek_meaning_remove:N} % \begin{syntax} % \cs{peek_meaning_remove:NTF} \meta{test token} \Arg{true code} \Arg{false code} % \end{syntax} % Tests if the next \meta{token} in the input stream has the same % meaning as the \meta{test token} (as defined by the test % \cs{token_if_eq_meaning:NNTF}). Spaces are respected by the test % and the \meta{token} will be removed from the input stream if the % test is true. The function will then place either the % \meta{true code} or \meta{false code} in the input stream (as % appropriate to the result of the test). % \end{function} % % \begin{function}[updated = 2012-12-05, TF] % {\peek_meaning_remove_ignore_spaces:N} % \begin{syntax} % \cs{peek_meaning_remove_ignore_spaces:NTF} \meta{test token} % ~~\Arg{true code} \Arg{false code} % \end{syntax} % Tests if the next non-space \meta{token} in the input stream has the % same meaning as the \meta{test token} (as defined by the test % \cs{token_if_eq_meaning:NNTF}). Explicit and implicit space tokens % (with character code 32 and category code 10) are ignored and % removed by the test and the \meta{token} will be removed from the % input stream if the test is true. The function will then place % either the \meta{true code} or \meta{false code} in the input stream % (as appropriate to the result of the test). % \end{function} % % \section{Decomposing a macro definition} % % These functions decompose \TeX{} macros into their constituent % parts: if the \meta{token} passed is not a macro then no decomposition % can occur. In the later case, all three functions leave \cs{scan_stop:} % in the input stream. % % \begin{function}[EXP]{\token_get_arg_spec:N} % \begin{syntax} % \cs{token_get_arg_spec:N} \meta{token} % \end{syntax} % If the \meta{token} is a macro, this function will leave % the primitive \TeX{} argument specification in input stream as % a string of tokens of category code $12$ (with spaces having category % code $10$). Thus for example for a token \cs{next} defined by % \begin{verbatim} % \cs_set:Npn \next #1#2 { x #1 y #2 } % \end{verbatim} % will leave |#1#2| in the input stream. If the \meta{token} is % not a macro then \cs{scan_stop:} will be left in the input stream % \begin{texnote} % If the arg~spec. contains the string |->|, then the |spec| function % will produce incorrect results. % \end{texnote} % \end{function} % % \begin{function}[EXP]{\token_get_replacement_spec:N} % \begin{syntax} % \cs{token_get_replacement_spec:N} \meta{token} % \end{syntax} % If the \meta{token} is a macro, this function will leave % the replacement text in input stream as % a string of tokens of category code $12$ (with spaces having category % code $10$). Thus for example for a token \cs{next} defined by % \begin{verbatim} % \cs_set:Npn \next #1#2 { x #1~y #2 } % \end{verbatim} % will leave \verb|x#1 y#2| in the input stream. If the \meta{token} is % not a macro then \cs{scan_stop:} will be left in the input stream % \end{function} % % \begin{function}[EXP]{\token_get_prefix_spec:N} % \begin{syntax} % \cs{token_get_prefix_spec:N} \meta{token} % \end{syntax} % If the \meta{token} is a macro, this function will leave % the \TeX{} prefixes applicable in input stream as % a string of tokens of category code $12$ (with spaces having category % code $10$). Thus for example for a token \cs{next} defined by % \begin{verbatim} % \cs_set:Npn \next #1#2 { x #1~y #2 } % \end{verbatim} % will leave |\long| in the input stream. If the \meta{token} is % not a macro then \cs{scan_stop:} will be left in the input stream % \end{function} % % \end{documentation} % % \begin{implementation} % % \section{\pkg{l3token} implementation} % % \begin{macrocode} %<*initex|package> % \end{macrocode} % % \begin{macrocode} %<@@=token> % \end{macrocode} % % \subsection{Character tokens} % % \begin{macro}{\char_set_catcode:nn} % \begin{macro}{\char_value_catcode:n} % \begin{macro}{\char_show_value_catcode:n} % Category code changes. % \begin{macrocode} \cs_new_protected:Npn \char_set_catcode:nn #1#2 { \tex_catcode:D #1 = \__int_eval:w #2 \__int_eval_end: } \cs_new:Npn \char_value_catcode:n #1 { \tex_the:D \tex_catcode:D \__int_eval:w #1\__int_eval_end: } \cs_new_protected:Npn \char_show_value_catcode:n #1 { \tex_showthe:D \tex_catcode:D \__int_eval:w #1 \__int_eval_end: } % \end{macrocode} % \end{macro} % \end{macro} % \end{macro} % % \begin{macro} % { % \char_set_catcode_escape:N , % \char_set_catcode_group_begin:N , % \char_set_catcode_group_end:N , % \char_set_catcode_math_toggle:N , % \char_set_catcode_alignment:N , % \char_set_catcode_end_line:N , % \char_set_catcode_parameter:N , % \char_set_catcode_math_superscript:N , % \char_set_catcode_math_subscript:N , % \char_set_catcode_ignore:N , % \char_set_catcode_space:N , % \char_set_catcode_letter:N , % \char_set_catcode_other:N , % \char_set_catcode_active:N , % \char_set_catcode_comment:N , % \char_set_catcode_invalid:N % } % \begin{macrocode} \cs_new_protected:Npn \char_set_catcode_escape:N #1 { \char_set_catcode:nn { `#1 } \c_zero } \cs_new_protected:Npn \char_set_catcode_group_begin:N #1 { \char_set_catcode:nn { `#1 } \c_one } \cs_new_protected:Npn \char_set_catcode_group_end:N #1 { \char_set_catcode:nn { `#1 } \c_two } \cs_new_protected:Npn \char_set_catcode_math_toggle:N #1 { \char_set_catcode:nn { `#1 } \c_three } \cs_new_protected:Npn \char_set_catcode_alignment:N #1 { \char_set_catcode:nn { `#1 } \c_four } \cs_new_protected:Npn \char_set_catcode_end_line:N #1 { \char_set_catcode:nn { `#1 } \c_five } \cs_new_protected:Npn \char_set_catcode_parameter:N #1 { \char_set_catcode:nn { `#1 } \c_six } \cs_new_protected:Npn \char_set_catcode_math_superscript:N #1 { \char_set_catcode:nn { `#1 } \c_seven } \cs_new_protected:Npn \char_set_catcode_math_subscript:N #1 { \char_set_catcode:nn { `#1 } \c_eight } \cs_new_protected:Npn \char_set_catcode_ignore:N #1 { \char_set_catcode:nn { `#1 } \c_nine } \cs_new_protected:Npn \char_set_catcode_space:N #1 { \char_set_catcode:nn { `#1 } \c_ten } \cs_new_protected:Npn \char_set_catcode_letter:N #1 { \char_set_catcode:nn { `#1 } \c_eleven } \cs_new_protected:Npn \char_set_catcode_other:N #1 { \char_set_catcode:nn { `#1 } \c_twelve } \cs_new_protected:Npn \char_set_catcode_active:N #1 { \char_set_catcode:nn { `#1 } \c_thirteen } \cs_new_protected:Npn \char_set_catcode_comment:N #1 { \char_set_catcode:nn { `#1 } \c_fourteen } \cs_new_protected:Npn \char_set_catcode_invalid:N #1 { \char_set_catcode:nn { `#1 } \c_fifteen } % \end{macrocode} % \end{macro} % % \begin{macro} % { % \char_set_catcode_escape:n , % \char_set_catcode_group_begin:n , % \char_set_catcode_group_end:n , % \char_set_catcode_math_toggle:n , % \char_set_catcode_alignment:n , % \char_set_catcode_end_line:n , % \char_set_catcode_parameter:n , % \char_set_catcode_math_superscript:n , % \char_set_catcode_math_subscript:n , % \char_set_catcode_ignore:n , % \char_set_catcode_space:n , % \char_set_catcode_letter:n , % \char_set_catcode_other:n , % \char_set_catcode_active:n , % \char_set_catcode_comment:n , % \char_set_catcode_invalid:n % } % \begin{macrocode} \cs_new_protected:Npn \char_set_catcode_escape:n #1 { \char_set_catcode:nn {#1} \c_zero } \cs_new_protected:Npn \char_set_catcode_group_begin:n #1 { \char_set_catcode:nn {#1} \c_one } \cs_new_protected:Npn \char_set_catcode_group_end:n #1 { \char_set_catcode:nn {#1} \c_two } \cs_new_protected:Npn \char_set_catcode_math_toggle:n #1 { \char_set_catcode:nn {#1} \c_three } \cs_new_protected:Npn \char_set_catcode_alignment:n #1 { \char_set_catcode:nn {#1} \c_four } \cs_new_protected:Npn \char_set_catcode_end_line:n #1 { \char_set_catcode:nn {#1} \c_five } \cs_new_protected:Npn \char_set_catcode_parameter:n #1 { \char_set_catcode:nn {#1} \c_six } \cs_new_protected:Npn \char_set_catcode_math_superscript:n #1 { \char_set_catcode:nn {#1} \c_seven } \cs_new_protected:Npn \char_set_catcode_math_subscript:n #1 { \char_set_catcode:nn {#1} \c_eight } \cs_new_protected:Npn \char_set_catcode_ignore:n #1 { \char_set_catcode:nn {#1} \c_nine } \cs_new_protected:Npn \char_set_catcode_space:n #1 { \char_set_catcode:nn {#1} \c_ten } \cs_new_protected:Npn \char_set_catcode_letter:n #1 { \char_set_catcode:nn {#1} \c_eleven } \cs_new_protected:Npn \char_set_catcode_other:n #1 { \char_set_catcode:nn {#1} \c_twelve } \cs_new_protected:Npn \char_set_catcode_active:n #1 { \char_set_catcode:nn {#1} \c_thirteen } \cs_new_protected:Npn \char_set_catcode_comment:n #1 { \char_set_catcode:nn {#1} \c_fourteen } \cs_new_protected:Npn \char_set_catcode_invalid:n #1 { \char_set_catcode:nn {#1} \c_fifteen } % \end{macrocode} % \end{macro} % % \begin{macro}{\char_set_mathcode:nn} % \begin{macro}{\char_value_mathcode:n} % \begin{macro}{\char_show_value_mathcode:n} % \begin{macro}{\char_set_lccode:nn} % \begin{macro}{\char_value_lccode:n} % \begin{macro}{\char_show_value_lccode:n} % \begin{macro}{\char_set_uccode:nn} % \begin{macro}{\char_value_uccode:n} % \begin{macro}{\char_show_value_uccode:n} % \begin{macro}{\char_set_sfcode:nn} % \begin{macro}{\char_value_sfcode:n} % \begin{macro}{\char_show_value_sfcode:n} % Pretty repetitive, but necessary! % \begin{macrocode} \cs_new_protected:Npn \char_set_mathcode:nn #1#2 { \tex_mathcode:D #1 = \__int_eval:w #2 \__int_eval_end: } \cs_new:Npn \char_value_mathcode:n #1 { \tex_the:D \tex_mathcode:D \__int_eval:w #1\__int_eval_end: } \cs_new_protected:Npn \char_show_value_mathcode:n #1 { \tex_showthe:D \tex_mathcode:D \__int_eval:w #1 \__int_eval_end: } \cs_new_protected:Npn \char_set_lccode:nn #1#2 { \tex_lccode:D #1 = \__int_eval:w #2 \__int_eval_end: } \cs_new:Npn \char_value_lccode:n #1 { \tex_the:D \tex_lccode:D \__int_eval:w #1\__int_eval_end: } \cs_new_protected:Npn \char_show_value_lccode:n #1 { \tex_showthe:D \tex_lccode:D \__int_eval:w #1 \__int_eval_end: } \cs_new_protected:Npn \char_set_uccode:nn #1#2 { \tex_uccode:D #1 = \__int_eval:w #2 \__int_eval_end: } \cs_new:Npn \char_value_uccode:n #1 { \tex_the:D \tex_uccode:D \__int_eval:w #1\__int_eval_end: } \cs_new_protected:Npn \char_show_value_uccode:n #1 { \tex_showthe:D \tex_uccode:D \__int_eval:w #1 \__int_eval_end: } \cs_new_protected:Npn \char_set_sfcode:nn #1#2 { \tex_sfcode:D #1 = \__int_eval:w #2 \__int_eval_end: } \cs_new:Npn \char_value_sfcode:n #1 { \tex_the:D \tex_sfcode:D \__int_eval:w #1\__int_eval_end: } \cs_new_protected:Npn \char_show_value_sfcode:n #1 { \tex_showthe:D \tex_sfcode:D \__int_eval:w #1 \__int_eval_end: } % \end{macrocode} % \end{macro} % \end{macro} % \end{macro} % \end{macro} % \end{macro} % \end{macro} % \end{macro} % \end{macro} % \end{macro} % \end{macro} % \end{macro} % \end{macro} % % \subsection{Generic tokens} % % \begin{macro}{\token_to_meaning:N, \token_to_meaning:c} % \begin{macro}{\token_to_str:N, \token_to_str:c} % These are all defined in \pkg{l3basics}, as they are needed % \enquote{early}. This is just a reminder! % \end{macro} % \end{macro} % % \begin{macro}{\token_new:Nn} % Creates a new token. % \begin{macrocode} \cs_new_protected:Npn \token_new:Nn #1#2 { \cs_new_eq:NN #1 #2 } % \end{macrocode} % \end{macro} % % \begin{macro} % { % \c_group_begin_token, % \c_group_end_token, % \c_math_toggle_token, % \c_alignment_token, % \c_parameter_token, % \c_math_superscript_token, % \c_math_subscript_token, % \c_space_token, % \c_catcode_letter_token, % \c_catcode_other_token % } % We define these useful tokens. We have to do it by hand with the % brace tokens for obvious reasons. % \begin{macrocode} \cs_new_eq:NN \c_group_begin_token { \cs_new_eq:NN \c_group_end_token } \group_begin: \char_set_catcode_math_toggle:N \* \token_new:Nn \c_math_toggle_token { * } \char_set_catcode_alignment:N \* \token_new:Nn \c_alignment_token { * } \token_new:Nn \c_parameter_token { # } \token_new:Nn \c_math_superscript_token { ^ } \char_set_catcode_math_subscript:N \* \token_new:Nn \c_math_subscript_token { * } \token_new:Nn \c_space_token { ~ } \token_new:Nn \c_catcode_letter_token { a } \token_new:Nn \c_catcode_other_token { 1 } \group_end: % \end{macrocode} % \end{macro} % % \begin{variable}{\c_catcode_active_tl} % Not an implicit token! % \begin{macrocode} \group_begin: \char_set_catcode_active:N \* \tl_const:Nn \c_catcode_active_tl { \exp_not:N * } \group_end: % \end{macrocode} % \end{variable} % % \begin{variable}{\l_char_active_seq, \l_char_special_seq} % Two sequences for dealing with special characters. The first is characters % which may be active, and contains the active characters themselves to % allow easy redefinition. The second longer list is for \enquote{special} % characters more generally, and these are escaped so that for example % bulk code assignments can be carried out. In both cases, the order is % by \textsc{ascii} character code (as is done in for example % \cs{ExplSyntaxOn}). The only complication is dealing with |_|, which % requires the use of \cs{use:n} \emph{and} \cs{use:nn}. % \begin{macrocode} \seq_new:N \l_char_active_seq \use:n { \group_begin: \char_set_catcode_active:N \" \char_set_catcode_active:N \$ \char_set_catcode_active:N \& \char_set_catcode_active:N \^ \char_set_catcode_active:N \_ \char_set_catcode_active:N \~ \use:nn { \group_end: \seq_set_split:Nnn \l_char_active_seq { } } } { { " $ & ^ _ ~ } } %$ \seq_new:N \l_char_special_seq \seq_set_split:Nnn \l_char_special_seq { } { \ \" \# \$ \% \& \\ \^ \_ \{ \} \~ } % \end{macrocode} % \end{variable} % % \subsection{Token conditionals} % % \begin{macro}[pTF]{\token_if_group_begin:N} % Check if token is a begin group token. We use the constant % \cs{c_group_begin_token} for this. % \begin{macrocode} \prg_new_conditional:Npnn \token_if_group_begin:N #1 { p , T , F , TF } { \if_catcode:w \exp_not:N #1 \c_group_begin_token \prg_return_true: \else: \prg_return_false: \fi: } % \end{macrocode} % \end{macro} % % \begin{macro}[pTF]{\token_if_group_end:N} % Check if token is a end group token. We use the constant % \cs{c_group_end_token} for this. % \begin{macrocode} \prg_new_conditional:Npnn \token_if_group_end:N #1 { p , T , F , TF } { \if_catcode:w \exp_not:N #1 \c_group_end_token \prg_return_true: \else: \prg_return_false: \fi: } % \end{macrocode} % \end{macro} % % \begin{macro}[pTF]{\token_if_math_toggle:N} % Check if token is a math shift token. We use the constant % \cs{c_math_toggle_token} for this. % \begin{macrocode} \prg_new_conditional:Npnn \token_if_math_toggle:N #1 { p , T , F , TF } { \if_catcode:w \exp_not:N #1 \c_math_toggle_token \prg_return_true: \else: \prg_return_false: \fi: } % \end{macrocode} % \end{macro} % % \begin{macro}[pTF]{\token_if_alignment:N} % Check if token is an alignment tab token. We use the constant % \cs{c_alignment_token} for this. % \begin{macrocode} \prg_new_conditional:Npnn \token_if_alignment:N #1 { p , T , F , TF } { \if_catcode:w \exp_not:N #1 \c_alignment_token \prg_return_true: \else: \prg_return_false: \fi: } % \end{macrocode} % \end{macro} % % \begin{macro}[pTF]{\token_if_parameter:N} % Check if token is a parameter token. We use the constant % \cs{c_parameter_token} for this. We have to trick \TeX{} a bit to % avoid an error message: within a group we prevent % \cs{c_parameter_token} from behaving like a macro parameter character. % The definitions of \cs{prg_new_conditional:Npnn} are global, so they % will remain after the group. % \begin{macrocode} \group_begin: \cs_set_eq:NN \c_parameter_token \scan_stop: \prg_new_conditional:Npnn \token_if_parameter:N #1 { p , T , F , TF } { \if_catcode:w \exp_not:N #1 \c_parameter_token \prg_return_true: \else: \prg_return_false: \fi: } \group_end: % \end{macrocode} % \end{macro} % % \begin{macro}[pTF]{\token_if_math_superscript:N} % Check if token is a math superscript token. We use the constant % \cs{c_math_superscript_token} for this. % \begin{macrocode} \prg_new_conditional:Npnn \token_if_math_superscript:N #1 { p , T , F , TF } { \if_catcode:w \exp_not:N #1 \c_math_superscript_token \prg_return_true: \else: \prg_return_false: \fi: } % \end{macrocode} % \end{macro} % % \begin{macro}[pTF]{\token_if_math_subscript:N} % Check if token is a math subscript token. We use the constant % \cs{c_math_subscript_token} for this. % \begin{macrocode} \prg_new_conditional:Npnn \token_if_math_subscript:N #1 { p , T , F , TF } { \if_catcode:w \exp_not:N #1 \c_math_subscript_token \prg_return_true: \else: \prg_return_false: \fi: } % \end{macrocode} % \end{macro} % % \begin{macro}[pTF]{\token_if_space:N} % Check if token is a space token. We use the constant % \cs{c_space_token} for this. % \begin{macrocode} \prg_new_conditional:Npnn \token_if_space:N #1 { p , T , F , TF } { \if_catcode:w \exp_not:N #1 \c_space_token \prg_return_true: \else: \prg_return_false: \fi: } % \end{macrocode} % \end{macro} % % \begin{macro}[pTF]{\token_if_letter:N} % Check if token is a letter token. We use the constant % \cs{c_catcode_letter_token} for this. % \begin{macrocode} \prg_new_conditional:Npnn \token_if_letter:N #1 { p , T , F , TF } { \if_catcode:w \exp_not:N #1 \c_catcode_letter_token \prg_return_true: \else: \prg_return_false: \fi: } % \end{macrocode} % \end{macro} % % \begin{macro}[pTF]{\token_if_other:N} % Check if token is an other char token. We use the constant % \cs{c_catcode_other_token} for this. % \begin{macrocode} \prg_new_conditional:Npnn \token_if_other:N #1 { p , T , F , TF } { \if_catcode:w \exp_not:N #1 \c_catcode_other_token \prg_return_true: \else: \prg_return_false: \fi: } % \end{macrocode} % \end{macro} % % \begin{macro}[pTF]{\token_if_active:N} % Check if token is an active char token. We use the constant % \cs{c_catcode_active_tl} for this. A technical point is that % \cs{c_catcode_active_tl} is in fact a macro expanding to % |\exp_not:N *|, where |*| is active. % \begin{macrocode} \prg_new_conditional:Npnn \token_if_active:N #1 { p , T , F , TF } { \if_catcode:w \exp_not:N #1 \c_catcode_active_tl \prg_return_true: \else: \prg_return_false: \fi: } % \end{macrocode} % \end{macro} % % \begin{macro}[pTF]{\token_if_eq_meaning:NN} % Check if the tokens |#1| and |#2| have same meaning. % \begin{macrocode} \prg_new_conditional:Npnn \token_if_eq_meaning:NN #1#2 { p , T , F , TF } { \if_meaning:w #1 #2 \prg_return_true: \else: \prg_return_false: \fi: } % \end{macrocode} % \end{macro} % % \begin{macro}[pTF]{\token_if_eq_catcode:NN} % Check if the tokens |#1| and |#2| have same category code. % \begin{macrocode} \prg_new_conditional:Npnn \token_if_eq_catcode:NN #1#2 { p , T , F , TF } { \if_catcode:w \exp_not:N #1 \exp_not:N #2 \prg_return_true: \else: \prg_return_false: \fi: } % \end{macrocode} % \end{macro} % % \begin{macro}[pTF]{\token_if_eq_charcode:NN} % Check if the tokens |#1| and |#2| have same character code. % \begin{macrocode} \prg_new_conditional:Npnn \token_if_eq_charcode:NN #1#2 { p , T , F , TF } { \if_charcode:w \exp_not:N #1 \exp_not:N #2 \prg_return_true: \else: \prg_return_false: \fi: } % \end{macrocode} % \end{macro} % % \begin{macro}[pTF]{\token_if_macro:N} % \begin{macro}[aux]{\@@_if_macro_p:w} % When a token is a macro, \cs{token_to_meaning:N} will always output % something like |\long macro:#1->#1| so we could naively check to % see if the meaning contains |->|. However, this can fail the five % \tn{...mark} primitives, whose meaning has the form % |...mark:|\meta{user material}. The problem is that the % \meta{user material} can contain |->|. % % However, only characters, macros, and marks can contain the colon % character. The idea is thus to grab until the first |:|, and analyse % what is left. However, macros can have any combination of |\long|, % |\protected| or |\outer| (not used in \LaTeX3) before the string % |macro:|. We thus only select the part of the meaning between % the first |ma| and the first following |:|. If this string is % |cro|, then we have a macro. If the string is |rk|, then we have % a mark. The string can also be |cro parameter character | for a % colon with a weird category code (namely the usual category code % of |#|). Otherwise, it is empty. % % This relies on the fact that |\long|, |\protected|, |\outer| % cannot contain |ma|, regardless of the escape character, even if % the escape character is |m|\ldots{} % % Both |ma| and |:| must be of category code $12$ (other), and we % achieve using the standard lowercasing technique. % % \begin{macrocode} \group_begin: \char_set_catcode_other:N \M \char_set_catcode_other:N \A \char_set_lccode:nn { `\; } { `\: } \char_set_lccode:nn { `\T } { `\T } \char_set_lccode:nn { `\F } { `\F } \tl_to_lowercase:n { \group_end: \prg_new_conditional:Npnn \token_if_macro:N #1 { p , T , F , TF } { \exp_after:wN \@@_if_macro_p:w \token_to_meaning:N #1 MA; \q_stop } \cs_new:Npn \@@_if_macro_p:w #1 MA #2 ; #3 \q_stop { \if_int_compare:w \pdftex_strcmp:D { #2 } { cro } = \c_zero \prg_return_true: \else: \prg_return_false: \fi: } } % \end{macrocode} % \end{macro} % \end{macro} % % \begin{macro}[pTF]{\token_if_cs:N} % Check if token has same catcode as a control sequence. This % follows the same pattern as for \cs{token_if_letter:N} \emph{etc.} % We use \cs{scan_stop:} for this. % \begin{macrocode} \prg_new_conditional:Npnn \token_if_cs:N #1 { p , T , F , TF } { \if_catcode:w \exp_not:N #1 \scan_stop: \prg_return_true: \else: \prg_return_false: \fi: } % \end{macrocode} % \end{macro} % % \begin{macro}[pTF]{\token_if_expandable:N} % Check if token is expandable. We use the fact that \TeX{} will % temporarily convert \cs{exp_not:N} \meta{token} into \cs{scan_stop:} % if \meta{token} is expandable. An \texttt{undefined} token is not % considered as expandable. No problem nesting the conditionals, % since the third |#1| is only skipped if it is non-expandable (hence % not part of \TeX{}'s conditional apparatus). % \begin{macrocode} \prg_new_conditional:Npnn \token_if_expandable:N #1 { p , T , F , TF } { \exp_after:wN \if_meaning:w \exp_not:N #1 #1 \prg_return_false: \else: \if_cs_exist:N #1 \prg_return_true: \else: \prg_return_false: \fi: \fi: } % \end{macrocode} % \end{macro} % % \begin{macro}[pTF] % { % \token_if_chardef:N, \token_if_mathchardef:N, % \token_if_dim_register:N, \token_if_int_register:N, % \token_if_muskip_register:N, % \token_if_skip_register:N, \token_if_toks_register:N, % \token_if_long_macro:N, % \token_if_protected_macro:N, \token_if_protected_long_macro:N, % } % \begin{macro}[aux] % { % \@@_if_chardef:w, % \@@_if_dim_register:w, % \@@_if_int_register:w, % \@@_if_muskip_register:w, % \@@_if_skip_register:w, % \@@_if_toks_register:w, % \@@_if_protected_macro:w, % \@@_if_long_macro:w, % } % Most of these functions have to check the meaning of the token in % question so we need to do some checkups on which characters are % output by \cs{token_to_meaning:N}. As usual, these characters have % catcode 12 so we must do some serious substitutions in the code % below\dots % \begin{macrocode} \group_begin: \char_set_lccode:nn { `T } { `T } \char_set_lccode:nn { `F } { `F } \char_set_lccode:nn { `X } { `n } \char_set_lccode:nn { `Y } { `t } \char_set_lccode:nn { `Z } { `d } \tl_map_inline:nn { A C E G H I K L M O P R S U X Y Z R " } { \char_set_catcode:nn { `#1 } \c_twelve } % \end{macrocode} % We convert the token list to lower case and restore the catcode and % lowercase code changes. % \begin{macrocode} \tl_to_lowercase:n { \group_end: % \end{macrocode} % First up is checking if something has been defined with % \tn{chardef} or \tn{mathchardef}. This is easy since \TeX{} % thinks of such tokens as hexadecimal so it stores them as % |\char"|\meta{hex~number} or |\mathchar"|\meta{hex~number}. % Grab until the first occurrence of |char"|, and compare what % precedes with |\| or |\math|. In fact, the escape character % may not be a backslash, so we compare with the result of % converting some other control sequence to a string, namely % |\char| or |\mathchar| (the auxiliary adds the |char| back). % \begin{macrocode} \prg_new_conditional:Npnn \token_if_chardef:N #1 { p , T , F , TF } { \__str_if_eq_x_return:nn { \exp_after:wN \@@_if_chardef:w \token_to_meaning:N #1 CHAR" \q_stop } { \token_to_str:N \char } } \prg_new_conditional:Npnn \token_if_mathchardef:N #1 { p , T , F , TF } { \__str_if_eq_x_return:nn { \exp_after:wN \@@_if_chardef:w \token_to_meaning:N #1 CHAR" \q_stop } { \token_to_str:N \mathchar } } \cs_new:Npn \@@_if_chardef:w #1 CHAR" #2 \q_stop { #1 CHAR } % \end{macrocode} % % Dim registers are a little more difficult since their \tn{meaning} % has the form |\dimen|\meta{number}, and we must take care of the % two primitives \tn{dimen} and \tn{dimendef}. % \begin{macrocode} \prg_new_conditional:Npnn \token_if_dim_register:N #1 { p , T , F , TF } { \if_meaning:w \tex_dimen:D #1 \prg_return_false: \else: \if_meaning:w \tex_dimendef:D #1 \prg_return_false: \else: \__str_if_eq_x_return:nn { \exp_after:wN \@@_if_dim_register:w \token_to_meaning:N #1 ZIMEX \q_stop } { \token_to_str:N \ } \fi: \fi: } \cs_new:Npn \@@_if_dim_register:w #1 ZIMEX #2 \q_stop { #1 ~ } % \end{macrocode} % Integer registers are one step harder since constants are implemented % differently from variables, and we also have to take care of the % primitives \tn{count} and \tn{countdef}. % \begin{macrocode} \prg_new_conditional:Npnn \token_if_int_register:N #1 { p , T , F , TF } { % \token_if_chardef:NTF #1 { \prg_return_true: } % { % \token_if_mathchardef:NTF #1 { \prg_return_true: } % { \if_meaning:w \tex_count:D #1 \prg_return_false: \else: \if_meaning:w \tex_countdef:D #1 \prg_return_false: \else: \__str_if_eq_x_return:nn { \exp_after:wN \@@_if_int_register:w \token_to_meaning:N #1 COUXY \q_stop } { \token_to_str:N \ } \fi: \fi: % } % } } \cs_new:Npn \@@_if_int_register:w #1 COUXY #2 \q_stop { #1 ~ } % \end{macrocode} % Muskip registers are done the same way as the dimension registers. % \begin{macrocode} \prg_new_conditional:Npnn \token_if_muskip_register:N #1 { p , T , F , TF } { \if_meaning:w \tex_muskip:D #1 \prg_return_false: \else: \if_meaning:w \tex_muskipdef:D #1 \prg_return_false: \else: \__str_if_eq_x_return:nn { \exp_after:wN \@@_if_muskip_register:w \token_to_meaning:N #1 MUSKIP \q_stop } { \token_to_str:N \ } \fi: \fi: } \cs_new:Npn \@@_if_muskip_register:w #1 MUSKIP #2 \q_stop { #1 ~ } % \end{macrocode} % Skip registers. % \begin{macrocode} \prg_new_conditional:Npnn \token_if_skip_register:N #1 { p , T , F , TF } { \if_meaning:w \tex_skip:D #1 \prg_return_false: \else: \if_meaning:w \tex_skipdef:D #1 \prg_return_false: \else: \__str_if_eq_x_return:nn { \exp_after:wN \@@_if_skip_register:w \token_to_meaning:N #1 SKIP \q_stop } { \token_to_str:N \ } \fi: \fi: } \cs_new:Npn \@@_if_skip_register:w #1 SKIP #2 \q_stop { #1 ~ } % \end{macrocode} % Toks registers. % \begin{macrocode} \prg_new_conditional:Npnn \token_if_toks_register:N #1 { p , T , F , TF } { \if_meaning:w \tex_toks:D #1 \prg_return_false: \else: \if_meaning:w \tex_toksdef:D #1 \prg_return_false: \else: \__str_if_eq_x_return:nn { \exp_after:wN \@@_if_toks_register:w \token_to_meaning:N #1 YOKS \q_stop } { \token_to_str:N \ } \fi: \fi: } \cs_new:Npn \@@_if_toks_register:w #1 YOKS #2 \q_stop { #1 ~ } % \end{macrocode} % Protected macros. % \begin{macrocode} \prg_new_conditional:Npnn \token_if_protected_macro:N #1 { p , T , F , TF } { \__str_if_eq_x_return:nn { \exp_after:wN \@@_if_protected_macro:w \token_to_meaning:N #1 PROYECYEZ~MACRO \q_stop } { \token_to_str:N \ } } \cs_new:Npn \@@_if_protected_macro:w #1 PROYECYEZ~MACRO #2 \q_stop { #1 ~ } % \end{macrocode} % Long macros and protected long macros share an auxiliary. % \begin{macrocode} \prg_new_conditional:Npnn \token_if_long_macro:N #1 { p , T , F , TF } { \__str_if_eq_x_return:nn { \exp_after:wN \@@_if_long_macro:w \token_to_meaning:N #1 LOXG~MACRO \q_stop } { \token_to_str:N \ } } \prg_new_conditional:Npnn \token_if_protected_long_macro:N #1 { p , T , F , TF } { \__str_if_eq_x_return:nn { \exp_after:wN \@@_if_long_macro:w \token_to_meaning:N #1 LOXG~MACRO \q_stop } { \token_to_str:N \protected \token_to_str:N \ } } \cs_new:Npn \@@_if_long_macro:w #1 LOXG~MACRO #2 \q_stop { #1 ~ } % \end{macrocode} % Finally the \cs{tl_to_lowercase:n} ends! % \begin{macrocode} } % \end{macrocode} % \end{macro} % \end{macro} % % \begin{macro}[pTF]{\token_if_primitive:N} % \begin{macro}[aux]{\@@_if_primitive:NNw, % \@@_if_primitive_space:w, % \@@_if_primitive_nullfont:N, % \@@_if_primitive_loop:N, % \@@_if_primitive:Nw, % \@@_if_primitive_undefined:N} %^^A See http://groups.google.com/group/comp.text.tex/browse_thread/thread/0a72666873f8753d# % % We filter out macros first, because they cause endless trouble later % otherwise. % % Primitives are almost distinguished by the fact that the result % of \cs{token_to_meaning:N} is formed from letters only. Every other % token has either a space (e.g., |the letter A|), a digit % (e.g., |\count123|) or a double quote (e.g., |\char"A|). % % Ten exceptions: on the one hand, \cs{tex_undefined:D} is not a % primitive, but its meaning is |undefined|, only letters; % on the other hand, \tn{space}, \tn{italiccorr}, % \tn{hyphen}, \tn{firstmark}, \tn{topmark}, % \tn{botmark}, \tn{splitfirstmark}, \tn{splitbotmark}, % and \tn{nullfont} are primitives, but have non-letters % in their meaning. % % We start by removing the two first (non-space) characters from % the meaning. This removes the escape character (which may be % inexistent depending on \tn{endlinechar}), and takes care % of three of the exceptions: \tn{space}, \tn{italiccorr} % and \tn{hyphen}, whose meaning is at most two characters. % This leaves a string terminated by some |:|, and \cs{q_stop}. % % The meaning of each one of the five \tn{...mark} primitives % has the form \meta{letters}|:|\meta{user material}. In other words, % the first non-letter is a colon. We remove everything after the first % colon. % % We are now left with a string, which we must analyze. For primitives, % it contains only letters. For non-primitives, it contains either % |"|, or a space, or a digit. Two exceptions remain: \cs{tex_undefined:D}, % which is not a primitive, and \tn{nullfont}, which is a primitive. % % Spaces cannot be grabbed in an undelimited way, so we check them % separately. If there is a space, we test for \tn{nullfont}. % Otherwise, we go through characters one by one, and stop at the % first character less than |`A| (this is not quite a test for % \enquote{only letters}, but is close enough to work in this context). % If this first character is |:| then we have a primitive, or % \cs{tex_undefined:D}, and if it is |"| or a digit, then the token % is not a primitive. % % \begin{macrocode} \tex_chardef:D \c_token_A_int = `A ~ % \group_begin: \char_set_catcode_other:N \; \char_set_lccode:nn { `\; } { `\: } \char_set_lccode:nn { `\T } { `\T } \char_set_lccode:nn { `\F } { `\F } \tl_to_lowercase:n { \group_end: \prg_new_conditional:Npnn \token_if_primitive:N #1 { p , T , F , TF } { \token_if_macro:NTF #1 \prg_return_false: { \exp_after:wN \@@_if_primitive:NNw \token_to_meaning:N #1 ; ; ; \q_stop #1 } } \cs_new:Npn \@@_if_primitive:NNw #1#2 #3 ; #4 \q_stop { \tl_if_empty:oTF { \@@_if_primitive_space:w #3 ~ } { \@@_if_primitive_loop:N #3 ; \q_stop } { \@@_if_primitive_nullfont:N } } } \cs_new:Npn \@@_if_primitive_space:w #1 ~ { } \cs_new:Npn \@@_if_primitive_nullfont:N #1 { \if_meaning:w \tex_nullfont:D #1 \prg_return_true: \else: \prg_return_false: \fi: } \cs_new:Npn \@@_if_primitive_loop:N #1 { \if_int_compare:w `#1 < \c_token_A_int % \exp_after:wN \@@_if_primitive:Nw \exp_after:wN #1 \else: \exp_after:wN \@@_if_primitive_loop:N \fi: } \cs_new:Npn \@@_if_primitive:Nw #1 #2 \q_stop { \if:w : #1 \exp_after:wN \@@_if_primitive_undefined:N \else: \prg_return_false: \exp_after:wN \use_none:n \fi: } \cs_new:Npn \@@_if_primitive_undefined:N #1 { \if_cs_exist:N #1 \prg_return_true: \else: \prg_return_false: \fi: } % \end{macrocode} % \end{macro} % \end{macro} % % \subsection{Peeking ahead at the next token} % % \begin{macrocode} %<@@=peek> % \end{macrocode} % % Peeking ahead is implemented using a two part mechanism. The % outer level provides a defined interface to the lower level material. % This allows a large amount of code to be shared. There are four % cases: % \begin{enumerate} % \item peek at the next token; % \item peek at the next non-space token; % \item peek at the next token and remove it; % \item peek at the next non-space token and remove it. % \end{enumerate} % % \begin{variable}{\l_peek_token} % \begin{variable}{\g_peek_token} % Storage tokens which are publicly documented: the token peeked. % \begin{macrocode} \cs_new_eq:NN \l_peek_token ? \cs_new_eq:NN \g_peek_token ? % \end{macrocode} % \end{variable} % \end{variable} % % \begin{variable}{\l_@@_search_token} % The token to search for as an implicit token: % \emph{cf.}~\cs{l_@@_search_tl}. % \begin{macrocode} \cs_new_eq:NN \l_@@_search_token ? % \end{macrocode} % \end{variable} % % \begin{variable}{\l_@@_search_tl} % The token to search for as an explicit token: % \emph{cf.}~\cs{l_@@_search_token}. % \begin{macrocode} \tl_new:N \l_@@_search_tl % \end{macrocode} % \end{variable} % % \begin{macro}[aux] % {\@@_true:w, \@@_true_aux:w, \@@_false:w, \@@_tmp:w} % Functions used by the branching and space-stripping code. % \begin{macrocode} \cs_new_nopar:Npn \@@_true:w { } \cs_new_nopar:Npn \@@_true_aux:w { } \cs_new_nopar:Npn \@@_false:w { } \cs_new:Npn \@@_tmp:w { } % \end{macrocode} % \end{macro} % % \begin{macro}{\peek_after:Nw} % \begin{macro}{\peek_gafter:Nw} % Simple wrappers for \tn{futurelet}: no arguments absorbed % here. % \begin{macrocode} \cs_new_protected_nopar:Npn \peek_after:Nw { \tex_futurelet:D \l_peek_token } \cs_new_protected_nopar:Npn \peek_gafter:Nw { \tex_global:D \tex_futurelet:D \g_peek_token } % \end{macrocode} % \end{macro} % \end{macro} % % \begin{macro}[aux]{\@@_true_remove:w} % A function to remove the next token and then regain control. % \begin{macrocode} \cs_new_protected:Npn \@@_true_remove:w { \group_align_safe_end: \tex_afterassignment:D \@@_true_aux:w \cs_set_eq:NN \@@_tmp:w } % \end{macrocode} % \end{macro} % % \begin{macro}[TF]{\@@_token_generic:NN} % The generic function stores the test token in both implicit and % explicit modes, and the \texttt{true} and \texttt{false} code as % token lists, more or less. The two branches have to be absorbed here % as the input stream needs to be cleared for the peek function itself. % \begin{macrocode} \cs_new_protected:Npn \@@_token_generic:NNTF #1#2#3#4 { \cs_set_eq:NN \l_@@_search_token #2 \tl_set:Nn \l_@@_search_tl {#2} \cs_set_nopar:Npx \@@_true:w { \exp_not:N \group_align_safe_end: \exp_not:n {#3} } \cs_set_nopar:Npx \@@_false:w { \exp_not:N \group_align_safe_end: \exp_not:n {#4} } \group_align_safe_begin: \peek_after:Nw #1 } \cs_new_protected:Npn \@@_token_generic:NNT #1#2#3 { \@@_token_generic:NNTF #1 #2 {#3} { } } \cs_new_protected:Npn \@@_token_generic:NNF #1#2#3 { \@@_token_generic:NNTF #1 #2 { } {#3} } % \end{macrocode} % \end{macro} % % \begin{macro}[TF]{\@@_token_remove_generic:NN} % For token removal there needs to be a call to the auxiliary % function which does the work. % \begin{macrocode} \cs_new_protected:Npn \@@_token_remove_generic:NNTF #1#2#3#4 { \cs_set_eq:NN \l_@@_search_token #2 \tl_set:Nn \l_@@_search_tl {#2} \cs_set_eq:NN \@@_true:w \@@_true_remove:w \cs_set_nopar:Npx \@@_true_aux:w { \exp_not:n {#3} } \cs_set_nopar:Npx \@@_false:w { \exp_not:N \group_align_safe_end: \exp_not:n {#4} } \group_align_safe_begin: \peek_after:Nw #1 } \cs_new_protected:Npn \@@_token_remove_generic:NNT #1#2#3 { \@@_token_remove_generic:NNTF #1 #2 {#3} { } } \cs_new_protected:Npn \@@_token_remove_generic:NNF #1#2#3 { \@@_token_remove_generic:NNTF #1 #2 { } {#3} } % \end{macrocode} % \end{macro} % % \begin{macro}{\@@_execute_branches_meaning:} % The meaning test is straight forward. % \begin{macrocode} \cs_new_nopar:Npn \@@_execute_branches_meaning: { \if_meaning:w \l_peek_token \l_@@_search_token \exp_after:wN \@@_true:w \else: \exp_after:wN \@@_false:w \fi: } % \end{macrocode} % \end{macro} % % \begin{macro}{\@@_execute_branches_catcode:, \@@_execute_branches_charcode:} % \begin{macro}[aux] % { % \@@_execute_branches_catcode_aux: , % \@@_execute_branches_catcode_auxii:N , % \@@_execute_branches_catcode_auxiii: % } % The catcode and charcode tests are very similar, and in order to use % the same auxiliaries we do something a little bit odd, firing % \cs{if_catcode:w} and \cs{if_charcode:w} before finding the operands % for those tests, which will only be given in the |auxii:N| and % |auxiii:| auxiliaries. For our purposes, three kinds of tokens may % follow the peeking function: % \begin{itemize} % \item control sequences which are not equal to a non-active % character token (\emph{e.g.}, macro, primitive); % \item active characters which are not equal to a non-active % character token (\emph{e.g.}, macro, primitive); % \item explicit non-active character tokens, or control sequences % or active characters set equal to a non-active character token. % \end{itemize} % The first two cases are not distinguishable simply using \TeX{}'s % \tn{futurelet}, because we can only access the \tn{meaning} of % tokens in that way. In those cases, detected thanks to a % comparison with \cs{scan_stop:}, we grab the following token, and % compare it explicitly with the explicit search token stored in % \cs{l_@@_search_tl}. The \cs{exp_not:N} prevents outer macros % (coming from non-\LaTeX3 code) from blowing up. In the third case, % \cs{l_peek_token} is good enough for the test, and we compare it % again with the explicit search token. Just like the peek token, the % search token may be of any of the three types above, hence the need % to use the explicit token that was given to the peek function. % \begin{macrocode} \cs_new_nopar:Npn \@@_execute_branches_catcode: { \if_catcode:w \@@_execute_branches_catcode_aux: } \cs_new_nopar:Npn \@@_execute_branches_charcode: { \if_charcode:w \@@_execute_branches_catcode_aux: } \cs_new_nopar:Npn \@@_execute_branches_catcode_aux: { \if_catcode:w \exp_not:N \l_peek_token \scan_stop: \exp_after:wN \exp_after:wN \exp_after:wN \@@_execute_branches_catcode_auxii:N \exp_after:wN \exp_not:N \else: \exp_after:wN \@@_execute_branches_catcode_auxiii: \fi: } \cs_new:Npn \@@_execute_branches_catcode_auxii:N #1 { \exp_not:N #1 \exp_after:wN \exp_not:N \l_@@_search_tl \exp_after:wN \@@_true:w \else: \exp_after:wN \@@_false:w \fi: #1 } \cs_new_nopar:Npn \@@_execute_branches_catcode_auxiii: { \exp_not:N \l_peek_token \exp_after:wN \exp_not:N \l_@@_search_tl \exp_after:wN \@@_true:w \else: \exp_after:wN \@@_false:w \fi: } % \end{macrocode} % \end{macro} % \end{macro} % % \begin{macro}{\@@_ignore_spaces_execute_branches:} % This function removes one space token at a time, and calls % \cs{@@_execute_branches:} when encountering the first non-space % token. We directly use the primitive meaning test rather than % \cs{token_if_eq_meaning:NNTF} because \cs{l_peek_token} may be an % outer macro (coming from non-\LaTeX3 packages). Spaces are removed % using a side-effect of \texttt{f}-expansion: % |\tex_romannumeral:D -`0| removes one space. % \begin{macrocode} \cs_new_protected_nopar:Npn \@@_ignore_spaces_execute_branches: { \if_meaning:w \l_peek_token \c_space_token \exp_after:wN \peek_after:Nw \exp_after:wN \@@_ignore_spaces_execute_branches: \tex_romannumeral:D -`0 \else: \exp_after:wN \@@_execute_branches: \fi: } % \end{macrocode} % \end{macro} % % \begin{macro}[aux]{\@@_def:nnnn} % \begin{macro}[aux]{\@@_def:nnnnn} % The public functions themselves cannot be defined using % \cs{prg_new_conditional:Npnn} and so a couple of auxiliary functions % are used. As a result, everything is done inside a group. As a result % things are a bit complicated. % \begin{macrocode} \group_begin: \cs_set:Npn \@@_def:nnnn #1#2#3#4 { \@@_def:nnnnn {#1} {#2} {#3} {#4} { TF } \@@_def:nnnnn {#1} {#2} {#3} {#4} { T } \@@_def:nnnnn {#1} {#2} {#3} {#4} { F } } \cs_set:Npn \@@_def:nnnnn #1#2#3#4#5 { \cs_new_protected_nopar:cpx { #1 #5 } { \tl_if_empty:nF {#2} { \exp_not:n { \cs_set_eq:NN \@@_execute_branches: #2 } } \exp_not:c { #3 #5 } \exp_not:n {#4} } } % \end{macrocode} % \end{macro} % \end{macro} % \begin{macro}[TF] % { % \peek_catcode:N, \peek_catcode_ignore_spaces:N, % \peek_catcode_remove:N, \peek_catcode_remove_ignore_spaces:N % } % With everything in place the definitions can take place. First for % category codes. % \begin{macrocode} \@@_def:nnnn { peek_catcode:N } { } { @@_token_generic:NN } { \@@_execute_branches_catcode: } \@@_def:nnnn { peek_catcode_ignore_spaces:N } { \@@_execute_branches_catcode: } { @@_token_generic:NN } { \@@_ignore_spaces_execute_branches: } \@@_def:nnnn { peek_catcode_remove:N } { } { @@_token_remove_generic:NN } { \@@_execute_branches_catcode: } \@@_def:nnnn { peek_catcode_remove_ignore_spaces:N } { \@@_execute_branches_catcode: } { @@_token_remove_generic:NN } { \@@_ignore_spaces_execute_branches: } % \end{macrocode} % \end{macro} % \begin{macro}[TF] % { % \peek_charcode:N, \peek_charcode_ignore_spaces:N, % \peek_charcode_remove:N, \peek_charcode_remove_ignore_spaces:N % } % Then for character codes. % \begin{macrocode} \@@_def:nnnn { peek_charcode:N } { } { @@_token_generic:NN } { \@@_execute_branches_charcode: } \@@_def:nnnn { peek_charcode_ignore_spaces:N } { \@@_execute_branches_charcode: } { @@_token_generic:NN } { \@@_ignore_spaces_execute_branches: } \@@_def:nnnn { peek_charcode_remove:N } { } { @@_token_remove_generic:NN } { \@@_execute_branches_charcode: } \@@_def:nnnn { peek_charcode_remove_ignore_spaces:N } { \@@_execute_branches_charcode: } { @@_token_remove_generic:NN } { \@@_ignore_spaces_execute_branches: } % \end{macrocode} % \end{macro} % \begin{macro}[TF] % { % \peek_meaning:N, \peek_meaning_ignore_spaces:N, % \peek_meaning_remove:N, \peek_meaning_remove_ignore_spaces:N % } % Finally for meaning, with the group closed to remove the temporary % definition functions. % \begin{macrocode} \@@_def:nnnn { peek_meaning:N } { } { @@_token_generic:NN } { \@@_execute_branches_meaning: } \@@_def:nnnn { peek_meaning_ignore_spaces:N } { \@@_execute_branches_meaning: } { @@_token_generic:NN } { \@@_ignore_spaces_execute_branches: } \@@_def:nnnn { peek_meaning_remove:N } { } { @@_token_remove_generic:NN } { \@@_execute_branches_meaning: } \@@_def:nnnn { peek_meaning_remove_ignore_spaces:N } { \@@_execute_branches_meaning: } { @@_token_remove_generic:NN } { \@@_ignore_spaces_execute_branches: } \group_end: % \end{macrocode} % \end{macro} % % \subsection{Decomposing a macro definition} % % \begin{macro}{\token_get_prefix_spec:N} % \begin{macro}{\token_get_arg_spec:N} % \begin{macro}{\token_get_replacement_spec:N} % \begin{macro}[aux]{\@@_get_prefix_arg_replacement:wN} % We sometimes want to test if a % control sequence can be expanded to reveal a hidden % value. However, we cannot just expand the macro blindly as it may % have arguments and none might be present. Therefore we define % these functions to pick either the prefix(es), the argument % specification, or the replacement text from a macro. All of this % information is returned as characters with catcode~$12$. If the % token in question isn't a macro, the token \cs{scan_stop:} is % returned instead. % \begin{macrocode} \exp_args:Nno \use:nn { \cs_new:Npn \@@_get_prefix_arg_replacement:wN #1 } { \tl_to_str:n { macro : } #2 -> #3 \q_stop #4 } { #4 {#1} {#2} {#3} } \cs_new:Npn \token_get_prefix_spec:N #1 { \token_if_macro:NTF #1 { \exp_after:wN \@@_get_prefix_arg_replacement:wN \token_to_meaning:N #1 \q_stop \use_i:nnn } { \scan_stop: } } \cs_new:Npn \token_get_arg_spec:N #1 { \token_if_macro:NTF #1 { \exp_after:wN \@@_get_prefix_arg_replacement:wN \token_to_meaning:N #1 \q_stop \use_ii:nnn } { \scan_stop: } } \cs_new:Npn \token_get_replacement_spec:N #1 { \token_if_macro:NTF #1 { \exp_after:wN \@@_get_prefix_arg_replacement:wN \token_to_meaning:N #1 \q_stop \use_iii:nnn } { \scan_stop: } } % \end{macrocode} % \end{macro} % \end{macro} % \end{macro} % \end{macro} % % \begin{macrocode} % % \end{macrocode} % % \end{implementation} % % \PrintIndex